文档库 最新最全的文档下载
当前位置:文档库 › 滑动轴承的失效分析概论(写的很好)

滑动轴承的失效分析概论(写的很好)

滑动轴承的失效分析概论(写的很好)
滑动轴承的失效分析概论(写的很好)

滑动轴承失效分析(有基础知识,也有经验,不

错)

滑动轴承在工作中丧失其规定功能,从而导致故障或不能正常工作的现象称为失效。轴承的失效按其寿命可分为正常失效和早期失效两种。分析工作主要是针对早期失效的轴承,找出其失效的原因,提出改进措施,以提高轴承运转的寿命和可靠性。由此可见,轴承的失效分析是提高轴承可靠性系统工程中的重要环节,是一门跨学科的技术领域,它既有综合性,又有实用性。所谓综合性表现在它涉及面很广,包括产品的结构设计、机械制造工艺、材料的选用与冶金技术,以及摩擦学、腐蚀学、工程力学、断裂力学、金属物理和表面物理等广泛的学科领域和技术门类。失效分析技术必须依赖于这些相关学科的发展而向前发展,而这些相关学科的发展又都与失效分析工作密切相关。

所谓实用性表现在轴承的失效分析工作必须从生产实际出发并紧密地为生产服务。它的积极意义在于:(1)可以分析出轴承失效的主要原因,提出改进措施,不断提高轴承产品的质量。(2)可以判断设计是否合理,纠正某些不尽合理的方面以提高轴承产品的可靠性。(3)可以发现轴承零件在冷、热加工中存在的问题。纠正不合理的加工工艺。(4)可以判断材料选择的合理性及原材料质量存在的间题。所以说轴承的失效分析工作是与轴承产品质量及其生产发展密切相关的重要工作。

本文的探讨将以滚动轴承的失效为主。

一、轴承失效的表现形式

轴承失效一般可分为止转失效和丧精失效两种。止转失效就是轴承因失去工作能力而终止转动。例如卡死、断裂等。丧精失效就是因几何尺寸变化了配合间隙,失去了原设计要求的回转精度,虽尚能继续转动,但属非正常运转。例如磨损、腐蚀等。轴承失效的影响因素很复杂,而且各类轴承的工作条件和失效因素的差异,产生的失效形式和形貌特征亦各不相同。按其损伤机理大致可分为:接触疲劳失效、摩擦磨损失效、断裂失效、变形失效、腐蚀失效和游隙变化失效等几种基本形式。

1.接触疲劳失效

接触疲劳失效是各类轴承表面最常见的失效形式之一,是轴承表面受到交变应力的作用而产生的失效。接触疲劳剥落在轴承表面也有疲劳裂纹的萌生、扩展和断裂的过程。初始的接触疲劳裂纹首先从接触表面以下最大正交切应力处产生,然后扩展到表面形成剥落,如麻点状的称为点蚀或麻点剥落,剥落成小片状的称浅层剥落。初始裂纹在硬化层与

心部交界区产生,造成硬化层的早期剥落则称为硬化层剥落。

2.磨损失效

轴承零件之间相对滑动摩擦导致表面金属不断损失的现象称为磨损。持续的磨损将使零件尺寸和形状变化,轴承配合游隙增大,工作表面形貌变坏从而丧失旋转精度,使轴承不能正常工作,称为轴承的磨损失效。磨损失效也是各类轴承表面最常见的失效形式之一,按其磨损形式可分为磨粒磨损、粘着磨损、腐蚀磨损、微动磨损和疲劳磨损等,其中最常见的为磨粒磨损和粘着磨损。轴承零件的摩擦面之间挤入外来硬颗粒或金属表面的磨屑,引起摩擦面磨损的现象称为磨粒磨损,它常在轴承表面造成凿削式或犁沟式的擦伤。外来硬颗粒常常来自于空气中的灰尘或润滑剂中的杂质。粘着磨损主要是由于摩擦表面的显微突起或摩擦异物使摩擦面受力不均,局部摩擦热有可能使摩擦面形成显微焊合。摩擦表面温升高,会造成润滑油膜破裂,严重时表面层金属将会局部熔化,接触点产生粘着、撕脱、再粘着的循环过程,构成粘着的磨损.严重的粘着磨损会造成摩擦面的焊合和卡死。

3.断裂失效

轴承零件断裂将会造成突发性失效事故,轴承断裂的主要原因是过载和缺陷两大因素。由于外加载荷超过轴承零件材料强度极限,造成轴承零件断裂就称过载断裂。过载的原因可能是主机故障,也可能是轴承的结构或安装不合理。另外.轴承零件存在着微裂纹、缩孔、气泡和大块外来夹杂物等缺陷,在正常载荷作用下,也会在缺陷处引起断裂,称为缺陷断裂。

轴承套圈和滚动体经锻造、热处理和磨加工过程中产生的过热、过烧、局部烧伤和表面裂纹就可能会引起轴承的断裂失效。特别是磨削烧伤检查时不易发现,有磨削烧伤的套圈一受冲压或振动就可能断裂。

4.塑性变形失效

在外力和环境温度作用下.轴承零件表面局部塑性流动或整t、变形,致使整套轴承不能正常工作而造成的失效称为变形失效。例如保持架翘曲、歪扭、兜孔拉长或框形保持架变形、靠套瓷都会造成轴承的早期失效。另外轴承摩擦表面塑性划痕也会引起振动和噪声增大、温度升高,从而加速轴承的早期失效。

5.腐蚀失效

轴承零件金属表面同环境介质发生化学或电化学反应,造成的表面损伤和轴承的失效称为腐蚀失效。能对轴承零件表面起化学作用的环境介质有大气、湿气、燃料和润滑油的氧化产物(酸类、酮类、乙醇等)以及氧化产物的蒸气等。

通常轴承表面腐蚀可以分为电介质腐蚀、有机酸腐蚀、其他介质腐蚀(如润滑油中含有硫化物)和电流腐蚀等。

腐蚀在轴承零件金属表面造成氧化膜或腐蚀孔洞,使表面呈现局部或全部变色。硬脆松散的氧化膜和腐蚀反应物在载荷作用下剥落,轴承表面生成蚀坑或造成工作表面粗化、进而形成腐蚀磨损或腐蚀疲劳失效。

6.游隙变化失效

轴承在工作过程中,受外界或内在因素变化的影响,改变了原有的配合间隙.使精度降低,甚至造成咬死的现象,称为游隙变化失效。

轴承零件的金相组织(例如残留奥氏体)和应力如果均处于不稳定状态,随着时间的延长其尺寸会产生变化,使轴承丧失运转精度。由于轴承零件的尺寸与形状不同,膨胀系数或膨胀量不同,在超常温下工作就会造成轴承工作游隙变化,轴承也会因失去运转精度造成早期失效。

二、影响轴承失效的因素

轴承失效的原因往往是多因素的,所有设计制造过程的影响因素都会与轴承的失效有关,分析起来不易判断。在一般情况下可以从外来因素和内在因素两方面考虑和着手分析。

外来因素主要是指安装调整、使用保养及维护修理等是否符合技术要求。因而也称之为使用因素。

安装条件是使用因素中的首要因素产一,轴承往往因安装的不合适而导致整套轴承各零件之间的受力状态发生变化,轴承将在不正常的状态下运转并提早失效。根据轴承安装、使用、维护和保养的技术要求,对运转中的轴承所承受的载荷、转速、工作温度、振动噪声和润滑条件进行监控和检查。发现异常立即查找原因,进行调整,使其恢复正常。对润滑剂质量和周围介质、气氛进行分析检验也很重要。尤其是润滑剂的正确使用对延长轴承的使用寿命是至关重要的。德国的研究者Koch在最近泊勺研究中指出:轴承的寿命与载荷、油的活度和润滑剂条件有关,而其增长可能是无限的。按系数n(当n=1时活度最大)评定的润滑油没有污垢具有特别的意义,在良好的(厚油膜、高洁度)和恶劣的(薄油膜、有污垢)条件下工作的轴承寿命比为400:1。可见正确的润滑在轴承寿命中是很重要的。

内在因素主要是指设计、制造工艺和材料质量等决定轴承质量的三大要素。也可称之为制造质量因素。

为了提高轴承的寿命和可靠性,人们围绕着上述三要素,做了大量的研究工作。首先,结构设计不合理当然不可能有合理的轴承寿命;仅有结构设计的合理性而不考虑先进性也不会有较长的轴承寿命;只有结

构设计同时具有合理性和先进性,才会有较长的轴承寿命。

轴承制造要经过铸造、锻造、热处理、车削、磨削和装配等多种加工工序。各种加工工艺的合理性、先进性和稳定性也都会影响到轴承的寿命和失效分析。尤其是直接影响成品轴承质量的热处理和磨加工工艺,往往与轴承的失效有更直接的关系。近年来对轴承工作表面变质层的研究,能够说明磨削工艺与轴承工作表面质量的密切关系。

轴承材料的冶金质量曾经是滚动轴承早期失效的主要影响因素。随着冶金技术(轴承钢的真空脱气等)的提高,原材料质量得到改善。原材料质量在轴承失效分析中所占的比重己经明显下降,但至今仍然是轴承失效的主要影响因素之一。

轴承失效分析的主要任务,就是根据大量的背景材料、分析数据和失效的形式,综合分析,找出造成轴承失效的主要影响因素,以便有针对性地提出改进措施,延长轴承的服役期,避免轴承突发性的早期失效。

三、轴承失效的分析方法

在轴承失效分析过程中,往往会碰到许多错综复杂的现象,各种实验结果可能是相互矛盾的,或者主次不易分清,这就需要经过反复试验、验证,以获得足够的证据或反证。在整个分析过程中,只有运用正确的分析方法、程序及步骤,才能找到真正的失效原因,得到正确的结论。失效分析工作者广博的基础知识、丰富的实践经验和先进的分析手段都是非常重要的。一个训练有素的轴承失效分析工作者,在作失效分析时必须从影响轴承寿命的外部条件因素到内在质量因素给予综合分析,尽快地确认分析的主要程序。

