文档库 最新最全的文档下载
当前位置:文档库 › 高三数学复数代数形式的四则运算

高三数学复数代数形式的四则运算

高三数学复数代数形式的四则运算
高三数学复数代数形式的四则运算

复数代数形式的四则运算

一、复数的加法

1、法则:

设12,(,,,)z a bi z c di a b c d R =+=+∈则

12()()z z a c b d i +=+++

2、运算律:

(1)交换律:1221z z z z +=+;

(2)结合律:123123()()z z z z z z ++=++;

3、几何意义:

复数的加法可以按照向量的加法来进行(平行四边形法则、三角形法则)。

4、例题:

已知复数1217,24z i z i =+=--,求12z z +.

二、复数的减法

1、法则:

设12,(,,,)z a bi z c di a b c d R =+=+∈则

12()()z z a c b d i -=-+-

2、几何意义:

复数的减法可以按照向量的减法来进行(三角形法则)。

3、例题:

(1) 计算(56)(2)(34)i i i -+---+;

(2)在复平面内,向量AB →对应的复数是2i +,向量AC →对应的复数是13i --,求向量BC →

对应的复数Z 及z .

三、复数的乘法

1、法则:

设12,(,,,)z a bi z c di a b c d R =+=+∈则 212()()z z a bi c di ac bci adi bdi ?=++=+++()()ac bd ad bc i =-++

2、运算律:

(1)交换律:1221z z z z ?=?;

(2)结合律:123123()()z z z z z z ??=??;

(3)分配律:1231213()z z z z z z z +=?+?

3、例题:

计算(1)(12)(34)i i -+;

(2)(34)(34)i i +-;

(3)2(1)i +;

(4)5112010(1)(1)(1)i i i +-+.

四、共轭复数

1、定义:

当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,z 的共轭复数用z 表示,即(,)z a bi a b R =+∈,则z a bi =-。

2、性质:

(1)两个共轭复数的对应点关于实轴对称;

(2)实数的共轭复数是它本身,即z z z R =?∈;

(3)22z z z

z ?== 五、除法

1、法则:

设12,(,,,,0)z a bi z c di a b c d R c di =+=+∈+≠则12222

2()()()()z a bi a bi c di ac bd bc ad i z c di c di c di c d c d ++-+-===+++-++ 2、例题:

(1)(湖南卷2)在复平面内,复数1234i z i

+=-对应的点落在( ); A 第一象限;B 第二象限;C 第三象限;D 第四象限;

(2)(海南卷2)已知复数1z i =-,则2

1

z z =-( ) A. 2 B. -2 C. 2i D. -2i

(3)(山东卷2)设z 的共轭复数是z ,且z +z =4,z ·z =8,则

z z 等于( ) (A )1 (B )-i (C)±1 (D) ±i ;

(4)(广东卷1)已知02a <<,复数z 的实部为a ,虚部为1,则z 的取值范围是( )

A .(15),

B .(13),

C .

D .

五、小结

(1)复数的加、减、乘法与多项式的加、减、乘法类似,注意结果中2i 应化为-1;

(2)复数的除法先写成分式形式,再将分母实数化,注意结果写成实部与虚部分开的形式。

一.选择题:

1.(全国一4)设a ∈R ,且2()a i i +为正实数,则a =( D )

A .2

B .1

C .0

D .1-

2.(全国二2)设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则( A )

A .223b a =

B .223a b =

C .229b a =

D .229a b = 3.(四川卷)复数()221i i +=( A )

(A)4- (B)4 (C)4i - (D)4i

4.(安徽卷1)复数 32(1)i i +=( A )

A .2

B .-2

C . 2i

D . 2i -

6.(江西卷1)在复平面内,复数sin 2cos 2z i =+对应的点位于

A .第一象限

B .第二象限

C .第三象限

D .第四象限

7.(湖北卷11)设211z z iz =-(其中1z 表示z 1的共轭复数),已知z 2的实部是1-,则z 2的虚部为 .1

8.(湖南卷1)复数3

1()i i -等于( D )

A.8

B.-8

C.8i

D.-8i 9.(陕西卷1)复数

(2)12i i i +-等于( D ) A .i B .i -

C .1

D .1- 10.(重庆卷1)复数1+

22i =A (A)1+2i

(B)1-2i (C)-1 (D)3 11.(福建卷1)若复数(a 2-3a +2)+(a-1)i 是纯虚数,则实数a 的值为B

A.1

B.2

C.1或2

D.-1 12.

13.(浙江卷1)已知a 是实数,i

i a +-1是春虚数,则a =A (A )1 (B )-1 (C )2 (D )-2

14.(辽宁卷4)复数

11212i i +-+-的虚部是( B ) A .1

5i B .15 C .15

i - D .15- 15.

二.填空题:

1.(上海卷3)若复数z 满足(2)z i z =- (i 是虚数单位),则z = .1+i

2.(北京卷9)已知2()2a i i -=,其中i 是虚数单位,那么实数a = 。 -1.

