文档库 最新最全的文档下载
当前位置:文档库 › 使用DS18B20多点测温(64点)

使用DS18B20多点测温(64点)

使用DS18B20多点测温(64点)
使用DS18B20多点测温(64点)

DS18B20数据总线驱动的研究

DS18B20温度传感器驱动形式有很多种,本文研究应用实现使用单片机的一个I/O口作为数据总线驱动64个DS18B20温度传感器。

硬件部分

DS18B20温度传感器采用电线总线进行数据传输,总线有读时隙,写时隙和还原时隙,每片DS182B20温度传感器有独有的64为(8字节)片内固化ROM用来确定通讯目标。理论上说在同一根总线上只要DS18B20温度传感器片内ROM的内容不重复,数据传输就不会出现错误。但是实际上,驱动DS18B20的芯片(如单片机)的负载能力有限,所以目前常见的使用DS18B20多点测温的电路中一根数据总线上最多存在8个DS18B20芯片。

换句话说,要实现一根总线上驱动更多的DS18B20芯片,最主要的问题就是I/O口的负载能力。下面对DS18B20工作的电路进行分析,以便找到驱动能力不足的原因,并加以增强。

首先就是单片机的负载能力到底是多少,图1是从AT89C52RC的数据手册中截取的内容。

图1

由此可见,单片机(AT89C52RC)每个引脚的限制电流3.2mA。

一般情况下单线总线电路的结构及芯片输入部分结构如图2:

图2

总线上的电压、电流情况可分为以下四种情况讨论:单片机写1、单片机写

0、单片机读1、单片机读0。

1.单片机写1:

由图2每片芯片上电时有5uA的固定电流消耗,64片并联一共是320uA。由图1可知,当单片机AT89C52RC P0口输出高电平时输出电压最低0.75Vcc时,最大输出电流300uA。所以如果不加上拉电阻挂载64片DS18B20时,当单片机(AT89C52RC)输出高电平时总线上的电压将小于0.75Vcc。所以至少多出来的20uA要由上拉电阻提供才能保证电路输出高电平时电压达到0.75Vcc。此时求得上拉电阻阻值应小于250KΩ。

当单片机AT89C52RC P0口输出高电平时输出电压最低0.9Vcc时,最大输出电流80uA。此时挂载64片DS18B20时上拉电阻提供的电流最小为240uA。此时求得上拉电阻的最大阻值20.83KΩ

2.单片机写0:

有图1可知当P0口输出低电平且其灌入电流最大为3.2mA时,总线上的电压为0.45V。所以当单片机写0时,由上拉电阻提供的电流(上拉电阻提供电流-64片DS18B20消耗电流)要小于3.2mA。所以上拉电阻要大于1.5625KΩ。

3.单片机读1:

因为单片机读取数据时I/O口要先写1,因此总线的状态与单片机写1相类似。此处便不再讨论。

4.单片机读0:

由图2可知,DS18B20输出的低电平是通过使数据总线与与地相连的场效应管导通产生的。场效应管导通时的电阻为100Ω。所以如果想使场效应管导通时数据总线上的电压小于0.45V,必须使场效应管上的分压小于0.45V。也就是说总线灌入DS18B20的电流要小于4.5mA。由单片机写0的讨论可知,当满足单片机写0条件时灌入电流小于3.2mA,所以此处一定满足条件。

综上,当同一根数据总线上挂载64片DS18B20温度传感器芯片,上拉电阻取值在1.5625KΩ到20.83KΩ之间时,电路可以正常的进行数据传输。

但是目前的多点测温电路实验证明,当同一根数据总线上的DS18B20芯片个数大于8个时便无法正常工作。这是因为DS18B20在工作时执行温度转换指令和仅数据传输所消耗的功率不同。上面讨论的均为DS18B20仅传输数据时的功耗,所以只是加一个上拉电阻就可以正常工作。而当DS18B20执行转换指令时,其输入电流要达到1mA到2mA,这是仅仅依靠上拉电阻提供的电流,DS18B20便无法正常工作。所以在本次设计中,额外增加一个场效应管(电路如图3所示),用来提供在执行温度转换时电流供应不足的问题。

图中场效应管的栅极连接一个I/O口,用来控制场效应管的导通和截止。当主控芯片(单片机)对DS18B20下达转换指令后,使场效应管导通,对数据线进行强上拉,使其保持充足的电流供应,以确保DS18B20正常进行温度转换。

图3(图中内容仅供参考)

软件部分

控制器对18B20操作流程:

1.复位:首先必须对DS18B20芯片进行复位,复位就是由控制器(单片机)给DS18B20单总线至少480uS的低电平信号。当18B20接到此复位信号后则会在15~60uS后回发一个芯片的存在脉冲。

复位时序图

2.存在脉冲:在复位电平结束之后,控制器应该将数据单总线拉高,以便于在15~60uS后接收存在脉冲,存在脉冲为一个60~240uS的低电平信号。至此,通信双方已经达成了基本的协议,接下来将会是控制器与18B20间的数据通信。如果复位低电平的时间不足或是单总线的电路断路都不会接到存在脉冲,在设计时要注意意外情况的处理。

3.控制器发送ROM指令:双方打完了招呼之后最要将进行交流了,ROM指令共有5条,每一个工作周期只能发一条,ROM指令分别是读ROM数据、指定匹配芯片、跳跃ROM、芯片搜索、报警芯片搜索。ROM指令为8位长度,功能是对片内的64位光刻ROM进行操作。其主要目的是为了分辨一条总线上挂接的多个器件并作处理。诚然,单总线上可以同时挂接多个器件,并通过每个器件上所独有的ID号来区别。

