文档库 最新最全的文档下载
当前位置:文档库 › 电池气密性检测分析

电池气密性检测分析

电池气密性检测分析
电池气密性检测分析

汽车电池作为新能源汽车的供电装置,如果不具备防水要求,不仅会漏电还会对汽车的使用安全造成威胁。所以,动力电池厂家在对其进行生产时,一般会针对电池进行防水性较强的精密性设计,但无论是使用哪种材料,对电池进行防水检测也是非常重要的,这就是气密性检测。

下面,我们就一起来看看到底是怎么样的吧。

一、气密性检测要求

新能源汽车电池的密封需要配合电池包箱体结构和密封圈,电池箱体上下都需要通过激光拼接实现整体密封,这属于结构密封。此外,电池还会采用密封圈或者密封胶等密封协助用品,辅助形成更为密封的结构。电池包一般是有防水透气孔的,检测时可以用往防水透气孔里充入压缩气体进行检测,这样的直接检测方式能够保证不对电池造成二次损伤,同时检测结果也更加准确。

二、气密性检测不到位的问题

由于新能源汽车电池的体积较大,在检测时无法使用对电池进行全密封式的防水检测方式,还容易出现检测结果不准确的问题,因此在检测时我们要先摆脱以下几个检测难题:

1、上盖与底槽封口胶开裂造成密封性不好,容易导致外部液体渗入,污染

电池工作环境。

2、因密封问题出现安全阀渗漏液,可能导致其他零件受损。

3、密封不到位导致接线端处渗酸漏液,影响电瓶车电线,导致电路烧坏。

4、密封不到导致电容量损耗,电池寿命与安全度下降。

三、气密性检测过程展示

由于新能源汽车电池包的体积过大,不宜进行全封闭式检测,所以海瑞思科技采用直接试用气密性检测的方式,仪器上有一根专门输送检测气体的进气管,进行气密性检测时进气管与新能源汽车电池包的连接管进行对接,这样的检测既方便又快捷。

此外,该设备检测时会在电池包的腔体内充入一定体积、干燥且无杂质的气体,然后断开压缩空气供给,静止一段时间使其压力稳定,经过既定的测量时间以监控检测环境内气压的微小变化。传感器将这一信息传给检测系统,最后经过一系列的运算就可以得出气体的泄漏值,就可以根据泄漏值检测出电池包的防水性能和IP防水等级。

杭州固恒能源科技有限公司从事于新能源汽车后市场领域,是一家专注于动力电池的应用以及循环利用等方面的研发、生产、销售,并提供全套检测维护解决方案的企业。研发了一系列动力电池,机电,机电控制维保领域的相关产品,有效的降低了服务商的运营维护成本,延长了电池的使用寿命,我们致力于打造新能源汽车后市场领域的工具链及数据链,全力打造一个完善的新能源汽车核心动力检测维护系统。

风管气密性测试方法

风管气密性测试方法 Prepared on 22 November 2020

通风管道气密性测试方法 一、工程概况 本工程共有x个空调系统,其中x个为低压空调系统;x个为中压空调系统;x个为高压空调系统。按洁净级别划分x级。 二、测试人员 测试人员: 三、测试工器具 漏风测试仪风机(或可调速鼓风机)风量测量仪压力表等 四、规范依据 1、《通风与空调工程施工质量验收规范》GB50243-2002 2、JGJ141-2004《通风管道技术规程》 3、设计说明及要求 五、测试原理 漏光检测法:光线对小孔的穿透。 漏风测试仪检测法:将漏风测试仪风机的出风口用软管连接到被测试的风管上,其余接口均应堵死。当启动漏风检测仪并逐渐提高风机转速时,通过软管向风管中注风,风管内的压力也会逐步上升。当风管达到所需测试的压力后,调检测仪的风机转速,使之保持风管内的压力恒定,这时测得风机进口的风量即为被测风管在该压力下的漏风量。 六、测试前准备工作 1、风管漏光测试 测试前依据规范要求先对被测风管做漏光测试,检查风管的气密性并作相应处理。 2、风管封堵

被测风管区分系统区分压力分别在所有开口处用盲板封堵。 3、测试接口 选择其中一块便于测试操作的盲板,在盲板上安装压力表及制作一个加压连接管,并在加压连接管上安装好风量测量仪,连接好漏风测试仪风机的出风口。 七、测试抽样 1、低压系统风管的严密性检验应采用抽检,抽检率为5%,且不得少于1个系统。在加工工艺得到保证的前提下,采用漏光法检测。检测不合格时,应按规定的抽检率做漏风量测试。 2、中压系统风管的严密性检验,应在漏光法检测合格后,对系统漏风量测试进行抽检,抽检率为20%,且不得少于1个系统。 3、高压系统风管的严密性检验,为全数进行漏风量测试。 4、系统风管严密性检验的被抽检系统,应全数合格,则视为通过;如有不合格时,则应在加倍抽检直至全数合格。 5、净化空调系统风管的严密性检验,1~5级的系统按高压系统风管的规定执行;6~9级的系统按中压系统风管的规定执行。 八、试验要求 A、漏光检测法: 1、漏光检测是利用光线对小孔的穿透力对系统风管进行检测的方法。 2、检测应采用具有一定强度的安全光源,手持移动光源可采用不低于100W带保护罩的低压照明灯或其他低压光源。

容器密封性试验

容器/密封系统完好性试验---微生物侵入试验方案 ---大容量注射剂产品 验证编号: 起草人: 部门审核: QA审核: 审核批准人: 批准日期: 1 概述 微生物侵入试验是对最终灭菌容器/密封件系统完好性的挑战性试验。在验证试验中,取输液瓶,灌装入培养基,在正常生产线上压塞、压盖灭菌。此后,将容器密封面浸入高浓度运动性菌液中,取出、培养并检查是否有微生物侵入,确认容器密封系统的完好性。此同时,需作阳性对照试验,确认培养基的促菌生长能力。 2 试验样品的制备 2.1 在玻瓶输液及软袋输液生产线上,按100ml、250ml二种产品规格,各取300瓶(袋)数量的瓶(袋)中,灌装营养肉汤培养基,使用自动压塞和压盖设备将容器密封。 2.2 将灌装后的容器经121℃、20分钟灭菌(过度杀灭法灭菌)。 2.3 从灭菌柜中取出试样,冷却,将每一试样倒转,使培养基与容器内表面充分接触,在30~35℃下竖放培养14天。 3 确认培养基促菌生长能力——营养性试验 3.1 所有试样培养 14 天均不长菌时,随机取 20 个带盖试样,每个试样内接种 1ml 的铜绿假单胞菌(Pseudomonas aeruginosa)ATCC 9027,菌液浓度:10~

