文档库 最新最全的文档下载
当前位置:文档库 › 庞加莱猜想被列为七大数学世纪难题之一

庞加莱猜想被列为七大数学世纪难题之一

庞加莱猜想被列为七大数学世纪难题之一

庞加莱猜想被列为七大数学世纪难题之一,美克莱数学研究所曾悬赏百万美金求解

国际数学界关注了上百年的重大难题——庞加莱猜想,终于被科学家完全破解。

昨天,哈佛大学教授、著名数学家、菲尔兹奖得主丘成桐在中国科学院晨兴数学研究中心宣布:在美、俄等国科学家的工作基础上,中山大学朱熹平教授和旅美数学家、清华大学兼职教授曹怀东已经彻底证明庞加莱猜想。

“这就像盖大楼,前人打好了基础,但最后一步——也就是‘封顶’工作是由中国人来完成的。”丘成桐说:“这是一项大成就,比哥德巴赫猜想重要得多。”

“这是第一次在国际数学期刊上给出了猜想的完整证明,成果极其突出。”数学家杨乐说。在美国出版的《亚洲数学期刊》6月号以专刊的方式,刊载了长达300多页、题为《庞加莱猜想暨几何化猜想的完全证明:汉密尔顿·佩雷尔曼理论的应用》的长篇论文。

100多年来,无数的数学家关注并致力于证实庞加莱猜想。20世纪80年代初,美国数学家瑟斯顿教授因为得出了对庞加莱几何结构猜想的部分证明结果而获得菲尔兹奖。之后,美国数学家汉密尔顿在这个猜想的证明上也取得了重要进展。2003年,俄罗斯数学家佩雷尔曼更是提出了解决这一猜想的要领。

运用汉密尔顿·佩雷尔曼的理论,朱熹平和曹怀东第一次成功处理了猜想中“奇异点”的难题,发表了300多页的论文,给出了庞加莱猜想的完全证明。从去年9月底至今年3月,朱熹平和曹怀东应邀前往哈佛大学,以每星期3小时的时间——连续20多个星期、共约70个小时——向包括哈佛大学数学系主任在内的5位数学家进行讲解,回答了专家们提出的一系列问题。

丘成桐指出,这一证明意义重大,将有助于人类更好地研究三维空间,对物理学和工程学都将产生深远的影响。

庞加莱猜想百年悬疑

任何一个封闭的三维空间,只要它里面所有封闭曲线都可以收缩成一点,这个空间就一定是一个三维圆球——这就是法国数学家庞加莱于1904年提出的猜想。庞加莱猜想和黎曼假设、霍奇猜想、杨·米尔理论等一样,被并列为七大数学世纪难题之一。2000年5月,美国的克莱数学研究所为每道题悬赏百万美元求解。

初二数学经典难题(带答案及解析)

初二数学经典难题 一、解答题(共10小题,满分100分) 1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二) 2.(10分)已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F. 求证:∠DEN=∠F. 3.(10分)如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半. 4.(10分)设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA. 求证:∠PAB=∠PCB. 5.(10分)P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.

6.(10分)一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度. 7.(10分)(2009郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B. (1)写出正比例函数和反比例函数的关系式; (2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等如果存在,请求出点的坐标,如果不存在,请说明理由; (3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形 OPCQ周长的最小值. 8.(10分)(2008海南)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB. (1)求证:①PE=PD;②PE⊥PD; (2)设AP=x,△PBE的面积为y. ①求出y关于x的函数关系式,并写出x的取值范围; ②当x取何值时,y取得最大值,并求出这个最大值. 9.(10分)(2010河南)如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3)两点.(1)求k1、k2的值.

世界十大数学难题

难题”之一:P(多项式算法)问题对NP(非多项式算法)问题 难题”之二:霍奇(Hodge)猜想 难题”之三:庞加莱(Poincare)猜想 难题”之四:黎曼(Riemann)假设 难题”之五:杨-米尔斯(Yang-Mills)存在性和质量缺口 难题”之六:纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性 难题”之七:贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想 难题”之八:几何尺规作图问题 难题”之九:哥德巴赫猜想 难题”之十:四色猜想 美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元。以下是这七个难题的简单介绍。 “千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。 “千僖难题”之二:霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。“千僖难题”之三:庞加莱(Poincare)猜想 如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。 “千僖难题”之四:黎曼(Riemann)假设

