文档库 最新最全的文档下载
当前位置:文档库 › TLD目标跟踪算法

TLD目标跟踪算法

TLD目标跟踪算法
TLD目标跟踪算法

TLD目标跟踪算法

一、算法的背景

TLD(Tracking-Learning-Detection)是英国萨里大学的一个捷克籍博士生Zdenek

出的一种新的单目标长时间(long term tracking)跟踪算法。该算法与传统跟踪算法的显著区别在于将传统的跟踪算法和传统的检测算法相结合来解决被跟踪目标在被跟踪过程中发生的形变、部分遮挡等问题。同时,通过一种改进的在线学习机制不断更新跟踪模块的“显著特征点”和检测模块的目标模型及相关参数,从而使得跟踪效果更加稳定、鲁棒、可靠。

对于长时间跟踪而言,一个关键的问题是:当目标重新出现在相机视野中时,系统应该能重新检测到它,并开始重新跟踪。但是,长时间跟踪过程中,被跟踪目标将不可避免的发生形状变化、光照条件变化、尺度变化、遮挡等情况。传统的跟踪算法,前端需要跟检测模块相互配合,当检测到被跟踪目标之后,就开始进入跟踪模块,而此后,检测模块就不会介入到跟踪过程中。但这种方法有一个致命的缺陷:即,当被跟踪目标存在形状变化或遮挡时,跟踪就很容易失败;因此,对于长时间跟踪,或者被跟踪目标存在形状变化情况下的跟踪,很多人采用检测的方法来代替跟踪。该方法虽然在某些情况下可以改进跟踪效果,但它需要一个离线的学习过程。即:在检测之前,需要挑选大量的被跟踪目标的样本来进行学习和训练。这也就意味着,训练样本要涵盖被跟踪目标可能发生的各种形变和各种尺度、姿态变化和光照变化的情况。换言之,利用检测的方法来达到长时间跟踪的目的,对于训练样本的选择至关重要,否则,跟踪的鲁棒性就难以保证。

考虑到单纯的跟踪或者单纯的检测算法都无法在长时间跟踪过程中达到理想的效果,所以,TLD方法就考虑将两者予以结合,并加入一种改进的在线学习机制,从而使得整体的目标跟踪更加稳定、有效。

简单来说,TLD算法由三部分组成:跟踪模块、检测模块、学习模块;如下图所示

其运行机制为:检测模块和跟踪模块互补干涉的并行进行处理。首先,跟踪模块假设相邻视频帧之间物体的运动是有限的,且被跟踪目标是可见的,以此来估计目标的运动。

如果目标在相机视野中消失,将造成跟踪失败。检测模块假设每一个视帧都是彼此独立的,并且根据以往检测和学习到的目标模型,对每一帧图片进行全图搜索以定位目标可能出现的区域。同其它目标检测方法一样,TLD中的检测模块也有可能出现错误,且错误无非是错误的负样例和错误的正样例这两种情况。而学习模块则根据跟踪模块的结果对检测模块的这两种错误进行评估,并根据评估结果生成训练样本对检测模块的目标模型进行更新,同时对跟踪模块的“关键特征点”进行更新,以此来避免以后出现类似的

错误。TLD模块的详细;流程框图如下所示:

二、具体的算法流程

三、在分析代码程序过程遇到的问题

OpencvTLD算法代码l流程详解:

1、分析程序运行的命令行参数;

./run_tld -p ../parameters.yml -s ../datasets/06_car/car.mpg -b ../datasets/06_car/init.txt –r

2、读入初始化参数(程序中变量)的文件parameters.yml;

3、通过文件或者用户鼠标框选的方式指定要跟踪的目标的Bounding Box;

4、用上面得到的包含要跟踪目标的Bounding Box和第一帧图像去初始化TLD系统, tld.init(last_gray, box, bb_file); 初始化包含的工作如下:

4.1、buildGrid(frame1, box);

检测器采用扫描窗口的策略:扫描窗口步长为宽高的 10%,尺度缩放系数为1.2;此函数构建全部的扫描窗口grid,并计算每一个扫描窗口与输入的目标box的重叠度;重叠度定义为两个box的交集与它们的并集的比;

4.2、为各种变量或者容器分配内存空间;

4.3、getOverlappingBoxes(box, num_closest_init);

此函数根据传入的box(目标边界框),在整帧图像中的全部扫描窗口中(由上面 4.1得到)寻找与该box距离最小(即最相似,重叠度最大)的num_closest_init(10)个窗口,然后把这些窗口归入good_boxes容器。同时,把重叠度小于0.2的,归入bad_boxes容器;相当于对全部的扫描窗口进行筛选。并通过BBhull函数得到这些扫描窗口的最大边界。

4.5、classifier.prepare(scales);

准备分类器,scales容器里是所有扫描窗口的尺度,由上面的buildGrid()函数初始化;TLD的分类器有三部分:方差分类器模块、集合分类器模块和最近邻分类器模块;这三个分类器是级联的,每一个扫描窗口依次全部通过上面三个分类器,才被认为含有前景目标。这里prepare这个函数主要是初始化集合分类器模块;

集合分类器(随机森林)基于n个基本分类器(共10棵树),每个分类器(树)都是基于一个pixel comparisons(共13个像素比较集)的,也就是说每棵树有13个判断节点(组成一个pixel comparisons),输入的图像片与每一个判断节点(相应像素点)进行比较,产生0或者1,然后将这13个0或者1连成一个13位的二进制码x(有2^13种可能),每一个x对应一个后验概率P(y|x)= #p/(#p+#n) (也有2^13种可能),#p 和#n分别是正和负图像片的数目。那么整一个集合分类器(共10个基本分类器)就有10个后验概率了,将10个后验概率进行平均,如果大于阈值(一开始设经验值0.65,后面再训练优化)的话,就认为该图像片含有前景目标;

后验概率P(y|x)= #p/(#p+#n)的产生方法:初始化时,每个后验概率都得初始化为0;运行时候以下面方式更新:将已知类别标签的样本(训练样本)通过n个分类器进行分类,如果分类结果错误,那么相应的#p和#n就会更新,这样P(y|x)也相应更新了。pixel comparisons的产生方法:先用一个归一化的patch去离散化像素空间,产生所有可能的垂直和水平的pixel comparisons,然后我们把这些pixel comparisons随机分配给n个分类器,每个分类器得到完全不同的pixel comparisons(特征集合),这样,所有分类器的特征组统一起来就可以覆盖整个patch了。

特征是相对于一种尺度的矩形框而言的,TLD中第s种尺度的第i个特征features[s][i] = Feature(x1, y1, x2, y2);是两个随机分配的像素点坐标(就是由这两个像素点比较得到0或者1的)。每一种尺度的扫描窗口都含有totalFeatures = nstructs * structSize个特征;nstructs为树木(由一个特征组构建,每组特征代表图像块的不同视图表示)的个数;structSize为每棵树的特征个数,也即每棵树的判断节点个数;树上每一个特征都作为一个决策节点;

prepare函数的工作就是先给每一个扫描窗口初始化了对应的pixel comparisons(两个随机分配的像素点坐标);然后初始化后验概率为0;

4.6、generatePositiveData(frame1, num_warps_init);

此函数通过对第一帧图像的目标框box(用户指定的要跟踪的目标)进行仿射变换来合成训练初始分类器的正样本集。具体方法如下:先在距离初始的目标框最近的扫描窗口内选择10个bounding box(已经由上面的getOverlappingBoxes函数得到,存于good_boxes里面了,还记得不?),然后在每个bounding box的内部,进行±1%范围的偏移,±1%范围的尺度变化,±10%范围的平面内旋转,并且在每个像素上增加方差为5的高斯噪声(确切的大小是在指定的范围内随机选择的),那么每个box都进行20次这种几何变换,那么10个box将产生200个仿射变换的bounding box,作为正样本。具体实现如下:

getPattern(frame(best_box), pEx, mean, stdev);此函数将frame图像best_box区域的图像片归一化为均值为0的15*15大小的patch,存于pEx(用于最近邻分类器的正样本)正样本中(最近邻的box的Pattern),该正样本只有一个。

generator(frame, pt, warped, bbhull.size(), rng);此函数属于PatchGenerator 类的构造函数,用来对图像区域进行仿射变换,先RNG一个随机因子,再调用()运算符产生一个变换后的正样本。

classifier.getFeatures(patch, grid[idx].sidx, fern);函数得到输入的patch的特征fern(13位的二进制代码);

pX.push_back(make_pair(fern, 1)); //positive ferns

后标记为正样本,存入pX(用于集合分类器的正样本)正样本库;

