文档库 最新最全的文档下载
当前位置:文档库 › 详解3D打印机控制原理

详解3D打印机控制原理

详解3D打印机控制原理

详解3D打印机控制原理

和通常我们见到的打印机一样,3D 打印机也是由控制电路、驱动电路、

数据处理电路、电源及输入输出模块这几个部分构成。重庆大学自动化学院罗

克韦尔实验室将闪铸AdventurerⅢ3D 打印机拆解开来,对其主要元器件逐个进行分析。

从外观来看,采用FDM 熔融层积成型技术面相的个人消费者的3D 打印机的结构并不复杂,甚至有点简陋,不过也正是这样的原因才能够将3D 打印机的

价格从几万甚至几十万美元降低到几千元人民币。目前,消费级的3D 打印机

主要都由PC 电源、主控电路、步进电机及控制电路、高温喷头和工件输出基

板这几个部分组成,外面用木板来固定,采用非密闭式铸模平台。我们测试的

这款闪铸AdventurerⅢ3D 打印机相对比较高端,不仅能够通过USB 连接线连接电脑进行打印控制,还能够插入储存有3D 模型文件的SD 卡,通过LCD 打印控制界面来进行控制打印。

我们可以看到其核心是一块采用ATmega1280-16AU(16MHz)8 位AVR 微处理器的主电路板,通过这块主电路板将处理后的3D 模型文件转换成

X、Y、Z 轴和喷头供料的步进电机数据,交给4 个步进电机控制电路进行控制,然后让步进电机控制电路控制工件输出基板的X-Y 平面移动、喷头的垂直移动和喷头供料的速度,比较精确地让高温喷头将原料(ABS 塑料丝)融化后一层一层地喷在工件输出基板上,形成最终的实体模型。

从硬件结构上来说,闪铸AdventurerⅢ3D 打印机并不复杂,成本也并不是太高,据重庆大学自动化学院副院长林景栋教授介绍其主控制电路成本也就

100 元左右,一套步进电机和控制电路的成本也在100 元左右,可加热的工件

输出基板和喷头成本也不是太高。在得知它配备的航嘉磐石355 电源售价超过

不同类型3D打印机成型原理及优缺点的介绍

不同类型3D打印机成型原理及优缺点的介绍现在是一个科技的时代,3D的发展范围也在不断扩大,3D电影、3D建模、3D打印等等。在3D打印设备运用越来越广的今天3D打印机成型的原理你了解到了吗?更好的了解3D打印机成型原理才可以 更好的运用它。今天巨影小编就带大家了解一下在这个3D的时代,3D打印设备的形成原理是什么。 3D打印技术从狭义上来说主要是指增材成型技术,从成型工艺上看,3D打印技术突破了传统成型方法,通过快速自动成型系统与计算机数据模型结合,无需任何附加的传统模具制造和机械加工就能够制造出各种形状复杂的原型,这使得产品的设计生产周期大大缩短,生产成本大幅下降。3D打印设备,俗称“三维打印技术”或“快速成型”,是对一系列“增材制造”技术的总称。

FDM成型原理:熔融沉积有时候又被称为熔丝沉积,它将丝状的热熔性材料进行加热融化,通过带有微细喷嘴的挤出机把材料挤出来。喷头可以沿X轴的方向进行移动,工作台则沿Y轴和Z轴方向移动(当然不同的设备其机械结构的设计也许不一样),熔融的丝材被挤出后随即会和前一层材料粘合在一起。一层材料沉积后工作台将按预定的增量下降一个厚度,然后重复以上的步骤直到工件完全成型。 FDM成型技术的优点: 1、成本低。熔融沉积造型技术用液化器代替了激光器,设备费用低;另外原材料的利用效率高且没有毒气或化学物质的污染,使得成型成本大大降低。 2、原材料以材料卷得的形式提供,易于粉末材料搬运和储存以及快速更换; 3、原材料在成型过程中无化学变化,相对金属粉末,树脂固化制件成型的变形小。 FDM成型技术的缺点: 1、需要配合支撑结构打内腔模型时,支撑面效果欠佳。

快速成型3d打印原理技术论文

快速成型3d打印原理技术论文 快速成型3d打印技术论文篇一:《试论3D打印技术》 摘要:3D打印又称为增材制造,近年来得到了快速发展,应用领域不断增加。本文对3D打印的原理及应用现状进行了分析,对3D打印在教学领域的应用模式进行了探讨。 关键词:3D打印;应用现状;教学领域 1 引言 3D打印,又称为增材制造,是快速成型技术的一种,被誉为“第三次工业革命的重要标志”,以其“制造灵活”和“节约原材料”的特点在制造业掀起了一股浪潮。近年来,随着3D打印技术的逐步成熟、精确,打印材料种类的增加,打印价格的降低,3D打印得到了快速发展,应用领域不断增加,不仅在机械制造、国防军工、建筑等领域得到广泛应用,也逐渐进入了公众视野,走进学校、家庭、医院等大众熟悉的场所,在教育、生物医疗、玩具等行业也得到了广泛关注及应用,作为教育工作者,本文将在介绍3D打印的原理、优势、应用现状的基础上,重点探讨3D打印在教育领域的角色及应用模式。 2 3D打印概述 2.1 3D打印原理 3D打印(3D printing,又称三维打印),是利用设计好的3D模型,通过3D打印机逐层增加塑料、粉末状金属等材料来制造三维产