一般情况下轴承失效分析大体可分为:失效实物和背景资料的收集;对失效实物的宏观检查和微观分析等三个步骤。

1.失效实物和背景材料的收集

应该尽可能地收集到失效实物的各个零件和残片。尽量多地了解到失效轴承的实际工作条件、使用过程和制造质量情况。这对于正确地进行失效分析是必不可少的。它具体包括以下的内容:

(1)轴承所服役的机器设备的工作状况、载荷和运行速度。轴承在设备上的设计工作条件。

(2)轴承失效的情况。只有轴承失效还是其他部分也失效,轴承失效属于什么类型。

(3)轴承的安装运转记录。运转使用过程中有无不正常操作。

(4)轴承工作中所承受的真正载荷情况如何,是否符合原设计。

(5)轴承工作的实际速度及不同速度出现的频率。

(6)失效时是否有温度的急剧增加或冒烟、噪声及振动的突然增大。

(7)工作环境中有无腐蚀性介质,轴承及其相接触的轴颈处有无特殊的表面氧化色或其他沾污色。

(8)轴承的安装记录(包括安装前轴承尺寸精度的复检情况),轴承和轴承的游隙、装配和对中情况,轴承座和机架刚性如何,安装是否有异常。

(9)轴承运转是否有热膨胀及动力传递变化。

(10)轴承的润滑情况,包括润滑剂的牌号、成分、颜色、粘度、杂质含量、过滤、更换及供给情况等,并收集其沉淀物作分析。

(11)轴承的选材是否正确,用材质量是否符合标准或图纸要求。

(12)轴承的制造工艺过程是否正常,表面是否有塑性变化,有没有表面磨削烧伤。

(13)失效轴承的修复和保养记录。

(14)同批或同类轴承的失效情况。

在实际的失效分析背景材料收集工作中,全部满足上述要求是很难的。但收集到的资料愈多,无疑会更有利于分析结论的正确。

2.宏观检查

对失效轴承进行宏观检查(包括尺寸精度测量和表面状态检查分析).是失效分析最重要的环节。总体的外观检查,可了解轴承失效的概貌和损坏部位的特征,估计造成失效的起因,察看缺陷的大小、形状、部位、数量和特征并确定截取的部位做进一步的微观检查和分析。宏观检查的内容应包括:

(1)外形和尺寸精度的变化情况(包括测振分析、动态函数分析和滚道圆度分析)。

(2)游隙的变化情况。

(3)是否有腐蚀现象,在什么部位,是什人类型的腐蚀,是否与失效直接有关。

(4)是否有破裂,裂纹的形态和断口性质如何。

(5)磨损是什么类型的,对失效有多大作用。

(6)轴承各部件工作表面变色的情况和部位以确定其润滑情况和表面温度效应。

(7)对失效特征区主要观察有无异常磨损、外来颗粒嵌入、裂纹、擦伤和其他缺陷。

(8)冷酸洗法或热酸洗法检验轴承零件原始表面有无软点、脱碳层和烧伤,特别是表面磨削烧伤。

(9)用X射线应力测定仪测量轴承工作前后的应力变化情况。

宏观检查的结果,有时也可基本判断失效的形式和原因,但要进一步确定失效性质,取得更多的证据.还必须做微观分析。

3.微观分析

失效轴承的微观分析包括光学金相分析、电子显微分析、探针和电子能谱分析等。主要是根据失效特征区的微观组织结构变化和对疲劳源、裂纹源的分析为失效分析提供更充分的判据或反证,因而是重要的。微观分析中最常用、最普及的方法是光学金相分析和表面硬度检测。分析的内容应包括:

(1)原材料材质是否符合标准和设计要求。

(2)轴承零件的基体组织和热处理质量是否符合质量要求。

(3)表层组织是否存在脱碳层、屈氏体和其他表面加工变质层。

(A)测量渗碳层等表面强化层和多层金属各层组织的深度、腐蚀坑或裂纹的形态与深度,并根据裂纹的形状和两侧组织特征确定裂纹产生的原因及性质。

(5)根据晶粒大小、组织变形、局部相变、重结晶及相聚集等判断变形程度、温升状况、材料种类及工艺过程等。

(6)测量基体硬度、硬度均匀性及失效特征区的硬度变化。

(7)断口观察与分析。扫描电子显微镜因景深大、放大倍率高及图象清晰等优点,对断口的观察、定性和测量更具优越性。

(8)电子显微镜、探针和电子能谱在疲劳源和裂纹源分析中能测出断口异物的成分,分析断口的性质和断裂的原因。

这里所介绍的轴承失效分析一般方法的三个步骤,是一个由表及里逐步深入的分析过程。具体分析时应根据轴承失效的类型特点,并不是三个步骤中的每一个问题和每一种方法都对应使用。这要视具体情况决定取舍。但分析全过程的三步骤是缺一不可的。而且整个分析过程中,分析结果始终与影响轴承失效的内、外诸多因素联系起来.综合思考与判断。

四、轴承的表面质量与失效分析

滚动轴承的主要失效形式是疲劳和磨损,轴承的疲劳和磨损又总是发生在其工作表面和表面层,显然滚动轴承工作表面层的质量对轴承的使用寿命是至关重要的。轴承的失效分析工作离不开对轴承工作表面质量和表面工作状态的分析。

滚动轴承工作表面质量研究包括:表面形貌分析,表面变质层分析,表面应力状态分析,以及表面磨损状态分析等。表面形貌分析属摩擦学的范畴,近年来各国摩擦学工作者结合摩擦表面的失效分析,在表面形貌研究中取得了不少成果,尽管表面形貌对表面磨损的影响机理尚

不够成熟,但对于表面形貌的分析工作正在从一维参数向二维参数甚至三维参数的方向发展。滚动轴承的磨削表面有无数纵向磨痕,显微镜下纵观过去波浪起伏,犹如流水一般,有人称之为磨削流。它的几何形态和特性对于轴承的失效往往起着重要的作用。它的质量通常是用表面不规则的粗糙度算术平均值Re来表示的,也可以用波纹度等参数来评定。尽管这些参数在控制工艺质量方面是很有用的数量化指标,但他们只是高度特征的一维参数,不能充分表达磨削表面各向异性的特征。用扫描电子显微镜,直接观察轴承工作表面的形貌(包括可见度、密度、均匀性、波长、高度、间距和斜率等)特征以及可见的缺陷等,可对表面质量的认识为之一新。SKF轴承公司的Tallian和日本等国的学者都曾使用过这种方法,美国甚至进展到应用扫描电镜输出定量的技术。已有的研究成果证明:表面形貌对峰点载荷、应力、真实接触面积、摩擦力、摩擦系数以及表面温度等参数有重要的影响。这些参数在轴承失效的分析中,显然是非常重要的。

由于受到冷、热加工条件和润滑介质等因素的影响。轴承工作表面的微观组织结构、物理、化学和力学性能等往往与其心部有很大不同。轴承表面的微观结构、物理、化学和力学性能发生了变化的表面层称为表面变质层。若表面变质层是由磨削加工过程引起的就称为磨削表面变质层,滚动轴承工作表面变质层分析是轴承表面质量分析的主要组成部分,当然也是轴承失效的重要组成部分之依轴承工作表面磨削变质层的形成机理,造成磨削变质层的主要因素是磨削热和磨削力的作用。

1.磨削热

在磨削加工中,砂轮和工件接触区内,消耗大量的能,产生大量的磨削热,造成磨削区的局部瞬时高温。运用线状运动热源传热理论公式推导、计算或应用红外线法和热电偶法实测试验条件下的瞬时温度可发现在1×10-4~1×10-6s内磨削区的瞬时温度可高达1OO0~1500℃。这祥的瞬时高温,足以使工作表面一定深度的表面层产主高温氧化、非晶态组织、高温回火、二次淬火、甚至烧伤开裂等多种变化。

(1)表面氧化层

瞬时高温作用下的钢表面与空气中的氧作用,生成极薄(20~30nm)的铁氧化物薄层(由α-Fe2O3、Fe3O4、Fe0及Fe的掺合结构所组成)。值得注意的是氧化层厚度与表面磨削变质层总厚度侧试结果是呈对应关系的。这说明其氧化层厚度与磨削工艺直接相关,是磨削质量的重要标志。

(2)晶态组织层

磨削区的瞬时高温使工件表面达到溶融状态时,熔融的金属分子流

又被均匀地涂敷于工件表面,并被基体金属以极快的速度冷却.形成了极薄的一层非品态组织层。它具有高的硬度和韧性,但它只

有100À左右,很容易在精密磨削加工中被去除。

(3)高温回火层

磨削区的瞬时高温可以使表而一定深度(10~lO2mm)内被加热到高于工件回火加热的温度。在没有达到奥氏体化温度的情况下,随看被加热温度的提高,其表面逐层将产生与加热温度相对应的再回火或高温回火的组织转变,硬度也随之下降。加热温度愈高,硬度下降也愈厉害。

(4)二次淬火

当磨削区的瞬时高温将工件表面层加热到奥氏体化温度(Ac1)以上时,则该层奥氏体化的组织在随后的冷却过程中,又重新被淬火成马氏体组织。从图片上看是白色的,并时常伴有淬火微裂纹。凡是有二次淬火烧伤的工件,其二次淬火层之下必定是硬度极低的高温回火层。

(5)磨削裂纹

二次淬火烧伤,将使工件表层应力变化。二伏淬火区处于受压状态;二次淬火区以下的高温回火区材料存在着最大的拉应力,这里就是裂纹核心最有可能发生的地方。裂纹最容易沿原始的奥氏体晶界传播。严重的烧伤会导致整个磨削表面出现裂纹(多呈龟裂)造成工件报废,混入成品则造成断裂失效。

2.磨削力所造成的变质层

在磨削加工过程中,工件表面层将受到砂轮的切削力、压缩力和摩擦力的作用。尤其是后两者的作用,使工件表面层形成方向性很强的塑性变形层和加工硬化层。这些变质层也必然地影响着表面层残余应力的变化。