4.控制器发送存储器操作指令:在ROM指令发送给18B20之后,紧接着(不

间断)就是发送存储器操作指令了。操作指令同样为8位,共6条,存储器操作指令分别是写RAM数据、读RAM数据、将RAM数据复制到EEPROM、温度转换、将EEPROM中的报警值复制到RAM、工作方式切换。存储器操作指令的功能是命令18B20作什么样的工作,是芯片控制的关键。

5.执行或数据读写:一个存储器操作指令结束后则将进行指令执行或数据的读写,这个操作要视存储器操作指令而定。如执行温度转换指令则控制器(单片机)必须等待18B20执行其指令,一般转换时间为500uS。如执行数据读写指令则需要严格遵循18B20的读写时序来操作。若要读出当前的温度数据我们需要执行两次工作周期,第一个周期为复位、跳过ROM指令、执行温度转换存储器操作指令、等待500uS温度转换时间。紧接着执行第二个周期为复位、指定匹配芯片指令、写64位ROM、执行读RAM的存储器操作指令、读数据(最多为9个字节,中途可停止,只读简单温度值则读前2个字节即可)。

DS28B20芯片ROM指令表:

Read ROM(读ROM)[33H] 获取芯片序列号

Match ROM(指定匹配芯片)[55H] 后接64位序列号

Skip ROM(跳跃ROM指令)[CCH] 跳过指定匹配芯片

Search ROM(搜索芯片)[F0H]

Alarm Search(报警芯片搜索)[ECH]

Write Scratchpad (向RAM中写数据)[4EH]

Read Scratchpad (从RAM中读数据)[BEH]

Copy Scratchpad (将RAM数据复制到EEPROM中)[48H] 需要加强上拉至少10mS

Convert T(温度转换)[44H] 需要加强上拉至少500mS

Recall EEPROM(将EEPROM中的报警值复制到RAM)[B8H]

Read Power Supply(工作方式切换)[B4H]

DS18B20读写时间隙:

DS18B20的数据读写是通过时间隙处理位和命令字来确认信息交换的。

写时间隙分为写“0”和写“1”,在写数据时间隙的前15uS总线需要是被控制器拉置低电平,而后则将是芯片对总线数据的采样时间,采样时间在15~60uS,采样时间内如果控制器将总线拉高则表示写“1”,如果控制器将总线拉低则表示写“0”。每一位的发送都应该有一个至少15uS的低电平起始位,随后的数据“0”或“1”应该在45uS内完成。整个位的发送时间应该保持在60~120uS,否则不能保证通信的正常。写一字节约700us

写时隙

读时间隙:

读时间隙时控制时的采样时间应该更加的精确才行,读时间隙时也是必须先由主机产生至少1uS的低电平,表示读时间的起始。随后在总线被释放后的15uS 中DS18B20会发送内部数据位,这时控制如果发现总线为高电平表示读出“1”,如果总线为低电平则表示读出数据“0”。每一位的读取之前都由控制器加一个起始信号。读一字节约650us

注意:必须在读间隙开始的15uS内读取数据位才可以保证通信的正确。

读时隙

关于时间的讨论

程序执行顺序:

1.复位(800uS)、跳过ROM(700uS)、温度转换(700uS)、等待温度转换(强上拉)(500mS),(共约502mS)

2.复位(800uS)、指定匹配芯片(700uS)、8字节序列号(700uS*8)、读RAM 指令(700uS)、读取RAM*2(650us*2)、数据处理、数据传输至电脑;(约10mS)

3.复位并开始下一个芯片的转换温度读取,直到所有芯片的数据读取完成。综上:

如果有x片DS18B20挂载在电路中,每次完整的获取一批数据并传输至电脑耗时T可表示为mS

502?

=

+

x

mS

T10

挂载64片DS18B20时,总耗时时间是1.142S。

关于内存的讨论

因为获取的温度数值不保存在单片机内,所以在电路中增加DS18B20温度传感器芯片不会增加程序的大小,只是增加循环次数。增加DS18B20芯片的个数仅增加用来保存芯片序列号带来的单片机片内部ROM的占用,每片增加8byte的数据量。程序大小因编写者而异,我的程序占用内存约1KB,对于AT89C52RC单片机的内存总大小是8KB,所以理论上最多尅保存800余个DS18B20的序列号。

基于DS18B20的多点温度测量系统设计

一、绪论 1.1 课题来源 温度是一个和人们生活环境有着密切关系的物理量,也是一种在生产、科研、生活中需要测量和控制的重要物理量,是国际单位制七个基本量之一,同时它也是一种最基本的环境参数。人民的生活与环境温度息息相关,物理、化学、生物等学科都离不开温度。在工业生产和实验研究中,在电力、化工、石油、冶金、机械制造、大型仓储室、实验室、农场塑料大棚甚至人们的居室里经常需要对环境温度进行检测,并根据实际的要求对环境温度进行控制。比如,发电厂锅炉的温度必须控制在一定的范围之内;许多化学反应的工艺过程必须在适当的温度下才能正常进行。炼油过程中,原油必须在不同的温度和压力条件下进行分流才能得到汽油、柴油、煤油等产品;没有合适的温度环境,许多电子设备不能正常工作,粮仓的储粮就会变质霉烂,酒类的品质就没有保障。可见,研究温度的测量具有重要的理论意义和推广价值。 随着现代计算机和自动化技术的发展,作为各种信息的感知、采集、转换、传输相处理的功能器件,温度传感器的作用日益突出,成为自动检测、自动控制系统和计量测试中不可缺少的重要技术工具,其应用已遍及工农业生产和日常生活的各个领域。本设计就是为了满足人们在生活生产中对温度测量系统方面的需求。 本设计要求系统测量的温度的点数为4个,测量精度为0.5℃,测温范围为-20℃~+80℃。采用液晶显示温度值和路数,显示格式为:温度的符号位,整数部分,小数部分,最后一位显示℃。显示数据每一秒刷新一次。 1.2 课题研究的意义 21世纪科学技术的发展日新月异,科技的进步带动了测量技术的发展,现代控制设备的性能和结构发生了巨大的变化,我们已经进入了高速发展的信息时代,测量技术也成为当今科技的主流之一,被广泛地应用于生产的各个领域。对于本次设计,其目的在于: (1)掌握数字温度传感器DS18B20的原理、性能、使用特点和方法,利用C51对系统进行编程。

