文档库 最新最全的文档下载
当前位置:文档库 › 金属表面热处理渗碳工艺对比

金属表面热处理渗碳工艺对比

金属表面热处理渗碳工艺对比
金属表面热处理渗碳工艺对比

金属表面热处理渗碳工艺的对比

一、热处理发展历史

在实用生产技术发展上值得回顾的有:①1890年英国首次公布了制备不可燃气氛发生炉的专利,该气氛用于金属的光亮热处理,德国的A.富利1921年申请了在井式炉中通氨渗氮的专利。②P.P.阿诺索夫在1837年就倡导用气体渗碳法,而经过100年后(1935年)前苏联的利哈乔夫汽车厂才有了第一台用煤油裂解气的罐式连续渗碳炉;直到20世纪50年代才逐步取代了固体渗碳和用氰盐的液体渗碳。③前苏联的G.V.沃罗格金在20世纪40年代逐步把感应加热技术应用到炼钢、锻造加热和表面淬火热处理等领域。④20世纪40年代末出现了用LiCl露点仪的碳势可控渗碳。⑤离子渗氮于20世纪30年代在德国就有了专利,而KlÊ;ckner公司是在20世纪50年代末才开发出商品设备,并推向工业应用。⑥20世纪60年代初瑞士的H.魏斯发明了在井式炉中的CARBOMAAG滴注可控渗碳法。⑦20世纪60年代中期,用吸热式气(载气)、甲烷或丙烷(作富化气)并用CO2红外仪测控炉气碳势的可控渗碳在汽车工业中得到推广。与此同时第一代的冷壁式真空加热油中淬火炉和真空渗碳炉问世。⑧20世纪50年代开发,60年代推广的被称作Tenifer或Tufftride商品名称的盐浴氮碳共渗,使渗氮周期由数十小时缩短到1h~2h,可明显提高传动件的抗疲劳、耐磨性和抗咬合能力;由于处理温度低(<580℃),工件畸变小,其缺点是所用氰盐剧毒、废盐废水需妥善处理。⑨为避免使用剧毒的氰盐,20世纪60年代后期开发出了NH3+吸热式气(Nikotrier)和NH3+CO2(Nitroc)在570℃的井式或箱式炉中施行的气体氮碳共渗法,随后在汽车曲轴、低载齿轮等零件上获得广泛应用。⑩20世纪50年代高分子聚合物溶液开始用做淬火剂。最早使用的此类聚合物是聚乙烯醇(PVA),以0.1%~0.3%的浓度用做感应加热件的喷冷淬火,其冷却能力介于水油之间,不易燃、无污染。20世纪60年代美国联碳公司推出UCON(PAG)系列合成淬火剂,可代替油用于铁和非铁合金的淬火及固溶处理的冷却。随后又有一系列其它类别的合成淬火剂商品问世。⑾高、中、工频以及超音频和超高频、超高频脉冲感应加热表面热处理工艺广泛应用。各种静态固体电路高频、大功率电源相继问世,全自动程控多工位淬火机床和自动装卸料机械手或机器人获得工业应用。?⑿20世纪80年代氧探头逐步代替红外仪用于炉气碳势控制的传感器和计算机仿真自适应控制、无损检测技术、机器人装卸结合,使大批量生产的汽车零件的渗碳、淬火、清洗、回火、质检全过程实现自动化和无人作业。?⒀20世纪90年代,欧洲IpsenInternational、ALD和ECM等公司相继推出低压渗碳、低压离子渗碳和高压气淬的周期炉和半连续生产线,为提高效率、改善质量、减少畸变和保护环境作出了贡献,为汽车工业热处理未来提供了前景。近20年来,热处理新技术的大量涌现,为机器制造业的发展、机械产品质量的提高、热处理企业的技术改造积累了大量的技术储备,为热处理生产技术的进步提供了广阔前景。