3.(江苏卷3)

11i i

+-表示为a bi +(),a b R ∈,则a b +== .1

高中数学-复数的基础知识

复数 基础知识 1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除 等运算。便产生形如a+bi (a,b ∈R )的数,称为复数。所有复数构成的集合称复数集。通常用C 来表示。 2.复数的几种形式。对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。若z=r(cos θ+isin θ),则θ称为z 的辐角。若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=22b a +.如果用e i θ表示cos θ+isin θ,则z=re i θ ,称为复数的指数形式。 3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。模与共轭的性质有: (1)2121z z z z ±=±;(2)2121z z z z ?=?;(3)2||z z z =?;(4)2 121z z z z =???? ??;(5)||||||2121z z z z ?=?; (6)||||||2121z z z z =;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2;(9)若|z|=1,则z z 1= 。 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z 1=r 1(cos θ1+isin θ1), z 2=r 2(cos θ2+isin θ2),则z 1??z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)];若2 1212,0r r z z z =≠[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z 1z 2=r 1r 2e i(θ1+θ2),.)(2 12121θθ-=i e r r z z 5.棣莫弗定理:[r(cos θ+isin θ)]n =r n (cosn θ+isinn θ). 6.开方:若=n w r(cos θ+isin θ),则)2s i n 2(c o s n k i n k r w n π θπ θ+++=, k=0,1,2,…,n-1。 7.单位根:若w n =1,则称w 为1的一个n 次单位根,简称单位根,记Z 1=n i n ππ2sin 2cos +,则全部单位根可表示为1,1Z ,1121,,-n Z Z .单位根的基本性质有(这里记k k Z Z 1=,

复数的四则运算(含答案解析)

复数的四则运算 1.复数z=的虚部为() A.-1 B.-3 C.1 D.2 2.已知m为实数,i为虚数单位,若m+(m2-4)i>0,则=() A.i B.1 C.-i D.-1 3.已知a∈R,i为虚数单位,若(1-i)(a+i)为纯虚数,则a的值为() A.2 B.1 C.-2 D.-1 4.已知(a,b∈R),其中i为虚数单位,则a+b=() A.0 B.1 C.-1 D.2 5.计算=() A.-1 B.i C.-i D.1 6.已知i是虚数单位,,则|z|=() A. B.2 C. D.4 7.复数z满足z(2-i)=2+i(i为虚数单位),则在复平面内对应的点所在象限为() A.第一象限 B.第二象限 C.第三象限 D.第四象限 8.若a=i+i2+…+i2013(i是虚数单位),则的值为() A.i B.1-i C.-1+i D.-1-i 9.设i是虚数单位,如果复数的实部与虚部是互为相反数,那么实数a的值为() A. B. C.3 D.-3

10.复数z满足(z+2i)i=1+i,则z=() A.1+3i B.1-3i C.-1+3i D.-1-3i 11.已知复数z的实部为a(a<0),虚部为1,模长为2,是z的共轭复数,则的值为()A. B.--i C.-+i D.- 12.设x,m均为复数,若x2=m,则称复数x是复数m的平方根,那么复数3-4i(i是虚数单位)的平方根为() A.2-i或-2+i B.2+i或-2-i C.2-i或2+i D.-2-i或-2+i 13.设i为虚数单位,则()2014等于() A.21007i B.-21007i C.22014 D.-2201414.已知复数z1=1+i,|z2|=3,z1z2是正实数,则复数z2= ______ . 15.复数z=,i是虚数单位,则z2015= ______ . 复数的四则运算答案和解析 1. B解:∵z== ,∴复数z=的虚部为-3. 2. A 解:∵m+(m2-4)i>0,∴,解得:m=2.则=. 3. D 解:∵(1-i)(a+i)=1+a+(1-a)i为纯虚数,∴,解得:a=-1. 4. B解:∵= ,∴,解得,

高中数学复数

第1章:复数与复变函数 §1 复数 1.复数域 形如iy x z +=的数,称为复数,其中y x ,为实数。实数x 和实数y 分别称为复数iy x z +=的实部与虚部。记为 z x Re =, z y Im = 虚部为零的复数可看成实数,虚部不为零的复数称为虚数,实部为零虚部不为零的复数称为纯虚数。复数iy x z -= 和iy x z +=称为互为共轭复数,z 的共轭复数记为z 。 设 ,复数的四则运算定义为 加(减)法: 乘法: 除法: 相等: 当且仅当 复数的四则运算满足以下运算律 ①加法交换律 1221z z z z +=+ ②加法结合律 321321)()(z z z z z z ++=++ ③乘法交换律 1221z z z z ?=? ④乘法结合律 321321)()(z z z z z z ??=?? ⑤乘法对加法的分配律 3121321)(z z z z z z z ?+?=+? 全体复数在引入相等关系和运算法则以后,称为复数域. 在复数域中,复数没有大小. 正如所有实数构成的集合用R 表示,所有复数构成的集合用C 表示。

例 设i 3,i 5221+=-=z z ,求 2 1 z z . 分析:直接利用运算法则也可以,但那样比较繁琐,可以利用共轭复数的运算结果。 解 为求 2 1 z z ,在分子分母同乘2z ,再利用1i 2-=,得 i 101710110i 171)i 3)(i 52(2222121-=-=--=??=z z z z z z z 2.复平面 一个复数iy x z +=本质上由一对有序实数唯一确定。于是能够确定平面上全部的点和全体复数间一一对应的关系。如果把x 和y 当作平面上的点的坐标,复数z 就跟平面上的点一一对应起来,这个平面叫做复数平面或z 平面,x 轴称为实轴,y 轴称为虚轴. 在复平面上,从原点到点 所引的矢量 与复数z 也构成一一对应 关系,且复数的相加、减与矢量相加、减的法则是一致的,即满足平行四边形法则,例如: 这样,构成了复数、点、矢量之间的一一对应关系. 3. 复数的模与辐角 向量 的长度称为复数 的模或绝对值,即:

高中数学选修1,2《复数代数形式的四则运算》教案

高中数学选修1,2《复数代数形式的四则运算》教案 知识与技能:掌握复数的四则运算; 过程与方法:理解并掌握虚数单位与实数进行四则运算的规律 情感态度与价值观:通过复数的四则运算学习与掌握,进一步理解复数引发学生对数学学习的兴趣,激起学生的探索求知欲望。 教学重难点 熟练运用复数的加减法运算法则。 教学过程 教学设计流程 一、导入新课: 复数的概念及其几何意义; 二、推进新课: 建立复数的概念之后,我们自然而然地要讨论复数系的各种运算问题。 设Z1 =a+bi, Z2 =c+di是任意两个复数,我们规定: 1、复数的加法运算法则:Z1+Z2=(a+从)+(b+d)i 2、复数的加法运算律: 交换律:Z1+Z2=Z2+Z1 结合律:Z1+Z2+Z3=Z1+(Z2+Z3) 3、复数加法的几何意义: 4、复数的减法运算法则: Z1-Z2=(a-c)+(b-d)i 5、复数减法的几何意义: 三、例题讲解 例1:计算:(7-3i)+(-1-i)-(6+3i)

课后小结 复数的加法与减法的运算及几何意义 课后习题 课本习题3.2 A组1题、2题、3题. 高中数学选修1-2《复数代数形式的四则运算》教案【二】 教学目标: 知识与技能:理解并掌握复数的代数形式的乘法与除法运算法则,深刻理解它是乘法运算的逆运算 过程与方法:理解并掌握复数的除法运算实质是分母实数化类问题 情感、态度与价值观:复数的几何意义单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,我们采用讲解或体验已学过的数集的扩充的,让学生体会到这是生产实践的需要从而让学生积极主动地建构知识体系。 教学重点:复数代数形式的除法运算。 教学难点:对复数除法法则的运用。 教学过程: 学生探究过程: 1. 复数的加减法的几何意义是什么? 2. 计算(1) (2) (3) 3. 计算:(1) (2) (类比多项式的乘法引入复数的乘法) 讲解新课: 1.复数代数形式的乘法运算 ①.复数的乘法法则:。 例1.计算(1) (2) (3) (4)

复数代数形式的加减运算及其几何意义(教案)

新授课:3.2.1 复数代数形式的加减运算及其几何意义 教学目标 重点:复数代数形式的加法、减法的运算法则. 难点:复数加法、减法的几何意义. 知识点:.掌握复数代数形式的加、减运算法则; .理解复数代数形式的加、减运算的几何意义. 能力点:培养学生渗透转化、数形结合的数学思想方法,提高学生分析问题、解决问题以及运算的能力. 教育点:通过探究学习,培养学生互助合作的学习习惯,培养学生对数学探索和渴求的思想. 在掌握知识的同时,形成良好的思维品质和锲而不舍的钻研精神. 自主探究点:如何运用复数加法、减法的几何意义来解决问题. 考试点:会计算复数的和与差;能用复数加、减法的几何意义解决简单问题. 易错易混点:复数的加法与减法的综合应用. 拓展点:复数与其他知识的综合. 一、引入新课 复习引入 .虚数单位:它的平方等于,即; .对于复数: 当且仅当时,是实数; 当时,为虚数; 当且时,为纯虚数; 当且仅当时,就是实数. .复数集与其它数集之间的关系:. 一一对应 .复数几何意义: 复数复平面内的向量 我们把实数系扩充到了复数系,那么复数之间是否存在运算呢?答案是肯定的,这节课我们就来研究复数的加减运算. 【设计意图】通过复习回顾复数概念、几何意义等相关知识,使学生对这一知识结构有个清醒的初步认知,逐渐过渡到对复数代数形式的加减运算及其几何意义的学习情境,为探究本节课的新知识作铺垫. 二、探究新知

探究一:复数的加法 .复数的加法法则 我们规定,复数的加法法则如下: 设,是任意两个复数,那么: 提出问题: ()两个复数的和是个什么数,它的值唯一确定吗? ()当时,与实数加法法则一致吗? ()它的实质是什么?类似于实数的哪种运算方法? 学生明确: ()仍然是个复数,且是一个确定的复数; ()一致; ()实质是实部与实部相加,虚部与虚部相加,类似于实数运算中的合并同类项.【设计意图】加深对复数加法法则的理解,且与实数类比,了解规定的合理性:将实数的运算通性、通法扩充到复数,有利于培养学生的学习兴趣和创新精神. .复数加法的运算律 实数的加法有交换律、结合律,复数的加法满足这些运算律吗? 对任意的,有 (交换律), (结合律). 【设计意图】引导学生根据实数加法满足的运算律,大胆尝试推导复数加法的运算律,学生先独立思考,然后小组交流.提高学生的建构能力及主动发现问题,探究问题的能力. .复数加法的几何意义 复数与复平面内的向量有一一对应关系,那么请同学们猜想一下,复数的加法也有这种对应关系吗? 设分别与复数对应,则有,由平面向量的坐标运算有 . 这说明两个向量的和就是与复数对应的向量.因此,复数的加法可以按照向量加法的平行四边形法则来进行.这就是复数加法的几何意义.如图所示:

高中数学复数专题知识点整理

专题二 复数 【1】复数的基本概念 (1)形如a + b i 的数叫做复数(其中R b a ∈,);复数的单位为i ,它的平方等于-1,即1i 2-=.其中a 叫做复数的实部,b 叫做虚部 实数:当b = 0时复数a + b i 为实数 虚数:当0≠b 时的复数a + b i 为虚数; 纯虚数:当a = 0且0≠b 时的复数a + b i 为纯虚数 (2)两个复数相等的定义: 00==?=+∈==?+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且 (3)共轭复数:z a bi =+的共轭记作z a bi =-; (4)复平面:建立直角坐标系来表示复数的平面叫复平面;z a bi =+,对应点坐标为(),p a b ;(象限的复习) (5)复数的模:对于复数z a bi =+,把z =z 的模; 【2】复数的基本运算 设111z a b i =+,222z a b i =+ (1) 加法:()()121212z z a a b b i +=+++; (2) 减法:()()121212z z a a b b i -=-+-; (3) 乘法:()()1212122112z z a a b b a b a b i ?=-++ 特别22z z a b ?=+。 (4)幂运算:1i i =21i =-3i i =-41i =5i i =61i =-?????? 【3】复数的化简 c di z a bi +=+(,a b 是均不为0的实数);的化简就是通过分母实数化的方法将分母化为实数:()()22ac bd ad bc i c di c di a bi z a bi a bi a bi a b ++-++-==?=++-+ 对于()0c di z a b a bi +=?≠+,当c d a b =时z 为实数;当z 为纯虚数是z 可设为c di z xi a bi +==+进一步建立方程求解

高一数学复数的运算练习题

复数的运算测试题 一、选择题 1.0a =是复数()z a bi a b =+∈R ,为纯虚数的( ) A.充分条件但不是必要条件 B.必要条件但不是充分条件 C.充要条件 D.既不是充分也不必要条件 答案:B 2.若12z i =+,23()z ai a =+∈R ,12z z +的和所对应的点在实轴上,则a 为( ) A.3 B.2 C.1 D.—1 答案:D 3.复数22(2)(2)z a a a a i =-+--对应的点在虚轴上,则( ) A.2a ≠或1a ≠ B.2a ≠且1a ≠ C.0a = D. 2 a =或 0a = 答案:D 4.设1z ,2z 为复数,则下列四个结论中正确的是( )

A.若22120z z +>,则2212z z >- B. 12 z z -= C.22121200z z z z +=?== D.11z z -是纯虚数或零 答案:D 5.设22(253)(22)z t t t t i =+-++-+,t ∈R ,则下列命题中正确的是( ) A.z 的对应点Z 在第一象限 B.z 的对应点Z 在第四象限 C.z 不是纯虚数 D.z 是虚数 答案:D 6.若1i +是实系数方程20x bx c ++=的一个根,则方程的另一个根为( ) A.1i - B.1i -+ C.1i -- D.i 答案:A 7.已知复数1cos z i θ=-,2sin z i θ=+,则1 2z z ·的最大值为( )

A.3 2 D.3 答案:A 8.已知m ∈R ,若6()64m mi i +=-,则m 等于( ) A. 2- B. C. D.4 答案:B 9.在复平面内12 ω=-对应的向量为OA ,复数2ω对应的向量为 OB .那么向量AB 对应的复数是( ) A.1 B. 1- D. 答案:D 10.在下列命题中,正确命题的个数为( ) ①两个复数不能比较大小; ②123z z z ∈C ,,,若221221()()0z z z z -+-=,则13z z =; ③若22(1)(32)x x x i -+++是纯虚数,则实数1x =±; ④z 是虚数的一个充要条件是z z +∈R ; ⑤若a b ,是两个相等的实数,则()()a b a b i -++是纯虚数; ⑥z ∈R 的一个充要条件是z z =.

【单位】32复数的四则运算同步检测1

【关键字】单位 3.2《复数的四则运算》同步检测(1) 一、基础过关 1.如果一个单数与它的模的和为5+i,那么这个单数是__________. 2.(1-2i)-(2-3i)+(3-4i)-…-(2 008-2 009i)+(2 009-2 010i)-(2 010-2 011)i +(2 011-2 012i)=______________. 3.的值等于__________. 4.8+6i的平方根是________. 5.已知单数z1=2+i,z2=1-i,则单数z1·z2的虚部是________. 二、能力提升 6.单数z1=,z2=2-3i (i为虚数单位),z3=,则|z3|=________. 7.若单数+b (b∈R)的实部与虚部相等,则实数b的值为________. 8.若单数z满足z(1+i)=1-i (i是虚数单位),则其共轭单数=________. 9.设m∈R,单数z1=+(m-15)i,z2=-2+m(m-3)i,若z1+z2是虚数,求m的取值范围. 10.计算:+. 11.已知z=1+i,a,b∈R,若=1-i,求a,b的值.