100CFU/1ml。 3.2 在30~35℃下培养7天,或培养至所有试样都呈阳性结果。 3.3 若7天内,所有接种铜绿假单胞菌的试样中,微生物生长良好,则容器内培养基的促菌生长能力可判为合格。 使用革兰染色和紫外灯下肉汤呈蓝绿色荧光的性质,来鉴定并确认试样容器内生长的菌为接入的铜绿假单胞菌。 4 挑战菌悬浮液的制备 4.1 从铜绿假单胞菌(Pseudomonasaeruginosa)ATCC 9027 的新鲜斜面上取一整环培养物,分别接入含lOml 无菌培养基的试管中,在30~35℃下培养16~18h。 4.2 将每管的培养物分别转入含 1000ml 相同培养基的容器内,于 30~35℃下培养22~24h。在培养结束时,能明显见容器内培养基出现浑浊。 4.3 培养结束后的菌悬液即可用来作容器/密封系统完好性试验。 5 微生物侵入试验操作步骤: 本试验须在生物安全柜内或其他不影响生产环境的地方进行。 5.1 将新鲜的铜绿假单胞菌(Pseudomonas aeruginosa)ATCC 9027 的菌悬液倒入合适的盆中,用金属丝架固定试样容器,使试倒臵在菌悬液中。 5.2 将50个经最长灭菌程序灭菌的试样倒臵,并浸入菌悬液中。试样容器内的无菌培养基应充分接触封口内表面,样品的颈部及封口的外表面应完全浸泡在菌悬液中。 5.3 实验开始时取一份菌悬液,平板计数每毫升所含的活菌数。按 3.3确认试验用微生物是铜绿假单胞菌(Pseudomonas aeruginosa)。 5.4 将试样容器在菌悬液中持续浸泡约4h。 5.5 浸泡结束时,再用平板计数菌悬液的浓度。 5.6 从菌悬液中取出试样,擦干试样容器外残余的菌悬液,然后用含 0.5%过氧乙酸的 70%异丙醇消毒容器外表面。 5.7 取装满培养基的样品两个,作阳性对照。阳性对照用样品制备方法同试样,

防水性检测方法(气密性测试方法)

气密性测试的方法 气密性测试又称为密封性测试或者防水测试。现在很多产品要达到一定的防水等级或者安全性考虑都会做气密性测试。 目前气密性测试的方法主要有两种一种是用水检测,还有一种是用压缩空气进行检测。用水检测的方法就是:把产品的密封口堵住,把产品直接放在水中,从产品的充气孔里充入气体,观测产品是否有气泡冒出,如果气泡冒出,就说明产品有泄漏,冒泡越多,气泡越大,说明泄漏量越大。 这种用水检测产品密封性的方法比较直观,而且可以观测到产品的漏点。这种检测方法的缺点是测试过的产品需要晾干,从测试到晾干,测试单个产品的时间比较长;有的电子类产品进水会受到损害,这样产品不仅泄露而且内部电子元件进水受到损害,加重的修复的难度。所以很多公司在对大批量的产品进行气密性检测时已经不用这种方法了。 用压缩空气进行检测的方法是:利用工装夹具把产品密封住,压缩空气通过气密性检测仪进入到测试产品的内部或者模具的内部。气密性检测仪的传感器实时感应气体的变化,最后气密性检测仪通过显示屏显示出产品是OK还是NG. 这种以压缩空气为介质的气密性检测方法优点比较多:首先它是一种无损检测,因为检测介质是空气,空气不会对产品造成损害;其次因为空气分子比水分子更小,检测结果更加精确;操作比较简单,测试过程快捷。这种气密性检测仪已经在很多厂家广泛应用并且得到客户肯定。 当然了这种气密性检测仪的缺点是没有办法检测到漏点。科技是无止境的,希望再不久的将来,我们可以研发出更好的气密性检测仪。 深圳海瑞思科技专做气密性检测11年,为1000多家客户提供气密性检测设备。已有3000多套气密性检测设备在位客户产品的气密性和防水功能保驾护航。

PET瓶封盖密封性检测方法

本文摘自再生资源回收-变宝网(https://www.wendangku.net/doc/1211345679.html,) PET瓶封盖密封性检测方法 本文主要介绍PET饮料瓶盖密封性的检验指标和检验方法。 1.检验方法 1)往水罐注入水,确保当瓶放入水罐时水位浸过瓶盖; 2)对于PET瓶,将瓶盖连同瓶口在瓶颈位置切割下来,用专用夹具密封; 3)将气管与穿孔头连接,将样品浸入水罐,合上仪器盖,检查盖是否锁好; 4)将仪器底座前面的压力表的红色指针复位至零; 5)将选择开关向右打到“Test”位; 6)如发现瓶盖裙脚处有气泡,立即将选择开关向左打到“Hold”位(以便观察漏气情况)或打到“Vent”位使瓶压减压至零,记录压力表中红色指针所指示的压力; 7)如瓶盖裙脚处无气泡,压力读数会持续上升,直至达到压力设定值; 8)将选择开关向左打到“Vent”位使瓶压减压至零,松开仪器盖,从水罐中取出样品; 9)拆下穿孔头上的气管,逆时针旋出穿孔头,取出样品。

对包装物进行封盖密封性测试的频率受许多因素影响,其中包括:封盖机的工作状况、封盖速度、盖和瓶的供应商的数量、封盖机的防护保养周期等。 2.我们提出以下的测试频率及方法供参考: 1)每班开始时,从每个封盖头提取3个被测样品,目视检测所有的样品的封盖位置。先用KZJ-SST-2封盖密封性测定仪(以下简称KZJ-SST-2)鉴定每个封盖头下取来的其中一个样品的封盖密封性并记录结果,发现哪个封盖头下的样品检测结果不合格,工作人员必须对该封盖头的剩余2个样品进行测试,如果剩余的两支中任何一只的测试结果不合格,那么就有必要对这个封盖头进行校正工作。 2)每次封盖头调节后,应取样品进行测试。 3)当更换使用新的瓶或瓶盖时,或者使用从不同的供应商购

新能源电池包气密性防水检测仪防水测试方法

新能源电池包气密性防水检测仪防水测试方法近年来,汽车的能源问题已经发展成为全球重点关注的问题,发展新能源成为汽车行业的必然趋势,因此一些政府逐步加大了对纯电动汽车的扶持力度。作为电动动力汽车动力源的动力电池成为新能源汽车行业关注的重点,如何生产出一块质量合格的,性能稳定的电池成为新能源汽车行业发展的第一要务,新能源汽车电池包的防水性与密封性测试,以及如何采用新能源电池包气密性防水检测仪进行气密性测试也成为一个关注的要点。 新能源电池包气密性防水检测仪 新能源电池包的防水性与密封性等性能都是需要达到一定的级