以上的操作会循环 num_warps * good_boxes.size()即20 * 10 次,这样,pEx就有了一个正样本,而pX有了200个正样本了;

4.7、meanStdDev(frame1(best_box), mean, stdev);

统计best_box的均值和标准差,var = pow(stdev.val[0],2) * 0.5;作为方差分类器的阈值。

4.8、generateNegativeData(frame1);

由于TLD仅跟踪一个目标,所以我们确定了目标框了,故除目标框外的其他图像都是负样本,无需仿射变换;具体实现如下:

由于之前重叠度小于0.2的,都归入 bad_boxes了,所以数量挺多,把方差大于var*0.5f的bad_boxes都加入负样本,同上面一样,需要classifier.getFeatures(patch, grid[idx].sidx, fern);和nX.push_back(make_pair(fern, 0));得到对应的fern特征和标签的nX负样本(用于集合分类器的负样本);

然后随机在上面的bad_boxes中取bad_patches(100个)个box,然后用getPattern函数将frame图像bad_box区域的图像片归一化到15*15大小的patch,存在nEx(用于最近邻分类器的负样本)负样本中。

这样nEx和nX都有负样本了;(box的方差通过积分图像计算)

4.9、然后将nEx的一半作为训练集nEx,另一半作为测试集nExT;同样,nX也拆分为训练集nX和测试集nXT;

4.10、将负样本nX和正样本pX合并到ferns_data[]中,用于集合分类器的训练;

4.11、将上面得到的一个正样本pEx和nEx合并到nn_data[]中,用于最近邻分类器的训练;

4.12、用上面的样本训练集训练集合分类器(森林)和最近邻分类器:

classifier.trainF(ferns_data, 2); //bootstrap = 2

对每一个样本ferns_data[i] ,如果样本是正样本标签,先用measure_forest函数返回该样本所有树的所有特征值对应的后验概率累加值,该累加值如果小于正样本阈值(0.6* nstructs,这就表示平均值需要大于0.6(0.6* nstructs / nstructs),0.6

是程序初始化时定的集合分类器的阈值,为经验值,后面会用测试集来评估修改,找到最优),也就是输入的是正样本,却被分类成负样本了,出现了分类错误,所以就把该样本添加到正样本库,同时用update函数更新后验概率。对于负样本,同样,如果出现负样本分类错误,就添加到负样本库。

classifier.trainNN(nn_data);

对每一个样本nn_data,如果标签是正样本,通过NNConf(nn_examples[i], isin, conf, dummy);计算输入图像片与在线模型之间的相关相似度conf,如果相关相似度小于0.65 ,则认为其不含有前景目标,也就是分类错误了;这时候就把它加到正样本库。然后就通过pEx.push_back(nn_examples[i]);将该样本添加到pEx正样本库中;同样,如果出现负样本分类错误,就添加到负样本库。

4.13、用测试集在上面得到的集合分类器(森林)和最近邻分类器中分类,评价并修改得到最好的分类器阈值。

classifier.evaluateTh(nXT, nExT);

对集合分类器,对每一个测试集nXT,所有基本分类器的后验概率的平均值如果大于thr_fern(0.6),则认为含有前景目标,然后取最大的平均值(大于thr_fern)作为该集合分类器的新的阈值。

对最近邻分类器,对每一个测试集nExT,最大相关相似度如果大于nn_fern(0.65),则认为含有前景目标,然后取最大的最大相关相似度(大于nn_fern)作为该最近邻分类器的新的阈值。

5、进入一个循环:读入新的一帧,然后转换为灰度图像,然后再处理每一帧processFrame;

6、processFrame(last_gray, current_gray, pts1, pts2, pbox, status, tl, bb_file);逐帧读入图片序列,进行算法处理。processFrame共包含四个模块(依次处理):跟踪模块、检测模块、综合模块和学习模块;

6.1、跟踪模块:track(img1, img2, points1, points2);

track函数完成前一帧img1的特征点points1到当前帧img2的特征点points2的跟踪预测;

6.1.1、具体实现过程如下:

(1)先在lastbox中均匀采样10*10=100个特征点(网格均匀撒点),存于points1:

bbPoints(points1, lastbox);

(2)利用金字塔LK光流法跟踪这些特征点,并预测当前帧的特征点(见下面的解释)、计算FB error和匹配相似度sim,然后筛选出 FB_error[i] <= median(FB_error) 和sim_error[i] > median(sim_error) 的特征点(舍弃跟踪结果不好的特征点),剩下的是不到50%的特征点:

tracker.trackf2f(img1, img2, points, points2);

(3)利用剩下的这不到一半的跟踪点输入来预测bounding box在当前帧的位置和大小tbb:

bbPredict(points, points2, lastbox, tbb);

(4)跟踪失败检测:如果FB error的中值大于10个像素(经验值),或者预测到的当前box的位置移出图像,则认为跟踪错误,此时不返回bounding box:

if (tracker.getFB()>10 || tbb.x>img2.cols || tbb.y>img2.rows || tbb.br().x < 1 || tbb.br().y <1)

(5)归一化img2(bb)对应的patch的size(放缩至patch_size = 15*15),存入pattern:getPattern(img2(bb),pattern,mean,stdev);

(6)计算图像片pattern到在线模型M的保守相似度:

classifier.NNConf(pattern,isin,dummy,tconf);

(7)如果保守相似度大于阈值,则评估本次跟踪有效,否则跟踪无效:

if (tconf>classifier.thr_nn_valid) tvalid =true;

6.1.2、TLD跟踪模块的实现原理和trackf2f函数的实现:

TLD跟踪模块的实现是利用了Media Flow 中值光流跟踪和跟踪错误检测算法的结合。中值流跟踪方法是基于Forward-Backward Error和NNC的。原理很简单:从t时刻的图像的A点,跟踪到t+1时刻的图像B点;然后倒回来,从t+1时刻的图像的B点往回跟踪,假如跟踪到t时刻的图像的C点,这样就产生了前向和后向两个轨迹,比较t 时刻中 A点和C点的距离,如果距离小于一个阈值,那么就认为前向跟踪是正确的;这个距离就是FB_error;

bool LKTracker::trackf2f(const Mat& img1, const Mat& img2, vector &points1, vector &points2)

函数实现过程如下:

(1)先利用金字塔LK光流法跟踪预测前向轨迹:

calcOpticalFlowPyrLK( img1,img2, points1, points2, status, similarity, window_size, level, term_criteria, lambda, 0);

(2)再往回跟踪,产生后向轨迹:

calcOpticalFlowPyrLK( img2,img1, points2, pointsFB, FB_status,FB_error, window_size, level, term_criteria, lambda, 0);

(3)然后计算 FB-error:前向与后向轨迹的误差:

for( int i= 0; i

FB_error[i] = norm(pointsFB[i]-points1[i]);

(4)再从前一帧和当前帧图像中(以每个特征点为中心)使用亚象素精度提取10x10象素矩形(使用函数getRectSubPix得到),匹配前一帧和当前帧中提取的10x10象素矩形,得到匹配后的映射图像(调用matchTemplate),得到每一个点的NCC相关系数(也就是相似度大小)。

normCrossCorrelation(img1, img2, points1, points2);

(5)然后筛选出FB_error[i] <= median(FB_error) 和sim_error[i] > median(sim_error) 的特征点(舍弃跟踪结果不好的特征点),剩下的是不到50%的特征点;

filterPts(points1, points2);

6.2、检测模块:detect(img2);

TLD的检测分类器有三部分:方差分类器模块、集合分类器模块和最近邻分类器模块;这三个分类器是级联的。当前帧img2的每一个扫描窗口依次通过上面三个分类器,全部通过才被认为含有前景目标。具体实现过程如下:

先计算img2的积分图,为了更快的计算方差:

integral(frame,iisum,iisqsum);

然后用高斯模糊,去噪:

GaussianBlur(frame,img,Size(9,9),1.5);

下一步就进入了方差检测模块:

6.2.1、方差分类器模块:getVar(grid[i],iisum,iisqsum) >= var

利用积分图计算每个待检测窗口的方差,方差大于var阈值(目标patch方差的50%)的,则认为其含有前景目标,通过该模块的进入集合分类器模块:

6.2.2、集合分类器模块:

集合分类器(随机森林)共有10颗树(基本分类器),每棵树13个判断节点,每个判断节点经比较得到一个二进制位0或者1,这样每棵树就对应得到一个13位的二进制码x(叶子),这个二进制码x对应于一个后验概率P(y|x)。那么整一个集合分类器(共10个基本分类器)就有10个后验概率了,将10个后验概率进行平均,如果大于阈值

(一开始设经验值0.65,后面再训练优化)的话,就认为该图像片含有前景目标;具体过程如下:

(1)先得到该patch的特征值(13位的二进制代码):

classifier.getFeatures(patch,grid[i].sidx,ferns);

(2)再计算该特征值对应的后验概率累加值:

conf = classifier.measure_forest(ferns);

(3)若集合分类器的后验概率的平均值大于阈值fern_th(由训练得到),就认为含有前景目标:

if (conf > numtrees * fern_th) dt.bb.push_back(i);

(4)将通过以上两个检测模块的扫描窗口记录在detect structure中;

(5)如果顺利通过以上两个检测模块的扫描窗口数大于100个,则只取后验概率大的前100个;

nth_element(dt.bb.begin(), dt.bb.begin()+100, dt.bb.end(),

CComparator(tmp.conf));

进入最近邻分类器:

6.2.3、最近邻分类器模块

(1)先归一化patch的size(放缩至patch_size = 15*15),存入dt.patch[i]; getPattern(patch,dt.patch[i],mean,stdev);

(2)计算图像片pattern到在线模型M的相关相似度和保守相似度:

classifier.NNConf(dt.patch[i],dt.isin[i],dt.conf1[i],dt.conf2[i]);

(3)相关相似度大于阈值,则认为含有前景目标:

if (dt.conf1[i]>nn_th) dbb.push_back(grid[idx]);

到目前为止,检测器检测完成,全部通过三个检测模块的扫描窗口存在dbb中;

6.3、综合模块:

TLD只跟踪单目标,所以综合模块综合跟踪器跟踪到的单个目标和检测器可能检测到的多个目标,然后只输出保守相似度最大的一个目标。具体实现过程如下:

(1)先通过重叠度对检测器检测到的目标bounding box进行聚类,每个类的重叠度小于0.5:

clusterConf(dbb, dconf, cbb, cconf);

(2)再找到与跟踪器跟踪到的box距离比较远的类(检测器检测到的box),而且它的相关相似度比跟踪器的要大:记录满足上述条件,也就是可信度比较高的目标box的个数:

if (bbOverlap(tbb, cbb[i])<0.5 && cconf[i]>tconf) confident_detections++; (3)判断如果只有一个满足上述条件的box,那么就用这个目标box来重新初始化跟踪器(也就是用检测器的结果去纠正跟踪器):

if (confident_detections==1) bbnext=cbb[didx];

(4)如果满足上述条件的box不只一个,那么就找到检测器检测到的box与跟踪器预测到的box距离很近(重叠度大于0.7)的所以box,对其坐标和大小进行累加:

if(bbOverlap(tbb,dbb[i])>0.7) cx += dbb[i].x;……

(5)对与跟踪器预测到的box距离很近的box 和跟踪器本身预测到的box 进行坐标与大小的平均作为最终的目标bounding box,但是跟踪器的权值较大:

bbnext.x = cvRound((float)(10*tbb.x+cx)/(float)(10+close_detections));……(6)另外,如果跟踪器没有跟踪到目标,但是检测器检测到了一些可能的目标box,那么同样对其进行聚类,但只是简单的将聚类的cbb[0]作为新的跟踪目标box(不比较相似度了??还是里面已经排好序了??),重新初始化跟踪器:

bbnext=cbb[0];

至此,综合模块结束。

6.4、学习模块:learn(img2);

学习模块也分为如下四部分:

6.4.1、检查一致性:

(1)归一化img(bb)对应的patch的size(放缩至patch_size = 15*15),存入pattern: getPattern(img(bb), pattern, mean, stdev);

(2)计算输入图像片(跟踪器的目标box)与在线模型之间的相关相似度conf:

classifier.NNConf(pattern,isin,conf,dummy);

(3)如果相似度太小了或者如果方差太小了或者如果被被识别为负样本,那么就不训练了;

if (conf<0.5)……或if (pow(stdev.val[0], 2)< var)……或if(isin[2]==1)……

6.4.2、生成样本:

先是集合分类器的样本:fern_examples:

(1)先计算所有的扫描窗口与目前的目标box的重叠度:

grid[i].overlap = bbOverlap(lastbox, grid[i]);

(2)再根据传入的lastbox,在整帧图像中的全部窗口中寻找与该lastbox距离最小(即最相似,重叠度最大)的num_closest_update个窗口,然后把这些窗口归入good_boxes容器(只是把网格数组的索引存入)同时,把重叠度小于0.2的,归入

bad_boxes 容器:

getOverlappingBoxes(lastbox, num_closest_update);

(3)然后用仿射模型产生正样本(类似于第一帧的方法,但只产生10*10=100个):generatePositiveData(img, num_warps_update);

(4)加入负样本,相似度大于1??相似度不是出于0和1之间吗?

idx=bad_boxes[i];

if (tmp.conf[idx]>=1) fern_examples.push_back(make_pair(tmp.patt[idx],0)); 然后是最近邻分类器的样本:nn_examples:

if (bbOverlap(lastbox,grid[idx]) < bad_overlap)

nn_examples.push_back(dt.patch[i]);

6.4.3、分类器训练:

classifier.trainF(fern_examples,2);

classifier.trainNN(nn_examples);

6.4.4、把正样本库(在线模型)包含的所有正样本显示在窗口上

classifier.show();

至此,tld.processFrame函数结束。

7、如果跟踪成功,则把相应的点和box画出来:

if (status){

drawPoints(frame,pts1);

drawPoints(frame,pts2,Scalar(0,255,0)); //当前的特征点用蓝色点表示 drawBox(frame,pbox);

detections++;

}

8、然后显示窗口和交换图像帧,进入下一帧的处理:

imshow("TLD", frame);

swap(last_gray, current_gray);

至此,main()函数结束(只分析了框架)。

TLD算法资料:

码理解之(一)

https://www.wendangku.net/doc/1e2056422.html,/zouxy09/article/details/7893026 TLd算法流程详解

开源TLD代码

比微软kinect更强的视频跟踪算法--TLD跟踪算法介绍

TLD视觉跟踪技术解析

https://www.wendangku.net/doc/1e2056422.html,/zdyueguanyun/article/details/8525106

https://www.wendangku.net/doc/1e2056422.html,/s/blog_4a03c0100101dbcr.html TLD算法流程说明

几种非线性滤波算法的研究-内附程序

2017 年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:雷达系统导论 学生所在(系):电子与信息工程学院 学生所在学科:电子与同学工程 学生姓名: 学号: 学生类别: 考核结果阅卷人 第 1 页(共页)