数学猜想在数学教学中的作用

浅谈中学教学中的数学猜想 摘要:通过史实的种种证明,猜想在整个数学教学过程中都起到非常重要的作用。本文从“数学猜想”的定义入手,到它的方法意义,然后到它在中学教学的指导作用,最后,深入分析它的四种分类。重在讨论如何运用数学猜想解决数学问题。 关键词:猜想,创新,中学教学,推理 一、数学猜想的定义及其特征 数学猜想是根据已经存在的数学知识和数学事实,对未知量及其关系作出的似真判断,具有科学假说性。任何数学定理或结论的形成都人模糊到确立,也就是从猜想(假说)到结论。科学家牛顿曾说:“没有大胆的猜想就做不出伟大的发现。”数学教育家波利亚也认为一个好的数学家,首先必须是一个好的猜想家,并提出:“在数学教学中必须有猜想的地位。” 数学猜想既有逻辑的成份又含有非逻辑的成份,因此,它具有科学性的同时也有很大程度的假定性,我们需要推理和论证才能最好终确立这样的猜想是否正确,而这样的推理和论证过程刚是一种创造性的思维活动,是科学发现的一种重要手段。 数学猜想具有科学性,假定性和创新性三个基本特征。 (1)、科学性数学猜想并不是凭空想像,而是以数学经验事实为基础,对未知量和相互关系作出的推测和判断。因此,数学猜想具有一定的科学性。 (2)、假定性任何猜想都需要以真实依据为先导,合情推理为手段进行论证或推翻,只要这个猜想还没被证实,那么它就是假定的,似真的。 其实,数学猜想就是科学性和假定性的统一体。 (3)、创新性创新是数学猜想的灵魂,没有创新就无所谓数学猜想。有了猜想就要去推出它,证明你的猜想是个事实,而这个证明或推理的过程就是一个思维碰撞的过程,通过这样的过程,产生了新的见解,事实或规律等。所以每个数学猜想的论证都有创新性。

现代数学七大难题

20世纪是数学大发展的世纪。数学的许多重大难题得到完满解决,如费尔玛大定理的证明,有限单群分类工作的完成等,从而使数学的基本理论得到空前发展。 计算机的出现是20世纪数学发展的重大成就,同时极大推动了数学理论的深化和数学在社会和生产力第一线的直接应用。回首20世纪数学的发展,数学家们深切感谢20世纪最伟大的数学大师大卫. 希尔伯特。希尔伯特在1900年8月8日于巴黎召开的第二届世界数学家大会上的著名演讲中提出了23个数学难题。希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方向,其对数学发展的影响和推动是巨大的,无法估量的。 效法希尔伯特,许多当代世界著名的数学家在过去几年中整理和提出新的数学难题,希冀为新世纪数学的发展指明方向。这些数学家知名度是高的,但他们的这项行动并没有引起世界数学界的共同关注。 2000年初美国克雷数学研究所的科学顾问委员会选定了七个“千年大奖问题”, 克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得百万美元的奖励。克雷数学所“千年大奖问题”的选定,其目的不是为了形成新世纪数学发展的新方向,而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。 2000年5月24日,千年数学会议在著名的法兰西学院举行。会上,98年费尔兹奖获得者伽沃斯(Gowers)以“数学的重要性”为题作了演讲,其后,塔特(T ate)和阿啼亚(Atiyah) 公布和介绍了这七个“千年大奖问题”。克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的阐述。克雷数学研究所对“千年大奖问题”的解决与获奖作了严格规定。每一个“千年大奖问题”获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得百万美元大奖。 现在先只列出一个清单: 这七个“千年大奖问题”是:NP 完全问题,郝治(Hodge)猜想,庞加莱(P oincare)猜想,黎曼(Rieman )假设,杨-米尔斯(Yang-Mills) 理论, 纳卫尔-斯托可(Navier-Stokes)方程,BSD(Birch and Swinnerton-Dyer)猜想。 “千年大奖问题”公布以来,在世界数学界产生了强烈反响。这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动。认识和研究“千年大奖问题”已成为世界数学界的热点。不少国家的数学家正在组织联合攻关。可以预期,“千年大奖问题” 将会改变新世纪数学发展的历史进程。 (北京大学数学学院院长张继平) 7大难题的介绍 “千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。

