文档库 最新最全的文档下载
当前位置:文档库 › 基于ORCAD电路仿真对差动放大电路的研究

基于ORCAD电路仿真对差动放大电路的研究

基于ORCAD电路仿真对差动放大电路的研究
基于ORCAD电路仿真对差动放大电路的研究

差分放大电路Multisim仿真

差分放大电路仿真 双端输入双端输出差分放大电路模型: 双端输入双端输出差分放大电路的调零和静态工作点求解: XMM1和XMM2的电压都为6.398V,输出电压为零。双端输入双端输出时静态工作点如下图所示,Ib=4.975uA,Ie=1.13mA,Vcq=6.398V。 双端输入单端输出时的静态工作点: Ib=5.197uA, Ie=1.13mA,Vcq1=6.398V,Vcq2=2.169V。 对比上图的静态工作点可知,XMM2的静态工作点基本不变,但XMM1的静态工作点变化较大,计算公式可参照模电书上的静态工作点计算公式,经计算和实际的仿真结果非常接近。

VCC’=VCC*R6/(R1+R6)=12*5/(10+5)=4V,Rc’=R1//R6=10*5/(10+5)=3.33,Ieq1=(VCC-Ubeq1)/2R11=(12-0.7)/2/10=0.565mA,Vcq1=Vcc’-Ieq1*Rc’=4-0.565*3.33=2.11167V,基本和仿真结果相同。 双端输入双端输出差分放大电路差分放大倍数: 输入电压Ui=7.071mV,输出电压Uo=124.194,Aod=Uo/Ui=17.56 把R3和R4减小为510Ω后,放大倍数如下图所示:放大倍数为26.28。 共模放大倍数: 下图测量的是差分放大电路对共模信号的放大作用,Ui=7.071mV,输出电压为6.935nV,对共模信号有很强的抑制作用

把R11改为一个由三极管组成的恒流源: Uo=55.676pV,相对于加10KΩ的电阻R11,能更好的抑制共模信号,能模电书上的公式和结论吻合。

差动式放大电路 课程设计

电子与电气工程学院 课程设计报告 课程名称模拟电子技术课程设计设计题目差动式放大电路 所学专业名称 班级 学号 学生姓名 指导教师 年月日

电气学院模拟电子技术课程设计 任务书 设计名称:差动式放大电路 学生姓名:指导教师: 起止时间:自年月日起至年月日止 一、课程设计目的 利用Multisim设计一个差动式放大电路。 二、课程设计任务和基本要求 设计任务:能够运用Multisim软件对模拟电路进行设计和性能分析,掌握设计的基本方法和步骤。 基本要求: 1. 加深对差动放大器性能及特点的理解; 2. 学习差动放大器主要性能指标的测试方法; 3.在仿真软件中进行调试检测完成课程任务; 4.撰写课程设计论文要求符合模板的相关要求,字数要求3000字以上。 目录 摘要与关键词 (4)

1.设计任务 (4) 2.系统工作原理 (4) 3.总电路图设计 (5) 4.仿真测试与分析 (7) 4.1 静态工作点分析 (7) 4.2 直流信号输入 (7) 4.2.1 直流差模信号分析 (7) 4.2.2 直流共模信号分析 (8) 4.3 交流信号输入 (8) 4.4 双端输入分析 (10) 4.4.1 单端输入共模信号分析 (10) 4.4.2 双端输入共模信号分析 (11) 5.设计总结 (13) 6.主要参考文献 (13)

摘要与关键词 摘要:差动放大电路又叫差分电路,他不仅能有效的放大直流信号,而且能有效的减小由于电源波动和晶体管随温度变化多引起的零点漂移,因而获得广泛的应用。特别是大量的应用于集成运放电路,他常被用作多级放大器的前置级。差分放大电路利用电路参数的对称性和负反馈作用,有效地稳定静态工作点,以放大差模信号抑制共模信号为显著特征,广泛应用于直接耦合电路和测量电路的输入级。 关键词:差动放大器;Multisim软件;示波器;耦合器;晶体管 1.设计任务 利用Multisim设计一个差动式放大电路。主要参数:选用三极管2N2222A,采用±12V的双电源,差模电压增益|Avd|>20,共模抑制比KCMR>>20. 2.系统工作原理 图一系统工作原理图 单元单路的设计与选择 如图所示采用两个完全一样的三极管组成对称式结构作为差分放大电路的基本单元。

差动放大器实验报告

差动放大电路的分析与综合(计算与设计)实验报告 1、实验时间 10月31日(周五)17:50-21:00 2、实验地点 实验楼902 3、实验目的 1. 熟悉差动放大器的工作原理(熟练掌握差动放大器的静态、动态分析方法) 2. 加深对差动放大器性能及特点的理解 3. 学习差动放大电路静态工作点的测量 4. 学习差动放大器主要性能指标的测试方法 5. 熟悉恒流源的恒流特性 6. 通过对典型差动放大器的分析,锻炼根据实际要求独立设计基本电路的能力 7. 练习使用电路仿真软件,辅助分析设计实际应用电路 8. 培养实际工作中分析问题、解决问题的能力 4、实验仪器 数字示波器、数字万用表、模拟实验板、三极管、电容电阻若干、连接线 5、电路原理 1. 基本差动放大器 图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。 部分模拟图如下 1.直流分析数据 2.直流分析仿真数据 3.交流分析数据 4.交流分析仿真数据 具有平衡电位器的 差动放大器 图是差动放大器的结 构。它由两个元件参数相 近的基本共射放大电路组 成。 1.直流分析数据 2.直流分析仿真数据