几种非线性滤波算法的介绍与性能分析 作者姓名:学号: 专业院系:电信学院电子工程系 电子邮件: 摘要—非线性滤波算法在雷达目标跟踪中有着重要的应用,对雷达的跟踪性能有着至关重要的影响。好的滤波算法有利于目标航迹的建立及保持,能够得到较精确的目标位置,为发现目标后的后续工作提供可靠的数据依据。本文重点介绍了雷达数据处理中的几种非线性滤波算法:扩展卡尔曼滤波(EKF)、不敏卡尔曼滤波(UKF)、粒子滤波(PF),并且给出了一个利用这三种算法进行数据处理的一个实例,通过这个实例对比分析了这三种算法的性能以及优劣。 关键字—非线性滤波算法;扩展卡尔曼滤波;不敏卡尔曼滤波;粒子滤波; I.概述(一级表题格式) 在雷达对目标进行跟踪前要先对目标进行检测。对于满足检测条件的目标就需要进行跟踪,在跟踪的过程中可以利用新获得的数据完成对目标的进一步检测比如去除虚假目标等,同时利用跟踪获得数据可以进一步完成对目标动态特性的检测和识别。因此对目标进行准确的跟踪是雷达性能的一个重要指标。在检测到满足条件的目标后,根据目标运动状态建立目标运动模型,然后对目标跟踪算法进行设计,这是雷达目标跟踪中的核心部分。 目前主要的跟踪算法包括线性自回归滤波,两点外推滤波、维纳滤波、- αβ滤波、加权最小二乘滤波、维纳滤波和卡尔曼滤波[1]。对于线性系统而言最优滤波的方法就是卡尔曼滤波,卡尔曼滤波是线性高斯模型下的最优状态估计算法。但是实际问题中目标的运动模型往往不是线性的,因此卡尔曼滤波具有很大的局限性。目前主要用的非线性滤波算法可以分为高斯滤波和粒子滤波[2]。不敏卡尔曼滤波和扩展卡尔曼滤波就是高斯滤波中的典型代表,也是应用相对较为广泛的。粒子滤波的应用范围比高斯滤波的适用范围要广,对于系统状态非线性,观测模型非高斯等问题都有很好的适用性。本文具体分析阐述了扩展卡尔曼滤波算法,不敏卡尔曼滤波算法,粒子滤波算法,并且通过一个实例利用仿真的方法分析了这三种算法在滤波性能上的优劣,最后对这三种算法做了一定的总结。 我本科毕业设计题目为《基于历史数据的路径生成算法研究》,由于我是跨专业保研到电信学院,该课题所研究内容不属于雷达系统研究范围,是一种城市路网最快路径生成算法。 II.几种非线性滤波算法 A.扩展卡尔曼滤波 扩展卡尔曼滤波是将非线性系统转换为近似的线性系统的一种方法,其核心思想是围绕滤波值将非线性函数展开成泰勒级数并略去二阶及以上的项,得到一个近似的线性化模型,然后应用卡尔曼滤波完成状态估计。 扩展卡尔曼滤波状态空间模型: k k k w x f+ = + ) ( x 1 状态方程 k k k v x h+ =) ( z观测方程 其中(.) f和(.) h为非线性函数 在扩展卡尔曼滤波中,状态的预测以及观测值的预测由非线性函数计算得出,线性卡尔曼滤波中的状态转移矩阵A阵和观测矩阵H阵由f和h函数的雅克比矩阵代替。 对 (.) f和(.) h Taylor展开,只保留一次项有: ) ? ( ) ?( ) ( k k k k k x x A x f x f- + ≈ ) ? ( ) ?( ) ( k k k k k x x H x h x h- + ≈ 其中: k k x x k k dx df A ?= =为f对 1- k x求导的雅克比矩阵 k k x x k k dx dh H ?= =为h对 1- k x求导的雅克比矩阵 ) ?( ? 1-k k x f x=,于是可以得出: k k k k k k k w x A x f x A x+ - + ≈ + ) ? ) ?( ( 1 k k k k k k k v x H x h x H z+ - + ≈ + ) ? ) ?( ( 1 通过以上变换,将非线性问题线性化。接下来EKF 滤波过程同线性卡尔曼滤波相同,公式如下: )) | (?( ) |1 ( X?k k X f k k= + ) ( ) ( ) | ( ) ( ) |1 (P k Q k k k P k k k+ Φ' Φ = + )1 ( )1 ( ) |1 ( )1 ( )1 (S+ + + ' + + = +k R k H k k P k H k )1 ( )1 ( ) |1 ( )1 ( K1+ + ' + = +-k S k H k k P k

基于meanshift的目标跟踪算法——完整版

基于Mean Shift的目标跟踪算法研究 指导教师:

摘要:该文把Itti视觉注意力模型融入到Mean Shift跟踪方法,提出了一种基于视觉显著图的Mean Shift跟踪方法。首先利用Itti视觉注意力模型,提取多种特征,得到显著图,在此基础上建立目标模型的直方图,然后运用Mean Shift方法进行跟踪。实验证明,该方法可适用于复杂背景目标的跟踪,跟踪结果稳定。 关键词:显著图目标跟踪Mean Shift Mean Shift Tracking Based on Saliency Map Abstract:In this paper, an improved Mean Shift tracking algorithm based on saliency map is proposed. Firstly, Itti visual attention model is used to extract multiple features, then to generate a saliency map,The histogram of the target based on the saliency map, can have a better description of objectives, and then use Mean Shift algorithm to tracking. Experimental results show that improved Mean Shift algorithm is able to be applied in complex background to tracking target and tracking results are stability. 1 引言 Mean Shift方法采用核概率密度来描述目标的特征,然后利用Mean Shift搜寻目标位置。这种方法具有很高的稳定行,能够适应目标的形状、大小的连续变化,而且计算速度很快,抗干扰能力强,能够保证系统的实时性和稳定性[1]。近年来在目标跟踪领域得到了广泛应用[2-3]。但是,核函数直方图对目标特征的描述比较弱,在目标周围存在与目标颜色分布相似的物体时,跟踪算法容易跟丢目标。目前对目标特征描述的改进只限于选择单一的特征,如文献[4]通过选择跟踪区域中表示目标主要特征的Harris点建立目标模型;文献[5]将初始帧的目标模型和前一帧的模型即两者的直方图分布都考虑进来,建立混合模型;文献[6]提出了以代表图像的梯度方向信息的方向直方图为目标模型;文献[7-8]提出二阶直方图,是对颜色直方图一种改进,是以颜色直方图为基础,颜色直方图只包含了颜色分布信息,二阶直方图在包含颜色信息的前提下包含了像素的均值向量和协方差。文献[9]提出目标中心加权距离,为离目标中心近的点赋予较大的权值,离目标中心远的点赋予较小的权值。文献[4-9]都是关注于目标和目标的某一种特征。但是使用单一特征的目标模型不能适应光线及背景的变化,而且当有遮挡和相似物体靠近时,容易丢失目标;若只是考虑改进目标模型,不考虑减弱背景的干扰,得到的效果毕竟是有限的。 针对上述问题,文本结合Itti 提出的视觉注意模型[5],将自底向上的视觉注意机制引入到Mean Shift跟踪中,提出了基于视觉显著图的Mean Shift跟踪方法。此方法在显著图基础上建立目标模型,由此得到的目标模型是用多种特征来描述的,同时可以降低背景对目标的干扰。 2 基于视觉显著图的Mean Shift跟踪方法

TLD目标跟踪算法

TLD目标跟踪算法 一、算法的背景 TLD(Tracking-Learning-Detection)是英国萨里大学的一个捷克籍博士生Zdenek 出的一种新的单目标长时间(long term tracking)跟踪算法。该算法与传统跟踪算法的显著区别在于将传统的跟踪算法和传统的检测算法相结合来解决被跟踪目标在被跟踪过程中发生的形变、部分遮挡等问题。同时,通过一种改进的在线学习机制不断更新跟踪模块的“显著特征点”和检测模块的目标模型及相关参数,从而使得跟踪效果更加稳定、鲁棒、可靠。 对于长时间跟踪而言,一个关键的问题是:当目标重新出现在相机视野中时,系统应该能重新检测到它,并开始重新跟踪。但是,长时间跟踪过程中,被跟踪目标将不可避免的发生形状变化、光照条件变化、尺度变化、遮挡等情况。传统的跟踪算法,前端需要跟检测模块相互配合,当检测到被跟踪目标之后,就开始进入跟踪模块,而此后,检测模块就不会介入到跟踪过程中。但这种方法有一个致命的缺陷:即,当被跟踪目标存在形状变化或遮挡时,跟踪就很容易失败;因此,对于长时间跟踪,或者被跟踪目标存在形状变化情况下的跟踪,很多人采用检测的方法来代替跟踪。该方法虽然在某些情况下可以改进跟踪效果,但它需要一个离线的学习过程。即:在检测之前,需要挑选大量的被跟踪目标的样本来进行学习和训练。这也就意味着,训练样本要涵盖被跟踪目标可能发生的各种形变和各种尺度、姿态变化和光照变化的情况。换言之,利用检测的方法来达到长时间跟踪的目的,对于训练样本的选择至关重要,否则,跟踪的鲁棒性就难以保证。 考虑到单纯的跟踪或者单纯的检测算法都无法在长时间跟踪过程中达到理想的效果,所以,TLD方法就考虑将两者予以结合,并加入一种改进的在线学习机制,从而使得整体的目标跟踪更加稳定、有效。 简单来说,TLD算法由三部分组成:跟踪模块、检测模块、学习模块;如下图所示 其运行机制为:检测模块和跟踪模块互补干涉的并行进行处理。首先,跟踪模块假设相邻视频帧之间物体的运动是有限的,且被跟踪目标是可见的,以此来估计目标的运动。 如果目标在相机视野中消失,将造成跟踪失败。检测模块假设每一个视帧都是彼此独立的,并且根据以往检测和学习到的目标模型,对每一帧图片进行全图搜索以定位目标可能出现的区域。同其它目标检测方法一样,TLD中的检测模块也有可能出现错误,且错误无非是错误的负样例和错误的正样例这两种情况。而学习模块则根据跟踪模块的结果对检测模块的这两种错误进行评估,并根据评估结果生成训练样本对检测模块的目标模型进行更新,同时对跟踪模块的“关键特征点”进行更新,以此来避免以后出现类似的