别。一般情况下,电池包的体积都比较大,长度在一米左右,电池包内部空间也比较大。所以使用新能源电池包气密性防水检测仪通过压缩空气检测电池包的气密性比普通的产品难度更大,对于新能源电池包气密性防水检测仪的稳定性和精密度都有更高的要求。 新能源电池包检测难点: 一:新能源电池包体积较大,内部容积相对来说也很大,一般情况下新能源电池包气密性防水检测仪气密性测试时间都在1分钟以上,测试时间越长,对于新能源电池包气密性防水检测仪的设备稳定性要求就越高。 二:对于电池包的检测需要实现无损检测,一个原因是电池包的价格总的来说是不便宜的,另一方面原因是如果使用传统的浸水方法进行防水测试,如果产品检测不合格,可能会导致电池包内部损坏,给返工维修带来难度。 再者由于电池包体积过大,相应重量也很大,就不能采用治具夹具来做密封腔进行防水测试,因此可以通过电池包上预留的防水透气孔,可以通过新能源电池包气密性防水检测仪对电池包采用直接充气的方式进行气密性防水测试。将新能源电池包气密性防水检测仪和电池包的防水透气孔通过气管连接,这样就可以将一定量的压缩空气充入到电池包的内部,新能源电池包气密性防水检测仪经过充气-稳压-测试三个阶段后给出结果;新能源电池包气密性防水检测仪可以实时检测电池包内部气体变化情况,依此来判断电池包是否达到预期的防水要求。

电动汽车的电池气密性及密封测试变得越来越重要

美国加利福尼亚州的目标是在不到三年的时间内在路上拥有100万辆零排放车辆(ZEV),这一目标具有广泛的意义。燃料电池汽车(FCV),电池电动汽车(BEV)和插电式混合动力汽车(PHEV)已经迎来了新一代电池技术和质量控制要求。 由于燃料电池动力汽车的成本,预计BEV和PHEV将主导销售,因此对电动汽车动力电池的需求正在爆炸式增长。根据可充电电池协会(Rechargeable Battery Association)的数据,预计特斯拉的Nevada gigafactory预计将在一年内提供比2014年全球生产更多的锂离子电池。问题是汽车行业将如何确保电池质量并确保持续无故障运行? 新电池需要泄漏检测 随着电动和混合动力电动汽车数量的增加,电池组件的质量将成为汽车制造商及其供应商的一个关键问题。对BEV和PHEV电池和电动机的物理完整性的要求是严格的。我们只需要考虑最近使用气囊充气机的事件,以了解制造质量标准的重要性以及准确可靠的测试方法。 幸运的是,制造商和供应商可以使用众所周知的泄漏检测方法。它们包括单

个电池单元的氦气真空测试;或最终组装后的冷却和气密性泄漏检测。 大多数人都经历过移动电话的负载容量损失或可以容纳的电量。电话的负载能力迟早会降低。供应商,制造商和客户都希望最大限度地减少电动和各种形式的混合动力电动汽车中使用的昂贵电池的容量损失。 汽车行业标准通常要求电池在10,000次充电循环后保持80%或更高的存储容量。如果EV / HEV电池在较长的使用寿命期间达到此目标,OEM和供应商必须确保泄密至最小的电池组件- 单个电池。电解液不得从电池中泄漏,水分不能进入电池。 每个电池必须是气密的。如果不是这种情况,不仅长期降低电池电量,而且大气湿度的渗透也会破坏不正确封闭的电池单元。结果可能是灾难性的。 1.使用气密性检测仪或气密性检测设备进行测试 有三种不同的基本电池设计:1)类似汽水罐的圆形电池(也称为18650型,20700型或特斯拉型21700型); 2)尺寸为矩形的棱柱形电池,从糖果棒大小

各种装置的气密性检查方法归纳

各种装置的气密性检查方法归纳 一般说来,无论采用那种装置制取气体,在成套装置组装完毕装入反应物之前,必须检查装置的气密性,以确保实验的顺利进行。装置气密性的检查这类题目变化很多,很多同学经常出错,因此,无论是从实验还是从理论、应试诸方面,都需要我们掌握好装置气密性检查的原理、方法及解题思路 气密性检查思路: 使要检查气密性装置(及附加的装置)构成一个封闭体系,其系统内有一部分气体,设法改变体系内气体压强(改变温度、鼓气),观察产生的现象(水柱、水面升降、气泡等),以判断装置气密性的好坏。写方案时既要说明操作方法,又要说明观察到的现象,还要说明判断气密性是否良好的标准,三者缺一不可。 考核的问题有二:一是怎样增大体系内气体的压强;二是能否正确地描述实验现象。通过对问题的回答,考核学生的观察能力、想象能力、语言文字表达能力。 具体步骤: 观察装置出口数目,若有多个出口,则通过关闭止水夹、分液漏斗活塞或用水封等方法,使装置构成封闭体系。 采用改变温度、加水增压法、鼓气法等改变封闭体系内气体压强。 观察水柱、水面升降、气泡等现象得出结论。 注:若连接的仪器很多,应分段检查。 气密性检查的三种基本方法.改变气体温度法,检查装置的气密性.加水加压法检查装置气密性.鼓气法检查装置的气密性. 鼓气法检查装置的气密性例如: 方 案 操作现象结论 1在试管中加入适量的水淹没长颈 漏斗下端管口;用嘴对着导管口 吹气。 试管中的水沿 长颈漏斗向上 移动 实验装 置不漏 气 2 在试管中加入适量的水淹没长颈 漏斗下端管口;用嘴对着导管口 吸气。 长颈漏斗下端 口有大量气泡 冒出 实验装 置不漏 气 装置气密性的检验,原理通常是想办法造成装置不同部位气体有压强差,并产生某种明显的现 象。使气压增大的常见方法有:①对容积较大的容器加热(用手、热毛巾、或微火)容器内受热气体膨胀,压强变大,现象是从导管出口(应浸没在水下)排出气泡,冷却时气体收缩,液体回流填补被排出的气体原来的位置,从而形成一段液柱;②通过漏斗向密闭容器内加水,水占领一定空间使容器内气体压强变大。现象是使加水的漏斗颈中的水被下方的气体“托住”,形成一段稳定的液柱。叙述上要注意细节描述的严密如: 1.将导管末端浸入水中(或是加水或是插入)。 2.要注意关闭或者开启某些气体通道的活塞或弹簧夹。 3.关闭分液漏斗活塞,或加水至“将长颈漏斗下口浸没”等。 一、基本方法:①受热法:将装置只留下1个出口,并先将该出口的导管插入水中,后采用微热(手捂、热毛巾捂、酒精灯微热等),使装置内的气体膨胀。观察插入水中的导管是否有气泡。停止微热后,导管是否出现水柱。②压水法:如启普发生器气密性检查③吹气法(不常用,略)二、基本步骤:①观察气体出口数目,若有多个出口,则通过关闭止水夹、分液漏斗活塞或用水封等方法,只装置只剩一个气体出口。②采用加热法、水压法、吹气法等进行检查 ③观察气泡、水柱等现象得出结论。注:若连接的仪器很多,应分段检查。 三、实例 【例1】如何检查图A装置的气密性方法:如图B将导管出口埋入水中,用手掌或热毛巾焐 容积大的部位,看水中的管口是否有气泡逸出,过一 会儿移开焐的手掌或毛巾,观察浸入水中的导管末端有 无水上升形成水柱。若焐时有气泡溢出,移开焐的手掌 或毛巾,有水柱形成,说明装置不漏气。