3.交流分析数据 4.交流分析仿真数据 具有恒流源的差动放大器 图2-3是差动放大器的结构。它由两个元件参数相近的基本共射放大电路组成。 1.直流分析数据 2.直流分析仿真数据 3.交流分析数据 4.交流分析仿真数据 图3.1 差动放大器实验电路 当开关K 拨向右边时,构成具有恒流源的差动放大器。晶体管 T 3 与电阻3E R 共同组成镜象恒流源电路 , 为差动放大器提供恒定电流E I 。用晶体管恒流源代替发射极电阻 E R ,可以进一步提高差动 放大器抑制共模信号的能 力。 1、差动电路的输入输 出方式 根据输入信号和输出信号的不同方式可以有四种连接方式,即 : (l) 双端输入 -双端输出,将差模信号加在1s V 、2s V 两端 , 输出取自1o V 、2o V 两端。 (2) 双端输入 -单端输出,将差模信号加在1s V 、2s V 两端 , 输出取自1o V 或2o V 到地。 (3) 单端输入一双端输出,将差模信号加在1s V 上,2s V 接地 ( 或1s V 接地而信号加在2s V 上 ), 输出取自1o V 、2o V 两端。 (4) 单端输入 -单端输出 将差模信号加在1s V 上,2s V 接地 ( 或1s V 接地而信号加在2s V 上 ), 输出取自1o V 或2o V 到地。

3.2模拟集成电路设计-差分放大器版图

集成电路设计实习Integrated Circuits Design Labs I t t d Ci it D i L b 单元实验三(第二次课) 模拟电路单元实验-差分放大器版图设计 2007-2008 Institute of Microelectronics Peking University

实验内容、实验目的、时间安排 z实验内容: z完成差分放大器的版图 z完成验证:DRC、LVS、后仿真 z目的: z掌握模拟集成电路单元模块的版图设计方法 z时间安排: z一次课完成差分放大器的版图与验证 Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page1

实验步骤 1.完成上节课设计放大器对应的版图 对版图进行、检查 2.DRC LVS 3.创建后仿真电路 44.后仿真(进度慢的同学可只选做部分分析) z DC分析:直流功耗等 z AC分析:增益、GBW、PM z Tran分析:建立时间、瞬态功耗等 Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page2

Display Option z Layout->Options ->Display z请按左图操作 Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page3

由Schematic创建Layout z Schematic->Tools->Design Synthesis->Layout XL->弹出窗口 ->Create New->OK >选择Create New>OK z Virtuoso XL->Design->Gen From Source->弹出窗口 z选择所有Pin z设置Pin的Layer z Update Institute of Microelectronics, Peking University集成电路设计实习-单元实验三Page4

差分放大电路解读

实验三差分放大电路 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 图3-1是差动放大器的基本结构。它由两个元件参数相同的基本共射放 大电路组成。当开关K拨向左边时,构成典型的差动放大器。调零电位器R P 用来调节T 1、T 2 管的静态工作点,使得输入信号U i =0时,双端输出电压U O =0。 R E 为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图3-1 差动放大器实验电路

当开关K 拨向右边时,构成具有恒流源的差动放大器。 它用晶体管恒流源代替发射极电阻R E ,可以进一步提高差动放大器抑制共模信号的能力。 1、静态工作点的估算 典型电路 E BE EE E R U U I -≈ (认为U B1=U B2≈0) E C2C1I 2 1 I I == 恒流源电路 E3 BE EE CC 2 1 2 E3C3R U )U (U R R R I I -++≈≈ C3C1C1I 2 1 I I == 2、差模电压放大倍数和共模电压放大倍数 当差动放大器的射极电阻R E 足够大,或采用恒流源电路时,差模电压放大倍数A d 由输出端方式决定,而与输入方式无关。 双端输出: R E =∞,R P 在中心位置时, P be B C i O d β)R (12 r R βR △U △U A +++- == 单端输出 d i C1d1A 21 △U △U A == d i C2d2A 2 1 △U △U A -==

几个常用经典差动放大器应用电路详解资料

几个常用经典差动放大器应用电路详解 成德广营浏览数:1507发布日期:2016-10-10 10:48 经典的四电阻差动放大器(Differential amplifier,差分放大器)似乎很简单,但其在电路中的性能不佳。本文从实际生产设计出发,讨论了分立式电阻、滤波、交流共模抑制和高噪声增益的不足之处。关键词:CMRR差动放大器差分放大器 简介 经典的四电阻差动放大器(Differential amplifier,差分放大器)似乎很简单,但其在电路中的性能不佳。本文从实际生产设计出发,讨论了分立式电阻、滤波、交流共模抑制和高噪声增益的不足之处。 大学里的电子学课程说明了理想运算放大器的应用,包括反相和同相放大器,然后将它们进行组合,构建差动放大器。图 1 所示的经典四电阻差动放大器非常有用,教科书和讲座 40 多年来一直在介绍该器件。 图 1. 经典差动放大器 该放大器的传递函数为: 若R1 = R3 且R2 = R4,则公式 1 简化为:

这种简化可以在教科书中看到,但现实中无法这样做,因为电阻永远不可能完全相等。此外,基本电路在其他方面的改变可产生意想不到的行为。下列示例虽经过简化以显示出问题的本质,但来源于实际的应用问题。 CMRR 差动放大器的一项重要功能是抑制两路输入的共模信号。如图1 所示,假设V2 为 5 V,V1 为 3 V,则4V为共模输入。V2 比共模电压高 1 V,而V1 低 1 V。二者之差为 2 V,因此R2/R1的“理想”增益施加于2 V。如果电阻非理想,则共模电压的一部分将被差动放大器放大,并作为V1 和V2 之间的有效电压差出现在VOUT ,无法与真实信号相区别。差动放大器抑制这一部分电压的能力称为共模抑制(CMR)。该参数可以表示为比率的形式(CMRR),也可以转换为分贝(dB)。 在1991 年的一篇文章中,Ramón Pallás-Areny和John Webster指出,假定运算放大器为理想运算放大器,则共模抑制可以表示为: 其中,Ad为差动放大器的增益, t 为电阻容差。因此,在单位增益和 1%电阻情况下,CMRR 等于 50 V/V(或约为 34 dB);在 0.1%电阻情况下,CMRR等于 500 V/V(或约为 54 dB)-- 甚至假定运算放大器为理想器件,具有无限的共模抑制能力。若运算放大器的共模抑制能力足够高,则总CMRR受限于电阻匹配。某些低成本运算放大器具有 60 dB至 70 dB的最小CMRR,使计算更为复杂。 低容差电阻 第一个次优设计如图 2 所示。该设计为采用OP291 的低端电流检测应用。R1 至R4 为分立式 0.5%电阻。由Pallás-Areny文章中的公式可知,最佳CMR为 64 dB.幸运的是,共模电压离接地很近,因此CMR并非该应用中主要误差源。具有 1%容差的电流检测电阻会产生 1%误差,但该初始容差可以校准或调整。然而,由于工作范围超过 80°C,因此必须考虑电阻的温度系数。

差动放大电路

建平县职业教育中心备课教案 课题模块(单元)项目(课)差动放大电路 授课班级11电子授课教师安森授课类型新授授课时数 2 教学目标知识目标差动放大电路中共模负反馈电阻Re的作用,及其对差模信号和共模 信号的不同处理方法 能力目标差动放大电路动态参数计算 情感态度目标培养学生的学习兴趣,培养学生的爱岗敬业精神 教学核心教学重点典型差动放大电路——长尾电路的特点,静态和动态计算。 教学难点1、差动放大电路中共模负反馈电阻Re的作用,及其对差模信号和 共模信号的不同处理方法; 2、差动放大电路动态参数计算; 思路概述本讲以教师讲授为主。用多媒体演示典型差动放大电路——长尾电路的特点、静态和动 态计算等,便于学生理解和掌握。 教学方法读书指导法、演示法。 教学工具电脑,投影仪 教学过程 一、组织教学:师生互相问候,安全教育,上实训课时一定要听从老师的指挥,在实训室不要乱动电源。 二、复习提问: 三、导入新课: 1、直接耦合放大电路的零点漂移 直接耦合放大电路的零点漂移主要是晶体管的温漂造成的。在基本差动放大电路中,利用参数的对称性进行补偿来抑制温漂。在长尾电路和具有恒流源的差动放大电路中,还利用共模负反馈或恒流源抑制每只放大管的温漂。 2、差动放大电路组成及特点 1)电路组成 差分放大器是由对称的两个基本放大电路通过射极公共电阻耦合构成的。“对称”的含义是两个三极管的特性一致,电路参数对应相等,即Rc1=Rc2,Rb1=Rb2,1=2,VBE1=VBE2,rbe1= rbe2,ICBO1=ICBO2。 2)电路特性 (1)差动放大电路对零漂在内的共模信号有抑制作用; (2)差动放大电路对差模信号有放大作用; (3)共模负反馈电阻Re的作用:①稳定静态工作点。②对差模信号无影响。③对共模信号有负反馈作用:Re越大对共模信号的抑制作用越强;也可能使电路的放大能力变差。 3、差动放大电路的输入和输出方式 1)差动放大电路可以有两个输入端:同相输入端和反相输入端。根据规定的正方向,在某输入端加上一定极性的信号,如果输出信号的极性与其相同,则该输入端称为同相输入端。反之,如果输出信号的极性与其相反,则该输入端称为反相输入端。 2)信号的输入方式:若信号同时加到同相输入端和反相输入端,称为双端输入;若信号仅从