目标跟踪算法的分类

目标跟踪算法的分类

主要基于两种思路: a)不依赖于先验知识,直接从图像序列中检测到运动目标,并进行目标识别,最终跟踪感兴趣的运动目标; b)依赖于目标的先验知识,首先为运动目标建模,然后在图像序列中实时找到相匹配的运动目标。 一.运动目标检测 对于不依赖先验知识的目标跟踪来讲,运动检测是实现跟踪的第一步。运动检测即为从序列图像中将变化区域从背景图像中提取出来。运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测 (一)静态背景 1.背景差 2.帧差 3.GMM 4.光流 背景减算法可以对背景的光照变化、噪声干扰以及周期性运动等进行建模,在各种不同情况下它都可以准确地检测出运动目标。因此对于固定

个关键技术: a)匹配法则,如最大相关、最小误差等 b)搜索方法,如三步搜索法、交叉搜索法等。 c) 块大小的确定,如分级、自适应等。 光流法 光流估计的方法都是基于以下假设:图像灰度分布的变化完全是目标或者场景的运动引起的,也就是说,目标与场景的灰度不随时间变化。这使得光流方法抗噪声能力较差,其应用范围一般局限于目标与场景的灰度保持不变这个假设条件下。另外,大多数的光流计算方法相当复杂,如果没有特别的硬件装置,其处理速度相当慢,达不到实时处理的要求。 二.目标跟踪 运动目标的跟踪,即通过目标的有效表达,在图像序列中寻找与目标模板最相似候选目标区位置的过程。简单说,就是在序列图像中为目标定位。运动目标的有效表达除了对运动目标建模外,目标跟踪中常用到的目标特性表达主要包括视觉特征 (图像边缘、轮廓、形状、纹理、区域)、统计特征 (直方图、各种矩特征)、变换系数特

目标跟踪算法的分类

运动目标跟踪就是在一段序列图像中的每幅图像中实时地找到所感兴趣的运动目标 (包括位置、速度及加速度等运动参数)。在运动目标跟踪问题的研究上,总体来说有两种思路: a)不依赖于先验知识,直接从图像序列中检测到运动目标,并进行目标识别,最终跟踪感兴趣的运动目标; b)依赖于目标的先验知识,首先为运动目标建模,然后在图像序列中实时找到相匹配的运动目标。 一、运动目标检测 对于不依赖先验知识的目标跟踪来讲,运动检测是实现跟踪的第一步。运动检测即为从序列图像中将变化区域从背景图像中提取出来。运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测。 静态背景下运动检测就是摄像机在整个监视过程中不发生移动,只有被监视目标在摄像机视场内运动,这个过程只有目标相对于摄像机的运动;动态背景下运动检测就是摄像机在整个监视过程中发生了移动 (如平动、旋转或多自由度运动),被监视目标在摄像机视场内也发生了运动,这个过程就产生了目标与摄像机之间复杂的相对运动。 1、静态背景 背景差分法 背景差分法是利用当前图像与背景图像的差分来检测运动区域的一种技术。它一般能够提供最完全的特征数据,但对于动态场景的变化,如天气、光照、背景扰动及背景物移入移出等特别敏感,运动目标的阴影也会影响检测结果的准确性及跟踪的精确性。其基本思想就是首先获得一个背景模型,然后将当前帧与背景模型相减,如果像素差值大于某一阈值,则判断此像素属于运动目标,否则属于背景图像。背景模型的建立与更新、阴影的去除等对跟踪结果的好坏至关重要。 帧间差分法 相邻帧间差分法是通过相邻两帧图像的差值计算,获得运动物体位置和形状等信息的运动目标检测方法。其对环境的适应性较强,特别是对于光照的变化适应性强,但由于运动目标上像素的纹理、灰度等信息比较相近,不能检测出完整

目标跟踪算法的分类

目标跟踪算法的分类主要基于 两种思路: a)不依赖于先验知识,直接从图像序列中检测到运动目标,并进行目标识别,最终跟踪感兴趣的运动目标; b)依赖于目标的先验知识,首先为运动目标建模然后在图像序列中实时找到相匹配的运动目标。 一.运动目标检测 对于不依赖先验知识的目标跟踪来讲,运动检测是实现跟踪的第一步。运动检测即为从序列图像中将变化区域从背景图像中提取出来。运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测(一)静态背景

2.帧差 3.GMM 4.光流 背景减算法可以对背景的光照变化、噪声干扰以及周期性运动等进行建模,在各种不同情况下它都可以准确地检测出运动目标。因此对于固定摄像头的情形,目前大多数的跟踪算法中都采用背景减算法来进行目标检测。背景减算法的局限性在于它需要一个静态的固定摄像头。 (二)运动场通常情况下,摄像机的运动形式可以分为两种:a)摄像机的支架固定,但摄像机可以偏转、俯仰以及缩放;b)将摄像机装在某个移动的载体上。由于以上两种情况下的背景及前景图像都在做全局运动,要准确检测运动目标的首要任务是进行图像的全局运动估计与补偿。 考虑到图像帧上各点的全局运动矢量虽不尽相同(摄像机做平移运动除外),但它们均是在同一摄像机模型下的运动,因而应遵循相同的运动模型,可以用同一模型参数来表示。 全局运动的估计问题就被归结为全局运动模型参数的估计问题,通常使用块匹配法或光流估计法

来进行运动参数的估计。 块匹配 基于块的运动估算和补偿可算是最通用的算法。可以将图像分割成不同的图像块,假定同一图像小块上的运动矢量是相同的,通过像素域搜索得到最佳的运动矢量估算。块匹配法主要有如下三个关键技术: a)匹配法则,如最大相关、最小误差等 b)搜索方法,如三步搜索法、交叉搜索法等。 c)块大小的确定,如分级、自适应等。 光流法 光流估计的方法都是基于以下假设:图像灰度分布的变化完全是目标或者场景的运动引起的,也就是说,目标与场景的灰度不随时间变化。这使得光流方法抗噪声能力较差,其应用范围一般局限于目标与场景的灰度保持不变这个假设条件下。另外,大多数的光流计算方法相当复杂,如果没有特别的硬件装置,其处理速度相当慢,达不到实时处理的要求。 二.目标跟踪 运动目标的跟踪,即通过目标的有效表达,在图像序列中寻找与目标模板最相似候选目标区位置

目标跟踪算法的研究毕业论文

目录 摘要 (1) ABSTRACT (2) 第一章绪论 (4) 1.1课题研究背景和意义 (4) 1.2国外研究现状 (5) 1.3本文的具体结构安排 (7) 第二章运动目标检测 (8) 2.1检测算法及概述 (8) 2.1.1连续帧间差分法 (9) 2.1.2背景去除法 (11) 2.1.3光流法 (13) 第三章运动目标跟踪方法 (16) 3.1引言 (16) 3.2运动目标跟踪方法 (16) 3.2.1基于特征匹配的跟踪方法 (16) 3.2.2基于区域匹配的跟踪方法 (17) 3.2.3基于模型匹配的跟踪方法 (18) 3.3运动目标搜索算法 (18) 3.3.1绝对平衡搜索法 (18) 3.4绝对平衡搜索法实验结果 (19) 3.4.1归一化互相关搜索法 (21)

3.5归一化互相关搜索法实验结果及分析 (22) 第四章模板更新与轨迹预测 (26) 4.1模板更新简述及策略 (26) 4.2轨迹预测 (28) 4.2.1线性预测 (29) 4.2.2平方预测器 (30) 4.3实验结果及分析: (31) 致 (36) 参考文献 (37) 毕业设计小结 (38)