二、氨气的作用:提高淬透性

渗碳淬火后的齿轮零件正常的组织应该是马氏体与残余奥氏体,但在实际生产中经常发现在渗碳淬火件的表层出现连续、断续的黑色组织或沿晶界分布的黑色氧化物。普遍的理论认为是由于内氧化使合金元素贫化、淬透性下降导致形成屈氏体类组织,这类组织就被称为非马氏体组织。非马氏体组织深度如果超标严重,反映在力学性能上就是出现零件表面硬度低头的现象,影响硬度梯度。在实际使用中会降低齿轮的耐磨性和疲劳寿命,危害比较严重。尽可能选择含Cr、Mo、V、Mn和Ni等高淬透性的低碳合金钢作为齿轮原材料。对渗碳后的零件采取剧烈的冷却方式(比如强力搅拌)可以有效地减少非马氏体组织,但前提是不能使零件

产生开裂或严重的变形。因此在零件变形允许的条件下,尽可能采用激烈的冷却介质和采取剧烈的冷却方式。例如对大的轴齿类零件采用强力搅拌的冷却方式,可以有效地提高齿轮心部硬度及减少非马氏体组织。在渗碳工艺的扩散段,当炉温降至860℃左右时,开始通入氨气(流量为0.3m3/h),一直到零件淬火关闭。该方法的原理是,通入氨气给零件渗氮,由于氮原子的渗入,可以补充由于内氧化减少的合金元素,在一定程度上提高了零件表层的淬透性,因此减少了非马氏体组织。(参考文献:李新斌,齿轮渗碳淬火表层非马氏体组织产生的原因及对策[J].热加工工艺,2010,39(04):161-172.)

三、各种渗碳方法的比较

四、铝合金淬火介质的分类及特性

实际使用的淬火介质种类繁多,一般可分为液体(水、无机物水溶液、有机聚合物水溶液、淬火油、熔融金属、熔盐、熔碱等)、气体(空气、压缩空气、液化气等)、固体(流态床、金属板等)三大类。其中,水、无机物水溶液、有机聚合物水溶液、各种淬火油等,在淬火时要发生物态转变,而气体、熔盐金属、熔碱、熔盐等,在淬火时则不发生物态变化.工件淬火希望的理想效果是获得高而均匀的表面硬度和足够的淬硬深度,消除淬火裂纹和减小淬火变形。即实现“高温阶段快冷,低温阶段慢冷”的理想冷却。

通常对淬火介质特性的要求是应满足冷却转变曲线对冷却速度的要求,避免工件变形和开裂;淬火后工件表面应保持清洁;在使用过程中性能稳定,不分解、不变质、不老化、易于控制;工件浸入时不产生大量烟雾和有害气体,以保持良好的劳动条件;便于配置、运输和存储,使用安全:原材料易得,成本廉价。淬火介质的冷却能力,主要取决于该介质的组成及其

物理化学性能。在实际运用中,要注意淬火介质冷却特性对淬火工件的质量影响,并根据工件的合金成分多少、淬透性高低、有效厚度和形状复杂程度等因素,来选择合适的淬火介质。采用同一种淬火介质,如果能够改进冷却方法和适当调整工艺参数,则可以获得最佳淬火效果。例如,对淬火介质进行循环、搅拌或施以一定的压力通过工件表面时,可提高淬火介质的冷却能力和工件冷却的均匀性,这对于避免形成淬火软点、减少变形和开裂具有良好的作用。

(1)水

水是应用最早、最广泛、最经济的淬火介质[55,561,它价廉易得、无毒、不燃烧、物理化学性能稳定、冷却能力很强。通过控制水的温度、提高压力、增大流速、采用循环水、利用磁场等作用,均可改善水的冷却特性,减少变形和开裂,获得比较理想的淬火效果。由于这些方法需增加专门设备,且工件淬火后的性能不太稳定,故未能推广应用。所以说,纯水只适合于少数淬透性低且形状简单的工件淬火。