差动放大电路仿真课程设计报告

上海工程技术大学课程设计 上海工程技术大学 课程设计名称:差动放大电路设计 专业班级:自动化、0212103 学生姓名:曹娇娇 学号: 021210331 指导教师:张莉萍李洪芹

差动电路的设计与仿真 一、实验目的 1、加深对差动放大器性能及特点的理解。 2、学习差动放大器主要性能指标的测试方法。 3、熟悉Multisim软件的使用,包括电路图编辑、虚拟仪器仪表的使用和掌握常用电路分析法。 4、能够运用Multisim 软件对模拟电路进行设计和性能分析,掌握设计的基本方法和步骤。 5、熟练掌握有关差动放大电路有关知识,并应用相关知识来分析电路,深刻体会使用差动放大电路的作用,做到理论实际相结合,加深对知识的理解。 二、实验要求 1、设计一个带设计恒流源(有三极管构成)的差动放大电路,测试电路每隔三机关的静态工作点值 2、给电路输入直流信号,在信号双输入端状态下分别测试电路的个工作点值。 3、连接好电路对其做出直流分析、交流分析、瞬态分析、傅里叶分析、直流扫描分析、电路传递函数分析,从而研究三极管差放电路的小信号工作特性。 三、差动放大电路实验图设计原理 如下所示:

R1用来调节Q1、Q2管的静态工作点。 差动放大电路是是典型的直流放大电路基本形式,由两个互为发射极耦合的共射电路组成,电路参数完全对称,是运算放大器的前级电路,期中具有恒流源的差动放大电路,应用十分广泛,特别是在模拟电路中,常作为输入级或中间放大级。具有抑制零点漂移作用,是放大直流信号和缓慢变化信号的电路。差动放大电路按输入和输出的方式分为:双端输入双端输出、双端输入单端输出、单端输入双端输出、单端输入单端输出。 差动放大电路又叫差分电路,他不仅能有效的放大直流信号,而且能有效的减小由于电源波动和晶体管随温度变化多引起的零点漂移,因而获得广泛的应用。特别是大量的应用于集成运放电路,他常被用作多级放大器的前置级。

[应用]差动放大电路原理介绍

[应用]差动放大电路原理介绍 从电路结构上说,差动放大电路由两个完全对称的单管放大电路组成。由于电路具有许多突出优点,因而成为集成运算放大器的基本组成单元。一、差动放大电路的工作原理 最简单的差动放大电路如图7-4所示,它由两个完全对称的单管放大电路拼接而成。在该电路中,晶体管T、T型号一样、特性相同,R为输入回路限流电12B1 阻,R为基极偏流电阻,R为集电极负载电阻。输入信号电压由两管的基极输入,B2C 输出电压从两管的集电极之间提取(也称双端输出),由于电路的对称性,在理想情况下,它们的静态工作点必然一一对应相等。 图7-4 最简单的差动放大电路 1(抑制零点漂移 在输入电压为零, u= u= 0 的情况下,由于电路对称,存在I= I,i1 i2 C1 C2所以两管的集电极电位相等,即 U= U,故 C1 C2 u= U- U= 0。 o C1 C2 当温度升高引起三极管集电极电流增加时,由于电路对称,存在,导致两管集电极电位的下降量必然相等,即

所以输出电压仍为零,即。 由以上分析可知,在理想情况下,由于电路的对称性,输出信号电压采用从两管集电极间提取的双端输出方式,对于无论什么原因引起的零点漂移,均能有效地抑制。 抑制零点漂移是差动放大电路最突出的优点。但必须注意,在这种最简单的差动放大电路中,每个管子的漂移仍然存在。 2(动态分析 差动放大电路的信号输入有共模输入、差模输入、比较输入三种类型,输出方式有单端输出、双端输出两种。 (1)共模输入。 在电路的两个输入端输入大小相等、极性相同的信号电压,即,这种输入方式称为共模输入。大小相等、极性相同的信号为共模信号。 很显然,由于电路的对称性,在共模输入信号的作用下,两管集电极电位的大小、方向变化相同,输出电压为零(双端输出)。说明差动放大电路对共模信号无放大作用。共模信号的电压放大倍数为零。 (2)差模输入。 在电路的两个输入端输入大小相等、极性相反的信号电压,即u = -ui1i2 ,这种输入方式称为差模输入。大小相等、极性相反的信号,为差模信号。 在如图7-4所示电路中,设u> 0 u< 0,则在u的作用下,T管的集电i1 i2 i11极电流增大,导致集电极电位下降(为负值);同理,在U的作用下,T管i22的集电极电流减小,导致集电极电位升高(为正值),由于 = ,很显然,和大小相等、一正一负,输出电压为 u- o =

差分放大器设计的实验报告

设计课题 设计一个具有恒流偏置的单端输入-单端输出差分放大器。 学校:延安大学

一: 已知条件 正负电源电压V V V V EE cc 12,12-=-+=+;负载Ω=k R L 20; 输入差模信号mV V id 20=。 二:性能指标要求 差模输入电阻Ω>k R id 10;差模电压增益15≥vd A ;共模抑制 比dB K CMR 50>。 三:方案设计及论证 方案一:

方案二

方案论证: 在放大电路中,任何元件参数的变化,都将产生输出电压的漂移,由温度变化所引起的半导体参数的变化是产生零点漂移的主要原因。采用特性相同的管子使它们产生的温漂相互抵消,故构成差分放大电路。差分放大电路的基本性能是放大差模信号,抑制共模信号好,采用恒流源代替稳流电阻,从而尽可能的提高共模抑制比。 论证方案一:用电阻R6来抑制温漂 ?优点:R6 越大抑制温漂的能力越强; ?缺点:<1>在集成电路中难以制作大电阻; <2> R6的增大也会导致Vee的增大(实际中Vee不

可能随意变化) 论证方案二 优点:(1)引入恒流源来代替R6,理想的恒流源内阻趋于无穷,直流压降不会太高,符合实际情况; (2)电路中恒流源部分增加了两个电位器,其中47R的用来调整电路对称性,10K的用来控制Ic的大小,从而调节静态工作点。 通过分析最终选择方案二。 四:实验工作原理及元器件参数确定 ?静态分析:当输入信号为0时, ?I EQ≈(Vee-U BEQ)/2Re ?I BQ= I EQ /(1+β) ?U CEQ=U CQ-U EQ≈Vcc-I CQ Rc+U BEQ 动态分析 ?已知:R1=R4,R2=R3

差分放大器仿真

《电子技术计算机绘图基础》 设 计 报 告 题目:差分放大器仿真 学院:通信与信息工程学院 专业班级:电子信息工程 学号: 学生姓名: 指导教师:

差分放大器的仿真 一、设计描述 1、设计目的和任务 1).熟悉差分放大器的工程估算,掌握差分放大器静态工作点的调整与测试方法。 2).能够掌握差分放大器性能指标的测试方法。 3).能够掌握multisim 和protel 的基本用法,做出Multisim 仿真图、Protel 原理图、PCB 板,从而加深理解差分放大器的性能特点。 4).熟悉常用电子器件的类别、型号、规格、性能及其使用范围,能查阅有关的电子器件图书。 2、原理分析 (1)基本原理 差分放大器是一种特殊的直接耦合放大器,它能有效的抑制零点漂移;它的基本性能是放大差模信号、抑制共模信号;常用共模抑制比来表征差分放大器对共模信号的抑制能力;稳流电阻的增加可以提高共模抑制比;但稳流电阻不能太大,因此采用恒流源取代稳流电阻,从而进一步的提高共模抑制比。 (2)静态工作点的调整 实验电路通过调节电位器R p 使两个三极管的集电极电压相等来调节电路的对称性,完成电路的调零。 (3)静态工作点的测量 静态工作点的测量就是测出三极管各电极对地直流电压V BQ 、V EQ 、V CQ ,从而计算得到V CEQ 和V BEQ 。而测量直流电流时,通常采用间接测量法测量,即通过直流电压来换算得到直流电流。这样即可以避免更动电路,同时操作也简单。 EQ CQ CEQ V V V -= EQ BQ BEQ V V V -= e EQ EQ R V I = C CQ CC CQ )(R V V I -= (4)电压放大倍数的测量 差分放大器有差模和共模两种工作模式,因此电压放大倍数有差模电压放大倍数和共模电压放大倍数两种。 在差模工作模式下,差模输出端U od1是反相输出端,U od2是同相输出端,则差模电压放大倍数为: ud2 ud1ud A A A += ud2 i od2i od1ud1 A U U U U A -=- == 在共模工作模式下,共模输出端U oc1、U oc2均为反相输出端,则共模电压放大倍数为: uc2 uc1uc A A A -= uc2 i oc2i oc1uc1 A U U U U A == = 电路的共模抑制比K CMR 为:

模电课设单入双出恒流源式差分放大电路的设计

目录 1 课程设计的目的与作用 (1) 1.1设计目的及设计思想 (1) 1.2设计的作用 (1) 1.3 设计的任务 (1) 2 所用multisim软件环境介绍 (1) 3 电路模型的建立 (3) 4 理论分析及计算 (4) 4.1理论分析 (4) 4..1.1静态分析 (4) 4.1.2动态分析 (5) 4.2计算 (5) 5 仿真结果分析 (6) 6 设计总结和体会 (9) 6.1设计总结 (9) 6.2心得体会 (9) 7参考文献 (10)