品的技术[1]。一般来说,通过3D打印获得物品需要经历建模、分割、打印、后期处理等四个环节[2],其中3D虚拟模型,可以是利用扫描设备获取物品的三维数据,并以数字化方式生成三维模型,或者是利用AutoCAD等工程或设计软件创建的3D模型,有些应用程序甚至可以使用普通的数码照片来制作3D模型,比如123D Catch[3]。 2.2 3D打印的优势 与传统制造技术相比,3D打印不需事先制模,也不必铸造原型,大大缩短了产品的设计周期,减少了产品从研发到应用的时间,降低了企业因开模不当可能导致的高成本风险,使得特殊和复杂结构的模型的制作也变得相对简单,产品也更能凸显个性化。另外,3D打印是增材制造,使用金属粉或其他材料,使部件从无到有制造出来,大大减少了原材料和能源的消耗,生产上实行了结构优化。 2.3 3D打印的应用现状 近年来,3D打印得到了快速发展,几乎应用于各个领域。在模具加工和机械制造领域,使用3D打印相对快速地进行模具的设计与定制,打印复杂形状的各种零件,打印具有足够强度的个性化几何造型的物件。在航空航天、国防军工领域,3D打印应用于外形验证、关键零部件的原型制造、直接产品制造等方面。如空客公司从打印飞机小部件开始,逐步发展,计划在2050年左右打印出整架飞机。生物医疗领域,医学工作者利用3D打印技术打印出患者的心脏模型,缺损下颌骨模型,患者外伤性脑内血肿颅脑模型等,用于辅助诊断并制定术前手术方案,降低了手术难度,减少了手术时间,为患者带来

3D打印机的技术原理

工程训练I大作业 3D打印机的技术原理 学院名称 专业班级 学号 学生姓名 成绩 2018年03月18日

3D打印机的技术原理 3D打印(3D ),是制造业领域正在迅速发展的一项新兴技术,被称为“具有工业革命意义的制造技术”。运用该技术进行生产的主要流程是:应用计算机软件,设计出立体的加工样式,然后通过特定的成型设备(俗称“3D打印机”),用液态、粉末、丝状的固体材料逐层“打印”出产品。 3D打印是“增材制造”()的主要实现形式。“增材制造”的理念区别于传统的“去除型”制造。传统数控制造一般是在原材料基础上,使用切割、磨削、腐蚀、熔融等办法,去除多余部分,得到零部件,再以拼装、焊接等方法组合成最终产品。而“增材制造”与之截然不同,无需原胚和模具,就能直接根据计算机图形数据,通过叠加材料的方法生成任何形状的物体,简化产品的制造程序,缩短产品的研制周期,提高效率并降低成本。 国际上喜欢用“”(简称)来表示3D打印技术,国内专业术语是增量制造、增材制造或添加制造。2009年美国成立了F42委员会,将定义为:“3d , .”即:一种与传统的材料去处加工方法截然相反的,通过增加材料、基于三维模型数据,通常采用逐层制造方式,直接制造与相应数学模型完全一致的三维物理实体模型的制造方法。 目前主流的3D打印技术有:

1、激光粉末烧结成型(1 ); 2、3三维打印(3 ); 3、激光光固化(); 4、熔融沉积造型() 3D打印机的用途,能够实现哪些功能 3D打印能够发挥的作用,按照产品设计研发的流程来说:3D打印不仅仅可以快速制作设计原型,从最初的概念设计到最终产品制造,3D打印在产品设计制造的各个环节都具备变革性优势。 许多企业在产品设计早期,就会使用3D打印设备快速制作足够多的模型用于评估,不仅节省了时间,而且减少了设计缺陷。随着产品设计研发的进展,他们会采用3D打印反复制作手板模型用于设计沟通、设计验证、装配测试和宣传展示,以实现产品功能改善、生产成本降低、品质更好、市场接受度提升的目标。在产品小批量试制阶段,3D打印为快速打样提供了最佳方案,3D打印出来的样品可以用于宣传展示、市场调查、试销售等。而在产品量产环节,也已经有越来越多的企业在采用3D打印方式来加快交付周期、降低个性化定制价格、改善产品交付质量,以及提高生产效率。 3D打印能够发挥的作用,按照不同应用行业来说: 近年来,3D打印技术发展迅速,通过与数控加工、铸造、金属冷喷涂、硅胶模等制造手段结合,该技术已成为现代模型、模具和零

3D打印技术的应用毕业论文

目录 第一部分引言 第二部分3D打印技术的介绍2.1,3D打印系统的工作原理和制造工艺2.2,3D打印制造的优点 第三部分3D打印技术的应用3.1 3D打印制造在模具制造中的应用3.2 3D打印技术在医学中的应用 第四部分结束语 参考文献

3D打印技术的应用 摘要:本文介绍了3D打印技术的基本原理及其制造流程。通过一些实例说明了3D打印的应用,主要是说明在机械制造方面的应用和医学 方面的应用。 The using of 3D PRINTING technology Abstract :In this paper, it describes the theory of 3D打印and the manufacture process. Some examples are used to make you know the using of 3D打印technology in machine manufacture and in medicine. 第一部分引言 3D打印(3D PRINTING)即3D打印技术,又3D打印制造是20世纪80年代才兴起的一门新兴的技术,是21世纪制造业最具影响的技术之一。随着计算机与网络技术的发展,信息高速公路加快了科技传播的速度,产品的生命周期越来越短,企业之间的竞争不再只是质量和成本上的竞争,而更重要的是产品上市时间的竞争。因此,通过计算机仿真和3D打印增加产品的信息量,以便更快的完成设计及其制造过程,将产品设计和制造过程的时间周期尽量缩短,防止投产后发现问题造成不可挽回的损失。 3D打印技术是由CAD模型直接驱动的快速制造复杂形状的三维实体的技术总称。简单的讲,3D打印制造技术就是快速制造新产品首版样件的技术,它可以在没有任何刀具、模具及工装夹具的情况下,快速直接的实现零件的单件生产。该技术突破了制造业的传统模式,特别适合于新产品的开发、单件或少批量产品试制等。它是机械工程、计算机CAD、电子技术、数控技术、激光 技术、材料科学等多学科相互渗透与交叉的产物。它可快速,准确地将设计思想转变为具有一定功能的原型或零件,以便进行快速评估,修改及功能测试,从而大大缩短产品的研制周期,减少开发费用,加快新产品推向市场的进程。 自从美国3D公司在1987年推出世界上第一台商用快速原形制造设备以来,快速原形技术快速发展。投入的研究经费大幅增加,技术成果丰硕。原形化系统产品的销量高速增长。在这方面美国,日本一直处于领先地位,我国在这方面起步较晚,但是奋起直追,开展研究并取得一定成果,国内也有些成熟的产品问世,他们正在各种生产领域上发挥着作用。 第二部分3D打印技术的介绍 2.13D打印系统的工作原理和制造工艺