(2)淬火油

用于淬火的矿物油通常以精制程度高的中性石蜡基油为基础油,它具有闪点高、粘度低、油烟少、油垢少,抗氧化性与热稳定性好,使用寿命长等优点,适合淬火使用。淬火油只适合于淬透性好、工件壁厚不大、形状复杂、要求淬火变形小的工件。淬火油对周围环境污染大,淬火时易引起火灾,需配备必要的清洗、通风和防火安全设施。影响淬火油冷却能力的主要因素是其粘度值,在常温下低粘度油比高粘度油冷却能力大,温度升高,油的流动性增加,冷却能力有所提高。适当提高淬火油使用温度,也能使油的冷却能力提高。普通机油的使用温度一般都控制在60摄氏度-80摄氏度,最高不超过120摄氏度,以保证使用安全。另外,淬火油在使用过程中,因形成的炭黑及残渣等会使粘度增加,闪点升高,降低其冷却能力,使得淬火油老化和失效。淬火油的闪点、粘度、酸值、皂化值的变化是其临近老化的重要数据,因此,必须进行定期的检测和维护,定期沉降过滤,适时补充新油,这对于延长淬火油的使用寿命是很重要的。

由于各种淬火油的组成不同,其密度、粘度和闪点也不相同,因而具有不同的种类和使用范围。在油中加入各种不同的添加剂(如催化剂、光亮剂、抗氧化剂等),再配合搅拌、喷淋、超声强化和改进淬火设备等,能大幅度提高淬火油的冷却速度,改善冷却的均匀性,或使工件表面光亮洁净,或延长淬火油的使用寿命。随着热处理技术的发展,各种淬火油也得到发展和广泛应用。

(3)NaC1水溶液

氯化钠加入水中,能显著提高水的冷却能力。氯化钠溶于水中,降低了蒸气膜的稳定性,提高了特性温度。当水中含有5%的氯化钠时,工件进入溶液以后,蒸气膜几乎立即破坏。这是因为氯化钠水溶液与灼热的工件接触,水被蒸发,氯化钠微粒附着在工件表面上,这些氯化钠微粒即刻激烈爆炸成云雾状,使蒸气膜遭到破坏。工件表面上的氧化铁皮也被炸掉,使工件表面与水能直接接触,工件的冷却速度急剧增加,而且冷却进行得也比较均匀。

氯化钠水溶液冷却能力强,价格便宜,应用广泛。浓度为5-15%的氯化钠溶液冷却能力大。应用5-15%氯化钠溶液,工件不但得到高的硬度,而且硬度均匀,它多被用于淬透性比较低的钢种。高浓度的氯化钠水溶液,冷却速度变得比较低,可应用于要求变形和开裂倾向的小的工件。氯化钠水溶液淬火介质的缺点是催火后易生锈。淬火后要进行仔细清洗。

(4)熔盐、熔碱

这类淬火介质的特点是在冷却过程中不发生物态变化,工件淬火主要靠对流冷却,通常在高温区域冷却速度快,在低温区域冷却速度慢,淬火性能优良,淬透性强,淬火变形小,基本无裂纹产生,但是对环境污染大,劳动条件差,耗能多、成本高,常用于形状复杂、截面尺寸变化大的工件和工模具的淬火。熔盐有氯化盐、硝酸盐、亚硝酸盐等,工件在盐浴中

淬火可以获得较高的硬度,变形极小,不易开裂,通常用作等温淬火或分级淬火。其缺点是熔盐易老化,对工件有氧化腐蚀作用。熔碱有氢氧化钠、氢氧化钾等,具有较大的冷却能力,工件加热时若未氧化,淬火后可获得银灰色的洁净表面,有一定的应用。但熔碱蒸汽具有腐蚀性,对皮肤有刺激作用,使用时应注意通风和采取防护措施。

五、常用炉型的选择

炉型应依据不同的工艺要求及工件的类型来决定:

1.对于不能成批定型生产的,工件大小不相等的,种类较多的,要求工艺上具有通用性、多用性的,可选用箱式炉。

2.加热长轴类及长的丝杆,管子等工件时,可选用深井式电炉。

3.小批量的渗碳零件,可选用井式气体渗碳炉。

4.对于大批量的汽车、拖拉机齿轮等零件的生产可选连续式渗碳生产线或箱式多用炉。

5.对冲压件板材坯料的加热大批量生产时,最好选用滚动炉,辊底炉。

6.对成批的定型零件,生产上可选用推杆式或传送带式电阻炉(推杆炉或铸带炉)。

7.小型机械零件如:螺钉,螺母等可选用振底式炉或网带式炉。

8.钢球及滚柱热处理可选用内螺旋的回转管炉。

9.有色金属锭坯在大批量生产时可用推杆式炉,而对有色金属小零件及材料可用空气循环加热炉。

渗碳工艺介绍

渗碳 定义 渗碳是对金属表面处理的一种,采用渗碳的多为低碳钢或低合金钢,具体方法是将工件置入具有活性渗碳介质中,加热到900--950摄氏度的单相奥氏体区,保温足够时间后,使渗碳介质中分解出的活性碳原子渗入钢件表层,从而获得表层高碳,心部仍保持原有成分. 相似的还有低温渗氮处理。这是金属材料常见的一种热处理工艺,它可以使渗过碳的工件表面获得很高的硬度,提高其耐磨程度。 简介 渗碳是指使碳原子渗入到钢表面层的过程。也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。 渗碳工件的材料一般为低碳钢或低碳合金钢(含碳量小于0.25%)。渗碳后﹐钢件表面的化学成分可接近高碳钢。工件渗碳后还要经过淬火﹐以得到高的表面硬度﹑高的耐磨性和疲劳强度﹐并保持心部有低碳钢淬火后的强韧性﹐使工件能承受冲击载荷。渗碳工艺广泛用于飞机﹑汽车和拖拉机等的机械零件﹐如齿轮﹑轴﹑凸轮轴等。 渗碳工艺在中国可以上溯到2000年以前。最早是用固体渗碳介质渗碳。液体和气体渗碳是在20世纪出现并得到广泛应用的。美国在20年代开始采用转筒炉进行气体渗碳。30年代﹐连续式气体渗碳炉开始在工业上应用。60年代高温(960~1100℃)气体渗碳得到发展。至70年代﹐出现了真空渗碳和离子渗碳。 原理渗碳与其他化学热处理一样﹐也包含3个基本过程。 ①分解:渗碳介质的分解产生活性碳原子。 ②吸附:活性碳原子被钢件表面吸收后即溶到表层奥氏体中﹐使奥氏体中含碳量增加。 ③扩散:表面含碳量增加便与心部含碳量出现浓度差﹐表面的碳遂向内部扩散。碳在钢中的扩散速度主要取决于温度﹐同时与工件中被渗元素内外浓度差和钢中合金元素含量有关。 渗碳零件的材料一般选用低碳钢或低碳合金钢(含碳量小於0.25%)。渗碳后必须进行淬火才能充分发挥渗碳的有利作用。工件渗碳淬火后的表层显微组织主要为高硬度的马氏体加上残余奥氏体和少量碳化物﹐心部组织为韧性好的低碳马氏体或含有非马氏体的组织﹐但应避免出现铁素体。一般渗碳层深度范围为0.8~1.2毫米﹐深度渗碳时可达2毫米或更深。表面硬度可达HRC58~63﹐心部硬度为 HRC30~42。渗碳淬火后﹐工件表面产生压缩内应力﹐对提高工件的疲劳强度有利。因此渗碳被广泛用以提高零件强度﹑冲击韧性和耐磨性﹐借以延长零件的使用寿命。 分类 按含碳介质的不同﹐渗碳可分为固体渗碳﹑液体渗碳﹑气体渗碳和碳氮共渗。 渗碳工艺 1、直接淬火低温回火组织及性能特点:不能细化钢的晶粒。工件淬火变形较大,合金钢渗碳件表面残余奥氏体量较多,表面硬度较低 适用范围:操作简单,成本低廉用来处理对变形和承受冲击载荷不大的零件,适用于气体渗碳和液体渗碳工艺。 2 、预冷直接淬火、低温回火,淬火温度800-850℃组织及性能特点:可以减少工件淬火变形,渗层中残余奥氏体量也可稍有降低,表面硬度略有提高,但奥氏体晶粒没有变化。 适用范围:操作简单,工件氧化、脱碳及淬火变形均小,广泛应用于细晶粒钢制造的各种工具。 3、一次加热淬火,低温回火,淬火温度820-850℃或780-810℃组织及性能特点:对心部强度要求较高者,采用820-850℃淬火,心部为低碳M,表面要求硬度高者,采用780-810℃淬火可以细化晶粒。 适用范围:适用于固体渗碳后的碳钢和低合金钢工件、气体、液体渗碳的粗晶粒钢,某些渗碳后不宜直接淬火的工件及渗碳后需机械加工的零件。