DS18B20温度检测程序

(1)先将数据线置高电平“1”。 (2)延时(该时间要求的不是很严格,但是尽可能的短一点) (3)数据线拉到低电平“0”。 (4)延时750微秒(该时间的时间范围可以从480到960微秒)。 (5)数据线拉到高电平“1”。 (6)延时等待(如果初始化成功则在15到60毫秒时间之内产生一个由DS18B20所返回的低电平“0”。据该状态可以来确定它的存在,但是应注意不能无限的进行等待,不然会使程序进入死循环,所以要进行超时控制)。 (7)若CPU读到了数据线上的低电平“0”后,还要做延时,其延时的时间从发出的高电平算起(第(5)步的时间算起)最少要480微秒。 (8)将数据线再次拉高到高电平“1”后结束。

(1)数据线先置低电平“0”。 (2)延时确定的时间为15微秒。 (3)按从低位到高位的顺序发送字节(一次只发送一位)。 (4)延时时间为45微秒。 (5)将数据线拉到高电平。 (6)重复上(1)到(6)的操作直到所有的字节全部发送完为止。(7)最后将数据线拉高。 DS18B20的写操作时序图如图

DS18B20的读操作 (1)将数据线拉高“1”。 (2)延时2微秒。 (3)将数据线拉低“0”。 (4)延时15微秒。 (5)将数据线拉高“1”。 (6)延时15微秒。 (7)读数据线的状态得到1个状态位,并进行数据处理。 (8)延时30微秒。DS18B20的读操作时序图如图所示。

DS18B20的Protues仿真图 源程序代码: #include "reg51.h" #include "intrins.h" // 此头文件中有空操作语句NOP 几个微秒的延时可以用NOP 语句,但本人没用NOP,直接用了I++来延时 #define uchar unsigned char #define uint unsigned int uchar code table[]={0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37, 0x38,0x39}; sbit ds18b20_io=P2^0; //单片机与DS18B20的连接口 sbit lcdrs=P2^6; //1602与单片机的接口 sbit lcden=P2^7;

基于AT89C51单片机的测温系统

引言 本文主要介绍了一个基于AT89C51单片机的测温系统,详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,特别是数字温度传感器DS18B20的数据采集过程,并介绍了利用C语言编程对DS18B20的访问,该系统可以方便的实现实现温度采集和显示,使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点。DS18B20与AT89C51结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量。数字温度计与传统的温度计相比,具有读数方便、测温范围广、测温精确、功能多样话等优点。其主要用于对测温要求准确度比较高的场所,或科研实验室使用,该设计使用STC89C52单片机作控制器,数字温度传感器DS18B20测量温度,单片机接受传感器输出,经处理用LED数码管实现温度值显示。 .

一、设计要求 通过基于MCS-51系列单片机AT89C51和DS18B20温度传感器检测温度,熟悉芯片的使用,温度传感器的功能,数码显示管的使用,C语言的设计;并且把我们这一年所学的数字和模拟电子技术、检测技术、单片机应用等知识,通过理论联系实际,从题目分析、电路设计调试、程序编制调试到传感器的选定等这一完整的实验过程,培养了学生正确的设计思想,使学生充分发挥主观能动性,去独立解决实际问题,以达到提升学生的综合能力、动手能力、文献资料查阅能力的作用,为毕业设计和以后工作打下一个良好的基础。 以MCS-51系列单片机为核心器件,组成一个数字温度计,采用数字温度传感器DS18B20为检测器件,进行单点温度检测,检测精度为0.5摄氏度。温度显示采用3位LED数码管显示,两位整数,一位小数。具有键盘输入上下限功能,超过上下限温度时,进行声音报警。 二、基本原理 原理简述:数字温度传感器DS1820把温度信息转换为数字格式;通过“1-线协议”,单片机获取指定传感器的数字温度信息,并显示到显示设备上。通过键盘,单片机可根据程序指令实现更灵活的功能,如单点检测、轮转检测、越数字温度传感器的温度检测及显示的系统原理图如图DS1820限检测等。基于 图 2.1 基于DS1820的温度检测系统框图 三:主要器件介绍(时序图及各命令序列,温度如何计算等) 系统总体设计框图 由于DS18B20数字温度传感器具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠,所以在该设计中采用DS18B20数字温度传感器测量温度。 测温电路设计总体设计框图如图所示,控制器采用单片机AT89S52,温度传感器采用DS18B20,显示采用4位LED数码管,报警采用蜂鸣器、LED灯实现,键盘用来设定报警上下限温度。 .. . 测温电路设计总体设计框图图3.11.控制模块 AT89S52单片机是美国ATMEL公司生产的低功耗,高性能CMOS 8位单片机,片内含有8kb的可系统编程的Flash只读程序存储器,器件采用ATMEL公

DS18B20温度检测

目录 1引言 (1) 2系统描述 (2) 2.1系统功能 (2) 2.2系统设计指标 (2) 3系统的主要元件 (3) 3.1单片机 (3) 3.2温度传感元件 (4) 3.3LCD显示屏 (6) 4硬件电路 (7) 4.1系统整体原理图 (7) 4.2单片机晶振电路 (7) 4.3温度传感器连接电路 (8) 4.4LCD电路 (9) 4.5报警和外部中断电路 (10) 5结论 (11)