数学史上著名猜想

数学史上的三个著名猜想 湖北舒云水 在问题探索中,为了寻求一般规律,往往先考察一些特例,通过对这些特例的不完全归纳形成猜想,然后再试图去证明或否定这种猜想,这是发现数学规律的一种重要手段﹒我们要学会归纳猜想,去发现一些新的数学结论﹒下面介绍数学史上三个有代表性的著名猜想. 1.费马素数猜想——一个错误的猜想 一种有趣且有很长历史的数叫费马素数,这些数是由法国数学家费马引进的. 费马在研究数列F n =2n2+1(n=0,1,2,…)前五项: F 0=3,F 1 =5,F 2 =17,F 3 =257,F 4 =65537. 发现它们都是素数,他没有做进一步的计算,就猜想:形如F n =2n2+1(n=0,1,2,…) 的整数都是素数,这就是费马素数猜想﹒瑞士数学家欧拉再往前走了一步,这个猜想就推 翻了,他证明了F 5 不是素数: F 5 =4294967297=641×6700417. 否定一个猜想,只需举一个反例即可. 费马是一个著名的数学家,但他的职业是一个法官,数学只是他的业余爱好,凭兴趣研究数学,取得了丰硕的成果. 2.费马大定理——一个已经被证明的著名猜想 我们知道方程x2+y2=z2有无数多个正整数解,如: 32+42=52,52+122=132,…… 费马作了进一步的探索:x3+y3=z3,x4+y4=z4,…有没有正整数解呢﹖他没能找出满足条件的正整数解,于是作出了一个重要猜想: 方程x n+y n=z n(n>2,n∈N)没有正整数解﹒ 自费马之后许多数学家花费巨大的劳动去解决这一问题,经过350多年的努力,到1995年这个问题终于由英国数学家维尔斯解决﹒维尔斯在继承前人成果的基础上,整整花了七年时间刻苦攻关,证明费马的猜想是成立的,一个猜想被证明是成立后,就成为一个定理,这就是著名的费马大定理﹒维尔斯因证明费马大定理,1996年荣获国际数学大奖——沃尔夫奖﹒ 3.哥德巴赫猜想——一个未被否定或证明的猜想 17世纪,德国数学家哥德巴赫发现每一个大偶数都可以写成两个素数的和﹒例如:6=3+3,8=3+5,10=3+7=5+5,12=5+7,14=3+11=7+7,…… 他对许多偶数进行了检验,都说明这是确定的﹒但是,这需要给予证明,他算来算去,没有办法证出来﹒于是,他写信向著名的大数学家欧拉求教,欧拉到死也没有证明它﹒因为哥德巴赫的发现尚未经过证明,所以只能称之为猜想,200多年来,世界上成千上万的数学

数学史上的著名猜想之被否定的数学猜想

数学史上的著名猜想之被否定的数学猜想 过伯祥 数学史上,长时期未能解决的数学猜想特别多!并且很多都是世界级的难题,其中数论方面的问题又占多数.它们表面上是那么的浅显,好像不难解决似的,其实,若无深厚的数学功底,即使想接近它也十分困难。本章特作较多的介绍,使数学爱好者有一个初步了解.如果你有志要攻克这些猜想,就必须作好长期艰苦跋涉的思想准备. 1.被否定的数学猜想 (1)试证第五公设的漫长历程 几何是从制造器皿、测量容器、丈量土地等实际问题中产生和发展起来的. 几何学的发展历程中,有两个重大的历史性转折.其一是,大约从公元前7世纪到公元前3世纪,希腊数学从素材到框架,已经为几何学的理论大厦的建造准备了足够的条件.欧几里得在前人毕达哥拉斯、希波克拉底和欧多克斯等人的工作基础上,一举完成了统治几何学近2000年的极其伟大的经典著作《几何原本》.它使几何学发展成为一门独立的理论学科,是几何学史上的一个里程碑. 其二,也正是由于《几何原本》的问世,才带来了一个使无数人困惑和兴奋的著名问题--欧几里得第五公设问题. 在《几何原本》的第一卷中,规定了五条公设和五条公理.著名的欧几里得第五公设:“若两条直线被第三条直线所截,如有两个同侧内角之和小于两直角,则将这两直线向该侧适当延长后必定相交.”就是这五条公设中的最后一条.由于它在《几何原本》中引用得很少(直到证明关键性的第29个定理时才用到它);而且,它的辞句冗长,远不如前四条公设那样简单明了.于是给后人的印象是:似乎欧几里得本人也想尽量避免应用第五公设. 于是,一代又一代的数学家猜测:大概不用花费很多力气就能证明欧几里得第五公设.就这样,数学家们开始了试证第五公设的历程. 这是个始料未及的漫长历程!真正是前赴后继,几乎每个时代的大数学家都做过这一件工作. 然而,满以为非常简单,只不过是举手之劳的一件事,谁料历时两千年仍未解决. 第五公设问题几乎成了“几何原理中的家丑”(达朗贝尔).

希尔伯特23个数学问题7大数学难题

世界数学十大未解难题 (其中“一至七”为七大“千僖难题”;附录“希尔伯特23个问题里尚未解决 的问题”) 一:P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数 13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。 二:霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。 三:庞加莱(Poincare)猜想

3趣味数学小故事

动物中的数学“天才” 蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成,组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料,蜂房的巢壁厚0.073毫米,误差极少。 丹顶鹤总是成群结队迁飞,而且排成“人”字开。“人”字形的角度是110度,更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契?” 蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺和圆规也很难画出像蜘蛛那样匀称的图案。 冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。 真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学业家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。 阿拉伯数字的由来 阿拉伯数字1、2、3、4、5、6、7、8、9。0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。 阿拉伯数字最初出自印度人之手,也是他们的祖先在生产实践中逐步创造出来的。 公元前3000年,印度河流域居民的数字就已经比较进步,并采用了十进位制的计算法。到吠陀时代(公元前1400-公元前543年),雅利安人已意识到数码在生产活动和日常生活中的作用,创造了一些简单的、不完全的数字。公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”,