(1)冷塑性变形层

在磨削过程中,每一颗磨粒就相当于一个刀刃。不过在很多情况下(特别是磨粒经过磨损之后)。切刃的前角为负值.磨粒除切削作用之外,就是使工件表面承受挤压作用(耕犁作用),使工件表面留下明显的塑性变形层。这种变形层的变形程度将随着砂轮磨钝的程度和磨削进给量的增大而增大。

(2)热塑性变形(或高温塑性变形)

磨削热在工件表面形成的瞬时高温,使工件表面层一定深度的弹性极限急剧下降,甚至达到弹性消失的程度。此时工件表面层在磨削力,特别是压缩力和摩擦力的作用下,引起的自由伸长,受到基体金属的限制,表面被压缩(耕犁),在表面层造成了塑性变形。高温塑性变形在磨削工艺不变的情况下,随工件表面温度的升高而增大。

(3)加工硬化层有时用显微硬度法和金相法可以发现.由于加工变形引起的表面层厚度升高。

轴承表面磨削变质层的多层结构变化对分析轴承制造工艺水平、预测使用寿命和失效分析都是重要的。除磨削加工之外,在铸造和热处理加热中所造成的表面脱贫碳层,在以后的加工中若没有被完全去除,残留于工件表面也将造成表面软化变质,促成轴承的早期失效。

对工作状态下的轴承工作表面,进行表面应力状态的分析和监控以及对表面磨损状态进行定期或随机的铁谱分析,对轴承失效的预测和失效分析都是很有意义的。滚动轴承工作表面结构状态和工作状态决定了表面分析在轴承失效中的重要性。

五、轴承失效的预测及预防

在一般机械设备中,轴承通常是可更换的易损基础件,认为轴承失效了换个新的很平常,从不追究它失效的原因,只有在汽车、火车、飞机等交通运输业和发动机制造业等行业中,轴承的寿命很重要,因而对轴承的失效分析才受到一定程度的重视。轴承既然是易损基础件,它的运转寿命总有一定程度,工作时间超过设计寿命者属正常失效;工作时间小于设计寿命者属非正常失效(或称早期失效)。轴承失效的预防主要是指早期失效而言。

预防轴承失效的主要途径有:(1)采取一切可能和有效手段,尽量提高轴承的寿命和可靠性。包括结构设计的优化、加二工艺的改革,原材料的精选和精炼,高效率高洁度的润滑.以及精细的装配和安装等

等。(2)加强轴承产品的质量检测和监督,以确保轴承产品炭毫指标达到设计要求。在轴承投入运转之前.严格的质量检测和监督也是预防轴承早期失效的积极措施。(3)加强对轴承工作状态的诊断和预测,及早发现异常、缺陷和意外破损,采取预防措施以防止突发性失效事故可能造成的重大损失。

轴承的诊断和预测这类测试技术的特点是不需要停机或者拆卸零部件,直接对运行中的轴承工作情况实施技术监控,以便发现问题及时处理。熟练工人经常采用的耳听(振动噪声)、手摸(温度),铁路车检工人采用的锤击和手摸等方法。在缺少先进检测仪器的情况下,都是简单而有效的人工监控方法。

现在的轴承诊断和预测技术,是与精密的测试系统和检测手段连系在一起的。目前实际应用中比较成熟的检测系统有以下几种:

(1)轴承脉冲测振装置。轴承磨损(或疲劳剥落)后,产生振动,接受器将机械脉冲信号转换为电信号并放大。与脉冲数超出正常范围达到突变

时,立即报警,轴承停止使用。

(2)轴承温度报警装置。轴承润滑不良、表面磨损或疲劳都会使表面发热,当发热到一定的极限温度时,即行报警,轴承停止运行。

(3)定期检测运行中轴承的当时状态,发现或监控已有缺陷及其发展趋势。例如采用德国Geartebau

Brieselang公司生产的WDG便携式滚动轴承诊断仪就适用于定期检测。

(4)铁粉记录诊断法。抽样运行轴承中的润滑剂,用铁谱仪检测其中的金属磨粒(或粉末)的数量、尺寸及其形状特征,也可分析出疲劳与磨损的程度,发现轴承失效的征兆。

近年来,国外新发展的轴承诊断装置,不仅使这类测量技术在原=7的基础上继续深化、精确灵敏,而且在形式和原理等方面都有新的发展。例如FFV公司生产的SPM系列诊断装置中,轴承脉冲特性分析仪,可根据频谱脉冲形状确定轴承的润滑状态、润滑膜厚度和轴承零件的破损程度;德国研究者Bill按照DK(t)法诊断轴承,提出了长期预报剩余寿命的前提;英国研究者Howard创造的电子计算机上处理高频信号数字法,能保证尽早发现破损,评估其发展和识别破损源。其高频信号是由滚动轴承之间的冲击载荷决定的。此外尚有“声发射法(英)”、“振动诊断法(俄)”等预测技术的新发展。诊断预测系统的类型也是多种多样的,其中大型的如日本富士公司的Cabit-1000型滚动轴承诊断系统(包括傅立叶分析器、显示器、存储器、印字机构、联系装置和字母一数字变换器等):小型的如德国的专利产品“便携式探针”,可借助于加速压电传感器测量轴承外壳的机械噪声,传感器在测量时可固定在机壳上。总之,轴承的预测技术正在迅速地发展着,不论采用那种方法、原理或仪器设备.最重要的在于尽早发现极限状态和估计剩余寿命。诊断和预测仅是方法和手段。预防轴承早期失效所造成的损失才是目的。

滑动轴承概述

轴承支承轴及轴上零件,保证轴的旋转精度。根据轴承工作的摩擦性质,可分为滑动轴承和滚动轴承。滑动轴承具有工作平稳、无噪音、径向尺寸小、耐冲击和承载能力大等优点。而谈动轴承是标准零件,成批量生产成本低,安装方便,广泛应用。对于初学者来讲,谈动轴承的类型选择;寿命计算;组合设计是比较难掌握。因此,滚动轴承的寿命计算和组合设计是本章讨论的重点。 §11-1 滑动轴承概述 一、滑动轴承的类型 滑动轴承按其承受载荷的方向分为: (1)径向滑动轴承,它主要承受径向载荷。 (2)止推滑动轴承,它只承受轴向载荷。 滑动轴承按摩擦(润滑)状态可分为液体摩擦(润滑)轴承和非液体摩擦(润滑)轴承。 (1)液体摩擦轴承(完全液体润滑轴承)液体摩擦轴承的原理是在轴颈与轴瓦的 摩擦面间有充足的润滑油,润滑油的厚度较大,将轴颈和轴瓦表面完全隔开。因而摩擦系数很小,一般摩擦系数=0.001-0.008。由于始终能保持稳定的液体润滑状态。这种轴承适用于高速、高精度和重载等场合。 (2)非液体摩擦轴承(不完全液体润滑轴承) 非液体摩擦轴承依靠吸附于轴和轴承孔表面的极薄油膜,单不能完全将两摩擦表面隔开, 有一部分表面直接接触。因而摩擦系数大,=0.05?0.5。如果润滑油完全流失,将会出现干摩擦。剧烈摩擦、磨损,甚至发生胶合破坏。 二、潸动轴承的特点 优点:(1)承载能力高;(2)工作平稳可靠、噪声低;(3)径向尺寸小;(4)精度高;(5)流体涧滑时,摩擦、磨损较小;(6)油膜有一定的吸振能力 缺点:(1)非流体摩擦滑动轴承、摩擦较大,磨损严重。(2)流体摩擦滑动轴承在起动、行车、载荷、转速比较大的情况下难于实现流体摩擦;(3)流体摩擦、滑动轴承设计、制造、维护费用较高。 §11-2 滑动轴承的结构和材料 一、径向滑动轴承 1.整体式滑动轴承 整体式滑动轴承结构如图所示,由轴承座1和轴承衬套2组成,轴承座上部有油孔,整体衬套有油沟,分别用以加油和引油,进行润滑。这种轴承结构简单,价格低廉,但轴的装拆不方便,磨损后轴承的径向间隙无法调整。使用于轻载低速或间歇工作的场合。 2.对开式滑动轴承

滚动轴承常见的失效形式及原因

滚动轴承常见的失效形式及原因分析 滚动轴承在使用过程中由于很多原因造成其性能指标达不到使用要求时就产 生了失效或损坏.常见的失效形式有疲劳剥落、磨损、塑性变形、腐蚀、烧伤、 电腐蚀、保持架损坏等。 一,疲劳剥落 疲劳有许多类型,对于滚动轴承来说主要是指接触疲劳。滚动轴承套圈各滚动体表面在接触应力的反复作用下,其滚动表面金属从金属基体呈点状或片状剥落下来的现象称为疲劳剥落。点蚀也是由于材料疲劳引起一种疲劳现象,但形状尺寸很小,点蚀扩展后将形成疲劳剥落。 疲劳剥落的形态特征一般具有一定的深度和面积,使滚动表面呈凹凸不平的鳞状,有尖锐的沟角.通常呈显疲劳扩展特征的海滩装纹路.产生部位主要出现在套圈和滚动体的滚动表面. 轴承疲劳失效的机理很复杂,也出现了多种分析理论,如最大静态剪应力理论、最大动态剪应力理论、切向力理论、表面微小裂纹理论、油膜剥落理论、沟道表面弯曲理论、热应力理论等。这些理论中没有一个理论能够全面解释疲劳的各种现象,只能对其中的部分现象作出解释。目前对疲劳失效机理比较统一的观点有: 1、次表面起源型 次表面起源型认为轴承在滚动接触部位形成油膜的条件下运转时,滚动表面是以内部