3D打印主流技术基本原理与工艺

3D打印技术原理与基本工艺 (一)3D打印技术概述 3D打印(3D Printing)是快速成型技术的一种,也称为增材制造技术(Additive Manufacturing,AM),是一种以数字模型文件为基础,以材料逐层累加的方式制造实体零件的技术。3D打印技术概念起源于19世纪,从上世纪80年代末正式应用到现在已经有30多年历史。3D打印通常是采用3D打印机来实现,常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造。 (二)3D打印工艺介绍 激光光固化技术(Stereolithography Apparatus SLA)特定波长与强度的激光聚焦到光固化材料表面使其逐层凝固叠加构成三维实体,又称立体光刻成型。该工艺最早由Charles W.Hull于1984年提出并获得美国国家专利,是最早发展起来的3D打印技术之一。SLA工艺也成为了目前世界上研究最为深入、技术最为成熟、应用最为广泛的一种3D打印技术。 图1:SLA工作原理图(由云工厂整理) 液槽中会先盛满液态的光敏树脂,氦—镉激光器或氩离子激光器发射出的紫外激光束在计算机的操纵下按工件的分层截面数据在液态的光敏树脂表面进行逐行逐点扫描,这使扫描区域的树脂薄层产生聚合反应而固化从形成工件的一个薄层。当一层树脂固化完毕后,工作台将下移一个层厚的距离以使在原先固化好的树脂表面上再覆盖一层新的液态树脂,刮板将粘度较大的树脂液面刮平然后再进行下一层的激光扫描固化。因为液态树脂具有高粘性而导致流动性较差,在每

层固化之后液面很难在短时间内迅速抚平,这样将会影响到实体的成型精度。采用刮板刮平后所需要的液态树脂将会均匀地涂在上一叠层上,这样经过激光固化后将可以得到较好的精度,也能使成型工件的表面更加光滑平整。新固化的一层将牢固地粘合在前一层上,如此重复直至整个工件层叠完毕,这样最后就能得到一个完整的立体模型。当工件完全成型后,首先需要把工件取出并把多余的树脂清理干净,接着还需要把支撑结构清除掉,最后还需要把工件放到紫外灯下进行二次固化。 SLA工艺成型效率高,系统运行相对稳定,成型工件表面光滑精度也有保证,适合制作结构异常复杂的模型,能够直接制作面向熔模精密铸造的中间模。尽管SLA的成型精度高,但成型尺寸也有较大的限制而不适合制作体积庞大的工件,成型过程中伴随的物理变化和化学变化可能会导致工件变形,因此成型工件需要有支撑结构。 选择性激光烧结(Selective Laser Sintering,SLS)特定波长与强度的激光逐层将粉末材料烧结成型形成三维实体。该工艺最早是由美国德克萨斯大学奥斯汀分校的C.R.Dechard于1989年在其硕士论文中提出的,随后C.R.Dechard创立了DTM公司并于1992年发布了基于SLS技术的工业级商用3D打印机Sinterstation。 SLS工艺使用的是粉末状材料,激光器在计算机的操控下对粉末进行扫描照射而实现材料的烧结粘合,就这样材料层层堆积实现成型,如图所示为SLS的成型原理: 图2:SLS工作原理图(由云工厂整理) SLS加工的过程先采用压辊将一层粉末平铺到已成型工件的上表面,数控系统操控激光束按照该层截面轮廓在粉层上进行扫描照射而使粉末的温度升至熔

3D打印工作原理

3D打印工作原理 1、能够将3维数据格式(如:stl,x_t,step)解析成机械加工的G语言。正如前文所说,这一个步骤实质上就是生成“捏牙膏的方法”。在这个步骤里,3维数据被解析成一层层面,面被解析成一条条线。线被解析成一条条的G代码。这里的解析方法可以有开源社区提供。比较出名的有replicatorg项目。这里也稍微简介一下G代码:G代码是用来控制机械加工刀具(喷嘴)运动的代码。比如说,让刀具(喷嘴)从当前这个点以最快速方法运动到(0,0,10)这个坐标点。其代码就是G90G00 X0 Y0Z10。这条代码中,G90表示后面的坐标使用绝对坐标格式,G00表示快速移动操作,X0表示目的坐标的X轴坐标为0,Y0表示目的坐标的Y轴坐标为0,Z10表示目的坐标的Z轴坐标为10。当然G代码不仅仅只有这一条指令。这里只是举个例子来说明G代码的功能。 2、能够解析G代码的机器。通过第1个技术手段,我们有G 代码。接下来就需要一台能够“读懂”G代码的机器。要实现G代码的机器,技术关键在插补算法。所谓的插补算法实际上就是让刀具能够精确的按照指令走。为了说明插补算法的功能,这里再介绍一条简单的G代码:G90G01 X10 Y10 Z10 F100。这条代码中,G90表示采用绝对坐标格式,G01表示直线运动,X0Y0Z10表示目的坐标为(10,10,10),F100表示移动速度为100个单位每分钟(单位可通过G20/G21指令来设置成毫米/英寸)。要控制

刀具(喷嘴)走直线就和简单的控制刀具移动到目的地不一样的了。它不仅仅要控制结果,还要控制过程。它需要刀具(喷嘴)在三个坐标轴上的速度的合速度能够一直在指定的直线上。当然更复杂一点的,还要求插补算法能够实现G语言的G02,G03指令。这两条指令是控制刀具(喷嘴)画(逆时针/顺时针)圆。简单的说,需要有台机器,能够严格的实现G代码的指令。能够读了G代码后,再控制电机(通常是步进电机)来实现刀具(喷嘴)的运动。 3、能够稳定喷材料的喷嘴。事实上,这是从物理上实现3D 打印的关键技术。市场上常见的喷嘴是由带尖的金属喷嘴,热传感器,加热电阻和一个步进电机组成的。加热电阻和热传感器用来控制金属喷嘴的温度。步进电机用来提供材料的进给。喷嘴口的直径很有讲究。它喷出来的材料直径直接影响到打印精度(每一层的厚度)。 4、介绍到这里,FDM式3D打印机已经差不多了。它不复杂,实现上述三个技术,就可以做出一台3D打印机。但是,这里不得不提出工程上的一个观点:做出一个东西和做好一个东西是完全不同的概念。一个好的机器,一定是集成各种优化设计于一体的机器。它的关键结构都要么是经验丰富的设计人员总结而设计的,要么是经验不丰富的设计人员通过严格的计算校和做出来的。拥有了以上三项技术,或许你可以制作一台3D打印机,但不一定能做好一台3D打印机。第二部分:FDM式3D打印机的硬件和