三、探究与拓展 12.已知单数z ,满足z2=5-12i ,求. 答案 1.+i 2.1 006-1 007i 3.2+3i 4.±(3+i) 5.-1 7.2 8.i 9.解 ∵z1=+(m -15)i ,z2=-2+m(m -3)i , ∴z1+z2=+[(m -15)+m(m -3)]i =m 2-m -4m +2 +(m 2-2m -15)i. ∵z 1+z 2为虚数,∴m 2-2m -15≠0且m ≠-2, 解得m ≠5,m ≠-3且m ≠-2(m ∈R ). 10.解 原式=212(1+i )1229·??? ?-12+32i 9+(i -23)100 [-i (i -23)]100 =212·(2i )6 29·??? ?(-12+32i )33+(i -23)100(-i )100(i -23)100 =23·26·i 613+1i 100=-29+1=-511. 11.解 ∵z =1+i ,∴z 2=2i , ∴z 2+az +b z 2-z +1=2i +a +a i +b 2i -1-i +1

(完整word版)高中数学-复数专题

复数专题 一、选择题 1 .(2012年高考(天津理)) i 是虚数单位,复数7= 3i z i -+ ( ) A .2i + B .2i - C .2i -+ D .2i -- 2 .(2012年高考(新课标理))下面是关于复数2 1z i = -+的四 个命题:其中的真命 题为 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1- ( ) A .23,p p B .12,p p C .,p p 24 D .,p p 34 3 .(2012年高考(浙江理))已知i 是虚数单位,则 3+i 1i -= ( ) A .1-2i B .2-i C .2+i D .1+2i 4 .(2012年高考(四川理))复数2(1)2i i -= ( ) A .1 B .1- C . i D .i - 5 .(2012年高考(上海理))若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则 ( ) A .3,2==c b . B .3,2=-=c b . C .1,2-=-=c b . D .1,2-==c b . 6 .(2012年高考(陕西理))设,a b R ∈, 是虚数单位,则“0ab =”是“复数b a i + 为纯虚数”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 7 .(2012年高考(山东理))若复数z 满足(2)117z i i -=+( i 为虚数单位),则z 为 ( ) A .35i + B .35i - C .35i -+ D .35i -- 8 .(2012年高考(辽宁理))复数 22i i -=+ ( ) A .34i - B .34i + C .41i - D .3 1i +

3.2复数的四则运算教案2

3.2《复数的四则运算》教案(2) 教学目标 1、理解复数代数形式的四则运算法则。 2、能运用运算律进行复数的四则运算。 教学重难点 复数的除法运算 教学过程: 一、复习巩固: 1、复数加减法的运算法则: (1)运算法则:设复数z 1=a+bi,z 2=c+di ,那么:z 1+z 2=(a+c)+(b+d)i ;z 1-z 2=(a-c)+(b-d)i 。 (2)复数的加法满足交换律、结合律,即对任何z 1,z 2,z 3∈C ,有: z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3)。 2、复数的乘法: (1)复数乘法的法则:(a+bi)(c+di)=ac+bci+adi+bdi 2=(ac-bd)+(bc+ad)i 。 (2)复数乘法的运算律: 复数的乘法满足交换律、结合律以及乘法对加法的分配律。即对任何z 1,z 2,z 3有: z 1z 2=z 2z 1;(z 1z 2)z 3=z 1(z 2z 3);z 1(z 2+z 3)=z 1z 2+z 1z 3。 3、共轭复数的概念、性质: 定义:实部相等,虚部互为相反数的两个复数叫做互为共轭复数。 复数z =a +bi 的共轭复数记作,=-z z a bi 即 设z =a +bi (a ,b ∈R ),那么2-2z z a z z bi +==;。12121212,z z z z z z z z +=+-=- 4、i 的指数变化规律: 4n i =1,41n i +=i ,42n i +=1-,43n i +=i - 【巩固练习】 1.计算:(1+2 i )2 _____=i 34-+ 2.计算i 3 (1)+_____=-2+2i

典型例题:复数的代数形式及其运算

复数的代数形式及其运算 例1.计算: i i i i i 2 1 2 1 ) 1( ) 1( 2005 40 40 + + - + + - - + 解:提示:利用i i i i= ± = ±2005 2,2 ) 1( 原式=0 变式训练1: 2 = (A)1 -(B) 1 22 +(C) 1 22 -+(D)1 解:21 2 ===-+故选C; 例2. 若0 1 2= + +z z,求2006 2005 2003 2002z z z z+ + + 解:提示:利用z z z= =4 3,1 原式=2 ) 1(4 3 2002- = + + +z z z z 变式训练2:已知复数z满足z2+1=0,则(z6+i)(z6-i)=▲ . 解:2 例3. 已知4, a a R >∈,问是否存在复数z,使其满足ai z i z z+ = + ?3 2(a∈R),如果存在,求出z的值,如果不存在,说明理由 解:提示:设) , (R y x yi x z∈ + =利用复数相等的概念有 ? ? ? = = + + a x y y x 2 3 2 2 2 3 4 2 2 2> ? ? = - + + ? a y y i a a z a 2 16 2 2 4 | | 2 - ± - + = ? ≤ ? 变式训练3:若 (2) a i i b i -=+,其中i R b a, ,∈是虚数单位,则a+b= __________