温度监测系统硬件设计 摘要:利用DS18B20为代表的新型单总线数字式温度传感器实现温度的监测,可 以简化硬件电路,也可以实现单线的多点分布式温度监测,而不会浪费单片机接口,提供了单片机接口的利用率。同时提高了系统能够的抗干扰性,使系统更灵活、方 便。本系统主要实现温度的检测、显示以及高低温的报警。也可以通过单总线挂载 多个DS18B20实现多点温度的分布式监测。 关键词: DS18B20,单总线,温度,单片机 1引言 在科技广泛发展的今天,计算机的发展已经越来越快,它的应用已经越来越广泛。而单片机的发展和应用是其中的重要一方面。单片机在工业生产(机电、化工、轻纺、自控等等)和民用家电各方面有广泛的应用。其中,单片机在工业生产中的应用尤其广泛。 单片机具有集成度高,处理能力强,可靠性高,系统结构简单,价格低廉的优点,因此被广泛应用。在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要测量参数。例如:在冶金工业、化工工业、电力工程、机械制造和食品加工等许多领域中,人们都需要对各类加热炉、热处理炉、反映炉和锅炉,尤其是热学试验(如:物体的比热容、汽化热、热功当量、压强温度系数等教学实验)中的温度进行测量,并经常会对其进行控制。传统的方式是采用热电偶或热电阻,但是由于模拟温度传感器输出为模拟信号,必须经过A/D 转换环节获得数字信号后才能够被单片机等微处理器接收处理,使得硬件电路结构复杂,制作成本较高。 近年来,美国DALLAS公司生产的DS18B20为代表的新型单总线数字式温度传感器以其突出优点广泛使用于仓储管理、工农业生产制造、气象观测、科学研究以及日常生活中。这类温度传感器集温度测量和A\D转换于一生,直接输出数字量,传输距离远,可以很方便地实现多点测量,硬件电路结构简单,与单片机

基于DS18B20的温度测量系统设计

课程设计(论文) 题目名称基于DS18B20温度测量系统设计 课程名称单片机原理及应用 学生姓名尹彬涛 学号1341301075 系、专业电子信息工程 指导教师江世民 2015年 6 月12 日

摘要 随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术, 本文主要介绍了一个基于STC89C52单片机的测温系统,详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,特别是数字温度传感器DS18B20的数据采集过程。对各部分的电路也一一进行了介绍,该系统可以方便的实现实现温度采集和显示,并可根据需要任意设定上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。DS18B20与STC89C52结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。 关键词:单片机; DS18B20; 温度传感器; 数字温度计; STC89C52

目录 摘要 (1) 引言 (3) 一、方案介绍 (3) 1、显示部分 (3) 2、温度采集 (5) 3、方案流程图 (5) 二、总体方案设计 (6) 1、硬件设计 (6) 1.1 温度采集设计 (6) 1.2温度显示设计 (6) 2、软件设计 (7) 2.1 DS18B20程序设计 (7) 2.2显示部分程序设计 (8) 三、实验调试过程 (10) 1、软件调试 (10) 1.1 显示部分调试........................................ . (10) 四、心得体会 (10) 五、致谢 (11) 六、参考文献 (12) 七、附录 (12) 附录一程序代码 (12) 附录二仿真电路图 (18)

ds18b20温度采集

“盛群杯”单片机大赛设计报告 温度读取部分: 采用数字温度传感器DS18B20。DS18B20为数字式温度传感器,无需其他外加电路,直接输出数字量。可直接与单片机通信,读取测温数据,电路简单。如图1.2.2 所示。 DS18B20与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,因而使用DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、传输距离、分辨率等方面带来了令人满意的效果 2.2.1 温度采集部分设计 本系统采用半导体温度传感器作为敏感元件。传感器我们采用了DS18B20单总线可编程温度传感器,来实现对温度的采集和转换,直接输出数字量,可以直接和单片机进行通讯,大大简化了电路的复杂度。DS18B20应用广泛,性能可以满足题目的设计要求。DS18B20的测温电路如图2.2.1所示。

图2.2.1 DS18B20测温电路 (1)DSI8B20的测温功能的实现: 其测温电路的实现是依靠单片机软件的编程上。当DSI8B20接收到温度转换命令后,开始启动转换。转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的0,1字节。单片机可通过单线接口读到该数据,读取时低位在前,高位在后,数据格式以0.062 5℃/LSB形式表示。温度值格式如表2.2.1所示,其中“S”为标志位,对应的温度计算:当符号位S=0时,直接将二进制位转换为十进制;当S=1时,先将补码变换为原码,再计算十进制值。DSI8B20完成温度转换后,就把测得的温度值与 TH做比较,若T>TH或T RoM操作命令 -> 存储器操作命令-> 处理数据 ①初始化单总线上的所有处理均从初始化开始 ② ROM操作命令总线主机检测到DSl820的存在便可以发出ROM操作命令之一这些命令如表2.2.2所示 表2.2.2 ROM操作命令表 ③存储器操作命令如表2.2.3所示 表2.2.3 存储器操作命令表

基于DS18B20的多点温度测量系统(毕业设计)