摘要 图像序列目标跟踪是计算机视觉中的经典问题,它是指在一组图像序列中,根据所需目标模型,实时确定图像中目标所在位置的过程。它最初吸引了军方的关注,逐渐被应用于电视制导炸弹、火控系统等军用备中。序列图像运动目标跟踪是通过对传感器拍摄到的图像序列进行分析,计算出目标在每帧图像上的位置。它是计算机视觉系统的核心,是一项融合了图像处理、模式识别、人工只能和自动控制等领域先进成果的高技术课题,在航天、监控、生物医学和机器人技术等多种领域都有广泛应用。因此,非常有必要研究运动目标的跟踪。 本论文就图像的单目标跟踪问题,本文重点研究了帧间差分法和背景去除法等目标检测方法,研究了模板相关匹配跟踪算法主要是:最小均方误差函数(MES),最小平均绝对差值函数(MAD)和最大匹配像素统计(MPC)的跟踪算法。在跟踪过程中,由于跟踪设备与目标的相对运动, 视野中的目标可能出现大小、形状、姿态等变化, 加上外界环境中的各种干扰, 所要跟踪的目标和目标所在的场景都发生了变化, 有可能丢失跟踪目标。为了保证跟踪的稳定性和正确性, 需要对模板图像进行自适应更新。由于目标运动有一定得规律,可以采取轨迹预测以提高跟踪精度,本文采用了线性预测法。 对比分析了相关匹配算法的跟踪精度和跟踪速度;对比不采用模板更新和模板跟新的跟踪进度和差别,实验表明,跟踪算法加上轨迹预测及模板跟新在很大程度上提高了跟踪帧数,提高了跟踪精度,具有一定的抗噪声性能。

目标跟踪算法综述

。 目标跟踪算法综述 大连理工大学卢湖川一、引言 目标跟踪是计算机视觉领域的一个重 要问题,在运动分析、视频压缩、行为识 别、视频监控、智能交通和机器人导航等 很多研究方向上都有着广泛的应用。目标 跟踪的主要任务是给定目标物体在第一帧 视频图像中的位置,通过外观模型和运动 模型估计目标在接下来的视频图像中的状 态。如图1所示。目标跟踪主要可以分为5 部分,分别是运动模型、特征提取、外观 模型、目标定位和模型更新。运动模型可 以依据上一帧目标的位置来预测在当前帧 目标可能出现的区域,现在大部分算法采用的是粒子滤波或相关滤波的方法来建模目标运动。随后,提取粒子图像块特征,利用外观模型来验证运动模型预测的区域是被跟踪目标的可能性,进行目标定位。由于跟踪物体先验信息的缺乏,需要在跟踪过程中实时进行模型更新,使得跟踪器能够适应目标外观和环境的变化。尽管在线目标跟踪的研究在过去几十年里有很大进展,但是由被跟踪目标外观及周围环境变化带来的困难使得设计一个鲁棒的在线跟踪算法仍然是一个富有挑战性的课题。本文将对最近几年本领域相关算法进行综述。 二、目标跟踪研究现状 1. 基于相关滤波的目标跟踪算法 在相关滤波目标跟踪算法出现之前,大部分目标跟踪算法采用粒子滤波框架来进行目标跟踪,粒子数量往往成为限制算法速度的一个重要原因。相关滤波提出了 一种新颖的循环采样方法,并利用循环样 本构建循环矩阵。利用循环矩阵时域频域 转换的特殊性质,将运算转换到频域内进 行计算,大大加快的分类器的训练。同时, 在目标检测阶段,分类器可以同时得到所 有循环样本得分组成的响应图像,根据最 大值位置进行目标定位。相关滤波用于目 标跟踪最早是在MOSSE算法[1]中提出 的。发展至今,很多基于相关滤波的改进 工作在目标跟踪领域已经取得很多可喜的 成果。 1.1. 特征部分改进 MOSSE[1] 算法及在此基础上引入循 环矩阵快速计算的CSK[2]算法均采用简单 灰度特征,这种特征很容易受到外界环境 的干扰,导致跟踪不准确。为了提升算法 性能,CN算法[3]对特征部分进行了优 化,提出CN(Color Name)空间,该空 间通道数为11(包括黑、蓝、棕、灰、绿、 橙、粉、紫、红、白和黄),颜色空间的引 入大大提升了算法的精度。 与此类似,KCF算法[4]采用方向梯度 直方图(HOG)特征与相关滤波算法结合, 同时提出一种将多通道特征融入相关滤波 的方法。这种特征对于可以提取物体的边 缘信息,对于光照和颜色变化等比较鲁棒。 方向梯度直方图(HOG)特征对于运 动模糊、光照变化及颜色变化等鲁棒性良 好,但对于形变的鲁棒性较差;颜色特征 对于形变鲁棒性较好,但对于光照变化不 够鲁棒。STAPLE算法[5]将两种特征进行 有效地结合,使用方向直方图特征得到相 关滤波的响应图,使用颜色直方图得到的 统计得分,两者融合得到最后的响应图像 并估计目标位置,提高了跟踪算法的准确 度,但也使得计算稍微复杂了一些。 图1 目标跟踪算法流程图

目标跟踪算法

clc; clear; x=[0 16 25 33 50 65 75 82 100]; y=[0 172.5 227.5 324.2 330.7 286.1 237.7 201.7 0]; plot(xx,yy); 的图为 xx = 0:.01:100; yy = spline(x,y,xx); plot(xx,yy)

Matlab画平滑曲线的两种方法(拟合或插值后再用plot即可) 分类:MATLAB2012-12-02 11:15 25540人阅读评论(4) 收藏举报自然状态下,用plot画的是折线,而不是平滑曲线。 有两种方法可以画平滑曲线,第一种是拟合的方法,第二种是用spcrv,其实原理应该都一样就是插值。下面是源程序,大家可以根据需要自行选择,更改拟合的参数。 clc,clear; a = 1:1:6; %横坐标 b = [8.0 9.0 10.0 15.0 35.0 40.0]; %纵坐标

plot(a, b, 'b'); %自然状态的画图效果 hold on; %第一种,画平滑曲线的方法 c = polyfit(a, b, 2); %进行拟合,c为2次拟合后的系数 d = polyval(c, a, 1); %拟合后,每一个横坐标对应的值即为d plot(a, d, 'r'); %拟合后的曲线 plot(a, b, '*'); %将每个点用*画出来 hold on; %第二种,画平滑曲线的方法 values = spcrv([[a(1) a a(end)];[b(1) b b(end)]],3); plot(values(1,:),values(2,:), 'g');

目标定位跟踪算法及仿真程序(修改后)

目标定位跟踪算法及仿真程序 质心算法是最简单的定位算法,如图2-1所示,四个小圆为观测站,实线三角形是目标真实的位置,假设四个圆形观测站都探测到目标的存在,则根据质心定位算法,目标的位置(x,y )可以表示为:4 4 321x x x x x +++= , 4 4 321y y y y y +++= ,这里观测站得位置为),(i i y x ,同理,当观测站数目为N 时,这时候的质心定位算法可以表示为: ???? ? ??? ????=??????∑ ∑ ==N i i N i i y N x N y x 1 1 11 图1 质心定位 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 质心定位算法Matlab 程序 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function main % 定位初始化 Length=100; % 场地空间,单位:米 Width=100; % 场地空间,单位:米 d=50; % 目标离观测站50米以内都能探测到,反之则不能 Node_number=6; % 观测站的个数 for i=1:Node_number % 观测站的位置初始化,这里位置是随机给定的 Node(i).x=Width*rand; Node(i).y=Length*rand; end % 目标的真实位置,这里也随机给定 Target.x=Width*rand; Target.y=Length*rand; % 观测站探测目标 X=[]; for i=1:Node_number

多目标跟踪算法

多目标跟踪算法 先来回顾下卡尔曼滤波器: 假定k k x |表示当前k 时刻目标的状态,k 1k x |+表示下一个时刻目标的状态,k z 则表示k 时刻的实际观测。一般地模型都假定为线性的: 这里的1k x +为k+1时刻目标的状态,k x 为k 时刻的状态,为状态转移矩阵,而是服从均值为0方差为的正态分布,表示由噪声等引起的干扰。卡尔曼滤波采取初步估 计: 这里的估计只是初步的估计,状态估计与实际状态的误差矩阵等于状态1k x +的的方差,即: 更新(修正): 这里已知了实际观察,同样是假定观测与状态的似然关系是线性的,即满足: 服从一个均值为0方差为 的正态分布。 卡尔曼滤波器给出了经过更新后得到的比较合理的k+1时刻的估计为: 相应地得到了更新后方差的估计: 这里: 其实这些都是通过最小二乘法推出来的,即使得误差: 最小,而初步估计也是通过最小二乘法获得,即使得: 最小。有了上述估计方程后,便可以获得一个估计流程:

下面再介绍下贝叶斯公式 先看一个定义 马氏链: 设{} ,,,k j i E =为有限集或可列集,称()0n n X ≥为定义在概率空间()P F,,Ω上,取值于空间E 的马氏链,如果满足下面的马氏性:对一切n 10i i i ,,, 有 [][]1n 1n n n 1n 1n 00n n i X i X P i X i X i X P ----======|,,| 若左边的条件概率有定义,则称[]i X j X P 1n n ==-|为在n-1时刻状态为i,在n 时刻在j 的转移概率函数,若它与n 无关,则记为ij p ,并称为时齐的或齐次的。显然这里的马氏性接近于独立性,在一定程度上可以称为无记忆性或无后效性。 下面我们来推导贝叶斯公式: 容易由条件概率公式定义知 而 ()()()()()()( ) ()() ()( ) ()() ( )() ()()() 1 k 1 k 1k k k 1 k k 1k k k 1k k 1k k k 1k k k k k 1k 1k 1k k k 1k k k k k 1k 1k 1k k k 1k 1k 1k k k 1k 1k 1k 1k 1k z x f dx x f x z f x f x z f z f dx x f x z f x z f z f x f x z f x z f dx z x f x z f z x f x z f x f +++++++++++++++++++++++== ? == ?? ?||||||||||||||||||||||||| 就得到了更新后的公式如下: 这里记 于是就可以得到贝叶斯滤波器跟踪流程如下: 实际上可以证明,卡尔曼滤波器是贝叶斯滤波器的一种特殊形式,由于假定噪声服从正态分布,同样地观测与状态估计的误差也是服从正态分布,那么不难得:

视频目标跟踪算法综述_蔡荣太

1引言 目标跟踪可分为主动跟踪和被动跟踪。视频目标跟踪属于被动跟踪。与无线电跟踪测量相比,视频目标跟踪测量具有精度高、隐蔽性好和直观性强的优点。这些优点使得视频目标跟踪测量在靶场光电测量、天文观测设备、武器控制系统、激光通信系统、交通监控、场景分析、人群分析、行人计数、步态识别、动作识别等领域得到了广泛的应用[1-2]。 根据被跟踪目标信息使用情况的不同,可将视觉跟踪算法分为基于对比度分析的目标跟踪、基于匹配的目标跟踪和基于运动检测的目标跟踪。基于对比度分析的跟踪算法主要利用目标和背景的对比度差异,实现目标的检测和跟踪。基于匹配的跟踪主要通过前后帧之间的特征匹配实现目标的定位。基于运动检测的跟踪主要根据目标运动和背景运动之间的差异实现目标的检测和跟踪。前两类方法都是对单帧图像进行处理,基于匹配的跟踪方法需要在帧与帧之间传递目标信息,对比度跟踪不需要在帧与帧之间传递目标信息。基于运动检测的跟踪需要对多帧图像进行处理。除此之外,还有一些算法不易归类到以上3类,如工程中的弹转机跟踪算法、多目标跟踪算法或其他一些综合算法。2基于对比度分析的目标跟踪算法基于对比度分析的目标跟踪算法利用目标与背景在对比度上的差异来提取、识别和跟踪目标。这类算法按照跟踪参考点的不同可以分为边缘跟踪、形心跟踪和质心跟踪等。这类算法不适合复杂背景中的目标跟踪,但在空中背景下的目标跟踪中非常有效。边缘跟踪的优点是脱靶量计算简单、响应快,在某些场合(如要求跟踪目标的左上角或右下角等)有其独到之处。缺点是跟踪点易受干扰,跟踪随机误差大。重心跟踪算法计算简便,精度较高,但容易受到目标的剧烈运动或目标被遮挡的影响。重心的计算不需要清楚的轮廓,在均匀背景下可以对整个跟踪窗口进行计算,不影响测量精度。重心跟踪特别适合背景均匀、对比度小的弱小目标跟踪等一些特殊场合。图像二值化之后,按重心公式计算出的是目标图像的形心。一般来说形心与重心略有差别[1-2]。 3基于匹配的目标跟踪算法 3.1特征匹配 特征是目标可区别与其他事物的属性,具有可区分性、可靠性、独立性和稀疏性。基于匹配的目标跟踪算法需要提取目标的特征,并在每一帧中寻找该特征。寻找的 文章编号:1002-8692(2010)12-0135-04 视频目标跟踪算法综述* 蔡荣太1,吴元昊2,王明佳2,吴庆祥1 (1.福建师范大学物理与光电信息科技学院,福建福州350108; 2.中国科学院长春光学精密机械与物理研究所,吉林长春130033) 【摘要】介绍了视频目标跟踪算法及其研究进展,包括基于对比度分析的目标跟踪算法、基于匹配的目标跟踪算法和基于运动检测的目标跟踪算法。重点分析了目标跟踪中特征匹配、贝叶斯滤波、概率图模型和核方法的主要内容及最新进展。此外,还介绍了多特征跟踪、利用上下文信息的目标跟踪和多目标跟踪算法及其进展。 【关键词】目标跟踪;特征匹配;贝叶斯滤波;概率图模型;均值漂移;粒子滤波 【中图分类号】TP391.41;TN911.73【文献标识码】A Survey of Visual Object Tracking Algorithms CAI Rong-tai1,WU Yuan-hao2,WANG Ming-jia2,WU Qing-xiang1 (1.School of Physics,Optics,Electronic Science and Technology,Fujian Normal University,Fuzhou350108,China; 2.Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Science,Changchun130033,China)【Abstract】The field of visual object tracking algorithms are introduced,including visual tracking based on contrast analysis,visual tracking based on feature matching and visual tracking based on moving detection.Feature matching,Bayesian filtering,probabilistic graphical models,kernel tracking and their recent developments are analyzed.The development of multiple cues based tracking,contexts based tracking and multi-target tracking are also discussed. 【Key words】visual tracking;feature matching;Bayesian filtering;probabilistic graphical models;mean shift;particle filter ·论文·*国家“863”计划项目(2006AA703405F);福建省自然科学基金项目(2009J05141);福建省教育厅科技计划项目(JA09040)

目标跟踪的研究背景意义方法及现状

目标跟踪的研究背景意义方法及现状

目录 ? 1.课题背景与研究意义? 2.国内外研究现状 ? 3.存在的问题 ? 4.总结,发展与展望 ? 5.参考文献

1课题背景与研究意义 ?运动目标的跟踪就是在视频图像的每一幅图像中确定出我们感兴趣的运动目标的位置,并把不同帧中同一目标对应起来。 ?智能视频监控(IVS: Intelligent Video Surveillance)是计算机视觉领域近几年来发展较快,研究较多的一个应用方向。它能够利用计算机视觉技术对采集到的视频信号进行处理、分析和理解,并以此为基础对视频监控系统进行控制,从而使视频监控系统具备更好的智能性和鲁棒性。智能视频监控系统主要涉及到图像处理、计算机视觉、模式识别、人工智能等方面的科学知识,它的用途非常广泛,在民用和军事领域中都有着极大的应用前景。

2.国内外研究现状 视频目标跟踪算法 基于对比度分析基于匹配核方法运动检测其它方法 特征匹配贝叶斯 跟踪 Mean shift方法 光流法

基于对比度分析的方法 ?算法思想:基于对比度分析的目标跟踪算法利用目标与背景在对比度上的差异来提取、识别和跟踪目标。 ?分类:边缘跟踪,型心跟踪,质心跟踪。 ?优缺点:不适合复杂背景中的目标跟踪,但在空中背景下的目标跟踪中非常有效。