(次表面)为起源产生的疲劳剥落。 2、表面起源型 表面起源型认为轴承在滚动接触部位未形成油膜或在边界润滑状态下运转时,滚动表面是以表面为起源产生的疲劳剥落。 3、工程模型 工程模型认为在一般工作条件下,轴承的疲劳是次表面起源型和表面起源型共同作用的结果。 疲劳产生的原因错综复杂,影响因素也很多,有与轴承制造有关的因素,如产品设计、材料选用、制造工艺和制造质量等;也有与轴承使用有关的因素,如轴承选型、安装、配合、润滑、密封、维护等。具体因素如下: A、制造因素 1、产品结构设计的影响:产品的结构设计是根据使用性能目标值来确定的,这些目标值如载荷容量、寿命、精度、可靠性、振动、磨损、摩擦力矩等。在设计时,由于各种原因,会造成产品设计与使用的不适用或脱节,甚至偏离了目标值,这种情况很容易造成产品的早期失效。 2、材料品质的影响:轴承工作时,零件滚动表面承受周期性交变载荷或冲击载荷。由于零件之间的接触面积很小,因此,会产生极高的接触应力。在接触应力反复作用下,零件工作表面将产生接触疲劳而导致金属剥落。就材料本身的品质来讲,其表面缺陷有裂纹、表面夹渣、折叠、结疤、氧化皮和毛刺等,内部缺陷有严重偏析和疏松、显微孔隙、缩孔、气泡、白点、过烧等,这些缺陷都是造成轴承早期疲劳剥落的主要原因。

滑动轴承论文:滑动轴承承载能力的理论研究和实验分析

滑动轴承论文:滑动轴承承载能力的理论研究和实验分析 【中文摘要】在生产实践中,轴承的承载能力是滑动轴承设计的重点问题,对滑动轴承承载能力的研究对于轴承技术的发展具有重要意义。通常影响滑动轴承承载能力的因素有很多,如宽径比、偏心率、相对间隙等,而滑动轴承在不同工作载荷和转速的情况下,油膜承载力也不尽相同。本文应用数值计算方法以及编程语言,从理论计算和实验测试两个方面对滑动轴承的承载能力展开研究。本文对雷诺方程进行无量纲简化,采用有限差分法和超松弛迭代法以及数学软件MATLAB对简化后的雷诺方程编程求解,获得滑动轴承油膜压力分布数值以及三维图形,并研究了轴承宽径比、偏心率对轴承油膜压力分布的影响规律。本文利用ZHS20滑动轴承实验台测得在不同工作载荷及转速下滑动轴承的油膜压力分布,以及流体动力润滑特性相关曲线, 展开对滑动轴承摩擦因数、摩擦状态转化以及过渡转速的研究,并对理论计算以及实验台测试所得的轴承承载力进行比较,引入端泄系数,对轴承运行的端泄量展开研究。本文通过对实验台测试功能的拓展,测得不同相对间隙下轴承的油膜压力分布,分析相对间隙对轴承承载力的影响,并通过计算得到使轴承获得最大承载力的相对间隙最佳值,对滑动轴承的设计和研究具有实际指导意义。本文在最后对轴承承载力的理论计算和实验值计算进行可视化操作界面设计,使轴承承载力的计算及其结果显示更为形象、简捷。 【英文摘要】The capacity of bearing is the key point of

journal bearing’s design in production practice, which is extremely important to the bearing technology development. Usually, there are many factors influence the capacity of journal bearing, such as the wide of axle bush compared to diameter of axle, eccentricity, relative gap, and the lubricant film supporting capacity is also different in the different work load and in the rotational speed situation.This article adopts the numerical calculus method and the programming language, to research the capacity of journal bearing through the way of the theoretical calculation and the experiment value. This article simplifies the Reynolds equation into dimensionless form, and uses the finite difference method and the ultra flaccid repetitive process as well as mathematics software MATLAB to program and solve the dimensionless form of the Reynolds equation, and obtains the pressure distribution value and the three dimensional graph of journal bearing lubricant film, and also studies the bearing film pressure distribution influence rule of the wide of axle bush compared to diameter of axle and eccentricity. Under the different work load and the rotational speed, this article uses the journal bearing laboratory bench ZHS20 to obtain the journal bearing’s lubricant film pressure distribution and the hydrodynamic

滑动轴承的失效分析概论(写的很好)

滑动轴承失效分析(有基础知识,也有经验,不 错) 滑动轴承在工作中丧失其规定功能,从而导致故障或不能正常工作的现象称为失效。轴承的失效按其寿命可分为正常失效和早期失效两种。分析工作主要是针对早期失效的轴承,找出其失效的原因,提出改进措施,以提高轴承运转的寿命和可靠性。由此可见,轴承的失效分析是提高轴承可靠性系统工程中的重要环节,是一门跨学科的技术领域,它既有综合性,又有实用性。所谓综合性表现在它涉及面很广,包括产品的结构设计、机械制造工艺、材料的选用与冶金技术,以及摩擦学、腐蚀学、工程力学、断裂力学、金属物理和表面物理等广泛的学科领域和技术门类。失效分析技术必须依赖于这些相关学科的发展而向前发展,而这些相关学科的发展又都与失效分析工作密切相关。 所谓实用性表现在轴承的失效分析工作必须从生产实际出发并紧密地为生产服务。它的积极意义在于:(1)可以分析出轴承失效的主要原因,提出改进措施,不断提高轴承产品的质量。(2)可以判断设计是否合理,纠正某些不尽合理的方面以提高轴承产品的可靠性。(3)可以发现轴承零件在冷、热加工中存在的问题。纠正不合理的加工工艺。(4)可以判断材料选择的合理性及原材料质量存在的间题。所以说轴承的失效分析工作是与轴承产品质量及其生产发展密切相关的重要工作。 本文的探讨将以滚动轴承的失效为主。 一、轴承失效的表现形式 轴承失效一般可分为止转失效和丧精失效两种。止转失效就是轴承因失去工作能力而终止转动。例如卡死、断裂等。丧精失效就是因几何尺寸变化了配合间隙,失去了原设计要求的回转精度,虽尚能继续转动,但属非正常运转。例如磨损、腐蚀等。轴承失效的影响因素很复杂,而且各类轴承的工作条件和失效因素的差异,产生的失效形式和形貌特征亦各不相同。按其损伤机理大致可分为:接触疲劳失效、摩擦磨损失效、断裂失效、变形失效、腐蚀失效和游隙变化失效等几种基本形式。 1.接触疲劳失效 接触疲劳失效是各类轴承表面最常见的失效形式之一,是轴承表面受到交变应力的作用而产生的失效。接触疲劳剥落在轴承表面也有疲劳裂纹的萌生、扩展和断裂的过程。初始的接触疲劳裂纹首先从接触表面以下最大正交切应力处产生,然后扩展到表面形成剥落,如麻点状的称为点蚀或麻点剥落,剥落成小片状的称浅层剥落。初始裂纹在硬化层与

滚动轴承习题

Unit17 轴承 一、单选题(每题2分) 1. 对于工作温度变化较大的长轴,轴承组应采用的轴向固定方式。 A 两端固定 B 一端固定,一端游动 C 两端游动 D 左端固定,右端游动 2. 轴承预紧的目的为提高轴承的。 A 刚度和旋转精度 B 强度和刚度 C 强度 D 刚度 3. 皮碗密封,密封唇朝里的主要目的为。 A 防灰尘,杂质进入 B 防漏油 C 提高密封性能 D 防磨损 4. 密封属于非接触式密封。 A 毛毡 B 迷宫式 C 皮碗 D 环形 5. 在轴承同时承受径向载荷和轴向载荷时,当量动载荷指的是轴承所受的。 A 与径向载荷和轴向载荷等效的假想载荷 B 径向载荷和轴向载荷的代数和 C 径向载荷 D 轴向载荷 6. 内部轴向力能使得内、外圈产生。

A 分离的趋势 B 接合更紧的趋势 C 摩擦的趋势 D 转动的趋势 7. 一般转速的滚动轴承,其主要失效形式是疲劳点蚀,因此应进行轴承的。 A 寿命计算 B 静强度计算 C 硬度计算 D 应力计算 8. 某轴承的基本额定动载荷下工作了6 10转时,其失效概率为。 A 90% B 10% C 50% D 60% 9. 从经济观点考虑,只要能满足使用要求,应尽量选用轴承。 A 球 B 圆柱 C 圆锥滚子 D 角接触 10. 滚动轴承的公差等级代号中,级代号可省略不写。 A 2 B 0 C 6 D 5 11. 只能承受轴向载荷而不能承受径向载荷的滚动轴承是。 A 深沟球轴承 B 推力球轴承 C 圆锥滚子轴承 D 圆柱滚子轴承 12. 在相同的尺寸下,能承受的轴向载荷为最大。 A 角接触球轴承 B 深沟球轴承 C 圆锥滚子轴承 D 圆柱滚子轴承 13 若转轴在载荷作用下弯曲较大或轴承座孔不能保证良好的同轴度,宜选用类型代号为的轴承。 A. 1或2 B. 3或7

滚动轴承的受力分析、载荷计算、失效和计算准则

1.滚动轴承的受力分析 滚动轴承在工作中,在通过轴心线的轴向载荷(中心轴向载荷)Fa作用下,可认为各滚动体平均分担载荷,即各滚动体受力相等。当轴承在纯径向载荷Fr作用下(图6),内圈沿Fr方向移动一距离δ0,上半圈滚动体不承载,下半圈各滚动体由于个接触点上的弹性变形量不同承受不同的载荷,处于Fr作用线最下位置的滚动体承载最大,其值近似为5Fr/Z(点接触轴承)或4.6Fr/Z(线接触轴承),Z为轴承滚动体总数,远离作用线的各滚动体承载逐渐减小。对于内外圈相对转动的滚动轴承,滚动体的位置是不断变化的,因此,每个滚动体所受的径向载荷是变载荷。 图6滚动轴承径向载荷的分析图7角接触轴承的载荷作用中心 2.滚动轴承的载荷计算 (1)滚动轴承的径向载荷计算 一般轴承径向载荷Fr作用中心O的位置为轴承宽度中点。 角接触轴承径向载荷作用中心O的位置应为各滚动体的载荷矢量与轴中心线的交点,如图7所示。角接触球轴承、圆锥滚子轴承载荷中心与轴承外侧端面的距离a可由直接从手册查得。 接触角α及直径D,越大,载荷作用中心距轴承宽度中点越远。为了简化计算,常假设载荷中心就在轴承宽度中点,但这对于跨距较小的轴,误差较大,不宜随便简化。