目录 中文摘要......................................................................................................... III 英文摘要......................................................................................................... I V 1 绪论. (1) 1.1课题来源 (1) 1.2课题研究的目的意义 (1) 1.3国内外现状及水平 (2) 1.4课题研究内容 (2) 2 系统方案设计 (3) 2.1基于模拟温度传感器设计方案 (3) 2.2基于数字温度传感器设计方案 (4) 2.3方案论证 (4) 3 电路设计 (6) 3.1工作原理 (6) 3.2DS18B20与单片机接口技术 (7) 3.3键盘电路设计 (14) 3.4显示电路设计 (15) 3.5报警电路设计 (16) 3.6电源电路设计 (17) 4 程序设计 (18) 4.1系统资源分配 (18) 4.2系统流程设计 (18) 4.3程序设计 (24) 5 系统仿真 (34) 5.1PROTEUS仿真环境介绍 (34) 5.2原理图绘制 (35) 5.3程序加载 (35) 5.4系统仿真 (36) 5.5仿真结果分析 ............................................................................................... 错误!未定义书签。 6 PCB板设计 (39) 6.1PCB板设计 (39)

DS18B20温度检测教学提纲

D S18B20温度检测

目录 1 引言 (1) 2 系统描述 (2) 2.1 系统功能 (2) 2.2 系统设计指标 (3) 3 系统的主要元件 (3) 3.1 单片机 (3) 3.2 温度传感元件 (5) 3.3 LCD显示屏 (7) 4 硬件电路 (8) 4.1 系统整体原理图 (8) 4.2 单片机晶振电路 (9) 4.3 温度传感器连接电路 (10) 4.4 LCD电路 (10) 4.5 报警和外部中断电路 (12) 5 结论 (12)

温度监测系统硬件设计 摘要:利用DS18B20为代表的新型单总线数字式温度传感器实现温 度的监测,可以简化硬件电路,也可以实现单线的多点分布式温度监 测,而不会浪费单片机接口,提供了单片机接口的利用率。同时提高 了系统能够的抗干扰性,使系统更灵活、方便。本系统主要实现温度 的检测、显示以及高低温的报警。也可以通过单总线挂载多个 DS18B20实现多点温度的分布式监测。 关键词: DS18B20,单总线,温度,单片机 1引言 在科技广泛发展的今天,计算机的发展已经越来越快,它的应用已经越来越广泛。而单片机的发展和应用是其中的重要一方面。单片机在工业生产(机电、化工、轻纺、自控等等)和民用家电各方面有广泛的应用。其中,单片机在工业生产中的应用尤其广泛。 单片机具有集成度高,处理能力强,可靠性高,系统结构简单,价格低廉的优点,因此被广泛应用。在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要测量参数。例如:在冶金工业、化工工业、电力工程、机械制造和食品加工等许多领域中,人们都需要对各类加热炉、热处理炉、反映炉和锅炉,尤其是热学试验(如:物体的比热容、汽化热、热功当量、压强温度系数等教学实验)中的温度进行测量,并经常会对其进行控制。

DS18B20的测温原理

3.2.3 DS18B20的测温原理 DS18B20的测温原理如图3-2-2-6所示,图中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入,图中还隐含着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量。计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55 ℃所对应的基数分别置入减法计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在 -55 ℃ 所对应的一个基数值。减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。图2中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值,这就是DS18B20的测温原理。 另外,由于DS18B20单线通信功能是分时完成的,他有严格的时隙概念,因此读写时序很重要。系统对DS18B20的各种操作必须按协议进行。操作协议为:初始化DS18B20(发复位脉冲)→发ROM功能命令→发存储器操作命令→处理数据。各种操作的时序图与DS1820相同。 图3-2-3-1 DS18B20与处理器连接图 3.2.4 DS18B20与单片机的典型接口设计 以MCS51单片机为例,图3-2-3-1中采用寄生电源供电方式,P1 1口接

DS18B20温度传感器设计

智能化仪器及原理应用课程设计 设计题目: DS18B20数字温度计的设计专业班级: 10自动化1 班 姓名: 组员: 指导老师: 日期:2012-11-26

目录 一、摘要 (2) 二、方案论证 (2) 三、电路设计 (2) 1、设备整机结构及硬件电路框图 (2) 2、单片机的选择 (3) 3、温度显示电路 (3) 4、温度传感器 (4) 5、软件设计 (6) 6、系统所运用的功能介绍: (8) 四、系统的调试及性能分析: (8) 附件:DS18B20温度计C程序 (9)

一、摘要 本设计的主要内容是应用单片机和温度传感器设计一个数字温度表,DS18B20是一种可组网的高精度数字温度传感器,由于其具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠。本设计基于数字温度传感器DS18B20,以AT89C51片机为核心设计此测试系统,具有结构简单、测温精度高、稳定可靠的优点。可实现温度的实时检测和显示,本文给出了系统的硬件电路详细设计和软件设计方法,经过调试和实验验证,实现了预期的全部功能。 二、方案论证 方案一: 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D 转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D 转换电路,感温电路比较麻烦。 方案设计框图如下: 方案二:考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 从以上两种方案,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。 三、电路设计 1、 设备整机结构及硬件电路框图 根据设计要求与设计思路,设计硬件电路框图如下图所示, 4位数码管显示器系统中AT89C51成对DS18B20初始化、温度采集、温度转换、温度数码显示。 本装置详细组成部分如下: a. 主控模块:AT89C51片机; b. 传感器电路:DS18B20温度传感器;

DS18B20中文资料

第一部分:DS18B20的封装和管脚定义 首先,我们来认识一下DS18B20这款芯片的外观和针脚定义,DS18B20芯片的常见封装为TO-92,也就是普通直插三极管的样子,当然也可以找到以SO(DS18B20Z)和μSOP(DS18B20U)形式封装的产品,下面为DS18B20各种封装的图示及引脚图。 了解了这些该芯片的封装形式,下面就要说到各个管脚的定义了,如下表即