世界近代三大数学难题:哥德巴赫猜想

世界近代三大数学难题:哥德巴赫猜想 哥德巴赫1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的偶数都可写成两个质数之和。但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明。因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。今日常见的猜想陈述为欧拉的版本。把命题"任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b"。1966年陈景润证明了"1+2"成立,即"任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和"。 今日常见的猜想陈述为欧拉的版本,即任一大于2的偶数都可写成两个素数之和,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。 从关于偶数的哥德巴赫猜想,可推出:任一大于7的奇数都可写成三个质数之和的猜想。后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。弱哥德巴赫猜想尚未完全解决,但1937年时前苏联数学家维诺格拉多夫已经证明充分大的奇质数都能写成三个质数的和,也称为“哥德巴赫-维诺格拉朵夫定理”或“三素数定理”。 猜想提出 1742年6月7日,哥德巴赫写信给欧拉,提出了著名的哥德巴赫猜想:随便取某一个奇数,比如77,可以把它写成三个素数之和,即77=53+17+7;再任取一个奇数,比如461,可以表示成461=449+7+5,也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。例子多了,即发现“任何大于5的奇数都是三个素数之和。” 1742年6月30日欧拉给哥德巴赫回信。这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和。但是这个命题他也没能给予证明。 研究途径 研究偶数的哥德巴赫猜想的四个途径。这四个途径分别是:殆素数,例外集合,小变量的三素数定理以及几乎哥德巴赫问题。 殆素数

最新初中数学猜想规律题

专题:猜想、探索规律型 一、选择题 1.(2009年四川省内江市)如图,小陈从O 点出发,前进5米后向右转20O , 再前进5米后又向右转20O ,……,这样一直走下去, 他第一次回到出发点O 时一共走了( ) A .60米 B .100米 C .90米 D .120米 2.(2009年贵州黔东南州)某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒……即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n 组应该有种子数( )粒。A 、12+n B 、12-n C 、n 2 D 、2+n 3.(2009年江苏省)下面是按一定规律排列的一列数: 第1个数:11122-?? -+ ??? ; 第2个数: 23 11(1)(1)1113234????---??-+++ ??? ??????? ; 第3个数:234511(1)(1)(1)(1)11111423456???????? -----??-++ +++ ??????? ??????????? ; …… 第n 个数:232111(1)(1)(1)111112342n n n -???? ?? ----??-++++ ??? ? ?+?????? ?? . 那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( ) A .第10个数 B .第11个数 C .第12个数 D .第13个数 4.(2009年孝感)对于每个非零自然数n ,抛物线2 211(1) (1) n n n n n y x x +++=-+ 与x 轴交于A n 、B n 两点,以n n A B 表示这两点间的距离,则112220092009A B A B A B ++ +的值是 A . 20092008 B . 20082009 C . 20102009 D . 20092010 5.(2009年重庆)观察下列图形,则第n 个图形中三角形的个数是( ) A .22n + B .44n + C .44n - D .4n 6.(2009年河北)古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图7中可以发现,任何一个大于1 ) A .13 = 3+10 B .25 = 9+16 C .36 = 15+21 D .49 = 18+31 二、填空题 1.(2009年四川省内江市)把一张纸片剪成4块,再从所得的纸片中任取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止。那么2007,2008,2009,2010这四个数中______________可能是剪出的纸片数 2.(2009仙桃)如图所示,直线y =x +1与y 轴相交于点A 1,以OA 1为边作正方形OA 1B 1C 1,记作第一个正方形;然后延长C 1B 1与直线y =x +1相交于点A 2,再以C 1A 2为边作正方形C 1A 2B 2C 2,记作第二个正方形;同样延长C 2B 2与直线y =x +1相交于点A 3,再以C 2A 3为边作正方形C 2A 3B 3C 3,记作第三个正方形;…依此类推,则第n 个正方形的边长为________________. 3.(2009年泸州)如图1,已知Rt △ABC 中,AC=3,BC= 4,过直角顶点C 作CA 1⊥A B ,垂足为A 1,再过A 1作A 1C 1⊥BC ,垂足为C 1,过C 1作C 1A 2⊥AB ,垂足为A 2,再过A 2作A 2C 2⊥BC ,垂足为C 2,…,这样一直做下去,得到了一组线段CA 1,A 1C 1,12C A ,…,则CA 1= , =5 55 4C A A C …… 第1个 第2个 第3个 4=1+3 9=3+6 16=6+10 图7 … O 20o 20o