解:3 例4. 证明:在复数范围内,方程255||(1)(1)2i z i z i z i -+--+=+(i 为虚数单位)无解. 证明:原方程化简为 2||(1)(1)1 3.z i z i z i +--+=-设 yi x z += (x 、y∈R,代入上述方程得22221 3.x y xi yi i +--=- 221(1)223(2)x y x y ?+=?∴?+=?? 将(2)代入(1) ,整理得281250. x x -+=160,()f x ?=-<∴方程无实数解,∴原方程在复数范围内无解. 变式训练4:已知复数z 1满足(1+i)z 1=-1+5i ,z 2=a -2-i ,其中i 为虚数单位,a∈R, 若12z z -<1z ,求a 的取值范围. 解:由题意得 z 1=151i i -++=2+3i, 于是12z z -=42a i -+1z =13. 13,得a 2-8a +7<0,1

3.2.1 复数代数形式的加、减运算及其几何意义

复数代数形式的四则运算 3.2.1 复数代数形式的加、减运算及其几何意义 预习课本P107~108,思考并完成下列问题 (1)复数的加法、减法如何进行?复数加法、减法的几何意义如何? (2)复数的加、减法与向量间的加减运算是否相同? 1.复数的加、减法法则 设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R), 则z 1+z 2=(a +c )+(b +d )i , z 1-z 2=(a -c )+(b -d )i. 2.复数加法运算律 设z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1, (z 1+z 2)+z 3=z 1+(z 2+z 3). 3.复数加、减法的几何意义 设复数z 1,z 2对应的向量为OZ 1――→,OZ 2――→,则复数z 1+z 2是以OZ 1――→,OZ 2――→ 为邻边的平行四边形的对角线OZ ――→ 所对应的复数,z 1-z 2是连接向量OZ 1――→与OZ 2――→ 的终点并指向OZ 1――→ 的向量所对应的复数. [点睛] 对复数加、减法几何意义的理解 它包含两个方面:一方面是利用几何意义可以把几何图形的变换转化为复数运算去处

理,另一方面对于一些复数的运算也可以给予几何解释,使复数作为工具运用于几何之中. 1.判断(正确的打“√”,错误的打“×”) (1)复数与向量一一对应.( ) (2)复数与复数相加减后结果只能是实数.( ) (3)因为虚数不能比较大小,所以虚数的模也不能比较大小.( ) 答案:(1)× (2)× (3)× 2.已知复数z 1=3+4i ,z 2=3-4i ,则z 1+z 2等于( ) A .8i B .6 C .6+8i D .6-8i 答案:B 3.已知复数z 满足z +i -3=3-i ,则z 等于( ) A .0 B .2i C .6 D .6-2i 答案:D 4.在复平面内,复数1+i 与1+3i 分别对应向量OA ――→和OB ――→ ,其中O 为坐标原点,则|AB ――→ |等于( ) A. 2 B .2 C.10 D .4 答案:B [典例] (1)计算:(2-3i)+(-4+2i)=________. (2)已知z 1=(3x -4y )+(y -2x )i ,z 2=(-2x +y )+(x -3y )i ,x ,y 为实数,若z 1-z 2=5-3i ,则|z 1+z 2|=________. [解析] (1)(2-3i)+(-4+2i)=(2-4)+(-3+2)i =-2-i. (2)z 1-z 2=[(3x -4y )+(y -2x )i]-[(-2x +y )+(x -3y )i]=[(3x -4y )-(-2x +y )]+[(y -2x )-(x -3y )]i =(5x -5y )+(-3x +4y )i =5-3i , 所以????? 5x -5y =5,-3x +4y =-3, 解得x =1,y =0, 所以z 1=3-2i ,z 2=-2+i ,则z 1+z 2=1-i ,

复数的四则运算同步练习题(文科)(附答案)