为该芯片的管脚定义: 上面的表中提到了一个“奇怪”的词——“寄生电源”,那我有必要说明一下了,DS18B20芯片可以工作在“寄生电源模式”下,该模式允许DS18B20工作在无外部电源状态,当总线为高电平时,寄生电源由单总线通过VDD 引脚,此时DS18B20可以从总线“窃取”能量,并将“偷来”的能量储存到寄生电源储能电容(Cpp)中,当总线为低电平时释放能量供给器件工作使用。所以,当DS18B20工作在寄生电源模式时,VDD引脚必须接地。 第二部分:DS18B20的多种电路连接方式 如下面的两张图片所示,分别为外部供电模式下单只和多只DS18B20测温系统的典型电路连接图。 (1)外部供电模式下的单只DS18B20芯片的连接图

(2)外部供电模式下的多只DS18B20芯片的连接图 这里需要说明的是,DS18B20芯片通过达拉斯公司的单总线协议依靠一个单线端口通讯,当全部器件经由一个三态端口或者漏极开路端口与总线连接时,控制线需要连接一个弱上拉电阻。在多只DS18B20连接时,每个DS18B20都拥有一个全球唯一的64位序列号,在这个总线系统中,微处理器依靠每个器件独有的64位片序列号辨认总线上的器件和记录总线上的器件地址,从而允许多只DS18B20同时连接在一条单线总线上,因此,可以很轻松地利用一个微处理器去控制很多分布在不同区域的DS18B20,这一特性在环境控制、探测建

DS18B20温度检测

目录1引言1 2系统描述2 2.1系统功能2 2.2系统设计指标3 3系统的主要元件3 3.1单片机3 3.2温度传感元件4 3.3LCD显示屏7 4硬件电路8 4.1系统整体原理图8 4.2单片机晶振电路8 4.3温度传感器连接电路9 4.4LCD电路10 4.5报警和外部中断电路11

5结论12

温度监测系统硬件设计 摘要:利用DS18B20为代表的新型单总线数字式温度传感器实现温度的监测,可以 简化硬件电路,也可以实现单线的多点分布式温度监测,而不会浪费单片机接口,提供了单片机接口的利用率。同时提高了系统能够的抗干扰性,使系统更灵活、方 便。本系统主要实现温度的检测、显示以及高低温的报警。也可以通过单总线挂载 多个DS18B20实现多点温度的分布式监测。 关键词:DS18B20,单总线,温度,单片机 1引言 在科技广泛发展的今天,计算机的发展已经越来越快,它的应用已经越来越广泛。而单片机的发展和应用是其中的重要一方面。单片机在工业生产(机电、化工、轻纺、自控等等)和民用家电各方面有广泛的应用。其中,单片机在工业生产中的应用尤其广泛。 单片机具有集成度高,处理能力强,可靠性高,系统结构简单,价格低廉的优点,因此被广泛应用。在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要测量参数。例如:在冶金工业、化工工业、电力工程、机械制造和食品加工等许多领域中,人们都需要对各类加热炉、热处理炉、反映炉和锅炉,尤其是热学试验(如:物体的比热容、汽化热、热功当量、压强温度系数等教学实验)中的温度进行测量,并经常会对其进行控制。传统的方式是采用热电偶或热电阻,但是由于模拟温度传感器输出为模拟信号,必须经过A/D转换环节获得数字信号后才能够被单片机等微处理器接收处理,使得硬件电路结构复杂,制作成本较高。

温湿度测量系统--基于单片机和温度传感器DS18B20、HS1101是电容式空气湿度传感器

摘要 此温湿度测量系统是基于单线式温度传感器DS18B20、电容式湿度传感器单片机STC89C52 对温度湿度分别测量并通过液晶显示屏1602经行显示。温度传感器DS18B20是单线式,体积超小,硬件开消超低,抗干扰能力强,精度高,附加功能强的理想单片机温度传感器,可实时根据指令给出温度数据,可读性高。HS1101是电容式空气湿度传感器,在不同的湿度环境下呈现出不同的电容值,0%~100%RH湿度范围内,电容从162PF变化到200PF,误差误差为2%RH。可见其精度非常高,为了反映出其电容的变化,本系统采用555多谐震荡电路产生不同的频率,用于检测湿度。单片机采集到两个传感器给出的数据进行处理与计算,得出当前的温度与湿度并送给液晶屏显示。本系统具有可读性高,稳定性高,反应速度快,测量值准确的特点。 关键词:温湿度测量系统精度高速度快体积小 Abstract: The temperature and humidity measurement system is based on singleline type temperature sensor DS18B20, capacitive moisture sensorSCM STC89C52 for temperature humidity measurement and respectively by LCD display. The line 1602 Temperature sensor DS18B20 is singleline type, volume super-small, hardware KaiXiao ultra-low, strong anti-jamming capability, high precision, additional features strong ideal single-chip microcomputer temperature sensor, real-time temperature data, depending on the directive given readable. HS1101 is capacitive sensor, air humidity in different humidity presents different capacitance, 0% ~ 100% RH humidity, within the scope of capacitance change to 200PF, from 162PF error for 2% RH error. e can see its precision is very high, in order to reflect the capacitance change, the system USES the 555 more harmonic concussion circuits produce different frequency, which is used to detect humidity. SCM acquisition to two sensor gives data processing and calculated, the current temperature and humidity and give the display on the LCD panel. This system has a readable, high stability, reaction speed, measured values exact characteristic. Keywords: temperature and humidity measurement system high precision speed small volume