气密性检验方法总结

气密性检验方法总结 例:对下列装置,不添加其他仪器无法检查气密性的是() 答案A解析B项利用液差法:夹紧弹簧夹,从长颈漏斗中向试管内加水,长颈漏斗中会形成一段液柱,停止加水后,通过液柱是否变化即可检查;C项利用加热(手捂)法:用酒精灯加热(或用手捂热)试管,通过观察烧杯中有无气泡以及导管中水柱是否变化即可检查;D 项利用抽气法:向外轻轻拉动注射器的活塞,通过观察浸没在水中的玻璃导管口是否有气泡冒出即可检查。 以下是实验室制取气体的三套常见装置: (1)装置A、B在加入反应物前,怎样检查其气密性? (2)某同学准备用装置C制取SO2,并将制取的SO2依 次通入品红溶液、澄清石灰水、酸性KMnO4溶液的 试剂瓶,一次完成SO2的性质实验。上述装置中,在 反应前用手掌紧贴烧瓶外壁检查装置的气密性,如观 察不到明显的现象,还可以用什么简单的方法来证明该装置不漏气。 答案(1)对装置A:将导管的出口浸入水槽的水中,手握住试管,有气泡从导管口逸出,放开手后,有少量水进入导管,且水柱保持一段时间不变,说明装置不漏气;对装置B:塞紧橡胶塞,夹紧弹簧夹后,从长颈漏斗注入一定量的水,使长颈漏斗内的水面高于试管内的水面,停止加水后,长颈漏斗中与试管中液面差保持不变,说明装置不漏气。 (2)反应前点燃酒精灯,加热烧瓶一小会儿。在盛放品红溶液、澄清石灰水、酸性KMnO4溶液的试剂瓶中出现气泡,停止加热后,浸没在溶液中的导管中上升一段水柱,且水柱保持一段时间不变,证明该装置不漏气。 解析(1)对装置A,可使试管受热造成体积膨胀而观察;对装置B,一般通过在关闭弹簧夹后加液形成一段液柱进行观察确定。 (2)装置C后由于有不少连续装置,空间较大,用手掌紧贴烧瓶外壁产生的微弱热量不足以产生明显现象,此时可通过提高温度(微热)的方法检查装置气密性。 装置气密性的检验方法与答题规范 装置气密性检查必须是在放入药品之前进行。 1.气密性检查的基本思路

密封性检测方法概述-软包装行业

密封性检测方法概述-软包装行业

包装的密封性能是关乎包装内容物质量的关键因素,这是因为包装的密封性决定了成品包装独立于外界环境的程度,若包装的密封性比较差,包装内部的气体含量或成分则易发生变化,如包装外部的气体渗透进包装内部或包装内部充填的气体散失,若包装内部含有液体成分还易出现漏液等问题,上述现象均可引起产品质量的降低。包装的密封性问题一般比较隐蔽,无法用肉眼辨识,故很难在出厂前发现并及时处理,往往是在出厂之后的长期流通、储存过程中因包装缓慢漏气、漏液,引发内容物出现发霉、结块、胀袋等质量问题,企业因此而承受较大的风险和经济损失。故包装的密封性问题一直是困扰企业的一大难题。 软包装行业密封性检测适用标准: 目前国内常用的包装袋密封性检测主要标准是《GB/T 15171 软包装袋密封性能试验方法》 ,该标准测试方法采用负压法测试原理,即抽真空法测试。试验原理是:通过对设备的真空室抽真空,使浸在真空室水中的试样产生内外压差,查看试样是否出现漏气的情况,以此判断试样的密封性能;或通过对真空室抽真空,使试样产生内外压差,通过观察试样膨胀及释放真空后试样形状恢复情况,判断试样的密封性能。

该测试方法适用的包装类型: 适用于玻璃瓶、管、罐、盒等的整体密封性试验。 适用于塑料袋、瓶、管、罐、盒等的整体密封性试验。 适用于金属瓶、管、罐、盒等的整体密封性试验。 适用于纸塑复合袋、盒类包装的密封性测试。 密封性检测试验仪器介绍: MFY-01密封试验仪(Labthink兰光)专业适用于食品、制药、医疗器械、日化、汽车、电子元器件、文具等行业的包装袋、瓶、管、罐、盒等的密封试验。亦可进行经跌落、耐压试验后的试件的密封性能测试。通过试验可以有效地比较和评价软包装件的密封工艺及密封性能,为确定相关的技术要求提供科学的依据。 密封试验仪,又可称为密封仪、密封性测试仪、包装袋密封检测仪、塑料瓶密封测定仪、瓶盖密封性试验仪等。

电池气密性检测分析

汽车电池作为新能源汽车的供电装置,如果不具备防水要求,不仅会漏电还会对汽车的使用安全造成威胁。所以,动力电池厂家在对其进行生产时,一般会针对电池进行防水性较强的精密性设计,但无论是使用哪种材料,对电池进行防水检测也是非常重要的,这就是气密性检测。 下面,我们就一起来看看到底是怎么样的吧。 一、气密性检测要求 新能源汽车电池的密封需要配合电池包箱体结构和密封圈,电池箱体上下都需要通过激光拼接实现整体密封,这属于结构密封。此外,电池还会采用密封圈或者密封胶等密封协助用品,辅助形成更为密封的结构。电池包一般是有防水透气孔的,检测时可以用往防水透气孔里充入压缩气体进行检测,这样的直接检测方式能够保证不对电池造成二次损伤,同时检测结果也更加准确。 二、气密性检测不到位的问题 由于新能源汽车电池的体积较大,在检测时无法使用对电池进行全密封式的防水检测方式,还容易出现检测结果不准确的问题,因此在检测时我们要先摆脱以下几个检测难题: 1、上盖与底槽封口胶开裂造成密封性不好,容易导致外部液体渗入,污染