常用3D打印工作原理

常用3D打印工作原理什么是3D打印? 3D打印是用于构建三维结构和立体物体的制造技术。3D打印是一种附加制造(AM)技术:最终的目标是通过在上面加上一层材料(反对减法制造方法,如雕刻,为了形成最终目标而需要移除石头)而创建的。 为了创建一个实体对象,3D打印机在3D文件的设计(通常称为STL格式文件)的基础上,在打印床(也称为构建平台)上沉积打印材料。用于FFF和FDM 3D打印机的材料通常是熔融的,一层一层地沉积。每一层都很薄,并且很快凝固,从而形成三维物体。大多数桌面3D打印机使用塑料长丝线轴作为消耗品。有很多3D打印技术。 3D打印技术 目前有许多类型的3D打印技术在商业上或在早期开发阶段可用。这些添加剂制造技术中的每一种都需要一种特定类型的3D打印材料:从塑料长丝(PLA,ABS…)到感光树脂到粉末材料(金属、塑料等)。这些3D打印技术具有多种优点,可以用于特定的应用和用例。 3D打印快速成型原理 3D打印技术有三大类: (FFF and FDM):在3D打印机的构建平台上熔化并沉积塑料丝,以逐层形成对象。 SLA用激光或投影仪固化液体感光树脂,在3D打印机的树脂罐中直接形成物件。使用光聚合(光敏树脂通过光源固化)最常见的3D打印技术称为立体光刻。 (SLS, SLM, DMLS…)通过激光烧结或熔化粉末材料,将粉末的颗粒粘结或熔化在一起(烧结)以获得固体结构。选择性激光烧结(SLS)技术是最常见的基于粉末的3D打印技术,虽然存在几个衍生过程。 摆脱传统制造技术的许多限制,3D打印机是一个伟大的工具,快速成型,最常见的用

途之一。先进的3D打印系统也可用于直接制造终端产品,如航空航天行业的一部分。 3D打印的兴起已经极大地影响了许多行业的制造和设计过程。 挤出:FDM(熔融沉积建模)和FFF(熔融灯丝制造) 熔融沉积建模(FDM)与FFF(熔融灯丝制造) 挤出(也称为频分复用用于熔融沉积建模或快速傅里叶变换对于熔融灯丝制造来说,是最常见的3D打印技术,被大多数桌面3D打印机所使用。挤出采用塑料丝(PLA或ABS)作为印刷材料。在3D打印机的打印头(挤出机)中加热和熔化灯丝。3D打印头在两个水平轴(X 和Y轴)上移动,而支撑构建平台对象的托盘在Z轴上垂直移动。 3D打印机将熔化的丝层逐层沉积,每层在其他层上,以3D构建物体。当一层完成时,保持物体的托盘非常轻微地下降,挤压过程恢复,在前一层上沉积一层新的熔融灯丝。沉积层融合在一起熔化的塑料很快凝固,形成一个立体的三维物体。当一层完成时,保持物体的托盘非常轻微地下降,并且层压过程恢复,在上一层上熔化的灯丝上沉积新层。沉积层融合在一起熔化的塑料很快凝固,形成一个立体的三维物体。 SLA、光敏树脂3D打印材料 光聚合与树脂3D印刷:SLA和DLP 树脂3D打印机如何工作? 使用SLA或DLP技术的树脂3D打印机基于光聚合工艺:3D打印机储箱中包含的树脂通过光源(激光或投影仪)固化(硬化)以逐层形成对象。树脂3D打印机使用液体树脂作为3D打印材料,而塑料塑料丝用于挤出3D打印机。 在SLA或DLP 3D打印机中用作印刷材料的树脂是光敏的。光聚合物(光树脂)当暴露于特定的光束时会凝固。在SLA或DLP 3D打印过程中,托盘(构建平台)被浸入液体树脂罐内,靠近表面。投影仪或激光束发射光,这将固化液体树脂逐点(SLA)或逐层(DLP)。一旦一层完

详解3D打印机工作原理

详解3D打印机工作原理 3D打印原看似复杂,其实很简单 看了很多3D打印的视频和模型,你会被它神奇的克隆能力惊呆了,这太神奇了,完全是神奇的克隆机器嘛。这样的高科技到底是怎么工作的呢? 说起它的原理,它一点都不复杂,其运作原理和传统打印机工作原理基本相同,也是用喷头一点点“磨”出来的。只不过3D打印它的喷的不是墨水,而是液体或粉末等“打印材料”,利用光固化和纸层叠等技术的快速成型装置。通过电脑控制把“打印材料”一层层叠加起来,最终把计算机上的蓝图变成实物。 它的工作步骤是这样的:使用CAD软件来创建物品,如果你有现成的模型也可以,比如动物模型、人物、或者微缩建筑等等。然后通过SD卡或者USB优盘把它拷贝到3D打印机中,进行打印设置后,打印机就可以把它们打印出来,其工作结构分解图如下。3D打印机的工作原理和传统打印机基本一样,都是由控制组件、机械组件、打印头、耗材和介质等架构组成的,打印原理是一样的。3D打印机主要是在打印前在电脑上设计了一个完整的三维立体模型,然后在进行打印输出。 3D打印机的结构解剖和工作原理图 3D打印与激光成型技术一样,采用了分层加工、叠加成型来完成3D实体打印。每一层的打印过程分为两步,首先在需要成型的区域喷洒一层特殊胶水,胶水液滴本身很小,且不易扩散。然后是喷洒一层均匀的粉末,粉末遇到胶水会迅速固化黏结,而没有胶水的区域仍保