复数的四则运算同步练习题 一、选择题 1. 若复数z 满足z +i -3=3-i ,则z 等于 ( D ) A .0 B .2i C .6 D .6-2i 2. 复数i +i 2在复平面内表示的点在( B ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3. 复数z 1=3+i ,z 2=-1-i ,则z 1-z 2等于( C ) A .2 B .2+2i C .4+2i D .4-2i 4. 设z 1=2+b i ,z 2=a +i ,当z 1+z 2=0时,复数a +b i 为( D ) A .1+i B .2+I C .3 D .-2-i 5. 已知|z |=3,且z +3i 是纯虚数,则z 等于( B ) A .-3i B .3i C .±3i D .4i 6. 复数-i +1i 等于( A ) A .-2i B.12i C .0 D .2i 7. i 为虚数单位,1i +1i 3+1i 5+1 i 7等于( A ) A .0 B .2i C .-2i D .4i 8. 若a ,b ∈R ,i 为虚数单位,且(a +i)i =b +i ,则( D ) A .a =1,b =1 B .a =-1,b =1 C .a =-1,b =-1 D .a =1,b =-1 9. 在复平面内,复数i 1+i +(1+3i)2对应的点位于( B ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10. 设复数z 的共轭复数是z ,若复数z 1=3+4i ,z 2=t +i ,且z 1·z 2是实数,则实数t 等于( A ) A.34 B.43 C .-43 D .-34 11. 若z =1+2i i ,则复数z 等于( D ) A .-2-i B .-2+I C .2-i D .2+i 12.复数11z i =-的共轭复数是( B ) A .i 2121+ B .i 21 21- C .i -1 D .i +1 13.=++-i i i 1) 21)(1(( C ) A .i --2 B .i +-2 C .i -2 D .i +2 14. 若复数z 1=1+i ,z 2=3-i ,则z 1·z 2等于( A ) A .4+2i B .2+i C .2+2i D .3+i 15. 已知a +2i i =b +i(a ,b ∈R ),其中i 为虚数单位,则a +b 等于( B ) A .-1 B .1 C .2 D .3 16.若x -2+y i 和3x -i 互为共轭复数,则实数x 与y 的值是( D ) A .x =3,y =3 B .x =5,y =1 C .x =-1,y =-1 D .x =-1,y =1 17.在复平面内,复数i 1+i +(1+3i)2对应的点位于( B ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 18.设i 是虚数单位,_ z 是复数z 的共轭复数,若,,则z =( A ) (A )1+i (B )1i - (C )1+i - (D )1-i - 19.若复数z 满足 (3-4i)z =|4+3i |,则z 的虚部为( D ) (A)-4 (B )-45 (C )4 (D )45 20.设复数z 满足,2)1(i z i =-则z =( A ) (A )i +-1 (B )i --1 (C )i +1 (D )i -1 21.复数z 满组(3)(2)5--=z i (z 为虚数单位),则z 的共轭复数z 为( D )

复数代数形式的加减运算及其几何意义优秀教学设计

复数代数形式的加减运算及其几何意义 【教学目标】 知识与技能:掌握复数的加法运算及意义情感、态度与价值观:理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部) 理解并掌握复数相等的有关概念;画图得到的结论,不能代替论证,然而通过对图形的观察,往往能起到启迪解题思路的作用 【教学重难点】 重点:复数加法运算,复数与从原点出发的向量的对应关系。 难点:复数加法运算的运算率,复数加减法运算的几何意义。 【教学准备】 多媒体、实物投影仪 。 【教学设想】 复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。复数z =a +bi (a 、b ∈R )与有序实数对(a ,b )是一一对应关系这是因为对于任何一个复数z =a +bi (a 、b ∈R ),由复数相等的定义可知,可以由一个有序实数对(a ,b )惟一确定。 【教学过程】 一、复习回顾: 1.复数的定义: 2.复数的代数形式: 3.复数与实数、虚数、纯虚数及0的关系:对于复数(,)a bi a b R +∈,当且仅当 时,复数a +bi (a 、b ∈R )是实数a ;当 时,复数z =a +bi 叫做虚数;当 时,z =bi 叫做纯虚数;当且仅当 时,z 就是实数0.

4.复数集与其它数集之间的关系: 。 5.两个复数相等的定义: 一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就 只有当两个复数不全是实数时才不能比较大小 6.复平面、实轴、虚轴: 点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可 用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫 做复平面,也叫高斯平面,x 轴叫做实轴,y 对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z =0+0i =0复数集C 和复平面内所有的点所成的集合是一一对应关系,即复数z a bi =+←??? →一一对应复平面内的点(,)Z a b 这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。 二、讲解新课: 复数代数形式的加减运算 1.复数z 1与z 2的和的定义:z 1+z 2=(a +bi )+(c +di )= 2.复数z 1与z 2的差的定义:z 1-z 2=(a +bi )-(c +di )= 3.复数的加法运算满足交换律: z 1+z 2=z 2+z 1. 证明: 4.复数的加法运算满足结合律: (z 1+z 2)+z 3=z 1+(z 2+z 3) 证明:设z 1=a 1+b 1i 。z 2=a 2+b 2i ,z 3=a 3+b 3i (a 1,a 2,a 3,b 1,b 2,b 3∈R )。

复数的四则运算

5.3 复数的四则运算 1.若z-3-2i=4+i,则z等于 () A.1+i B.1-i C.-1-i D.-1-3i 答案 B 解析z=(4+i)-(3+2i)=1-3i. 2.若复数z1=1+i,z2=3-i,则z1·z2= () A.4+2i B.2+i C.2+2i D.3+i 答案 A 解析z1·z2=(1+i)(3-i)=4+2i,故选A. 3.5-(3+2i)=________. 答案2-2i 4.复数1 1-i 的虚部是________. 答案1 2 解析∵1 1-i = 1+i (1-i)(1+i) = 1+i 2= 1 2+ 1 2i.∴虚部为 1 2. 1.复数代数形式的加、减法运算法则 设z1=a+b i,z2=c+d i(a,b,c,d∈R),则有z1±z2=(a+b i)±(c+d i)=(a±c)+(b±d)i.