电池工作环境。 2、因密封问题出现安全阀渗漏液,可能导致其他零件受损。 3、密封不到位导致接线端处渗酸漏液,影响电瓶车电线,导致电路烧坏。 4、密封不到导致电容量损耗,电池寿命与安全度下降。 三、气密性检测过程展示 由于新能源汽车电池包的体积过大,不宜进行全封闭式检测,所以海瑞思科技采用直接试用气密性检测的方式,仪器上有一根专门输送检测气体的进气管,进行气密性检测时进气管与新能源汽车电池包的连接管进行对接,这样的检测既方便又快捷。 此外,该设备检测时会在电池包的腔体内充入一定体积、干燥且无杂质的气体,然后断开压缩空气供给,静止一段时间使其压力稳定,经过既定的测量时间以监控检测环境内气压的微小变化。传感器将这一信息传给检测系统,最后经过一系列的运算就可以得出气体的泄漏值,就可以根据泄漏值检测出电池包的防水性能和IP防水等级。 杭州固恒能源科技有限公司从事于新能源汽车后市场领域,是一家专注于动力电池的应用以及循环利用等方面的研发、生产、销售,并提供全套检测维护解决方案的企业。研发了一系列动力电池,机电,机电控制维保领域的相关产品,有效的降低了服务商的运营维护成本,延长了电池的使用寿命,我们致力于打造新能源汽车后市场领域的工具链及数据链,全力打造一个完善的新能源汽车核心动力检测维护系统。

装置气密性检验的常用方法

装置气密性检验的常用方法 河南宏力学校高中部胡乔木 在化学实验中,对于气体的化学实验, 特别是有毒、有污染的气体的化学实验,它 们的实验装置在发生反应之前必须要经过气 密性检验这一步。装置的气密性检验是气体 的实验过程中至关重要的一个操作环节,它 有时候往往影响着整个实验的成与败。在很多的实验题中,我们经常会碰到单独对有关实验装置的气密性检验的方法的考查,其实,在实验题中考查装置气密性的检验方法是对学生动手实验操作能力进行检验的重要考查形式。所以说,对于实验装置的气密性检验,我们应当引以足够的重视。同时,我们还应当重点掌握常见的几种重要的装置气密性检验的方法,以及这些检验方法的操作原 理。 现将中学化学常见的几种检验装置的气密性的方法归纳如下。 1、微热法 这是中学化学检验装置气密性最常用的方法之一,也是最基本的装置气密性检验方法。这种检验方法的原理是利用气体受热膨胀之后从装置中逸出来,看到气泡冒出。具体的操作方法是这样的:将导气管b的末端插入水槽中,用手握住试管a或用酒精灯对其进行微热,这样试管a中的气体受热膨胀,在导气管末端会有气泡产生。在松开手或撤离酒精灯以后,导气管末端有一段水柱上升,则证明该装置的气密性良好,不漏气。 详见下图示。

2、液差法 液差法是利用装置内外的压强差产生的“托力”将一段水柱托起,不再下降。对于不同的实验装置,利用液差法进行气密性检验的时候,所采取的实验操作方法是有所不同的。下面介绍两种常见的液差法检验装置气密性的操作方法。 (1)启普发生器的气密性检验:关闭导气管活塞,向球形漏斗中加水,使得漏斗中的液面高于容器的液面,静置片刻后液面不再改变的时候即可证明启普发生器的气密性良 好。详见下图示。 (2)另一种气密性检验的方法,如下图所示。具体操作是这样的:连好仪器,向乙管中注入适量的水,,使得乙管的液面高于甲管的液面。静置片刻后,若液面保持不变则 证明该装置的气密性良好。 3、液封法 如下图所示,该装置的气密性检验的方法是这样的:关闭活塞K,向其中加入水至浸没长颈漏斗下端管口,若漏斗颈出现一段稳定的水柱,证明该装置的气密性良好。

常见包装袋密封性检测标准方法

常见包装袋密封性检测标准方法 包装袋广泛应用于食品包装以及药品包装的各个领域,以其包装成本经济、易于加工、易于控制、易于生产等优势而成为目前市场上极为普遍的一种包装形式,包装袋的密封性能、封口强度是包装袋质量的重要指标,其关乎着包装内容物的产品质量、保质期,同时也是产品流通环节的必要保障。 而在包装袋生产过程中由于众多因素的影响,可能会产生封合时的漏封、压穿或材料本身的裂缝、微孔,而形成内外连通的小孔。这些都会对包装内容物产生很不利的影响,特别是食品、医药包装、日化等行业,密封性将直接影响产品的质量。密封性不好是造成日后渗漏腐败的主要原因。其中风琴袋的包装特别是四层处最容易出现泄漏。广州标际对密封性测试的相关标准可见详表1:表1 密封性测试的有关标准 密封性测试具体方法各不相同,国内生产实践中常用GB/T 15171-1994标准。 1.着色液浸透法 这种方法通常用来检验空气含量极少的复合袋的密封性。方法如下:将试验液体(与滤纸有明显色差的着色水溶液)倒入擦净的试验样袋内,密封后将袋子平放在滤纸上,5min后观察滤纸上是否有试验液体渗漏出来,然后将袋子翻转,对其另一面进行测试。 2.水中减压法(真空法) 这种方法又包括真空泵法和真空发生器法,通常用来检验空气含量较多的复合袋。

(1)真空泵法 测试装置主要由透明耐压容器、样品架以及真空系统(真空泵、真空表等)组成。这种方法有如下缺点:形成真空的时间长,且不稳定;密封性能不好;压力为指针式显示,精度偏低。因此现在已逐步被淘汰。 (2)真空发生器法 这种方法目前在软包装行业内应用广泛,它利用射流原理,正压变负压形成稳定的空气源,高精度电子压力传感器实时显示测试容器内的真空度,微电脑自动控制,试验参数(真空度和保持时间)可随意设定,达到真空所需时间短,真空保持平稳,密封性能好。 3.测试步骤 根据GB/T 15171-1994软包装件的密封性能试验方法:在水的作用下,外层材料的性能在试验期间是否会发生变化,如外层采用塑料薄膜的包装外,可以通过对真空室抽真空,使浸在水中的试样产生内外压差,以观测试样内气体外逸或水向内渗入情况,以此判定试样的密封性能。 参照GB/T 15171-1994标准,在真空室内放入适量的蒸馏水,将包装袋浸入水中,袋子的顶端与水面的距离不得小于25mm.盖上真空室的密封盖,设置真空度,并保持30s。在此期间如有连续的气泡产生,则为漏气,孤立的气泡不视为泄漏。 需要说明的是,该设备的真空度数值0~-100Kpa可以设定,此外该设备还具有自动保压、补压功能,达到设定的压力后自动计时开始保压,保压时间到后如不漏气则为合格产品,若未达到设定的压力与时间即出现冒泡现象,则包装袋视为不合格,可手动泄压,打开密封盖,更换试样袋,重新设置真空度和保持时间。所设置的真空度值根据试样的特性(如所用包装材料、密封情况等)或按有关产品标准的规定确定,但不得因试样的内外压差过大使试样发生破裂或封口处开裂。 4. 泄漏常见原因及解决方法(见表2) 表2包装袋泄漏常见原因及解决方法