图8角接触轴承受径向载荷产生附加轴向力 1)滚动轴承的轴向载荷计算 当作用于轴系上的轴向工作合力为FA,则轴系中受FA作用的轴承的轴向载荷Fa=FA,不受FA作用的轴承的轴向载荷Fa=0。但角接触轴承的轴向载荷不能这样计算。 角接触轴承受径向载荷Fr时,会产生附加轴向力FS。图8所示轴承下半圈第i个球受径向力Fri。由于轴承外圈接触点法线与轴承中心平面有接触角α,通过接触点法线对轴承内圈和轴的法向反力Fi将产生径向分力Fri;和轴向分力FSi。各球的轴向分力之和即为轴承的附加轴向力FS。按一半滚动体受力进行分析,有 FS ≈ 1.25 Frtan α(1) 计算各种角接触轴承附加轴向力的公式可查表5。表中Fr为轴承的径向载荷;e为判断系数,查表6;Y为圆锥滚子轴承的轴向动载荷系数,查表7。 表-5 角接触轴承附加轴向力公式 轴承类型角接触球轴承圆锥滚子轴承

滑动轴承概述

轴承 轴承支承轴及轴上零件,保证轴的旋转精度。根据轴承工作的摩擦性质,可分为滑动轴承和滚动轴承。滑动轴承具有工作平稳、无噪音、径向尺寸小、耐冲击和承载能力大等优点。而滚动轴承是标准零件,成批量生产成本低,安装方便,广泛应用。对于初学者来讲,滚动轴承的类型选择;寿命计算;组合设计是比较难掌握。因此,滚动轴承的寿命计算和组合设计是本章讨论的重点。 §11—1 滑动轴承概述 一、滑动轴承的类型 滑动轴承按其承受载荷的方向分为: (1)径向滑动轴承,它主要承受径向载荷。 (2)止推滑动轴承,它只承受轴向载荷。 滑动轴承按摩擦(润滑)状态可分为液体摩擦(润滑)轴承和非液体摩擦(润滑)轴承。 (1)液体摩擦轴承(完全液体润滑轴承)液体摩擦轴承的原理是在轴颈与轴瓦的摩擦面间有充足的润滑油,润滑油的厚度较大,将轴颈和轴瓦表面完全隔开。因而摩擦系数很小,一般摩擦系数=0.001~0.008。由于始终能保持稳定的液体润滑状态。这种轴承适用于高速、高精度和重载等场合。 (2)非液体摩擦轴承(不完全液体润滑轴承) 非液体摩擦轴承依靠吸附于轴和轴承孔表面的极薄油膜,单不能完全将两摩擦表面隔开,有一部分表面直接接触。因而摩擦系数大,=0.05~0.5。如果润滑油完全流失,将会出现干摩擦。剧烈摩擦、磨损,甚至发生胶合破坏。 二、滑动轴承的特点 优点:(1)承载能力高;(2)工作平稳可靠、噪声低;(3)径向尺寸小;(4)精 度高;(5)流体润滑时,摩擦、磨损较小;(6)油膜有一定的吸振能力 缺点:(1)非流体摩擦滑动轴承、摩擦较大,磨损严重。(2)流体摩擦滑动轴承在 起动、行车、载荷、转速比较大的情况下难于实现流体摩擦;(3)流体摩擦、滑动轴承设计、制造、维护费用较高。 §11—2 滑动轴承的结构和材料 一、径向滑动轴承 1.整体式滑动轴承 整体式滑动轴承结构如图所示,由轴承座1和轴承衬套2组成,轴承座上部有油孔,整体衬套内有油沟,分别用以加油和引油,进行润滑。这种轴承结构简单,价格低廉,但轴的装拆不方便,磨损后轴承的径向间隙无法调整。使用于轻载低速或间歇工作的场合。 2.对开式滑动轴承

滚动轴承的几种失效形式

滚动轴承的几种失效形式 滚动轴承是将运转的轴与轴座之间的滑动摩擦变为滚动摩擦,从而减少摩擦损失的一种精密的机械元件。滚动轴承一般由内圈、外圈、滚动体和保持架四部分组成,内圈的作用是与轴相配合并与轴一起旋转;外圈作用是与轴承座相配合,起支撑作用;滚动体是借助于保持架均匀的将滚动体分布在内圈和外圈之间,其形状大小和数量直接影响着滚动轴承的使用性能和寿命;保持架能使滚动体均匀分布,防止滚动体脱落,引导滚动体旋转起润滑作用。滚动轴承在使用过程中,由于很多原因造成其性能指标达不到使用要求时就产生了失效或损坏.常见的失效形式有磨损、腐蚀、蠕动、烧伤、电蚀、尺寸变化。 一、磨损 在力的作用下,两个相互接触的金属表面相对运动产生摩擦,形成摩擦副。磨擦引起金属消耗或产生残余变形,使金属表面的形状、尺寸、组织或性能发生改变的现象称为磨损。 磨损过程包含有两物体的相互作用、黏着、擦伤、塑性变形、化学反应等几个阶段。其中物体相互作用的程度对磨损的产生和发展起着重要的作用。 磨损的基本形工有:疲劳磨损、黏着磨损、磨料(粒)磨损、微动磨损和腐蚀磨损等。 产生磨损的主要原因: A、异物通过了密封不良的装置(或密封圈)进入了轴承内部。 B、润滑不当。如润滑油中的杂质未过滤干净、润滑方式不良、润滑剂选用不当、润滑剂变质等。 C、零件接触面上的材料颗粒脱离, D、锈蚀。如,由于轴承使用温度变化产生的冷凝水、润滑剂中添加剂的腐蚀性特质等原因形成的锈蚀。 实际中多数磨损属于综合性磨损,预防对策应根据磨损的形式和机理分别采取措施。 对于微动磨损,可以采用小游隙或过盈配合来减少使用过程中的微动磨损;可在套圈与滚动体之间采用稀润滑剂润滑或分别包装来减少运输过程的微动磨损;另外,轴承应放在无振动环境下保管,或将轴承内外圈隔离存放可以防止保管过程中产生的微动磨损。

常见的滚动轴承失效形式

常见的滚动轴承失效形式 常见的滚动轴承失效形式1(接触疲劳失效接触疲劳失效系指轴承工作表面受到交变应力的作用而产生的材料疲劳失效。接触疲劳失效常见的形式是接触疲劳剥落发。接触疲劳剥落发生在轴承工作表面,往往也伴随着疲劳裂纹,首先从接触表面以下最大交变切应力处产生,然后扩展到表面形成不同的剥落形状,如点状为点蚀或麻点剥落,剥落成小片状的称浅层剥落。由于剥落面的逐渐扩大,而往往向深层扩展,形成深层剥落。深层剥落是接触疲劳失效的疲劳源。2(磨损失效磨损失效系指表面之间的相对滑动摩擦导致其工作表面金属不断磨损而产生的失效。持续的磨损将引起轴承零件逐渐损坏,并最终导致轴承尺寸精度丧失及其它相关问题。磨损失效是各类轴承常见的失效模式之一,按磨损形式通常可分为最常见的磨粒磨损和粘着磨损。磨粒磨损系指轴承工作表面之间挤入外来坚硬粒子或硬质异物或金属表面的磨屑且接触表面相对移动而引起的磨损,常在轴承工作表面造成犁沟状的擦伤。粘着磨损系指由于摩擦表面的显微凸起或异物使摩擦面受力不均,在润滑条件严重恶化时,因局部摩擦生热,易造成摩擦面局部变形和摩擦显微焊合现象,严重时表面金属可能局部熔化,接触面上作用力将局部摩擦焊接点从基体上撕裂而增大塑性变形。3( 断裂失效轴承断裂失效主要原因是缺陷与过载两大因素。当外加载荷超过材料强度极限而造成零件断裂称为过载断裂。过载原因主要是主机突发故障或安装不当。轴承零件的微裂纹、缩孔、气泡、大块外来杂物、过热组织及局部烧伤等缺陷在冲击过载或剧烈振动时也会在缺陷处引起断裂,称为缺陷断裂。应当指出,轴承在制造过程中,对原材料的入厂复验、锻造和热处理质量控制、加工过程控制中可通过仪器正确分析上述缺陷是否存在,今后仍必须加强控制。但一般来说,通常出现的轴承断裂失效大多数为过载失效。4( 腐蚀失效有些滚动轴承在实际运行当中不可避免的要接触到水、水汽以及腐蚀性介质等,这些物

液体动压径向滑动轴承设计与分析

液体动压径向滑动轴承设计与分析 摘要 动压式滑动轴承是轴承中的一个重要类别,对其进行分析研究在实际中具有重要意义。液体动压径向滑动是其中的重要一类,本文以径向滑动轴承为研究对象,以雷诺方程的建立及求解过程为理论基础,对滑动轴承在处于液体动压的工况情况进行理论分析。 本课题的目的就是旨在结合滑动轴承的工作特点和性能,合理的优化轴承的结构形式,对轴承的各性能进行优化设计。通过图纸对轴承结构进行分析优化,利用相关公式对性能进行计算与分析,对整个轴承进行优化设计。 关键字:滑动轴承;雷诺方程

目录 第一章 1绪论 (4) 1.1本课题的选定 (5) 1.2滑动轴承制造和生产技术的发展现状 (5) 1.3本课题研究的主要内容及基本工作思路 (6) (一)主要内容 (6) (二)本课题基本工作思路 (6) 第二章 2液体动压径向滑动轴承的总体设计方案 (6) 2.1滑动轴承 (6) (一)滑动轴承的主要类型和结构 (6) 2.2液体动压润滑的基本原理和基本关系 (8) (一)液体动压油膜的形成理论 (8) (二)液体动压润滑的基本方程 (8) (三)油楔承载机理 (11) 2.3液体动压径向滑动轴承基本原理 (11) (一)径向滑动轴承液体动压润滑的建立过程 (11) (二)径向滑动轴承的几何关系和承载能力 (12) (三)径向滑动轴承的参数选择 (16) (四)径向滑动轴承的供油结构 (18) 第三章 3液体动压径向滑动轴承的实例计算 (20) 3.1主要技术指标 (20) 3.2选择轴承材料和结构 (20) 3.3润滑剂和润滑方法的选择 (21) 3.4性能计算 (21) (一)承载能力计算 (21) (二)层流校核 (22)