数学猜想一览表

数学猜想一览表 数学猜想一览表 提出状况研究进展备 注名称内容意义国姓名时间方法国别姓名时间途径结果别 德国高斯 19否定公元使几何学发欧氏第五公直观俄国罗巴切夫世纪反证欧氏第五公设可证前三生了一次革设猜想推断斯基 20法创立非欧世纪命匈牙利亚?鲍耶年代几何理论 当n为大于2的正数试证中创立 费尔马大定法费尔不完全安德鲁了:理想数时,方程 1637 英国 1994 转化 肯定理国马归纳法 (维尔斯论:等新分没有正整数解支 未定 发现27个 这样的素 当p为素数时,形如数. 1979 pM(p)=2-1 默森不完全年,电子计默森尼猜想 1644 1979 的数中有无限多个尼归纳法算机算出 素数 是素数,有 一万三千多 位 当n为自然数时,形

如法费尔不完全举反费尔马猜想 1664 欧拉 1732 否定国马归纳法例 的数 均为素数 证 明 偶 数 = 每个大于4的整数未定 (哥德巴赫猜德歌德巴不完全逐次均可表示为两个素1742 中国陈景润 1973 证明偶数 1+想国赫归纳法趋近数之和 =(1+2) 1) 为 最 后 解 决 此任一正整数必为4个证明一般猜平方数,9个立方数,1934年,苏1909 形式的,想19个四次方数之和。希尔伯特,联维诺格拉即括号内发(对任意给定的正朵夫创造了华林猜想华林 1770 德国的。表整数n,是否存在一使给出数r 于个=(n),使得对哈代 r rG(n)估值急1919 =r(n) 的《任意正整数N,不定速下降法渐近公式代方程数 沉恒思 录有解,x?0为整i》数。)

半偶数的方阵是不瑞不完全玻色史里举反欧拉方阵猜想欧拉 1782 印度 1959 否定存在的士归纳法克汗德例 提出瑞欧拉猜想欧拉类比瑞士欧拉十年肯定士后 未定 已发现最 大孪生素 孪生素数猜孪生素数(p,p+2)变换条数 12想有无穷多件法 (10+964 9, 1210+9651 ) 三生素数猜变换条三生素数有无穷多想件法 逐级猜n生素数猜想 n生素数有无穷多想 仅当D=1,2,3,7, 11,19,43,67和163 时“唯一分解”猜德德国采格尔 (a,b与D为高斯 1797 1983 肯定想国 美国格罗斯整数,D>0)可唯一 分解为一些素数的 乘积 复杂 阿达马普函数高斯一比x小的素数个数逼高斯 1896 肯定德辛论获得重要的勒让德近于x/logx, 即π勒让1800 观察法国国塞尔贝尔素数定理猜想(x)?x/logx 德 1949 肯定爱多士初等 方法 高斯引进了一类数

初一数学难题大全

一、填空。 1.如果下降5米,记作-5米,那么上升4米记作()米;如果+2千克表示增加2千克,那么-3千克表示()。 2.海平面的海拔高度记作0m,海拔高度为+450米,表示(),海拔高度为-102米,表示()。 3.如果把平均成绩记为0分,+9分表示比平均成绩(),-18分表示(),比平均成绩少2分,记作()。 4.+8.7读作(),-25 读作()。 5.数轴上所有的负数都在0的()边,所有正数都在0的()边。 6.在数轴上,从表示0的点出发,向右移动3个单位长度到A点,A点表示的数是();从表示0的点出发向左移动6个单位长度到B点,B点表示的数是()。 7.比较大小。 -7○ -5 1.5○52 0○-2.4 -3.1○3.1 二、判断。 1.零上12℃(+12℃)和零下12℃(-12℃)是两种相反意义的量。………() 2.数轴上左边的数比右边的数小。………………………………………………() 3.在8.2、-4、0、6、-27中,负数有3个。…………………………………() 三、选择。(将正确答案的序号填在括号里)。 1.规定10吨记为0吨,11吨记为+1吨,则下列说法错误的是()。 A、8吨记为-8吨 B、15吨记为+5吨 C、6吨记为-4吨 D、+3吨表示重量为13吨 2.以明明家为起点,向东走为正,向西走为负。如果明明从家走了+30米,又走了-30米,这时明明离家的距离是()米。 A、30 B、-30 C、60 D、0 3.数轴上,-12 在-18 的()边。 A、左 B、右 C、北 D、无法确定 4.一种饼干包装袋上标着:净重(150±5克),表示这种饼干标准的质量是150克,实际每袋最少不少于()克。 A、155 B、150 C、145 D、160