电池箱如何进行气密性检测

气密性检测仪能用于各种铸件,阀体,焊接管件,各类汽车零部件专业气密性检测。 那么您知道电池箱如何进行气密性检测吗? 电池箱气密检测设备是对涂胶后的电池箱,充入预定压力的气体,通过高精度直压气密检测仪器(SLA-A)检测电池箱泄漏的密封性检测设备。 使用气密性检测仪具有规律性强,可以做到数据追溯,一旦产品出现问题可以追溯到开始出厂时的产品状态或数据,主观性很低,不依赖操作者等优点。 动力电池箱气密性测试:目前主流的电池包气密性检测,主要的测试压力分为正压或负压,由于Pack本身材质较薄,所能承受的压力较小,所以一般情况下只能接受几Kpa或几十Kpa的测试压力,目前主流的是使用直压检测,整个测试节拍要在三分钟或五分钟,根据产品体积大小会有所不同。测试结果也一般是在100Pa或5ml/min左右。

随着电动汽车的发展,动力电池包作为纯电动汽车的核心部件,电池包的安全性逐渐凸显出来,直接影响到整车的安全性。电池包的开发需要充分考虑多方面的因素,需要学习吸收国内外先进技术经验,对设计方案进行反复验证优化。因此就对电池箱体的强度、刚度、散热、防水、绝缘等设计要求很高,所以电池箱体的设计和密封性测试就显得至关重要。小型纯电动汽车,已成为国家产业化战略的主打车型之一,其电池Pack气密性检测显得尤其重要。 QMM系列便携式气密性检漏测试仪是由杭州固恒能源科技有限公司专业研发生产,很好的满足了不同使用场景下的使用需求,提高了生产效率,降低了检漏成本,非常适合作为电池组生产商和售后服务提供商的气密性检测设备,保证动力电池产品在生产过程中和使用过程中的气密性满足需求,确保新能源汽车的使用安全。

气密性检测仪应用特点及主要特点

对于电池包的气密性测试仪目前市场上已经慢慢的普及,电池是汽车上的核心部件,直接影响到汽车整车的安全性。而电池包的生产厂家在电池包的整体设计上以及电池包的气密性的测试要求上都已经想得非常的周密。随着市场上生产厂家电池包生产产量的提高以及生产线成本的控制。传统的泡水检测法已经无法满足电池包生产厂家的需求,下面我们就详细介绍一下关于电池包的气密性测试方法及检测原理。 新能源汽车电池包因泄漏引起的后果: 1、上盖与底槽封口胶开裂造成密封性不好,容易导致外部液体渗入,污染电池工作环境。 2、因密封问题出现安全阀渗漏液,可能导致其他零件受损。 3、密封不到位导致接线端处渗酸漏液,影响电瓶车电线,导致电路烧坏。 4、密封不到导致电容量损耗,电池寿命与安全度下降。 新能源电池包气密检测要点解析

目前主流的电池包气密性测试,主要的测试压力分为正压或负压,由于电池包本身材质较薄,所能承受的压力较小,所以一般情况下只能接受几KPa或几十KPa的气密性检测压力,目前主流的电池包气密性检测方法为空气压力测试法,整个电池气密性测试节拍要在三分钟或五分钟甚至更长,根据产品体积大小会有所不同。测试结果也一般是在100Pa或5ml/min左右。 一般动力电池的体积比较大,我们进行气密性测试时,需要对电池Pack的接插件进行密封处理,并且要在Pack找一个端口作为充气孔,通常情况下大家会选择防爆阀或者泄压阀口作为充气口来进行气密性测试。因此这就需要做一个简单的封堵工装,这个会根据客户具体要求来进行定制。然后气密性检测仪会对着充气口进行充气,稳压,测试,排气四个阶段,得到电池的空气泄漏率,从而根据空气泄漏率判定电池包气密性。 新能源汽车电池包水检法的的弊端: 在检测电池包的气密性如果采用水检法,必须要打开电池包才能判定产品是否合格,所以水检法为有损检测。而且测试效率非常慢,对于生产厂家来说是非常不利的一种检测方法。 新能源汽车电池包智能型气密性测试仪的优点:

各种装置的气密性检查方法及答案

班级姓名 一、装置气密性的检查原则: 1、检验时利用装置自身的仪器,在没有特殊需要的情况下,往往是不可以随意添加其它仪器来检验装置气密性的。 2、在检验装置的气密性时操作往往是使装置中的气体体积发生变化,但变化的程度要小,大幅度的变化是不能看出装置是否漏气的。 二、装置气密性的检查原理:一般说来,无论采用那种装置制取气体,在成套装置组装完毕装入反应物之前,必须检查装置的气密性,以确保实验的顺利进行。装置气密性的检验,原理:通常是想办法造成装置不同部位气体有压强差,并产生某种明显的现象。装置气密性检验采用的一般方法是:通过气体发生器与附设的液体构成封闭体系,依据改变体系内压强时产生的现象(如气泡的生成,水柱的形成,液面的升降等)来判断装置气密性的好使气压增大的常见方法有:①对容积较大的容器加热(用手、热毛巾、或微火)容器内受热气体膨胀,压强变大,现象是从导管出口(应浸没在水下)排出气泡,冷却时气体收缩,液体回流填补被排出的气体原来的位置,从而形成一段液柱;②通过漏斗向密闭容器内加水,水占领一定空间使容器内气体压强变大。现象是使加水的漏斗颈中的水被下方的气体“托住”,形成一段稳定的液柱。 在叙述上要注意细节描述的严密性。如: 1.将导管末端浸入水中(或是加水或是插入)。 2.要注意关闭或者开启某些气体通道的活塞或弹簧夹。 3.关闭分液漏斗活塞,或加水至“将长颈漏斗下口浸没”等。 三、装置气密性的检查基本方法: 1.受热法:将装置只留下1个出口,并先将该出口的导管插入水中,后采用微热(手捂、热毛巾捂、酒精灯微热等),使装置内的气体膨胀。观察插入水中的导管是否有气泡。停止微热后,导管是否出现水柱。 2.压水法:如启普发生器气密性检查 四、装置气密性检查的基本步骤: 1.压水法,只装置只剩一个气体出口。 2.采用加热法、水压法等进行检查 3.观察气泡、水柱等现象得出结论。注:若连接的仪器很多,应分段检查。