滑动轴承项目计划书 (1)

滑动轴承项目 计划书 规划设计/投资方案/产业运营

滑动轴承项目计划书 在机械产品中,轴承属于高精度产品,不仅需要数学、物理等诸多学科理论的综合支持,而且需要材料科学、热处理技术、精密加工和测量技术、数控技术和有效的数值方法及功能强大的计算机技术等诸多学科为之服务,高端滑动轴承对技术和精度的要求更苛刻。由于我国大多数轴承企业在研发资金投入、创新体系建设运行、人才培养等方面落后于国际领先企业,轴承的精度、寿命、噪音等关键性能还没有充分满足高端机械的要求,因此,在航空航天、高速铁路客车、高档轿车、计算机、空调器、高压承载机械、高速机床等装备上,很多轴承需要依赖进口。根据根据中国轴承工业协会出具的《全国轴承行业“十三五”发展规划》,我国每年约需进口40亿美元轴承,存在着一个很大的进口替代市场空间。随着轴承企业的技术投入和装备改善,我国轴承自主创新能力会大大加强,创新产品有望替代进口产品和取代传统产品。 该滑动轴承项目计划总投资10058.86万元,其中:固定资产投资8538.48万元,占项目总投资的84.89%;流动资金1520.38万元,占项目总投资的15.11%。 达产年营业收入10982.00万元,总成本费用8277.81万元,税金及附加160.02万元,利润总额2704.19万元,利税总额3237.20万元,税后净

利润2028.14万元,达产年纳税总额1209.06万元;达产年投资利润率26.88%,投资利税率32.18%,投资回报率20.16%,全部投资回收期6.46年,提供就业职位149个。 本文件内容所承托的权益全部为项目承办单位所有,本文件仅提供给项目承办单位并按项目承办单位的意愿提供给有关审查机构为投资项目的审批和建设而使用,持有人对文件中的技术信息、商务信息等应做出保密性承诺,未经项目承办单位书面允诺和许可,不得复制、披露或提供给第三方,对发现非合法持有本文件者,项目承办单位有权保留追偿的权利。 ......

滚动轴承常见失效形式及原因分析

滚动轴承常见失效形式及原因分析 滚动轴承在使用过程中,由于很多原因造成其性能指标达不到使用要求时就产生了失效或损坏.常见的失效形式有疲劳剥落、磨损、塑性变形、腐蚀、烧伤、电腐蚀、保持架损坏等。 一,疲劳剥落 疲劳有许多类型,对于滚动轴承来说主要是指接触疲劳。滚动轴承套圈各滚动体表面在接触应力的反复作用下,其滚动表面金属从金属基体呈点状或片状剥落下来的现象称为疲劳剥落。点蚀也是由于材料疲劳引起一种疲劳现象,但形状尺寸很小,点蚀扩展后将形成疲劳剥落。 疲劳剥落的形态特征一般具有一定的深度和面积,使滚动表面呈凹凸不平的鳞状,有尖锐的沟角.通常呈显疲劳扩展特征的海滩装纹路.产生部位主要出现在套圈和滚动体的滚动表面。 轴承疲劳失效的机理很复杂,也出现了多种分析理论,如最大静态剪应力理论、最大动态剪应力理论、切向力理论、表面微小裂纹理论、油膜剥落理论、沟道表面弯曲理论、热应力理论等。这些理论

中没有一个理论能够全面解释疲劳的各种现象,只能对其中的部分现象作出解释。目前对疲劳失效机理比较统一的观点有: >>>>1、次表面起源型 次表面起源型认为轴承在滚动接触部位形成油膜的条件下运转时,滚动表面是以内部(次表面)为起源产生的疲劳剥落。 >>>>2、表面起源型 表面起源型认为轴承在滚动接触部位未形成油膜或在边界润滑状态下运转时,滚动表面是以表面为起源产生的疲劳剥落。 >>>>3、工程模型 工程模型认为在一般工作条件下,轴承的疲劳是次表面起源型和表面起源型共同作用的结果。 疲劳产生的原因错综复杂,影响因素也很多,有与轴承制造有关的因素,如产品设计、材料选用、制造工艺和制造质量等;也有与轴承使用有关的因素,如轴承选型、安装、配合、润滑、密封、维护等。具体因素如下:

滑动轴承的应力分析

滑动轴承的应力分析 胡雄海汪久根蒋志浩 (浙江大学机械系杭州310027) 摘要:奉文埘发动机的滑动轴承进行r计算,求解r滑动轴承的雷诺方群、粘度方程、密度方程与载荷方程,得到丁压力分布与油膜厚度分布.进而通过接触力学分析得到轴承讨内的应力分布。应力分布是影响利料的塑性变形,并对分析滑动轴承的胶合失效有宴际意义,因此建议用最大Mt**应力来指导滑动轴承的设计。 关键词:滑动轴承压力分布应力分布胶合 AnalysisofStre蟠FieldofJournalBeariIlg HuXion口haiWangJiugenJiangZhiha0 (瞻pa血wntorM“瑚icdE。睁T黜drIg,曲ql龃gu脚畸,H且丌曲)u,31(x砣7J Ahh们:1kpe击唧岫ce0fJ删m出k面ng0f叫t棚曲ile删n黼诘锄出y刊lnt11isp8p盯.T¨Re州(|sequ曲0n,㈣可。qIJ血∞td删h即岫椰a甜load即p血册a陀“刊mt}lafillitedi丑em耐dHmodThhvdmdⅥl删。口嗍叫mdl蚰i}Ⅲi帅andfⅡmsh8pcare0btaill。d,Ⅲ“tIlP山r胛一dirr向orldMis髓shcss6eldiscd叫18侧ha刊(mL¨a}mvepf粥u忙d孟t—hudmlT|mrTmxim呻Mis幅sⅡt鹦1ss1PF曲c蛐Ily陀laled 诵山山e孵i珊“ngfduIe0fbeariIlgbush幅;tIlerdoret}lemaxlⅡu瑚str瞄s诂p叫删tnku9甜【o印1小tk捌印dJoLmlaIⅫ“茚- Ke11_or凼:J伽咖dⅨm自晖Pl髑蛐tⅨ曲曲Ilt;0nSh璐neHsei迥l血罄 滑动轴承广泛应用在各种仪器设备,特别在高速、重载、高精度和人转矩的场合。轴承的失效如磨损、刮伤.牯着、胶合等失效形式经常发生,如图1常见的粘着失效形式。尤其是发动机曲轴系中的滑动轴承是存重载、润滑不良和高温条件下运行,轴瓦胶合失效较为严重。近几年对滑动轴承应力分布的分析研究比较少,众多学者主要集中在滑动轴承的粗糙度、变形、非牛顿体等方面进行研究。,wmg和z}—#“针对弹性支撑轴承的--二维热弹流体润滑研究,分析热弹变形对轴承性能的影响,指出热弹变形对轴承性能的影响比热变形大;Gn—Ilrai粕和PrakasH“学虑有限长含油轴承的表面粗糙度的冈素,认为粗糙度的类型对含油轴承的性能影响较大,横向粗糙度使轴承承载能力和孽擦力增加,纵向粗糙度使摩擦力和摩擦系数有细微的增加,偏位角随粗糙度的变化而不显著;Gecim”J在多级通用的非牛顿体润滑油对轴承性能的影响文中阐述了采用牛顿体和非牛顿模型计算功率损失、宽径比、剪应率的稳定性等参数的差异,许多条件下不能简单用牛顿体模型替代。本文分析?实际发动机应力场,联立滑动轴承的雷诺方程、粘度和密度方程的求解,并经迭代计算,得到滑动轴承的压力分布与油膜厚度分布的三维曲线图,进而分析得到轴承衬内的应力分布,材料塑性变形与应力分布有关。通过分析,寻找滑动轴承的失效类型和主要原因,并比较在不同转速和不同载荷情况下的Mises应力分布形式,从而得出轴承的失效部位,针对性地提出提高活塞曲轴系统轴承性能、减少轴承失效发生的途径 图l轴承的粘着失效 1基本方程 径向滑动轴承建立的数学模型如图2表不,径向载荷为彤,偏位角日,润滑油作为牛顿体与虑,由丁润滑液膜较厚,传热良好,故模埠J按一般的等温状态分析。, 图2径向滑动轴承示意图 (1)润滑剂的粘度方程[4-“ 叩=轴{(1“珈+9.6)I—l+(1+5.1×1旷9p)9】) 式中,珊——大气压下室温条件时的润滑油粘度;∞取06: -浙江省自然科学基金(598039)与国家自然科学基金(59505006)资助项目。 2《润滑与密封》