世界七大数学难题

世界七大数学难题 难题的提出 20世纪是数学大发展的一个世纪。数学的许多重大难题得到完满解决,如费马大定理的证明,有限单群分类工作的完成等,从而使数学的基本理论得到空前发展。 计算机的出现是20世纪数学发展的重大成就,同时极大推动了数学理论的深化和数学在社会和生产力第一线的直接应用。回首20世纪数学的发展,数学家们深切感谢20世纪最伟大的数学大师大卫·希尔伯特。希尔伯特在1900年8月8日于巴黎召开的第二届世界数学家大会上的著名演讲中提出了23个数学难题。希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方向,其对数学发展的影响和推动是巨大的,无法估量的。 效法希尔伯特,许多当代世界著名的数学家在过去几年中整理和提出新的数学难题,希冀为新世纪数学的发展指明方向。这些数学家知名度是高的,但他们的这项行动并没有引起世界数学界的共同关注。 2000年初美国克雷数学研究所的科学顾问委员会选定了七个“千年大奖问题”,克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得百万美元的奖励。克雷数学研究所“千年大奖问题”的选定,其目的不是为了形成新世纪数学发展的新方向,而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。 2000年5月24日,千年数学会议在著名的法兰西学院举行。会上,98年费尔兹奖获得者伽沃斯以“数学的重要性”为题作了演讲,其后,塔特和阿啼亚公布和介绍了这七个“千年大奖问题”。克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的阐述。克雷数学研究所对“千年大奖问题”的解决与获奖作了严格规定。每一个“千年大奖问题”获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得百万美元大奖. 世界七大数学难题 这七个“千年大奖问题”是:NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯理论、纳卫尔-斯托可方程、BSD猜想。 美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣 布了一件被媒体炒得火热的大事:对七个“千年数学难题”的每一个悬赏一百万美元。 其中有一个已被解决(庞加莱猜想),还剩六个.(庞加莱猜想,已被我国中山大学朱熹平教授和旅美数学家、清华大学兼职教授曹怀东破解了。) 整个计算机科学的大厦就建立在图灵机可计算理论和计算复杂性理论的基础上, 一旦证明P=NP,将是计算机科学的一场决定性的突破,在软件工程实践中,将革命性的提高效率.从工业,农业,军事,医疗到生活,软件在它的各个应用域,都将是一个飞跃. P=NP吗?这个问题是著名计算机科学家(1982年图灵奖得主)斯蒂文·考克(StephenCook)于1971年

高考数学:世界著名数学难题

455 63 世界著名数学难题 20世纪是数学大发展的一个世纪。数学的许多重大难题得到完满解决,如费马大定理的证明,有限单群分类工作的完成 等, 从而使数学的基本理论得到空前发展。回首20世纪数学 的发展, 数学家们深切感谢20世纪最伟大的数学大师大卫·希 尔伯特。希尔伯特在1900年8月8日于巴黎召开的第二届世 界数学家大会上的著名演讲中提出了23个数学难题。希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方 向。 知识荐语: 数学是研究数量、结构、变化以及空间模型等概念的一门 基础学科,简单地说,是研究数和形的科学。在数学发展的历 史上,数学们不但证明了诸多经典的定理,还把众多谜题留给 后人。这期知识,就让我们一同走进那些著名的数学难题。 1. 四色猜想 世界近代三大数学难题之一。四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。 ? 四色猜想到底怎么回事? ? 什么是四色猜想 ? 证明四色猜想的计算机是什么名字 ? 哪里有关于四色猜想的资料 ? 请问世界上那个四色猜想的内容是什么? ? 2. 哥德巴赫猜想 哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。这就是着名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。 ? 哥德巴赫猜想为什么被转化为证明1+1? ? 哥德巴赫猜想的内容 ? 哥德巴赫猜想难在哪里? ? 哥德巴赫猜想有什么新进展 ? 哥德巴赫猜想与1+1是什么关系?

谈中学数学中的猜想方法及其作用.

谈中学数学中的猜想方法及其作用 天津市塘沽六中 高宝红 数学

谈中学数学中的猜想方法及其作用 内容摘要数学猜想是人的思维在探索数学规律、本质时的一种方法.它是建立在已有的事实经验基础上,运用非逻辑手段而得到的一种假定,是一种合理推理.在数学领域中,猜想是合理的,是值得尊重的,是负责任的态度.数学猜想能缩短解决问题的时间;能锻炼数学思维,激发学生的学习兴趣;能更快捷地寻找解题思路,更为透彻地理解和掌握数学知识;还能培养学生的创造性思维和创新意识,掌握研究数学的一般方法. 关键词数学猜想;操作方法;教学作用 科学的发展离不开创新,高素质人才最重要的是要有丰富的想像力,有善于提出问题、解决问题的能力,有发现和创新新东西的能力.引导学生进行猜想是发展学生个体、培养学生创新精神的一种有效方法,是培养创造性人才的重要手段. 所谓数学猜想,是指根据某些已知的事实、材料和数学知识,以已有的数学理论和方法为指导,对未知的量及其关系所作的一种预测性的推断.它是数学研究常用的一种科学方法,又是数学发展的一种重要形式.猜想作为一种手段,目的是为了验证猜想的正确性.对于未给出结论的数学问题,猜想的形成有利于解题思路的正确诱导;对于已有结论的问题,猜想也是寻求解题思维策略的重要手段.可见探讨数学猜想及其在中学数学学习中的作用具有重要作用.本文拟对此做一探讨. 一、数学中的猜想方法 1、探索性方法猜想