基于特征匹配的目标跟踪算法 ?算法思想:基于匹配的目标跟踪算法需要提取目标的特征,并在每一帧中寻找该特征。寻找的过程就是特征匹配过 程。 ?目标跟踪中用到的特征主要有几何形状、子空间特征、外形轮廓和特征点等。其中,特征点是匹配算法中常用的特征。特征点的提取算法很多,如Kanade Lucas Tomasi (KLT)算法、Harris 算法、SIFT 算法以及SURF 算法等。?优缺点:特征点一般是稀疏的,携带的信息较少,可以通过集成前几帧的信息进行补偿。目标在运动过程中,其特征(如姿态、几何形状、灰度或颜色分布等)也随之变化。 目标特征的变化具有随机性,这种随机变化可以采用统计数学的方法来描述。直方图是图像处理中天然的统计量,因此彩色和边缘方向直方图在跟踪算法中被广泛采用。

目标跟踪算法的研究

目标跟踪算法的研究 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

目录

摘要 图像序列目标跟踪是计算机视觉中的经典问题,它是指在一组图像序列中,根据所需目标模型,实时确定图像中目标所在位置的过程。它最初吸引了军方的关注,逐渐被应用于电视制导炸弹、火控系统等军用备中。序列图像运动目标跟踪是通过对传感器拍摄到的图像序列进行分析,计算出目标在每帧图像上的位置。它是计算机视觉系统的核心,是一项融合了图像处理、模式识别、人工只能和自动控制等领域先进成果的高技术课题,在航天、监控、生物医学和机器人技术等多种领域都有广泛应用。因此,非常有必要研究运动目标的跟踪。 本论文就图像的单目标跟踪问题,本文重点研究了帧间差分法和背景去除法等目标检测方法,研究了模板相关匹配跟踪算法主要是:最小均方误差函数(MES),最小平均绝对差值函数(MAD)和最大匹配像素统计(MPC)的跟踪算法。在跟踪过程中,由于跟踪设备与目标的相对运动, 视野中的目标可能出现大小、形状、姿态等变化, 加上外界环境中的各种干扰, 所要跟踪的目标和目标所在的场景都发生了变化, 有可能丢失跟踪目标。为了保证跟踪的稳定性和正确性, 需要对模板图像进行自适应更新。由于目标运动有一定得规律,可以采取轨迹预测以提高跟踪精度,本文采用了线性预测法。 对比分析了相关匹配算法的跟踪精度和跟踪速度;对比不采用模板更新和模板跟新的跟踪进度和差别,实验表明,跟踪算法加上轨迹预测及模板跟新在很大程度上提高了跟踪帧数,提高了跟踪精度,具有一定的抗噪声性能。

关键词:目标跟踪,目标检测,轨迹预测,模板更新

S T A P L E 目 标 跟 踪 算 法

计算机视觉中,究竟有哪些好用的目标跟踪算法(下) 在介绍SRDCF之前,先来分析下相关滤波有什么缺点。总体来说,相关滤波类方法对快速变形和快速运动情况的跟踪效果不好。 快速变形主要因为CF是模板类方法。容易跟丢这个比较好理解,前面分析了相关滤波是模板类方法,如果目标快速变形,那基于HOG的梯度模板肯定就跟不上了,如果快速变色,那基于CN的颜色模板肯定也就跟不上了。这个还和模型更新策略与更新速度有关,固定学习率的线性加权更新,如果学习率太大,部分或短暂遮挡和任何检测不准确,模型就会学习到背景信息,积累到一定程度模型跟着背景私奔了,一去不复返。如果学习率太小,目标已经变形了而模板还是那个模板,就会变得不认识目标。(举个例子,多年不见的同学,你很可能就认不出了,而经常见面的同学,即使变化很大你也认识,因为常见的同学在你大脑里面的模型在持续更新,而多年不见就是很久不更新) 快速运动主要是边界效应(Boundary Effets),而且边界效应产生的错误样本会造成分类器判别力不够强,下面分训练阶段和检测阶段分别讨论。 训练阶段,合成样本降低了判别能力。如果不加余弦窗,那么移位样本是长这样的: 除了那个最原始样本,其他样本都是“合成”的,100*100的图像块,只有1-10000的样本是真实的,这样的样本集根本不能拿来训练。如果加了余弦窗,由于图像边缘像素值都是0,循环移位过程中只要目标保持完

整那这个样本就是合理的,只有目标中心接近边缘时,目标跨越边界的那些样本是错误的,这样虽不真实但合理的样本数量增加到了大约2-3(padding= 1),即使这样仍然有1-3(3000-10000)的样本是不合理的,这些样本会降低分类器的判别能力。再者,加余弦窗也不是“免费的”,余弦窗将图像块的边缘区域像素全部变成0,大量过滤掉分类器本来非常需要学习的背景信息,原本训练时判别器能看到的背景信息就非常有限,我们还加了个余弦窗挡住了背景,这样进一步降低了分类器的判别力(是不是上帝在我前遮住了帘。不是上帝,是余弦窗)。 检测阶段,相关滤波对快速运动的目标检测比较乏力。相关滤波训练的图像块和检测的图像块大小必须是一样的,这就是说你训练了一个100*100的滤波器,那你也只能检测100*100的区域,如果打算通过加更大的padding来扩展检测区域,那样除了扩展了复杂度,并不会有什么好处。目标运动可能是目标自身移动,或摄像机移动,按照目标在检测区域的位置分四种情况来看: 1、如果目标在中心附近,检测准确且成功。 2、如果目标移动到了边界附近但还没有出边界,加了余弦窗以后,部分目标像素会被过滤掉,这时候就没法保证这里的响应是全局最大的,而且,这时候的检测样本和训练过程中的那些不合理样本很像,所以很可能会失败。 3、如果目标的一部分已经移出了这个区域,而我们还要加余弦窗,很可能就过滤掉了仅存的目标像素,检测失败。 4、如果整个目标已经位移出了这个区域,那肯定就检测失败了。

行人检测与目标跟踪算法研究

基于opencv中光流法的运动 行人目标跟踪与检测 一、课题研究背景及方法 行人检测具有极其广泛的应用:智能辅助驾驶,智能监控,行人分析以及智能机器人等领域。从2005年以来行人检测进入了一个快速的发展阶段,但是也存在很多问题还有待解决,个人觉得主要还是在性能和速度方面还不能达到一个权衡。 早期以静态图像处理中的分割、边缘提取、运动检测等方法为主。例如 (1)以Gavrila为代表的全局模板方法:基于轮廓的分层匹配算法,构造了将近2500个轮廓模板对行人进行匹配, 从而识别出行人。为了解决模板数量众多而引起的速度下降问题,采用了由粗到细的分层搜索策略以加快搜索速度。另外,匹配的时候通过计算模板与待检测窗口的距离变换来度量两者之间的相似性。 (2)以Broggi为代表的局部模板方法:利用不同大小的二值图像模板来对人头和肩部进行建模,通过将输入图像的边缘图像与该二值模板进行比较从而识别行人,该方法被用到意大利Parma大学开发的ARGO智能车中。 (3)以Lipton为代表的光流检测方法:计算运动区域内的残余光流; (4)以Heisele为代表的运动检测方法:提取行人腿部运动特征;

(5)以Wohler为代表的神经网络方法:构建一个自适应时间延迟神经网络来判断是否是人体的运动图片序列; 以上方法,存在速度慢、检测率低、误报率高的特点。 二、行人检测的研究现状 (1)基于背景建模的方法:分割出前景,提取其中的运动目标,然后进一步提取特征,分类判别;在存在下雨、下雪、刮风、树叶晃动、灯光忽明忽暗等场合,该方法的鲁棒性不高,抗干扰能力较差。且背景建模方法的模型过于复杂,对参数较为敏感。 (2)基于统计学习的方法:根据大量训练样本构建行人检测分类器。提取的特征一般有目标的灰度、边缘、纹理、形状、梯度直方图等信息,分类器包括神经网络、SVM,adaboost等。该方法存在以下难点:(a)行人的姿态、服饰各不相同; (b)提取的特征在特征空间中的分布不够紧凑; (c)分类器的性能受训练样本的影响较大; (d)离线训练时的负样本无法涵盖所有真实应用场景的情况; 尽管基于统计学习的行人检测方法存在着诸多的缺点,但依然有很多人将注意力集中于此。 行人检测国外研究情况: 法国研究人员Dalal在2005的CVPR发表的HOG+SVM的行人检测算法(Histograms of Oriented Gradients for Human Detection, Navneet Dalel,Bill Triggs, CVPR2005)。

相关文档