1 课程设计的目的与作用 1.1设计目的及设计思想 根据设计要求完成对单入双出恒流源式差分放大电路的设计,加强对模拟电子技术的理解,进一步巩固课堂上学到的理论知识。了解恒流源式差分放大电路的工作原理,掌握外围电路设计与主要性能参数的测试方法。 1.2设计作用 通过multisim软件仿真电路可以使我们对恒流源式差分放大电路有更深的理解,同时可以与长尾式放大电路加以比较,看到恒流源式差分放大电路的优越性。 1.3设计任务 1.设计一个单入双出恒流源是差分放大电路,在实验中通过调试电路,能够真正理解和掌握电路的工作原理。 2.正确理解所设计的电路中各元件对放大倍数的影响,特别是三极管的参数。 3.正确处理理论计算数据,并非仿真数据进行比较在比较中加深理解。 2 所用multisim软件环境介绍 multisim软件环境介绍 Multisim是加拿大IIT公司(Interrative Image Technologies Ltd)推出的基于Windows的电路仿真软件,由于采用交互式的界面,比较直观、操作方便,具有丰富的元器件库和品种繁多的虚拟仪器,以及强大的分析功能等特点,因而得到了广泛的引用。 针对不同的用户,提供了多种版本,例如学生版、教育版、个人版、专业版和超级专业版。其中教育版适合高校的教学使用。

差动放大电路解读

差动放大电路 教学目的: 1、掌握基本差动放大电路的组成、工作原理、静态工作情况的分析 2、掌握恒流源差动放大电路的组成、工作原理、静态工作情况的分析 教学重点、难点: 差动放大电路对差模信号的放大作用,对共模信号的抑制作用 教学内容: 1 直接耦合放大器存在的问题 1.1前后级静态工作点的相互影响 在直接耦合放大器中, 由于级与级之间无隔直(流)电容, 因此各级的静态工作点相互影响, 从而要求在设计电路时, 合理安排, 使各级都有合适的静态工作点。 1.2零点漂移 若将直接耦合放大器的输入端短路(ui=0), 理论上讲, 输出端应保持某个固定值不变。然而, 实际情况并非如此, 输出电压往往偏离初始静态值, 出现了缓慢的、无规则的漂移, 这种现象称为零点漂移。 2 基本差分放大电路 2.1电路组成 2.2工作原理 输入信号为零, 即u i1=u i2=0, 放大电路处于静态, 由于电路完全对称, 由下式可知对共模信号具有抑制作用.

I BQ1=I BQ2=I BQ I EQ1=I EQ2=I EQ I CQ1=I CQ2=I CQ U CQ1=U CQ2=U CC -I CQ Rc U O =U CQ1-U CQ2=0 2.3 静态工作点的计算 当输入信号为零时, 放大电路的直流通路如图所示, 由基极回路可得直流电压方程式为 U R I U R I EE e BEQ b BQ =++Re β ++-= = 122 1 R R U U I I b e BEQ EE BQ EQ ) (22121 2 11 2 12 1 R R I U U U U I I I I I I R U I I e c CQ EE CC CEQ CEQ CQ BQ BQ EQ CQ CQ e EE EQ EQ +-+≈== =≈= ≈=β 2.4动态性能分析 (1) 输入信号的类型 1、差模输入信号 在放大器两输入端分别输入大小相等、 相位相反的信号,即u i1=-u i2时,差模输入信号用u id 来表示。 2、共模输入信号 在放大器两输入端分别输入大小相等、相位相同的信号,即u i1=u i2时,共模输入信号常用u ic 来表示。 u i1=-u i2=1/2u id u i1=u i2=u ic 3、输入任意大小信号 不敷出在放大器两输入端分别输入大小不相等时,将其分解成差模信号和共模信号。 u id = u i1-u i2 uic =1/2( u i1+u i2) (2) 对差模信号的放大作用 当从两管集电极取电压时,其差模电压放大倍数表示为 R r R u u u u u u u u A b be c i o i i o o id od ud +- ==--= =β221 12 1 21 当在两个管子的集电极接上负载R L 时, ) 2///(' 'R R R R r R A L c L b be L ud =+- =β )(2r R r be b id += R r c od 2=

镜像电流源作偏置的差分放大器仿真报告

镜像电流源作偏置的差分放大器设计与仿真报告 一、仿真目的 1、熟悉差分放大器和镜像电流源的工作原理 2、学习镜像电流源作偏置的差分放大器的设计方法 3、熟悉Cadence的使用方法 二、电路原理 上图中,所有MOS管均采用0.35的工艺,由镜像电流源提供偏置,作为负载的镜像电流源由pMOS管组成,采用双端输入单端输出,输入信号幅度为正负0.5v。作为偏置的镜像电流源两管子的尺寸均为W=5u,L=2u,差分放大器的两根管子和作为负载的电流源的两 根管子的尺寸均为:W=0.7u,L=0.5u。电源电压为3v,差分放大器的直流偏置电压为2v。 三、仿真过程 1、直流仿真 首先,对电路进行直流仿真,看所有管子是否都处于饱和区,如果不在饱和区,则需要调整管子的尺寸和电路参数。下图是镜像电流源左边管子的直流参数,其它管子参数的查看方法类似:

从结果可以看出,region为2,表示管子处在饱和区,由vgs>vth,vds>vgs-vth也可以看出管子处在饱和区。其它管子通过通过同样的方法查看,都处在饱和区。 2、交流仿真 对电路进行交流仿真,其幅频特性曲线如下: 3、改变管子的宽长比,看其对电路的影响