持松散状态。这样在一层胶水一层粉末的交替下,实体模型将会被“打印”成型,打印完毕后只要扫除松散的粉末即可“刨”出模型,而剩余粉末还可循环利用。 下面我们来看看3D打印的实际过程:

(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容, 供参考,感谢您的配合和支持)

3D打印机工作原理

3D打印机及其工作原理浅谈 3D 打印是添加剂制造技术的一种形式,在添加剂制造技术中三维对象是通过连续的物理层创建出来的。3D打印机相对于其他的添加剂制造技术而言,具有速度快,价格便宜,高易用性等优点。3D打印机就是可以“打印”出真实3D 物体的一种设备,功能上与激光成型技术一样,采用分层加工、迭加成形,即通过逐层增加材料来生成3D实体,与传统的去除材料加工技术完全不同。称之为“打印机”是参照了其技术原理,因为分层加工的过程与喷墨打印十分相似。 最近几年,3D打印机的价格已经能让中小企业负担的起,从而使得重工业的原型制造环节进入办公环境完成,并且可以放入不同类型的原材料进行打印。 因为快速成型技术在市场上占据主导地位,3D打印机在生产应用方面有着巨大的潜力。3D打印技术在珠宝首饰、鞋类、工业设计、建筑、汽车、航天、牙科及医疗方面都能得到广泛的应用。 每一层的打印过程分为两步,首先在需要成型的区域喷洒一层特殊胶水,胶水液滴本身很小,且不易扩散。然后是喷洒一层均匀的粉末,粉末遇到胶水会迅速固化黏结,而没有胶水的区域仍保持松散状态。这样在一层胶水一层粉末的交替下,实体模型将会被“打印”成型,打印完毕后只要扫除松散的粉末即可“刨”出模型,而剩余粉末还可循环利用。 打印耗材由传统的墨水、纸张转变为胶水、粉末,当然胶水和粉末都是经过处理的特殊材料,不仅对固化反应速度有要求,对于模型强度以及“打印”分辨率都有直接影响。目前的3D打印技术能够实现600dpi分辨率,每层厚度只有0.01毫米,即使模型表面有文字或图片也能够清晰打印。当然受到喷打印原理的限制,打印速度势必不会很快,目前较先进的产品可以实现每小时25毫米高度的垂直速率,相比早期产品有10倍提升,而且可以利用有色胶水实现彩色打印,色彩深度高达24位。 由于打印精度高,打印出的模型品质自然不错。除了可以表现出外形曲线上的设计,结构以及运动部件也不在话下。如果用来打印机械装配图,齿轮、轴承、拉杆等都可以正常活动,而腔体、沟槽等形态特征位置准确,甚至可以满足装配要求,打印出的实体还可通过打磨、钻孔、电镀等方式进一步加工。同时粉末材料不限于砂型材料,还有弹性伸缩、高性能复合、熔模铸造等其它材料可供选择。 不过,虽然3D打印机价格在不断降低,很多厂商、设计院、大学等都开始或准备配备,但产品价格依然较高。3D Systems推出的新款InVision LD入门级桌面型产品价格为1.59万美元,而Z Corporation出品的中端型号Z510要价10万美元。好在3D打印机的耗材成本并不夸张,例如打印手机模型,大概花费20美元材料费,比起其它成型技术成本要低得多。

3D打印机原理技术

原理技术 3D打印技术,是以计算机三维设计模型为蓝本,通过软件分层离散和数控成型系统,利用激光束、热熔喷嘴等方式将金属粉末、陶瓷粉末、塑料、细胞组织等特殊材料进行逐层堆积黏结,最终叠加成型,制造出实体产品。与传统制造业通过模具、车铣等机械加工方式对原材料进行定型、切削以最终生产成品不同,3D打印将三维实体变为若干个二维平面,通过对材料处理并逐层叠加进行生产,大大降低了制造的复杂度。这种数字化制造模式不需要复杂的工艺、不需要庞大的机床、不需要众多的人力,直接从计算机图形数据中便可生成任何形状的零件,使生产制造得以向更广的生产人群范围延伸。 我们日常生活中使用的普通打印机可以打印电脑设计的平面物品,而所谓的3D打印机与普通打印机工作原理基本相同,只是打印材料有些不同,普通打印机的打印材料是墨水和纸张,而3D打印机内装有金属、陶瓷、塑料、砂等不同的“打印材料”,是实实在在的原材料,打印机与电脑连接后,通过电脑控制可以把“打印材料”一层层叠加起来,最终把计算机上的蓝图变成实物。通俗地说,3D打印机是可以“打印”出真实的3D物体的一种设备,比如打印一个机器人、打印玩具车,打印各种模型,甚至是食物等等。之所以通俗地称其为“打印机”是参照了普通打印机的技术原理,因为分层加工的过程与喷墨打印十分相似。这项打印技术称为3D立体打印技术。 3D打印存在着许多不同的技术。它们的不同之处在于以可用的材料的方式,并以不同层构建创建部件。 类型累积技术基本材料挤压熔融沉积式(Fused deposition modeling,FDM) 热塑性塑料,共晶系统金属、可 食用材料线 电子束自由成形制造(Electron-Beam Freeform Fabrication, EBF) 几乎任何合金 粒状直接金属激光烧结(Direct metal laser sintering, DMLS) 几乎任何合金 电子束熔化成型(Electron beam melting,EBM)钛合金 选择性激光熔化成型(Selective laser melting, SLM) 钛合金,钴铬合金,不锈钢,铝选择性热烧结(Selective heat sintering,SHS)热塑性粉末 选择性激光烧结(Selective laser sintering,SLS) 热塑性塑料、金属粉末、陶瓷粉 末 粉末层喷石膏3D打印(Plaster-based 3D printing, PP) 石膏