即两个复数相加(减),就是把实部与实部、虚部与虚部分别相加(减). 2.复数代数形式的乘法运算法则 (1)复数乘法的法则 复数的乘法与多项式的乘法是类似的,但必须在所得的结果中把i 2换成-1,并且把实部、虚部分别合并. (2)复数乘法的运算律 对于任意的z 1,z 2,z 3∈C ,有 z 1·z 2=z 2·z 1(交换律), (z 1·z 2)·z 3=z 1·(z 2·z 3)(结合律), z 1·(z 2+z 3)=z 1z 2+z 1z 3(乘法对加法的分配律). 3.复数代数形式的除法运算法则 在无理式的除法中,利用有理化因式可以进行无理式的除法运算.类似地,在复数的除法运算中,也存在所谓“分母实数化”问题.将商a +b i c + d i 的分子、 分母同乘以c -d i ,最后结果写成实部、虚部分开的形式:a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i ) =(ac +bd )+(-ad +bc )i c 2+ d 2=ac +bd c 2+d 2+-ad +bc c 2+d 2i 即可.

高三数学复数测试题doc

一、复数选择题 1.在复平面内,复数 534i i -(i 为虚数单位)对应的点的坐标为( ) A .()3,4 B .()4,3- C .43,55??- ??? D .43,55??- ??? 2.若复数(1)()(i a i i -+是虚数单位)为纯虚数,则实数a 的值为( ) A .2 B .1 C .0 D .1- 3.欧拉是瑞士著名数学家,他首先发现:e cos isin i θθθ=+(e 为自然对数的底数,i 为虚数单位),此结论被称为“欧拉公式”,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系.根据欧拉公式可知,i e π=( ) A .1 B .0 C .-1 D .1+i 4.已知i 是虚数单位,复数2z i =-,则()12z i ?+的模长为( ) A .6 B C .5 D 5.若复数1z i i ?=-+,则复数z 的虚部为( ) A .-1 B .1 C .-i D .i 6.复数312i z i = -的虚部是( ) A .65i - B .35i C .35 D .65 - 7.已知复数512z i = +,则z =( ) A .1 B C D .5 8.若(1)2z i i -=,则在复平面内z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.若1m i i +-是纯虚数,则实数m 的值为( ). A .1- B .0 C .1 D 10.已知复数2021 11i z i -=+,则z 的虚部是( ) A .1- B .i - C .1 D .i 11.设复数z 满足方程4z z z z ?+?=,其中z 为复数z 的共轭复数,若z 的实部为 ,则z 为( )

高中数学复数专题知识点整理和总结人教版

【1】复数的基本概念 (1)形如a + b i 的数叫做复数(其中);复数的单位为i ,它的平方等于-1,即.其中a 叫做复数的实部,b 叫做虚部 实数:当b = 0时复数a + b i 为实数 虚数:当时的复数a + b i 为虚数; 纯虚数:当a = 0且时的复数a + b i 为纯虚数 (2)两个复数相等的定义: (3)共轭复数:z a bi =+的共轭记作z a bi =-; (4)复平面:建立直角坐标系来表示复数的平面叫复平面;z a bi =+,对应点坐标为(),p a b ;(象限的复习) (5)复数的模:对于复数z a bi =+ ,把z =z 的模; 【2】复数的基本运算 设111z a b i =+,222z a b i =+ (1) 加法:()()121212z z a a b b i +=+++; (2) 减法:()()121212z z a a b b i -=-+-; (3) 乘法:()()1212122112z z a a b b a b a b i ?=-++ 特别22z z a b ?=+。 (4)幂运算:1i i =21i =-3i i =-41i =5i i =61i =-?????? 【3】复数的化简 c di z a bi +=+(,a b 是均不为0的实数);的化简就是通过分母实数化的方法将分母化为实数:()()22 ac bd ad bc i c di c di a bi z a bi a bi a bi a b ++-++-==?=++-+ 对于()0c di z a b a bi +=?≠+,当c d a b =时z 为实数;当z 为纯虚数是z 可设为c di z xi a bi +==+进一步建立方程求解 【例4】 若复数 ()312a i z a R i +=∈-(i 为虚数单位), R b a ∈,1i 2-=0≠b 0≠b 00==?=+∈==?+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且

高三数学复数测试题doc

一、复数选择题 1.若复数z 满足()13i z i +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则 ( ) A .z 的实部是1 B .z 的虚部是1 C .z = D .复数z 在复平面内对应的点在第四象限 2.已知i 是虚数单位,复数2z i =-,则()12z i ?+的模长为( ) A .6 B C .5 D 3.已知,a b ∈R ,若2()2a b a b i -+->(i 为虚数单位),则a 的取值范围是( ) A .2a >或1a <- B .1a >或2a <- C .12a -<< D .21a -<< 4.在复平面内复数Z=i (1﹣2i )对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.已知i 是虚数单位,则复数41i i +在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.设复数2i 1i z =+,则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7.已知复数2021 11i z i -=+,则z 的虚部是( ) A .1- B .i - C .1 D .i 8.若复数2i 1i a -+(a ∈R )为纯虚数,则1i a -=( ) A B C .3 D .5 9.复数112z i =+,21z i =+(i 为虚数单位),则12z z ?虚部等于( ). A .1- B .3 C .3i D .i - 10.若( )()3 24z i i =+-,则在复平面内,复数z 所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 11.设复数z 满足41i z i =+,则z 的共轭复数z 在复平面内的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 12.( ) A .i - B .i C .i D .i - 13.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( )

相关文档
相关文档 最新文档