动力电池包试验心得

对于客户来说,购买新能源汽车考虑的重要因素之一就是安全。 在电池包的开发过程中,如何确保其在质保期内安全可靠?该问题的答案 是个系统工程,需要电芯设计、BMS研发、结构设计、安全策略、质量控制等 各个方面协同努力才能达成。企业为了确保自己的产品能够做到安全可靠,都 会根据新国标做一系列的测试,在产品送到客户手中之前,测试成为企业检验 自己产品的最后一道关口。在这里简单描述一下新国标测试项目之振动和冲击。 机械冲击测试的目的是评价在加速、减速、车轮掠过有凹坑或者石头路面 等工况下的电池包机械结构强度。 随机振动测试的目的主要是模拟汽车行驶时,路面的凹凸不平造成Pack经 历这种随机振动的载荷工况时的疲劳寿命。 如何进行测试,需要关注哪些参数,如何判定结构是否通过测试? 在冲击&振动之前做一个温度冲击测试,主要是检验箱体的焊接位,及螺 栓扭力在温度冲击过程中受到的损伤程度,相当于测试前的准备工作。 由于测试过程中,不允许开箱(有严重异常除外),扫频成为评估结构是 否发生破坏的检验方法,在每个方向冲击振动之前,会进行扫频,扫频是为了 检验样品的固有频率,如果某个方向测试完成后,测试前后固有频率偏差值在 10HZ以内,则认为可以往下进行,大于10Hz则需要开箱检查,视Pack受到的损伤程度,判断是否继续测试。如下图所示,绿色为冲击前的扫频曲线,红色 是冲击后的扫频曲线,黑色为振动后的扫频曲线,可知冲击完后,结构主频下 降了3Hz,随机振动完后主频继续下降了7Hz,结合实际的经验来看,结构是 Ok的,可以继续做其他方向的测试。

测试完成之后,需要对扭力进行测定,在生产组装时,会对箱体内的每个螺栓打一个固定的扭力值,同时以红线标注,这个扭力值视为初始扭力值,测试前后开箱确认红线偏移量与扭力值保持率,保持率<60%(供参考,各企业、不同项目的要求不一样)则认为螺栓松动,视为异常。 此外,气密性、绝缘电阻、电压温度采样等也是需要进行测试以便对比测试前后的数据,判定产品是否合格。 气密性主要针对IP等级在IP67以上箱体进行测试,气密性包含箱体的气密性和水冷系统的气密性。 绝缘电阻测试总正、总负对箱体的绝缘电阻,一般参考GB/T18384.3。 电压温度采样,主要检验Pack前后的BMS基本功能是否正常。 如果Pack前后的机械损伤不大,要求做两个标准的充放电循环,以检测Pack的容量值未受明显影响,基本功能也未受明显影响。 Pack测试的过程,如无特殊要求,则按下面顺序进行: 1.Z方向:初始检验、预处理、扫频,冲击、扫频、振动、扫频 2.Y方向:扫频,冲击、扫频、振动、扫频 3.X方向:扫频,冲击、扫频、振动、扫频 在这里解释一下,为什么会从Z方向开始振动,因为Z方向的条件一般比Y方向严酷,Y方向的条件一般比X方向严酷,参考GBT31467.3第7章节随机振动测试,Z、Y、X的振动RMS值分别为ZRMS:1.44G,YRMS:0.95或

浅谈气密性检测技术及影响检测的因素_吴礼平 (1)

63 C H I N A V E N T U R E C A P I T A L TECHNOLOGY APPLICATION |科技技术应用 一、概述 气密性是指某一零件对液体或气体的泄漏程度,这一指标涉及很多零部件的制造质量,装配质量。例如:在变速箱中的机油;咖啡壶中的水;燃气炉;蓄电池。 气密性的标准值应由使用要求而定,如核工业和航天领域对气密性要求就比一般工业高,而检测方法也取决于检测值的大小。 二、应用领域1.汽车行业汽车整车,摩托车,发动机,大灯,减震器,继动阀,喇叭,变速箱,进排气门,化油器,水路、油路系统,气缸体,气缸盖,助力转向系统,电磁阀,蓄电池,空气过滤器,滤清器,喷油嘴,各种密封,制动总泵,水泵,液压泵,预热器,散热器,燃油管路,压力调节阀,阀座,空气悬挂系统,恒温器… 2.医疗行业 导管,透析设备,流量阀,毛细吸管,塑料阀,注射器,人造瓣膜… 3.各类容器 喷雾器,喷嘴,香水瓶,苏打罐,塑料瓶,烧瓶,食用袋,打火机… 4.家用器具 空调器,电冰箱,电池,燃气热水器,电水壶,卫浴器具,咖啡壶,高压锅,各类加热件,煤气灶,烫斗,烤箱,洗衣机… 三、气密性检测的方法 通常作气密性时用的方法是加压或抽真空,而作气密性检测的方法确实很多,从非常简单的水箱法到非常复杂的气体探测法,简单简介如下: 1.泡沫法:用肥皂液涂抹零件表面,再加气压,观察气泡。 2.空气/水法:对零件封堵,充入一定压力的空气,待气体稳定后测定压降,根据压降值判断密封性,这是最适合在工业生产中应用的方法,其可在线检测。浅谈气密性检测技术及影响检测的因素 南宁八菱科技股份有限公司 吴礼平 3.气体探测法:对一些不能用空气/空气法的领域(如泄漏量很小,大体积,需要知道泄漏点),气体探测法,然而因气体成本高,测试慢等因素,限制了这一方法的大规模使用。常用的气体探测法有两种: (1) 将被测件置于可探测的境地,抽真空,由进入探测器的气体量来判别被测件的泄漏量。 (2) 将被测件内部充入探测气体,然后在外部探测泄漏点及评估大小。此方式被探测极限取决于气体和探测器。很多气体都可选用,常用的是卤元素气体,而最灵敏的是氟利昂。 以气体压力变化为基本原理的测量越来越广泛的应用于工业生产中。由于其应用简单,自动化程度高,相对成本低,速度快,精度要,因而极适合装备在车间和自动生产线上。 气密性检测是一个较复杂的问题,需要丰富的经验,其难点主要是被测件自身的热力性和可靠的封堵。 四、气密性检测方法的选择 气密性检测方法很多,针对每种方法的优缺点不同,检测前应根据检漏要求、检漏环境、检测成本等选择合适的检漏方法。 选择气密性检测方法要考虑如下几个方面因素:1.确定实际的测试压力 测试压力通常选择零部件实际工作状态下的压力,也可根据实际情况调低;如是否有足够压力的气源、安全性、密封夹具设计的考虑及结合产品实际测试的弹性变形及承压情况等特点,选择相适宜的测试压力,该参数也可从验证产品在不同的检测压力下,选取最稳定的测试压力。 2.确定泄漏率 泄漏率可以是通过测量漏孔压力下降量。或者是单位时间的介质通过的容积。对于一定体积来讲,制定多大的泄漏率合适,是由你想防止什么样的物质(气体/液体)对该工件漏出/入来决定的。 3.确认泄漏检测的意图 摘 要:随着科学技术的不断进步,气密性检测技术得到迅速的发展,而且也得到了较为广泛的应用,如被应用于汽车工业中。文章简述了气密性检测常用技术的基本方法,阐述了气密性检测方法的选择、影响气密性测试的因素,并论述了气密性检测技术的发展趋势。 关键词:气密性测试;检测方法;检测影响因素 成纤维.2006,35(8):17-19. [7]朱清,张光先,张凤秀等.腈纶织物接枝大豆蛋白改性研究[J].纺织科技进展.2010,(2):20-24. [8]杜孟芳,闵思佳,张海萍等.用丝素蛋白涂覆涤纶织物的研究[J].蚕业科学.2007,33(3):427-432. [9]高素华,张光先,琚红梅等.涤纶表面接枝蛋清蛋白改性及其服用性能研究[J] .丝绸.2010(10):6-9. [10]张吉升.涤纶织物的丝胶改性和染色工艺研究[J].合成纤维.2010,39(7):44-47. [11]谢瑞娟,邢铁玲,谢丽莹.丝胶蛋白用于涤纶织物改性的研究[J].丝绸.2002,(11):14-16. [12]潘福奎,潘延松,谢莉青.利用丝胶改善涤纶织物服用性能研究[J].青岛大学学报.2005,20(1):61-63. [13]丁志文.一种胶原蛋白-聚丙烯腈复合纤维及其制备方法[P].中国专利:ZL03156292.2,2005-03-09. [14]吴炜誉,王雪娟,王玲等.高含量胶原蛋白/PVA复合纤维的结构与性能[J].合成纤维工业.2009,32(3):1-4. [15]高波,李守群,徐建军,等.胶原蛋白/聚乙烯醇复合维的初步探索 [J].合成纤维工业2005,28(3):10-12. [16]唐屹.不同连接剂复合的胶原蛋白/聚乙烯醇纤维结构与性能研究[D].四川大学:高分子科学与工程学院,2007. [17]陈武勇,林云周,叶光斗等.金属离子改性的胶原蛋白-聚乙烯醇复合纤维及其制备方法[P].中国专利:CN1696362,2005.5.12. [18]李闻欣,程凤侠,俞从正,等.一种改性胶原蛋白复鞣剂的研制及应用[J].皮革化工,2001,19(1):9-12. [19]Sionkowaska A. Molecular interaction in collagen an-dchitosan blends[J]. Biomaterials, 25(2004): 795-801. [20]华坚,王坤余,顾迎春,等.胶原蛋白-壳聚糖共混溶液的黏度与可纺性能[J].皮革科学与工程,2004,14(2):12. [21]但卫华,周文常,曾睿,等.胶原-壳聚糖共混纺丝液的制备[J].中国皮革,2006,35(7):35-38. [22] 余家会,杜予民,郑化.壳聚糖——明胶共混膜[J].武汉大学学报(自然科学版),1999(45):440-444.