3D打印机的技术原理PDF.pdf

工程训练I大作业 --3D打印机的技术原理 学院名称 专业班级 学号 学生姓名 成绩 2018年03月18日

3D打印机的技术原理 3D打印(3D printing),是制造业领域正在迅速发展的一项新兴技术,被称为“具有工业革命意义的制造技术”。运用该技术进行生产的主要流程是:应用计算机软件,设计出立体的加工样式,然后通过特定的成型设备(俗称“3D打印机”),用液态、粉末、丝状的固体材料逐层“打印”出产品。 3D打印是“增材制造”(Additive Manufacturing)的主要实现形式。“增材制造”的理念区别于传统的“去除型”制造。传统数控制造一般是在原材料基础上,使用切割、磨削、腐蚀、熔融等办法,去除多余部分,得到零部件,再以拼装、焊接等方法组合成最终产品。而“增材制造”与之截然不同,无需原胚和模具,就能直接根据计算机图形数据,通过叠加材料的方法生成任何形状的物体,简化产品的制造程序,缩短产品的研制周期,提高效率并降低成本。 国际上喜欢用“Additive Manufacturing”(简称AM)来表示3D打印技术,国内专业术语是增量制造、增材制造或添加制造。2009年美国ASTM成立了F42委员会,将AM定义为:“Process of joining materials to make objects from 3d model data,usually layer upon layer, as opposed to subtractive manufacturing methodologies.”即:一种与传统的材料去处加工方法截然相反的,通过增加材料、基于三维CAD模型数据,通常采用逐层制造方式,直接制造与相应数学模型完

3D打印技术论文

3D打印技术 1. 3D打印的概念及原理 . 3D打印的概念 3D打印技术,是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。3D打印机则出现在上世纪90年代中期,即一种利用光固化和纸层叠等技术的快速成型装置。它与普通打印机工作原理基本相同,打印机内装有液体或粉末等“印材料”,与电脑连接后,通过电脑控制把“打印材料”一层层叠加起来,最终把计算机上的蓝图变成实物。如今这一技术在多个领域得到应用,人们用它来制造服装、建筑模型、汽车、巧克力甜品等。 . 3D打印的原理 每一层的打印过程分为两步,首先在需要成型的区域喷洒一层特殊胶水,胶水液滴本身很小,且不易扩散。然后是喷洒一层均匀的粉末,粉末遇到胶水会迅速固化黏结,而没有胶水的区域仍保持松散状态。这样在一层胶水一层粉末的交替下,实体模型将会被“打印”成型,打印完毕后只要扫除松散的粉末即可“刨”出模型,而剩余粉末还可循环利用。见图1所示。 图1 3D打印过程 2. 3D打印的优缺点 3D打印的优点 一是节省原材料和人工。由于采用“添加制造技术”,它的用料只有原来的1/3到1/2,打印速度却快4倍。同时因省去生产线和一部分组装过程,可降低人工成本。第二个优点是可以制作形态各异的物品。理论上,只要电脑可以设计出的造型,3D打印机都可以打印出来,2011年在加拿大展出的3D打印汽车Urbee,即以其时尚前卫的流线型外观吸引了众多关注。 3D打印的缺点 3D打印技术具有局限性,具体主要体现在材料上,目前打印材料主要只有塑料、树脂和金属,骨骼等有机原料。 3. 3D打印的应用 3D打印机的应用对象可以是任何行业,只要这些行业需要模型和原型。以色列的Objet公司认为,3D打印机[7]需求量较大的行业包括政府、航天和国防、医疗设备、高科技、教育业以及制造业。行业比例份额见图2。 图2 3D打印的行业比例份额

3D打印技术介绍PDF.pdf

1技术原理 3D打印机又称,是一种累积制造技术,即快速成形技术的一种机器,它是一种文件为基础,运用特殊蜡材、粉末状或等可粘合材料,通过打印一层层的粘合材料来制造三维的物体。现阶段三维打印机被用来制造产品。逐层打印的方式来构造物体的技术。3D打印机的原理是把数据和原料放进机中,机器会按照把产品一层层造出来。 3D打印机堆叠薄层的形式有多种多样。3D打印机与传统打印机最大的区别在于它使用的“墨水”是实实在在的原材料,堆叠薄层的形式有多种多样,可用于打印的介质种类多样,从繁多的塑料到金属、陶瓷以及橡胶类物质。有些打印机还能结合不同介质,令打印出来的物体一头坚硬而另一头柔软。 1、有些3D打印机使用“喷墨”的方式。即使用打印机喷头将一层极薄的液态塑料物质喷 涂在铸模托盘上,此涂层然后被置于紫外线下进行处理。之后铸模托盘下降极小的距离,以供下一层堆叠上来。 2、还有的使用一种叫做“熔积成型”的技术,整个流程是在喷头内熔化塑料,然后通过 沉积塑料纤维的方式才形成薄层。 3、还有一些系统使用一种叫做“”的技术,以粉末微粒作为打印介质。粉末微粒被喷撒 在铸模托盘上形成一层极薄的粉末层,熔铸成指定形状,然后由喷出的液态粘合剂进行固化。 4、有的则是利用真空中的电子流熔化粉末微粒,当遇到包含孔洞及悬臂这样的复杂结 构时,介质中就需要加入或其他物质以提供支撑或用来占据空间。这部分粉末不会被熔铸,最后只需用水或气流冲洗掉支撑物便可形成孔隙。 2操作流程 三维打印通常是采用数字技术材料打印机来实现的, 使用的流程是: 1、轻点电脑屏幕上的“打印”按钮,一份数字文件便被传送到一台喷墨打印机上,它将 一层墨水喷到纸的表面以形成一副二维图像。 2、而在3D打印时,软件通过电脑辅助设计技术(CAD)完成一系列数字切片,并将 这些切片的信息传送到上,后者会将连续的薄型层面堆叠起来,直到一个固态物体成型。