DS18B20测温

DS18B20原理与分析 DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。可以分别在93.75 ms和750 ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。因而使用DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、传输距离、分辨率等方面较DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。 美国Dallas半导体公司的数字化温度传感器DS18B20是世界上第一片支持“一线总线”接口的温度传感器,在其内部使用了在板(ON-BOARD)专利技术。全部传感器元件及转换电路集成在形如一只三极管的集成电路内。一线总线独特而经济的特点,使用户可轻松的组建传感器网络,为测量系统的构建引入全新概念。现在,新一代的DS18B20体积更小,更经济,更灵活。使你可以发挥“一线总线”的优点。 在传统的模拟信号远距离温度测量系统中,需要很好地解决引线误差补偿问题、多点测量切换误差问题和放大电路零点漂移误差问题等技术问题,才能够达到较高的测量精度。另外一般监控现场的电磁环境都非常恶劣,各种干扰信号较强,模拟温度信号容易受到干扰而产生测量误差,影响测量精度。因此,在温度测量系统中,采用抗干扰能力强的新型数字温度传感器DS18B20体积小、精度更高、适用电压更宽、采用一线总线、可组网等优点,在实际应用中取得了良好的测温效果。 DS18B20的主要特征:(1)全数字温度转换及输出。(2)先进的单总线数据通信。(3)最高12位分辨率,精度可达土0.5摄氏度。(4) 12位分辨率时的最大工作周期为750毫秒。(5)可选择寄生工作方式。6)检测温度范围为–55°C ~+125°C (–67°F ~+257°F) (7)内置EEPROM,限温报警功能。 (8)64位光刻ROM,内置产品序列号,方便多机挂接。(9)多样封装形式,适应不同硬件系统。 DS18B20引脚定义: (1) DQ为数字信号输入/输出端;(2) GND为电源地; (3) VDD为外接供电电源输入端(在寄生电源接线方式时接地)。

stm32制作ds18b20温度传感器

折腾了一晚上,才把DS18B20的驱动移植到STM32上来。以前在51上使用过单个和多个连接的DS18B20,有现成的程序了,以为很快就能弄好,结果还是被卡住了,下面说下几个关键点吧: 首先是延时的问题,STM32上若用软件延时的话不太好算时间,所以要么用定时器要么用SysTick这个定时器来完成延时的计算。相比之下用SysTick来的简单方便点。 接着是STM32 IO脚的配置问题,因为51是双向的IO,所以作为输入输出都比较方便。STM32的IO是准双向的IO,网上查了下资料,说将STM32的IO配置成开漏输出,然后外接上拉即可实现双向IO。于是我也按规定做了,但调了老半天都不成功,是因为DS18B20没有响应的信号。在烦躁之际只有试下将接DQ的IO分别拉低和拉高看能不能读入正确的信号。结果果然是读入数据不对,原来我将IO配成开漏输出后相当然的以为读数据是用GPIO_ReadOutputDataBit(),这正是问题所在,后来将读入的函数改为GPIO_ReadInputDataBit()就OK了。现在温度是现实出来了,但跟我家里那台德胜收音机上显示的温度相差2度,都不知道是哪个准了,改天再找个温度计验证下。 下面引用一段DS18B20的时序描述,写的很详细: DS18B20的控制流程 根据DS18B20的通信协议,DS18B20只能作为从机,而单片机系统作为主机,单片机控制DS18B20完成一次温度转换必须经过3个步骤:复位、发送ROM指令、发送RAM指令。每次对DS18B20的操作都要进行以上三个步骤。

复位过程为:单片机将数据线拉低至少480uS,然后释放数据线,等待15-60uS让DS18B20接收信号,DS18B20接收到信号后,会把数据线拉低60-240uS,主机检测到数据线被拉低后标识复位成功; 发送ROM指令:ROM指令表示主机对系统上所接的全部DS18B20进行寻址,以确定对那一个DS18B20进行操作,或者是读取某个DS18B20的ROM序列号。 发送RAM指令:RAM指令用于单片机对DS18B20内部RAM进行操作,如读取寄存器的值,或者设置寄存器的值。 具体的RAM和RAM指令请查阅DS18B20的数据手册。下面简单介绍: 1、ROM操作命令:DS18B20采用一线通信接口。因为一线通信接口,必须在先完成ROM设定,否则记忆和控制功能将无法使用。一旦总线检测到从属器件的存在,它便可以发出器件ROM操作指令,所有ROM 操作指令均为8位长度,主要提供以下功能命令: 1 )读ROM(指令码0X33H):当总线上只有一个节点(器件)时,读此节点的64位序列号。如果总线上存在多于一个的节点,则此指令不能使用。 2 )ROM匹配(指令码0X55H):此命令后跟64位的ROM序列号,总线上只有与此序列号相同的DS18B20才会做出反应;该指令用于选中某个DS18B20,然后对该DS18B20进行读写操作。 3 )搜索ROM(指令码0XF0H):用于确定接在总线上DS18B20的个数和

基于CC2430和DS18B20的无线测温系统设计

基于CC2430和DS18B20的无线测温系统设计 关键字: CC2430 DS18B20 无线测温系统 目前,很多场合的测温系统采用的还是有线测温设备,由温度传感器、分线器、测温机和监控机等组成,各部件之间采用电缆连接进行数据传输。这种系统布线复杂、维护困难、成本高,可采用无线方案解决这些问题。无线测温系统是一种集温度信号采集、大容量存储、无线射频发送、LED(或LCD)动态显示、控制与通信等功能于一体的新型系统。 本文从低功耗、小体积、使用简单等方面考虑,基于射频SoC CC2430和数字温度传感器DS18B20设计了一个无线测温系统,整个系统由多个无线节点和1个基站组成。无线节点工作在各个测温地点,进行温度数据采集和无线发送。基站与多个节点进行无线通信,并通过数码管将数据显示出来,同时可以通过RS-232串口将数据发送给PC。 CC2430简介 CC2430是TI/ChipconAs公司最新推出的符合2.4G IEEE802.15.4标准的射频收发器.利用此芯片开发的无线通信设备支持数据传输率高达250 kbit/s可以实现多点对多点的快速组网。CC2430的主要性能参数如下: (1)工作频带范围:2.400~2.483 5 GHz;(2)采用IEEE802.15.4规范要求的直接序列扩频方式; (3)数据速率达250 kbit/s码片速率达2 MChip/s; (4)采用o-QPSK调制方式; (5)超低电流消耗(RX:19.7mA,TX:17.4mA)高接收灵敏度(-99 dBm); (6)抗邻频道干扰能力强(39 dB); (7)内部集成有VCO、LNA、PA以及电源整流器采用低电压供电(2.1~3.6V); (8)输出功率编程可控; (9)IEEE802.15.4 MAC层硬件可支持自动帧格式生成、同步插入与检测、16bit CRC 校验、电源检测、完全自动MAC层安全保护(CTR,CBC-MAC,CCM); (10)与控制微处理器的接口配置容易(4总线SPI接口); (11)采用QLP-48封装,外形尺寸只有7×7mm。CC2430只需要极少的外围元器件,其典型应用电路如图2所示。它的外围电路包括晶振时钟电路、射频输入/输出匹配电路和微控制器接口电路3个部分。