探索性猜想指的是根据教材的特点组织一些有趣的实验,让学生在实验中探索事物表面的、外部联系的知识,取得感性材料,在对这些材料加工整理,使知识结构发现变化,从中发现新知识,作出猜想,然后再从理论上予以证明,使学生较好的掌握新知识. 例1 平面上的n 条直线最多可以把平面分成几部分? 分析:我们可从同学感兴趣的意大利馅饼(pizza )谈起:Primo’s pizzeria 的职员喜欢将pizza 饼切成形状各异的一块块.他们发现每切一定数量的刀数,就可产生一个最多的块数,讲到这里,教师提问:同学们,你们是否也想操刀一试身手?是否也想知道其中奥妙?在教师的煽情、鼓动下,学生已显得有些按捺不住、跃跃欲试,探索的欲望非常迫切.这时,教师要求学生每6人为一个小组,以合作探究的形式进行“切饼”的实验探索. 每个学生小组基本上都是按照切1刀、2刀、3刀、4刀、5刀来进行观察的,具体的结果如图1所示. 图1 在这切的过程中,学生感知最多块数与切口直线的位置关系有关,要想块数最多,切口直线的位置关系应满足条件:其中任何两条不平行,任何三条不过同一点。再注意到 1221112+?=+=,1232134+?=+=,1243167+?=+=,12 5411011+?=+=, 126511516+?= +=,……,学生运用不完全归纳法,就会发现规律.于是学生提出了下面的猜想:平面上有n 条直线,其中任何两条都不平行,并

世界7大数学难题

世界七大数学难题 这七个“千年大奖问题”是:NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯理论、纳卫尔-斯托可方程、BSD猜想 千年大奖问题 美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千年数学难题”的每一个悬赏一百万美元。 其中有一个已被解决(庞加莱猜想),还剩六个.(庞加莱猜想,已由俄罗斯数学家格里戈里·佩雷尔曼破解。) “千年大奖问题”公布以来,在世界数学界产生了强烈反响。这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动。认识和研究“千年大奖问题”已成为世界数学界的热点。不少国家的数学家正在组织联合攻关。可以预期,“千年大奖问题” 将会改变新世纪数学发展的历史进程。 P问题对NP问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因式分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题,存在一个确定性算法,可以在多项式时间内,直接算出或是搜寻出正确的答案呢?这就是著名的NP=P?的猜想。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克于1971年陈述的。 霍奇(Hodge)猜想