3D打印工作原理

3D打印工作原理及操作步骤3D打印机正如其名,是一种能够打印出3D实体的机器。如我们普通的打印机一样,能够在纸面上打印出任意形状的画面。理想的3D打印机能够在3维空间中打印出任意形状的实体模型,能够不受结构工艺限制,直接将零件的3维数据资料打印成实体零件。这样一个机器,对于机械设计者而言是一个不折不扣的神器。 在传统的机械设计程序上,一个零件需要由设计者设计完成,并绘制好2维图纸(通常是3视图的形式,并且有些细节部位还需要追加详细图)。然后把这个零件的图纸交给机械工艺师,机械工艺师会根据你的零件图纸排列加工制造工序,再然后工人会按照机械工艺师设计安排的工序来制造零件。通常这个流程还不能一次性完成。机械设计者设计的零件可能会有部分结构不容易加工制造,机械工艺师会将信息反馈给机械设计师,机械设计师再修改图纸。而一旦有了3D 打印机,整个流程就简化了。设计者设计完成零件后,就可以直接制造。不需要绘制3视图,不需要细节描述的详细图,不需要工艺师的编排工序,不需要工人加班,而且极少有结构工艺限制,只需要3维数据。 简单的说,3D打印机的出现,让电子数据与看得见摸的着的零件更紧密结合了。能极大的提高设计效率。目前市场上已经出现普通市民能够购买的家用3D打印机。这些3D打印机通常都是熔融沉积式(FDM)的3D打印机。我这篇文章也准备对我使用了半年多的这类打

印机做一个总结。 本文分为两个部分,第一部分将为简要介绍FDM式3D打印机的工作原理,第二部分介绍打印机的硬件和软件操作。 第一部分:FDM式3D打印机原理简介 任何3维物体都可以看成是由一个个面堆叠累积而成的。就像宝塔一样,是由一层一层的楼堆起来的。比如说,一个球形物体,就可以看成是由一个个厚度很小直径不同的圆柱堆在一起形成的。对于任何一个物体,都可以看成是由一个个厚度很小的菱形物体堆起来的。如果引用数学中的概念,那么就是,当这些菱形的厚度趋近于无穷小的时候,这个堆砌起来的实体与目标实体就是完全一致的。遗憾的是,现实中任何物体都是有厚度的。可是我们可以把这个厚度做到很小,小到我们能容忍的误差以下,就够了。 FDM式的3D打印机就是利用这个原理,将任意一个三维数据实体,切割成一个个面来分析。那么理论上只要这台打印机能够实现打印出任意形状的面,它就可以打印出任意形状的物体了(不考虑重力对结构的限制因素)。 所以FDM式的3D打印机有一个喷嘴,它能够稳定连续的喷出直径一定的塑料(或者其他热融性的材料)。这个喷嘴一般由步进电机来控制移动。就像我们捏牙膏一样,我们一边用力捏牙膏,一边移动

常用3D打印工作原理

常用3D打印工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

常用3D打印工作原理 什么是3D打印? 3D打印是用于构建三维结构和立体物体的制造技术。3D打印是一种附加制造(AM)技术:最终的目标是通过在上面加上一层材料(反对减法制造方法,如雕刻,为了形成最终目标而需要移除石头)而创建的。 为了创建一个实体对象,3D打印机在3D文件的设计(通常称为STL格式文件)的基础上,在打印床(也称为构建平台)上沉积打印材料。用于FFF和FDM 3D打印机的材料通常是熔融的,一层一层地沉积。每一层都很薄,并且很快凝固,从而形成三维物体。大多数桌面3D打印机使用塑料长丝线轴作为消耗品。有很多3D打印技术。 3D打印技术 目前有许多类型的3D打印技术在商业上或在早期开发阶段可用。这些添加剂制造技术中的每一种都需要一种特定类型的3D打印材料:从塑料长丝(PLA,ABS…)到感光树脂到粉末材料(金属、塑料等)。这些3D打印技术具有多种优点,可以用于特定的应用和用例。 3D打印快速成型原理 3D打印技术有三大类: (FFF and FDM):在3D打印机的构建平台上熔化并沉积塑料丝,以逐层形成对象。 SLA用激光或投影仪固化液体感光树脂,在3D打印机的树脂罐中直接形成物件。使用光聚合(光敏树脂通过光源固化)最常见的3D打印技术称为立体光刻。 (SLS, SLM, DMLS…)通过激光烧结或熔化粉末材料,将粉末的颗粒粘结或熔化在一起(烧结)以获得固体结构。选择性激光烧结(SLS)技术是最常见的基于粉末的3D打印技术,虽然存在几个衍生过程。 摆脱传统制造技术的许多限制,3D打印机是一个伟大的工具,快速成型,最常见的用途之一。先进的3D打印系统也可用于直接制造终端产品,如航空航天行业的一部分。 3D打印的兴起已经极大地影响了许多行业的制造和设计过程。 挤出:FDM(熔融沉积建模)和FFF(熔融灯丝制造) 熔融沉积建模(FDM)与FFF(熔融灯丝制造) 挤出(也称为频分复用用于熔融沉积建模或快速傅里叶变换对于熔融灯丝制造来说,是最常见的3D打印技术,被大多数桌面3D打印机所使用。挤出采用塑料丝(PLA或ABS)作为印刷材料。在3D打印机的打印头(挤出机)中加热和熔化灯丝。3D打印头在两个水平轴(X和Y轴)上移动,而支撑构建平台对象的托盘在Z轴上垂直移动。 3D打印机将熔化的丝层逐层沉积,每层在其他层上,以3D构建物体。当一层完成时,保持物体的托盘非常轻微地下降,挤压过程恢复,在前一层上沉积一层新的熔融灯丝。沉积层融合在一起熔化的塑料很快凝固,形成一个立体的三维物体。当一层完成时,保持物体的托盘非常轻微地下降,并且层压过程恢复,在上一层上熔化的灯丝上沉积新层。沉积层融合在一起熔化的塑料很快凝固,形成一个立体的三维物体。