其它参数不变,改变差分放大器的两个管子的宽长比,通过仿真看其对增益、带宽的影响,这里将管子的宽度设置为原来的10倍,即7u,首先进行直流仿真: 上图是放大器左边管子的直流参数,可以看出其处于饱和区。其它管子仍可以通过相同的方法查看,通过仿真,发现都处于饱和区。然后可以对其进行直流仿真,幅频特性曲线如下:

由仿真结果可看出,其增益变为大约28.4dB,3dB带宽大约为0.3GHz。可见增加管子的宽长比可以增大放大器的增益,但是同时带宽会减小。 4、保证管子原来的参数不变,改变放大器直流偏置电压 将放大器的直流输入电压减小到1v,先进行直流仿真,看各个管子是否工作在饱和区,如下: 上图是放大器左边管子的直流参数,可见其工作在饱和区,通过同样的方法查看其它管子的直流参数,发现都工作在饱和区。 然后对电路进行交流仿真,其幅频特性曲线如下:

全差分放大器设计

对于全差分放大器,一般可以得到更大的swing (由于差分信号),同时可以实现对共模干扰、噪声以及偶数阶的非线性的抑制;但其需要有两个匹配的反馈网络,以及共模反馈电路 顺便提一下,对于全差分的折叠共源共栅(folded cascode)放大器,需要注意 转换速率(正向与负向)对输入对差分对的尾电流源和cascode电流源的考虑 非主极点的位置–输入对管的drain节点(注意全差分没有镜像极点的问题..),如果考虑PMOS输入的结构,将会折叠到n管的cascode,从而减小此节点阻抗,提高此非主极点的频率;但是P输入结构亦有其问题,如直流增益和cmfb电路的速度(考虑cmfb控制的为cascode的pmos电流源) 关于共模反馈CMFB 从反馈环路来看,共模的稳定问题来源于闭环的共模增益:由于输入差分对的尾电流源的local-feedback,通常共模增益较小,导致运放无法控制其输出共模点;通过CMFB共模反馈电路,可以提高共模反馈环路的增益,以稳定共模信号。 设计CMFB需考虑补偿以减小环路的稳定时间(settling time)和提高稳定性。 从性能上,我们希望共模反馈的单位增益带宽足够大,但由于cmfb的环路相较于差模通路可能有更多高频极点,故此在一定的功耗要求下其UGB一般比较难做的高,有书中提到可以将其设计为差模UGB 的1/3 一般共模反馈的方法是控制放大器的电流源,这里如果是folded-cascode的结构,可以考虑用cmfb控制cascode的电流源而不是输入差分对的电流源—-因其在共模环路中有较少的节点–>更容易补偿等..(另一种考虑是控制尾电流源可能导致共模增益的问题) 另外,对于cmfb控制的尾电流源,常见将尾电流源分为两半,其中之一由cmfb控制,另一半接恒定偏置电流;这种结构的具体分析可见Gray书12.4.2节的内容,简单来说,single-stage的opamp中控制尾电流源的cmfb结构,其UGB主要为gmt/CL, 其中gmt为尾电流源的跨导,这里拆分尾电流源来减半cmc共模控制的部分,这样UGB减小,即缩减带宽来提升共模反馈环路的相位裕度,当然cmfb的增益相应也减小了;另外恒定偏置部分也可帮助共模电压的初始建立,减小cmfb大的扰动。 具体的,共模反馈可以分为连续时间和开关电容两类 连续时间的共模反馈 一般的问题是信号幅度的限制和共模信号干扰,具体的共模反馈的方法: 1.电阻分压resistive-divider (如下左图) 电阻和cm-sense amplifier的输入电容会引入一个极点,可以通过在电阻上并联电容的方法,引入一个左半平面零点,来减小高频极点的影响

图2差分放大电路静态工作点解读

图2 差分放大电路静态工作点 摘要:简要介绍Multisim8软件的特点,并对差分放大电路进行仿真分析,研 究其如何实现对差模信号放大和对共模信号抑制。仿真结果与理论分析计算一致,在课堂上使模拟电子技术教学更形象、灵活、更贴近工程实际,达到帮助学 生理解原理,更好地掌握所学的知识的目的。对提高学生动手能力、分析问题和 解决问题的能力具有重要的意义。 关键词:Multisim;差分放大电路;仿真分析;差模信号;共模信号 中图分类号:TN707 文献标识码:B 文章编号:1004-373X(2009)04-014-02 Analysis of Differential Amplifier Circuit Simulation Based on Multisim XIONG Xujun (Lanzhou City College,Lanzhou,730070,China) Abstract:Features ofMultisim8 software and differential amplifier for the simulation analysis are introduced,research on how to enlarge differential mode signal and restrain common mode signal.The simulation results calculated in line with the theoretical analysis,in the classroom teaching of electronic technology to simulate more image,flexible and closer to actual projects,to help students understand theory,a better grasp of the knowledge acquired by the purpose It has great significance to enhance students practical ability and analysis of issues and problem-solving abilitie. Keywords:Multisim;differential amplifier;simulation analysis;differential mode signal;common mode signal 差分放大电路利用电路参数的对称性和负反馈作用,有效地稳定静态工作点, 以放大差模信号抑制共模信号为显著特征,广泛应用于直接耦合电路和测量电 路的输入级。但是差分放大电路结构复杂、分析繁琐,特别是其对差模输入和 共模输入信号有不同的分析方法,难以理解,因而一直是模拟电子技术中的难 点[1,2]。Multisim 作为著名的电路设计与仿真软件,它不需要真实电路环境 的介入,具有仿真速度快、精度高、准确、形象等优点。因此,Multisim被许多 高校引入到电子电路实验的辅助教学中,形成虚拟实验和虚拟实验室。通过对实 际电子电路的仿真分析,对于缩短设计周期、节省设计费用、提高设计质量具有 重要意义。 1Multisim8软件的特点

模电设计-电流镜负载的差分放大器..