简述三大几何难题

三大几何难题 古希腊是世界数学史上浓墨重彩的一笔,希腊数学的成就是辉煌的,它为人类创造了巨大的精神财富。其中,几何是希腊数学研究的重心,柏拉图在他的柏拉图学院的大门上就写着“不懂几何的人,勿入此门”。历史上第一个公理化的演绎体系《几何原本》阐述的也基本上为几何内容。 古希腊的几何发展得如此繁荣,但有一个问题一直没有得到解决,那就是著名的尺规作图三大难题。它们分别是化圆为方、三等分任意角以及倍立方问题。这三个问题首先是“巧辨学派”提出并且研究的,但看上去很简单的三个问题,却困扰了数学家们两千多年之久。 这些问题的难处,是作图只能用直尺和圆规这两种工具,其中直尺是指只能画直线,而没有刻度的尺。在欧几里得的《几何原本》中对作图作了规定,只有圆和直线才被承认是可几何作图的,因此在这本书的巨大影响下,尺规作图便成为希腊几何学的金科玉律。并且,古代希腊人较重视规、矩在数学中训练思维和智力的作用,而忽视规矩的实用价值。因此,在作图中对规、矩的使用方法加以很多限制,在这里,就是要在有限的次数中解决这三个问题。化圆为方 圆和正方形都是常见的几何图形,人们自然会联想到可否作一个正方形和已知圆等积,这就是化圆为方问题。 三等分任意角 用尺规二等分一个角很容易就可以作出来,那么三等分角呢?三等分180,90角也很容易,但是60,45等这些一般角可以用尺规作出来吗? 倍立方 关于倍立方问题是起源于一个祭祀问题,第罗斯岛上流行着一种可怕的传染病,一时人心惶惶,不可终日.人们来到阿波罗神前,请求阿波罗神像的指示.阿波罗神给了祈求人这样一个指示:“神殿前有一个正方体祭坛,如果能不改变它的形状而把它的体积增加1倍,那么就能消灭传染病.”人们连夜赶造了一个长、宽、高都比正方体祭坛大一倍的祭坛,可是,那传染病传播得更加厉害了.人们又来到阿波罗神像前祈求.神说:“我要你们增加一倍的是祭坛的体积,你们把长、宽、高都增加1倍,祭坛的体积不是要比原来体积大7倍了吗?”人们绞尽脑汁想找出一个答案,可是始终没有人能解答这个难题. 由三大问题的起源,可以看出,化圆为方和三等分角是人们在已有知识的基础上,向更深层次,更一般的方向去思考、探索,这也是希腊数学的理论性的演绎推理与抽象性的表现。而倍立方则是起源于建筑的需要,这也反应了数学的发展是离不开现实社会的推动的。 三个几何难题提出后,有很多人都为之做了不懈的努力。可以说,但凡是数学史上称得上是数学家的人,都研究过这个问题。由三大难题引出的各种结论与发现也数不胜数,例如割圆曲线、阿基米德螺线等。但这些解法并没有完全遵从尺规作图的要求,因此也不算解决了三大难题。但是由19世纪所证出的三大几何难题的不可解,可以发现,只有冲破尺规的限制才能解决问题。正如很多事情,我们觉得无论如何也找不到解决的办法,就是因为有太多的枷锁罩在我们身上,只有打破这些桎梏,才会豁然开朗,找到一片新天地。 三大几何问题的真正解决是在19世纪解析几何创立之后,人们知道了直线与圆分别是二元一次方程和二元二次方程的轨迹,交点则是方程组的解,因此一个几何量是否能用尺规作出,则是它能否由已知量经过有限次加、减、乘、除、开平方运算得到。那么三大难题就可以转换成代数的语言来表示: 1化圆为方设圆的半径为一个单位,要作一面积等于单位圆的正方形,设这个正方形连长为x,则x2=π.集能否用尺规作出一条长为π的线段?

高中数学十大难点概念的调查研究

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 高中数学十大难点概念的调查研究高中数学十大难点概念的调查研究 [摘要] 随着我国教育事业的蓬勃发展,在新课程标准的要求下高中数学在原有的基础上也发生了质的飞跃。 数学概念是数学知识体系中的核心环节,为学生的知识构建和数学教育的认知结构的发展发挥着巨大的作用,由此可见,高中数学概念的调查研究在高中数学难点概念教学中中具有举足轻重的作用。 本文研究的主要问题是当前高中数学教师对于高中数学十大难点概念现状调查。 通过问卷调查和课堂听课以及面对面探讨的方法收集出所要研究的原始资料和数据,并将其进行了资料分析和数据处理,从而得出研究的主要结论是,当前高中数学教师已经认识到高中数学的十大难点,但由于教师的数学教育观念和教学态度等方面原因,使其在高中数学十大难点概念的教学中有一定的影响。 本文主要阐述了对于高中数学十大难点概念进行调查研究的必要性以及对于调查结果的理论分析,最后提出关于高中数学十大难点概念教学的一些建议。 [关键词] 高中数学十大难点概念调查研究随着我国教育事业的蓬勃发展,素质教育也日益受到人们的重视,而数学概念教学在素质教育中具有重要的意义。 1/ 7

数学概念是现实世界空间形式和数量关系及其本质属性在思维中的反映,它不仅包含着数学判断、推理、论证以及数学理论体系演化的一切矛盾的萌芽,而且象征着数学的思想和方法。 在课改的春风中新课程标准也揭示了数学概念的形成过程,让学生从概念的现实原形、概念的抽象过程、数学思想的指导作用、形式表达和符号化的运用等多方面理解一个数学概念,使之符合学生主动构建的教育原理。 根据新课程改革的理念和要求,教学内容的各个方面都发生了很大的变化,然而对于高中数学十大难点概念的教学更是难上加难,学生在对这些概念的理解更是困难,这必然造成数学在各学科的教育中成为学生畏难的科目之一。 因此,如何解决高中数学概念中的难点教学,进一步加强学生对于高中数学十大难点概念的理解,成为高中数学教师面临的迫切任务。 由此可见,对于高中数学十大难点概念的调查研究是必要的。 高中数学十大难点概念调查研究的意义数学概念是数学思维的核心和逻辑的起点,是学生认知的基础,是以掌握概念、原理为主要学习目标的高中学生的思维能力、空间想象能力以及分析解决数学问题能力等都得到发展的关键,但学生在学习过程中感到难学,教师在教学过程中感到难教的时候,就出现了数学概念的难点。 在高中数学中存在着几百个数学概念,而这么多的概念中会遇到或多或沙的十大难点概念,这些难点概念不仅使学生普遍难以理解

相关文档
相关文档 最新文档