滚动轴承的失效形式和原因

滚动轴承的失效形式及其原因 滚动轴承在使用过程中,由于很多原因造成其性能指标达不到使用要求时就产生了失效或损坏.常见的失效形式有疲劳剥落、磨损、塑性变形、腐蚀、烧伤、电腐蚀、保持架损坏等。 一,疲劳剥落 疲劳有许多类型,对于滚动轴承来说主要是指接触疲劳。滚动轴承套圈各滚动体表面在接触应力的反复作用下,其滚动表面金属从金属基体呈点状或片状剥落下来的现象称为疲劳剥落。点蚀也是由于材料疲劳引起一种疲劳现象,但形状尺寸很小,点蚀扩展后将形成疲劳剥落。 疲劳剥落的形态特征一般具有一定的深度和面积,使滚动表面呈凹凸不平的鳞状,有尖锐的沟角.通常呈显疲劳扩展特征的海滩装纹路.产生部位主要出现在套圈和滚动体的滚动表面. 轴承疲劳失效的机理很复杂,也出现了多种分析理论,如最大静态剪应力理论、最大动态剪应力理论、切向力理论、表面微小裂纹理论、油膜剥落理论、沟道表面弯曲理论、热应力理论等。这些理论中没有一个理论能够全面解释疲劳的各种现象,只能对其中的部分现象作出解释。目前对疲劳失效机理比较统一的观点有: 1、次表面起源型 次表面起源型认为轴承在滚动接触部位形成油膜的条件下运转时,滚动表面是以部(次表面)为起源产生的疲劳剥落。 2、表面起源型 表面起源型认为轴承在滚动接触部位未形成油膜或在边界润滑状态下运转时,滚动表面是以表面为起源产生的疲劳剥落。 3、工程模型 工程模型认为在一般工作条件下,轴承的疲劳是次表面起源型和表面起源型共同作用的结果。 疲劳产生的原因错综复杂,影响因素也很多,有与轴承制造有关的因素,如产品设计、材料选用、制造工艺和制造质量等;也有与轴承使用有关的因素,如轴承选型、安装、配合、润滑、密封、维护等。具体因素如下: A、制造因素

关于滑动轴承技术问答详解版

滑动轴承 工作时轴承和轴颈的支承面间形成直接或间接滑动摩擦的轴承,称为滑动轴承(图14-1a)。 滑动轴承工作表面的摩擦状态有非液体摩擦和液体摩擦之分。图14-1b、图14-1c是轴承摩擦表面的局部放大图,如图14-1b所示,摩擦表面不能被润滑油完全隔开的轴承称为非液体摩擦滑动轴承。这种轴承的摩擦表面容易磨损,但结构简单,制造精度要求较低,用于一般转速,载荷不大或精度要求不高的场合。摩擦表面完全被润滑油隔开的轴承称为液体摩擦滑动轴承,如图14-1c所示。这种轴承与轴表面不直接接触,因此避免了磨损。液体摩擦滑动轴承制造成本高,多用于高速、精度要求较高或低速、重载的场合。 a 滑动轴承原理图 b非液体摩擦状态 c 液体摩擦状态 图14-1滑动轴承的摩擦状态 根据轴承所能承受的载荷方向不同,滑动轴承可分为向心滑动轴承和推力滑动轴承。向心滑动轴承用于承受径向载荷;推力滑动轴承用于承受轴向载荷。 14—1滑动轴承的结构形式与特点

1.整体式滑动轴承是在机体上、箱体上或整体的轴承座上直接镗出轴承孔,并在孔内镶入轴套,如图14-2所示,安装时用螺栓联接在机架上。这种轴承结构形式较多,大都已标准化。它的优点是结构简单、成本低;缺点是轴颈只能从端部装入,安装和维修不便,而且轴承磨损后不能调整间隙,只能更换轴套,所以只能用在轻载、低速及间歇性工作的机器上。 图14-2整体式向心滑动轴承 2.剖分式滑动轴承(对开式滑动轴承)如图14-3所示,它由轴承座、轴承盖、剖分式轴瓦等组成。在轴承座和轴承盖的剖分面上制有阶梯形的定位止口,便于安装时对心。还可在剖分面间放置调整垫片,以便安装或磨损时调整轴承间隙。轴承剖分面最好与载荷方向近于垂直。一般剖分面是水平的或倾斜45°角,以适应不同径向载荷方向的要求。这种轴承装拆方便,又能调整间隙,克服了整体式轴承的缺点,得到了广泛的应用

滑动轴承 ppt

第十二章滑动轴承 §12-1 滑动轴承概述 §12-2 滑动轴承的典型结构 §12-3 滑动轴承的失效形式及常用材料 §12-4 滑动轴承轴瓦结构 §12-5 滑动轴承润滑剂的选择 §12-6 不完全液体润滑滑动轴承的设计计算 §12-7 液体动力润滑径向滑动轴承的设计计算 §12-8 其它形式滑动轴承简介

滑动轴承概述1轴承的作用是支承轴。轴在工作时可以是旋转的,也可以是静止的。1.能承担一定的载荷,具有一定的强度和刚度。 2.具有小的摩擦力矩,使回转件转动灵活。 3.具有一定的支承精度,保证被支承零件的回转精度。根据轴承中摩擦的性质,可分为滑动轴承和滚动轴承。 一、轴承应满足如下基本要求: 二、轴承的分类 根据能承受载荷的方向,可分为向心轴承、推力轴承、向心推力轴承。 (或称为径向轴承、止推轴承、径向止推轴承)。 根据润滑状态,滑动轴承可分为:不完全液体润滑滑动轴承。 完全液体润滑滑动轴承。

滑动轴承概述2四、滑动轴承设计内容 三、滑动轴承的特点滚动轴承绝大多数都已标准化,故得到广泛的应用。但是在以下场合,则主要使用滑动轴承: 1.工作转速很高,如汽轮发电机。 2.要求对轴的支承位置特别精确,如精密磨床。 3.承受巨大的冲击与振动载荷,如轧钢机。 4.特重型的载荷,如水轮发电机。 5.根据装配要求必须制成剖分式的轴承,如曲轴轴承。 6.在特殊条件下工作的轴承,如军舰推进器的轴承。 7.径向尺寸受限制时,如多辊轧钢机。 轴承的型式和结构选择;轴瓦的结构和材料选择;轴承的结构参数设计;润滑剂及其供应量的确定;轴承工作能力及热平衡计算。

径向滑动轴承的典型结构1一、径向滑动轴承的结构 1.整体式径向滑动轴承 特点:结构简单,成本低廉。 应用:低速、轻载或间歇性工作的机器中。轴承座整体轴套 螺纹孔油杯孔 因磨损而造成的间隙无法调整。 只能从沿轴向装入或拆出。

滚动轴承习题

问答题 1.问:滚动轴承由哪几个基本部分组成? 答:由内圈、外圈、滚动体和保持架等四部分组成。滚动体是滚动轴承中的核心元件,它使相对运动表面间的滑动摩擦变为滚动摩擦。 2.问:常用的滚动体有哪些? 答:滚动体有球、圆柱滚子、滚针、圆锥滚子、球面滚子、非对称球面滚子等几种。 3.问:保持架的主要作用是什么? 答:保持架的主要作用是均匀地隔开滚动体,使滚动体等距离分布并减少滚动体间的摩擦和磨损。如果没有保持架,则相邻滚动体转动时将会由于接触处产生较大的相对滑动速度而引起磨损。 4.问:按轴承所承受的外载荷不同,滚动轴承可以分为哪几种? 答:可以概况地分为向心轴承、推力轴承和向心推力轴承三大类。 5.问:常用滚动轴承的类型有哪些? 答:调心球轴承、调心滚子轴承、推力调心滚子轴承、圆锥滚子轴承、大锥角圆锥滚子轴承、推力球轴承、双向推力球轴承、深沟球轴承、角接触球轴承、外圈无挡边的圆柱滚子轴承、内圈无挡边的圆柱滚子轴承、内圈有单挡边的圆柱滚子轴承、滚针轴承、带顶丝外球面球轴承等。 6.问:选择滚动轴承类型时应考虑的主要因素有哪些? 答:1)轴承的载荷:轴承所受载荷的大小、方向和性质,是选择轴承类型的主要依据。2)轴承的转速:在一般转速下,转速的高低对类型的选择不发生什么影响,只有在转速较高时,才会有比较显著的影响。3)轴承的调心性能;4)轴承的安装和拆卸。 7.问:什么是轴承的寿命? 答:单个轴承,其中一个套圈或滚动体材料首次出现疲劳扩展之前,一套圈相对于另一套圈的转数称为轴承的寿命。由于制造精度、材料的均质程度等的差异,即使是同样的材料、同样尺寸以及同一批生产出来的轴承,在完全相同的条件下工作,它们的寿命也会极不相同。 8.问:滚动轴承的失效形式主要有哪几种? 答:主要有:点蚀、塑性变形、磨粒磨损、粘着磨损、锈蚀、轴承烧伤等。 9.问:什么是轴承的基本额定寿命? 答:按一组轴承中10%的轴承发生点蚀破坏,而90%的轴承不发生点蚀破坏前的的转数(以百万转为单位)或工作小时数作为轴承的寿命,并把这个寿命叫做基本额定寿命,以L10表示。 10.问:什么是轴承的基本额定动载荷? 答:使轴承的基本额定寿命恰好为一百万转时,轴承所能承受的载荷值,称为轴承的基本额定动载荷,用C表示。对向心轴承,指的是纯径向载荷,用Cr表示;对推力轴承,指的是纯轴

滑动轴承项目可行性计划 (1)

滑动轴承项目 可行性计划 规划设计/投资分析/产业运营

滑动轴承项目可行性计划 在机械产品中,轴承属于高精度产品,不仅需要数学、物理等诸多学科理论的综合支持,而且需要材料科学、热处理技术、精密加工和测量技术、数控技术和有效的数值方法及功能强大的计算机技术等诸多学科为之服务,高端滑动轴承对技术和精度的要求更苛刻。由于我国大多数轴承企业在研发资金投入、创新体系建设运行、人才培养等方面落后于国际领先企业,轴承的精度、寿命、噪音等关键性能还没有充分满足高端机械的要求,因此,在航空航天、高速铁路客车、高档轿车、计算机、空调器、高压承载机械、高速机床等装备上,很多轴承需要依赖进口。根据根据中国轴承工业协会出具的《全国轴承行业“十三五”发展规划》,我国每年约需进口40亿美元轴承,存在着一个很大的进口替代市场空间。随着轴承企业的技术投入和装备改善,我国轴承自主创新能力会大大加强,创新产品有望替代进口产品和取代传统产品。 该滑动轴承项目计划总投资12297.91万元,其中:固定资产投资9673.33万元,占项目总投资的78.66%;流动资金2624.58万元,占项目总投资的21.34%。 达产年营业收入20497.00万元,总成本费用16265.08万元,税金及附加205.69万元,利润总额4231.92万元,利税总额5021.32万元,税后

净利润3173.94万元,达产年纳税总额1847.38万元;达产年投资利润率34.41%,投资利税率40.83%,投资回报率25.81%,全部投资回收期5.37年,提供就业职位385个。 报告针对项目的特点,分析投资项目能源消费情况,计算能源消费量并提出节能措施;分析项目的环境污染、安全卫生情况,提出建设与运营过程中拟采取的环境保护和安全防护措施。 ......