3D打印原理

1. 三维设计 3D打印的设计过程是:先通过计算机辅助设计(CAD)或计算机动画建模软件建模,再将建成的三维模型“分割”成逐层的截面,从而指导打印机逐层打印。 设计软件和打印机之间协作的标准文件格式是STL文件格式。一个STL文件使用三角面来大致模拟物体的表面。三角面越小其生成的表面分辨率越高。PLY 是一种通过扫描来产生三维文件的扫描器,其生成的VRML或者WRL文件经常被用作全彩打印的输入文件。 2. 打印过程 打印机通过读取文件中的横截面信息,用液体状、粉状或片状的材料将这些截面逐层地打印出来,再将各层截面以各种方式粘合起来从而制造出一个实体。这种技术的特点在于其几乎可以造出任何形状的物品。 打印机打出的截面的厚度(即Z方向)以及平面方向即X-Y方向的分辨率是以dpi(像素每英寸)或者微米来计算的。一般的厚度为100微米,即0.1毫米,也有部分打印机如Objet Connex系列还有3D Systems' ProJet系列可以打印出16微米薄的一层。而平面方向则可以打印出跟激光打印机相近的分辨率。打印出来的“墨水滴”的直径通常为50到100个微米。用传统方法制造出一个模型通常需要数小时到数天,根据模型的尺寸以及复杂程度而定。而用3D打印的技术则可以将时间缩短为数个小时,当然其是由打印机的性能以及模型的尺寸和复杂程度而定的。 传统的制造技术如注塑法可以以较低的成本大量制造聚合物产品,而3D打印技术则可以以更快,更有弹性以及更低成本的办法生产数量相对较少的产品。一个桌面尺寸的3D打印机就可以满足设计者或概念开发小组制造模型的需要。 3. 完成 目前3D打印机的分辨率对大多数应用来说已经足够(在弯曲的表面可能会比较粗糙,像图像上的锯齿一样),要获得更高分辨率的物品可以通过如下方法:先用当前的3D打印机打出稍大一点的物体,再稍微经过表面打磨即可得到表面光滑的“高分辨率”物品。 有些技术可以同时使用多种材料进行打印。有些技术在打印的过程中还会用到支撑物,比如在打印出一些有倒挂状的物体时就需要用到一些易于除去的东西(如可溶的东西)作为支撑物。

3D打印技术原理

3D打印技术原理 3D打印机最早出现在上世纪90年代中期,实际上是利用光固化和纸层叠等技术的快速成型装置。3D与普通打印机工作原理基本相同,打印机内装有工程塑料、树脂或石膏粉末等“打印材料”,与电脑连接后,通过电脑控制把“打印材料”一层层叠加起来,最终把计算机上的蓝图变成实物。这项打印技术统称为3D立体打印技术。 对于打印机来说,更多的人们只知道喷墨打印机和激光打印机,其实按打印机组件来分析,包括3D打印机在内,都是由控制组件、机械组件、打印头、耗材和介质等架构组成的,打印原理是一样的,3D打印机主要是在打印前在电脑上设计了一个完整的三维立体模型,然后再进行分层打印输出模型。 其实说到普通打印机和3D打印机最大的差别就在于耗材不同,普通打印机的耗材是由传统的墨水和纸张组成的,而3D打印机主要是由工程塑料、树脂或石膏粉末组成的,这些成型材料都是经过特殊处理的,但是不同技术与材料各自的成型速度和模型强度以及分辨率、模型可测试性、细节精度都有很大区别,用户需按实际用途来选择。 目前最高等级的3D打印技术能够实现每层厚度只有0.01毫米,即使模型表面有文字或图片也能够清晰打印。受到喷墨打印原理的限制,打印速度势必不会很快,较先进的产品可以实现每小时35毫米高度的垂直速率,相比早期产品有10倍提升。

我们对3D打印技术有了一个初步的了解,对接下来我们要介绍的3D打印机就更容易理解了。3D打印机又叫做三维立体打印机,要说3D打印是添加剂制造技术的一种形式,在添加剂制造技术中三维对象是通过连续的物理层创建的话,3D打印机就是对于其它的添加剂制造技术而言的,具有速度快、价格便宜、高易用性等优点。 3D打印机就是可以打印出真实物体的设备,功能上与激光成型技术一样,采用了分层加工、叠加成型来完成3D实体打印。3D打印机在生产应用方面存在着巨大的潜力,并在珠宝首饰、工业设计、建筑、汽车、航天、医学高领域打偶得到了广泛的应用。 3D打印机作为紧跟3D潮流的迅猛发展的产业,被称为改变未来世界的创造性科技,不仅改变了许多工厂的生产方式还带来制造业的新革命,接下来还将打进家庭内部,给我们的生活带来翻天覆地的变化。

3D打印技术

3D打印技术主要有哪些 3d打印其实并不神秘,也不是一项崭新的技术,其实3D打印早已在工业应用的领域默默奉献了近三十年。总的来说,物体成型的方式主要有以下四类:减材成型、受压成型、增材成型、生长成型。 减材成型:主要是运用分离技术把多余部分的材料有序地从基体上剔除出去,如传统的车、铣、磨、钻、刨、电火花和激光切割都属于减材成型。 受压成型:主要利用材料的可塑性在特定的外力下成型,传统的锻压、铸造、粉末冶金等技术都属于受压成型。受压成型多用于毛坯阶段的模型制作,但也有直接用于工件成型的例子,如精密铸造、精密锻造等净成型均属于受压成型。 增材成型:又称堆积成型,主要利用机械、物理、化学等方法通过有序地添加材料而堆积成型的方法。 生长成型:指利用材料的活性进行成型的方法,自然界中的生物个体发育属于生长成型。随着活性材料、仿生学、生物化学和生命科学的发展,生长成型技术将得到长足的发展。 3D打印技术从狭义上来说主要是指增材成型技术,从成型工艺上看3D打印技术突破了传统成型方法通过快速自动成型系统与计算机数据模型结合,无需任何附加的传统模具制造和机械加工就能够制造出各种形状复杂的原型,这使得产品的设计生产周几大大缩短,生产成本大幅下降。为了能让大家对3D打印技术有一个更加深刻的理解,下面小编将会为大家介绍几项主流的3D 打印技术原理。 LOM:分层实体成型工艺 分层实体成型工艺(Laminated Object Manufacturing,LOM),这是历史最为悠久的3D打印成型技术,也是最为成熟的3D打印技术之一。LOM技术自1991年问世以来得到迅速的发展。由于分层实体成型多使用纸材、PVC薄膜等材料,价格低廉且成型精度高,因此受到了较为广泛的关注,在产品概念设计可视化、造型设计评估、装配检验、熔模铸造等方面应用广泛。下面我们一起了解一下LOM技术的原理,如图所示为LOM技术的基本原理:

相关文档