模拟集成电路课程设计报告电流镜负载的差分放大器

摘要: 差分放大器是最重要的电路发明之一,它可以追溯到真空管时代。有于差动放大具有很多有用的特性,像对差模输入信号的放大作用和对共模输入信号的抑制作用,所以它已经成为当代高性能模拟电路和混合信号电路的主要选择。电流源在差分放大器中广泛应用,电流源起一个大电阻的作用,但不消耗过多的电压余度。在模拟电路中,电流源的设计是基于对基准电流的“复制”,稳定的基准电流则由一个相对复杂的电路来产生。在电流镜中,只需调整MOS管的W/L就能获得不同的、精确的复制电流。在本课程设计中,将根据典型电流镜负载差动对中,增益、带宽与MOS管W/L之间的关系,获得满足要求的放大器。

一.设计目标 ................................................................................................................................ - 1 - 二.单个MOS管的的特性 ...................................................................................................... - 2 - 2.1 、NMOS特性仿真...................................................................................................... - 2 - 2.2 、PMOS特性仿真 ...................................................................................................... - 4 - 三.电路设计与参数推导.......................................................................................................... - 6 - 3.1电路设计:.................................................................................................................... - 6 - 3.2手工推导参数................................................................................................................ - 7 - 四.差分放大器仿真 ................................................................................................................. - 9 - 4.1、HSPICE仿真:......................................................................................................... - 9 - 4.2、器件参数修改........................................................................................................... - 10 - 4.3 仿真波形..................................................................................................................... - 12 - 4.2、共模电平的范围:................................................................................................... - 13 - 4.3 数据对比..................................................................................................................... - 16 - 五.总结 ...................................................................................................................................... - 17 -

差分放大电路调试任务书解读

实践项目任务书 实践项目五:差分放大电路分析、制作与调试 教师姓名余红娟授课时数2 累计课时 2 一、实践目标 1.安装、分析并测试差分放大电路 2.爱护工具、器材、整理、清洁、习惯与素养 二、实践设备与材料 1.工具 2.器材 3.仪器仪表 三、实践过程 1.典型差动放大器性能测试Array 图1 按图1连接实验电路,开关K拨向左边构成典型差动放大器。 1)测量静态工作点 ①调节放大器零点 信号源不接入。将放大器输入端A、B与地短接,接通土12V直流电源,用直流电压表测量输出电压UO,调节调零电位器Rp,使UO=0。调节要仔细,力求准确。 ②测量静态工作点 零点调好以后,用直流电压表测量T1、T2管各电极电位及射极电阻RE两端电压URE, 记入表l。表1

2)测量差模电压放大倍数 断开直流电源,将函数信号发生器的输出端接放大器输入A端,地端接放大器输入B 端构成双端输入方式(注意:此时信号源浮地).调节输入信号频率f=lKHZ的正弦信号,输出旋钮旋至零,用示波器监视输出端(集电极C1或C2与地之间)。 表2 接通±12V直流电源,逐渐增大输入电压Ui(约l00mV),在输出波形无失真的情况下。用交流毫伏表测 Ui、Uc1、UC2,记入表2中,并观察Ui、Uc1、UC2之间的相位关系及URE 随Ui改变而变化的情况。(如测Ui时因浮地有干扰,可分别测A点和B点对地间电压,两者之差为U1)。 3)测量共模电压放大倍数 将放大器A、B短接,信号源接A端与地之间,构成共模输入方式,调节输入信号f=

1KHZ,Ui=lV,在输出电压无失真的情况下,测量Ucl,Uc2之值记入表2,并观察Ui,Uc1,Uc2之间的相位关系及URE随Ui变化而改变的情况。 2.具有恒流源的差动放大电路性能测试 将图1电路中开关K拨向右边;构成具有恒流源的差动放大电路。重复内容1—2)、1—3)的要求,记入表2。 四、实践总结 1.根据实验电路参数,估算典型差动放大器和具有恒流源的差动放大器的静态工作点及差模电压放大倍数(取βl=β2=100)。 2.测量静态工作点时,放大器输入端A、B与地应如何连接? 3.实验中怎样获得双端和单端输入差模信号?怎样获得共模信号?画出A、B端与信号源之间的连接图。 4.怎样进行静态调零点?用什么仪表测Uo? 5.怎样用交流毫伏表测双端输出电压Uo?

相关文档
相关文档 最新文档