基于DS18B20的温度传感器设计报告

目录 一、概述 (2) 二、内容 (2) 1、课程设计题目 (2) 2、课程设计目的 (2) 3、设计任务和要求 (2) 4、正文 (3) (一)、方案选择与论证 (3) 三、系统的具体设计与实现 (5) (1)、系统的总体设计方案 (5) (2)、硬件电路设计 (5) a、单片机控制模块 (5) b、温度传感器模块 (5) 四、软件设计 (11) 1、主程序 (11) 2、读出温度子程序 (11) 3、温度转换命令子程序 (11) 4、计算温度子程序 (12) 五、完整程序如下: (12) 六、设计体会 (17) 七、参考文献 (17)

一、概述 单片机技术是一项运用广泛且极具发展潜力的技术。 2009年6月14日随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术。 本文主要介绍了一个基于89S52单片机的测温系统,详细描述了利用液晶显示器件传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,特别是数字温度传感DS18B20的数据采集过程。对各部分的电路也一一进行了介绍,该系统可以方便的实现实现温度采集和显示,并可根据需要任意设定上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。DS18B20与AT89C52结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。 二、内容 1、课程设计题目 基于DS18B20的温度传感器 2、课程设计目的 通过基于MCS-52系列单片机AT89C52和DS18B20温度传感器检测温度,熟悉芯片的使用,温度传感器的功能,数码显示管的使用,汇编语言的设计;并且把我们这一年所学的数字和模拟电子技术、检测技术、单片机应用等知识,通过理论联系实际,从题目分析、电路设计调试、程序编制调试到传感器的选定等这一完整的实验过程,培养了学生正确的设计思想,使学生充分发挥主观能动性,去独立解决实际问题,以达到提升学生的综合能力、动手能力、文献资料查阅能力的作用,为毕业设计和以后工作打下一个良好的基础。 3、设计任务和要求 以MCS-52系列单片机为核心器件,组成一个数字温度计,采用数字温度传感器DS18B20为检测器件,进行单点温度检测,检测精度为±0.5摄氏度。温度显示采用LCD1602显示,两位整数,一位小数。

实验报告DS18B20温度检测控制

实训五 DS18B20温度检测控制实训 一、实训目的 1.温度传感器电路的工作原理。 2.了解温度控制的基本原理。 3.掌握一线总线接口的使用。 二、实训说明 1.DALLAS最新单线数字温度传感器DS18B20简介 Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。 DS18B20测量温度范围为 -55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。DS18B20可以程序设定9~12位的分辨率,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。 DS18B20内部结构 DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如下: DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地)。 光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接着的 48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校训码 (CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20都各不相同,这样就可 以实现一根总线上挂接多个DS18B20的目的。 DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。

智能温度报警系统:DS18B20 构成测温系统---论文篇

[实验任务] 用一片DS18B20 构成测温系统,测量的温度精度达到0.1 度,测量的温度的范围在-20度到+50度之间,用4位数码管显示出来。 [硬件电路图] [实验原理] DS18B20 数字温度计是DALLAS 公司生产的1-Wire,即单总线器件,具有线 路简单,体积小的特点。因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计。DS18B20 产品的特点(1)、只要求一个 I/O口即可实现通信。(2)、在DS18B20中的每个器件上都有独一无二的序列号。(3)、实际应用中不需要外部任何元器件即可实现测温。(4)、测量温度范围在-55。C到+125。C之间。(5)、数字温度计的分辨率用户可以从9位到12位选择。(6)、内部有温度上、下限告警设置。 DS18B20详细引脚功能描述1 GND地信号;2 DQ数据输入/输出引脚。开漏单总线接口引脚。当被用着在寄生电源下,也可以向器件提供电源;3 VDD可选择 的VDD引脚。当工作于寄生电源时,此引脚必须接地。 DS18B20的使用方法。由于DS18B20采用的是1-Wire总线协议方式,即在一根 数据线实现数据的双向传输,而对AT89S51单片机来说,我们必须采用软件的方 法来模拟单总线的协议时序来完成对DS18B20芯片的访问。由于DS18B20是在一 根I/O线上读写数据,因此,对读写的数据位有着严格的时序要求。DS18B20有 严格的通信协议来保证各位数据传输的正确性和完整性。该协议定义了几种信号的时序:初始化时序、读时序、写时序。所有时序都是将主机作为主设备,单总线器件作为从设备。而每一次命令和数据的传输都是从主机主动启动写时序开始,如果要求单总线器件回送数据,在进行写命令后,主机需启动读时序完成数据接收。数据和命令的传输都是低位在先。

相关文档
相关文档 最新文档