滑动轴承设计

滑动轴承 1 概述 1.1滑动轴承的分类 滑动轴承按照承受载荷的方向主要分为:1)径向滑动轴承,主要承受径向载荷;2)推力滑动轴承,承受轴向载荷。 按照滑动表面间润滑状态的不同可分为:1)液体润滑轴承;2)不完全液体润滑轴承;3)自润滑轴承。 按照液体润滑承载机理不同,液体润滑轴承又分为1)液体动压润滑轴承;2)液体静压润滑轴承。 1.2滑动轴承的特点及应用 与滚动轴承相比,滑动轴承有如下特点:1)在高速重载下能正常工作,寿命长;2)精度高;3)滑动轴承能做成剖分式的,能满足特殊结构需要;4)液体摩擦轴承具有很好的缓冲和阻尼作用,可以吸收振动、缓和冲击;5)滑动轴承的径向尺寸比滚动轴承小;6)启动摩擦阻力较大;7)非液体摩擦滑动轴承具有结构简单、使用方便等优点。 2 滑动轴承的主要结构形式 2.1径向滑动轴承 2.1.1整体式径向滑动轴承 组成:轴承座(常为铸铁)、轴瓦(开油孔,内表面开油沟以送油)。 优点:结构简单。 缺点:1)磨损后,间隙无法调整;2)轴颈只能从一端装入,对中间轴颈的轴无法安装。 2.1.2剖分式径向滑动轴承 它是由轴承盖、轴承座、剖分轴瓦和联接螺栓等所组成。轴承中直接支承轴颈的零件是轴瓦。为了安装时容易对心,在轴承盖与轴承座的中分面上做出阶梯形的梯口。轴承盖应当适度压紧轴瓦,使轴瓦不能在轴承孔中转动。轴承盖上制有螺纹孔,以便安装油杯或油管。

当载荷垂直向下或略有偏斜时,轴承的中分面常为水平方向。若载荷方向有较大偏斜时,则轴承的中分面也斜着布置(通常倾斜45°,使中分平面垂直于或接近垂直于载荷)。 2.2推力滑动轴承 轴上的轴向力应采用推力轴承来承受。止推面可以利用轴的端面,也可在轴的中段做出凸肩或装上推力圆盘。后面将论述两平行平面之间是不能形成动压油膜的,因此须沿轴承止推面按若干块扇形面积开出楔形。 实心式空心式 单环式多环式

滚动轴承常见的失效形式及原因

滚动轴承常见的失效形式及原因 滚动轴承常见的失效形式及原因分析 滚动轴承在使用过程中由于很多原因造成其性能指标达不到使用要求时就产生了失效或损坏.常见的失效形式有疲劳剥落、磨损、塑性变形、腐蚀、烧伤、电腐蚀、保持架损坏等。 疲劳有许多类型,对于滚动轴承来说主要是指接触疲劳。滚动轴承套圈各滚动体表面在接触应力 的反复作用下,其滚动表面金属从金属基体呈点状或片状剥落下来的现象称为疲劳剥落。点蚀也是由于材料疲劳引起一种疲劳现象,但形状尺寸很小,点蚀扩展后将形成疲劳剥落。 疲劳剥落的形态特征一般具有一定的深度和面积,使滚动表面呈凹凸不平的鳞状,有尖锐的沟角. 通常呈显疲劳扩展特征的海滩装纹路.产生部位主要岀现在套圈和滚动体的滚动表面. 轴承疲劳失效的机理很复杂,也岀现了多种分析理论,如最大静态剪应力理论、最大动态剪应力理论、切向力理论、表面微小裂纹理论、油膜剥落理论、沟道表面弯曲理论、热应力理论等。这些理论中没有一个理论能够全面解释疲劳的各种现象,只能对其中的部分现象作出解释。目前对疲劳失效机理比较统一的观点有: 次表面起源型认为轴承在滚动接触部位形成油膜的条件下运转时,滚动表面是以内部(次表面)为起 源产生的疲劳剥落。 表面起源型认为轴承在滚动接触部位未形成油膜或在边界润滑状态下运转时,滚动表面是以表面为起 源产生的疲劳剥落。 工程模型认为在一般工作条件下,轴承的疲劳是次表面起源型和表面起源型共同作用的结果。 疲劳产生的原因错综复杂,影响因素也很多,有与轴承制造有关的因素,如产品设计、材料选用、制

造工艺和制造质量等;也有与轴承使用有关的因素,如轴承选型、安装、配合、润滑、密封、维护等。具■体因素如下: A制造因素| 1 、产品结构设计的影响:产品的结构设计是根据使用性能目标值来确定的,这些目标值如载荷容量、寿命、精度、可靠性、振动、磨损、摩擦力矩等。在设计时,由于各种原因,会造成产品设计与使用的不适用或脱节,甚至偏离了目标值,这种情况很容易造成产品的早期失效。2、材料品质的影响:[轴承工作时,零件滚动表面承受周期性交变载荷或冲击载荷。由于零件之间的接触面积很小,因此,会产生极高的接触应力。在接触应力反复作用下,零件工作表面将产生接触疲劳而导致金属剥落。就材料本身的品质来讲,其表面缺陷有裂纹、表面夹渣、折叠、结疤、氧化皮和毛刺等,内部缺陷有严重偏析和疏松、显微孔隙、缩孔、气泡、白点、过烧等,这些缺陷都是造成轴承早期疲劳剥落的主要原因。在材料品质中,另一个主要影响轴承疲劳性能的因素是材料的纯洁度,其具体表现为钢中含氧量的多少及夹杂物的数量多少、大小和分布上。3、热处理质量的影响:轴承热处理包括正火、退火、渗碳、淬火、回火、附加回火等。其质量直接关系到后续的加工质量及产品的使用性能。4、加工质量的影响:首先是钢材金属流线的影响。 钢材在轧制或锻造过程中,其晶粒沿主变形方向被拉长,形成了所谓的钢材流线(纤维)组织。试验表明,该流线方向平行于套圈工作表面的与垂直的相比,其疲劳寿命可相差 2.5倍。其次是磨削变质层。磨削变 质层对轴承的疲劳寿命与磨损寿命有很大的影响。变质层的产生使材料表面层的组织结构和应力分布发生变化,导致表面层的硬度下降、烧伤,甚至微裂纹,从而对轴承疲劳寿命产生影响。受冷热加工条件及 质量控制的影响,产品在加工过程中会岀现质量不稳定或加工误差,如热加工的材料淬、回火组织达不到工艺要求、硬度不均匀和降低,冷加工的几何精度超差、工作表面的烧伤、机械伤、锈蚀、清洁底低等,会造成轴承零件接触不良、应力集中或承载能力下降,从而对轴承疲劳寿命产生不同程度的影响。 B、使用因素 使用因素主要包括轴承选型、安装、配合、润滑、密封、维护等。不正确的安装方法很容易造成成 轴承损坏或零件局部受力产生应力集中,引起疲劳。过大的配合过盈量容易造成内圈滚道面张力增加及零件抗疲劳能力下降,甚至岀现断裂。润滑不良会引起不正常的摩擦磨损,并产生大量的热量,影响材料 组织和润滑剂性能。如果润滑不当,即便选用再好的材料制造,加工精度再高,也起不到提高轴承寿命的效果。密封不良容易使杂质进入轴承内部,既影响零件之间的正常接触形成疲劳源,又影响润滑或污染润滑剂。根据疲劳产生的机理和主要影响因素,可以有针对性地提岀预防措施。如对表面起源损伤引起的疲劳,可以通过对零件表面进行表面强化处理,对次表面起源型疲劳可以通过改善材料品质等措施。而提高零件加工质量尤其是零件表面质量、提高使用质量、控制杂质流入轴承内部、保证润滑质量等措施对预防和延缓疲劳都有十分重要的意义。 表面塑性变形主要是指零件表面由于压力作用形成的机械损伤。在接触表面上,当滑动速度比滚动速度小得多的时候会产生表面塑性变形。表面塑性变形分为一般表面塑性变形和局部表面塑性变形两类。 A、一般表面塑性变形:是由于粗糙表面互相滚动和滑动,同时,使粗糙表面不断产生塑性碰撞所造成,其结果形成了冷轧表面,从外观上看,这种冷轧表面已被辗光,但是,如果辗光现象比较严重,在冷轧表 面上容易形成大量浅裂纹,浅裂纹进一步发展可能(在粗糙表面区域区)导致显微剥落,但这种剥落很浅,只有几个微米,它能够覆盖很宽的接触表面。根据弹性流体动压润滑理论,一般表面塑性变形产生的原因是 由于两个粗糙表面直接接触,其间没有形成承载的弹性流体动压润滑膜.因此,当油膜润滑参数小于一定值 时,将产生的一般表面塑性变形.一般油膜润滑参数值越小表面塑性变形越严重 B、局部表面塑性变形:局部表面塑性变形是发生在摩擦表面的原有缺陷附近。最常见的原有缺陷,如压坑(痕)、磕碰伤、擦伤、划伤等。 1、压坑(痕):压坑(痕)是由于在压力作用下硬质固体物侵入零件表面产生的凹坑(痕)现象。压 坑(痕)的形态特征是:形状和大小不一,有一定深度,压坑(痕)边缘有轻微凸起,边缘较光滑。硬质 固体特的来源是轴承零件在运转中产生的金属颗粒、密封不良造成轴承外部杂质侵入。压坑(痕)产生的部位主要在

相关文档
相关文档 最新文档