净化空调金属风管密封性的保证措施及检测方法.doc

净化空调金属风管密封性的保证措施及检测方法 在净化空调金属风管的施工过程中,只有根据它的使用要求,采取严格的质量控制措施,才能保证其质量要求。一般来说,净化空调金属风管与一般空调金属风管相比,有四个不同的使用要求:1. 风管内应保持清洁;2.密封性要求高;3.平整度要求高;4.风管内静压值高。本文主要论述净化空调金属风管 密封性的 保证措施及检测方法。 1 净化空调金属风管密封性的保证措施 (1)风管的咬口形式采用单咬口、联合角咬口。 (2)金属风管的连接形式采用角钢法兰连接。 (3)在板材尺寸能够满足下料要求,损耗率不会太大的情况下,可考虑把弯头、三通等配件制作成与 直线段连成一体,减少法兰接口。 (4)风管直管制作尽量减少纵向拼接缝,不应有横向拼接缝。矩形风管边长小于或等于900mm时,其底面板不得有拼接缝,大于900mm时,不应有横向拼接缝。 (5)风管的咬口缝、铆钉缝、法兰翻边四角等缝隙处涂上密封胶(如中性玻璃胶)。涂密封胶前应清 除表面尘土和油污。 (6)法兰密封垫采用5mm橡胶板或8501阻燃密封胶带。 (7)风管与法兰连接时,风管翻边应平整并紧贴法兰,宽度不小于7mm。 (8)法兰螺孔和铆钉孔间距不应大于100mm。矩形法兰四角应设螺孔。弯头、三通等管件内设置导流片用平头铆钉固定,严禁采用抽芯铆钉。铆钉处涂密封胶。 (9)软接头采用角钢法兰连接。(如图1) 2 采用漏光法检测净化空调金属风管的密封性

漏光法检测在风管吊装后,保温前进行。漏光检测采用分段检测。可根据风管内绳索拉动的顺畅程度,风管的检测长度尽可能长些来分段,以减少检测的次数,提高工作效率。重点检查的部位为弯头、三通等管件板材转折处,法兰四角翻边、铆钉处。按照《通风与空调工程施工质量验收规范》(GB50243-2002)附录A的规定,中压系统每10m接缝,漏光点不大于1处,且100m接缝平均不大于8处为合格。但是,该规定尚不能满足漏风测试要求。因此,在采用漏风测试前,应保证没有漏光点。 3 漏风量测试 3.1 漏风量测试的仪器 下面介绍笔者使用的漏风试验装置(图2)。该装置的组装参考《洁净室施工及验收规范》(JGJ71-90) 附录正压风管式漏风量测试装置。 (1)测试离心风机9-19№4A(1704m3/h,3253Pa,3kW) (2)毕托管与倾斜式微压计(YYT-200B,0~200 mmH2O) (3)热球式电风速仪(QDF-3型,0.05~30m/s) 3.2 漏风量测试的方法 (1)先用镀锌钢板封堵检测风管的各个出口。然后将风管漏风测试装置的进风管与检测风管连接,利用测试离心风机向风管内鼓风,调节风机入口处的风量调节阀。使进风管内静压值P上升并保持在 700Pa。 (2)进风管内的静压用毕托管与倾斜式微压计测量。 (2)进风管的风速用热球式电风速仪测量。根据测得的风速与进风管的截面积计算进风量Q(m3/h)。 此时的进风量Q即为漏风量。 4 漏风量的计算过程 4.1 对空气流态的判断 ∵试验风机的风量为1704m3/h,进风管的管径为φ300。 ∴风速v=6.7m/s 又∵1个大气压下,30O C空气的运动粘滞系数=16.6*10-6 (m2/s) ∴Re===121084

相关文档
相关文档 最新文档