金属材料渗碳淬火工艺综述

金属材料渗碳淬火工艺综述 摘要:渗碳与淬火在金属材料热处理中占有很重要的地位,渗碳是目前机械制造工业中应用最广泛的一种化学热处理方法,能提高材料的耐磨性和疲劳强度;淬火是热处理工艺中最重要,也用途最广泛的工序,能显著提高金属材料的强度和硬度。 关键词:渗碳,淬火,耐磨性,强度,硬度 1、渗碳工艺 1.1、渗碳原理 将低碳钢件放入渗碳介质中,在850~950℃加热保温,使活性碳原子渗入钢件表面并获得高渗碳层的工艺方法叫做渗碳。齿轮、凸轮、轴类等许多重要机械零件还有模具经过渗碳及随后的淬火并低温回火后,可以获得很高的表面硬度、耐磨性以及高的接触疲劳强度和弯曲疲劳强度,而心部仍保持低碳,具有良好的塑性和韧性,因此处理后的材料既能承受磨损和较高的表面接触应力及冲击负荷的作用。 渗碳属于化学热处理,过程由分解、吸附和扩散三个基本过程组成,发生的化学反应如下: 2CO→[C]+CO2 Fe+[C]→FeC CH4→[C]+2H2 1.2、渗碳分类 根据渗碳剂的不同,渗碳方法有固体渗碳、气体渗碳和离子渗碳。常用的是前两种,尤其是气体渗碳应用最为广泛。 固体渗碳是将低碳件放入装满固体渗碳剂的渗碳箱中,密封后送入炉中加热至渗碳温度保温,以便活性碳原子渗入工件表层。固体渗碳剂由一定颗粒度的木炭加碳酸盐混合而成。渗碳温度一般为900~930℃,渗碳保温时间视层深要求确定,一般需要十几个小时。固体渗碳加热时间长,生产效率低,劳动条件差,渗碳深度及质量不易控制。 气体渗碳是把零件放入含有气体渗碳介质的密封高温炉中进行碳的渗入过程的渗碳方法。这种渗碳方法通常是将煤油或丙酮等液态碳氢化合物直接滴入高温渗碳炉中,使其热裂分解为活性碳原子并渗入零件表面。气体渗碳温度一般为920~950℃。气体渗碳工艺过程通常可划分为升温排气、渗碳(包括强渗和扩散)、降温冷却三个阶段,如图1所示:

金属热处理及表面处理工艺规范

北京奇朔科贸有限公司 部分金属材料热处理及表面处理工艺规范 第一版 编写:赵贵波 审核: 批准: 北京奇朔科贸有限公司 二零一二年六月

目录 1.0 热处理的工艺分类及代号---------------------------------------------------------------------3 1.1 基础分类-----------------------------------------------------------------------------------------------3 1.2 附加分类-----------------------------------------------------------------------------------------------3 1.3 热处理工艺代号--------------------------------------------------------------------------------------4 1.4 图样中标注热处理技术条件用符号--------------------------------------------------------------7 2.0 金属材料的热处理方法和应用目的-------------------------------------------------------8 2.1 钢的淬火-----------------------------------------------------------------------------------------------8 2.2 热处理的过程方法和应用目的--------------------------------------------------------------------9 3.0 部分金属材料的热处理规范-----------------------------------------------------------------17 3.1 渗碳钢的热处理工艺--------------------------------------------------------------------17 3.2 渗氮钢的热处理工艺--------------------------------------------------------------------------------20 3.3 调质钢的热处理工艺-------------------------------------------------------------------------------21 3.4 -弹簧钢的热处理工艺------------------------------------------------------------------------------23 3.5 轴承钢的热处理工艺-------------------------------------------------------------------------------25 3.6 合金工具钢的热处理工艺------------------------------------------------------------------------- 26 3.7 碳素工具钢的热处理工艺--------------------------------------------------------------------------29

渗碳淬火热处理工艺

渗碳淬火工艺 1、钢的淬火 钢的淬火与回火是热处理工艺中最重要,也是用途最广泛的工序。淬火可以显著提高钢的强度和硬度。为了消除淬火钢的残余应力,得到不同强度,硬度和韧性配合的性能,需要配以不同温度的回火。所以淬火和回火又是不可分割的、紧密衔接在一起的两种热处理工艺。淬火、回火作为各种机器零件及工、模具的最终热处理是赋予钢件最终性能的关键工序,也是钢件热处理强化的重要手段之一。 1.1 淬火的定义和目的 把钢加热到奥氏体化温度,保温一定时间,然后以大于临界冷却速度进行冷却,这种热处理操作称为淬火。钢件淬火后获得马氏体或下贝氏体组织。图4为渗碳齿轮20CrNi2Mo材料淬火、回火工艺。 温830℃ 度 ℃油 冷200℃ 8 空冷 时间h 图4 渗碳齿轮20CrNi2Mo材料淬火、回火工艺 淬火的目的一般有: 1.1.1 提高工具、渗碳工件和其他高强度耐磨机器零件等的强度、硬度和耐磨性。例如高速工具钢通过淬火回火后,硬度可达63HRC,且具有良好的红硬性。渗碳工件通过淬火回火后,硬度可达58~63HRC。 1.1.2 结构钢通过淬火和高温回火(又称调质)之后获得良好综合力学性能。例如汽车半轴经淬火和高温回火(280~320HB)及外圆中频淬火后,不仅提高了花键耐磨性,而且使汽车半轴承受扭转、弯曲和冲击载荷能力(尤其是疲劳强度和韧性)大为提高。 淬火时,最常用的冷却介质是水、盐水、碱水和油等。通常碳素钢用水冷却,水价廉易得,合金钢用油来冷却,但对要求高硬度的轧辊采用盐水或碱水冷却,辊面经淬火后硬度高而均匀,但对操作要求非常严格,否则容易产生开裂。 1.2 钢的淬透性 2.2.1 淬透性的基本概念 所谓钢材的淬透性是指钢在淬火时获得淬硬层深度大小的能力(即钢材淬透能力),其大小用钢在一定条件下(顶端淬火法)淬火获得的有效淬硬层深度来表示,淬透性是每种钢材所固有的属性,淬硬层愈深,就表明钢的淬透性愈好,例如45、40Cr 、42CrMo钢三种

表面淬火工艺

淬火.退火.正火工艺 ◆表面淬火 ? 钢的表面淬火 有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。 根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。 ? 感应加热表面淬火 感应加热就是利用电磁感应在工件内产生涡流而将工件进行加热。感应加热表面淬火与普通淬火比具有如下优点: 1.热源在工件表层,加热速度快,热效率高 2.工件因不是整体加热,变形小 3.工件加热时间短,表面氧化脱碳量少 4.工件表面硬度高,缺口敏感性小,冲击韧性、疲劳强度以及耐磨性等均有很大提高。有利于发挥材料地潜力,节约材料消耗,提高零件使用寿命 5.设备紧凑,使用方便,劳动条件好 6.便于机械化和自动化 7.不仅用在表面淬火还可用在穿透加热与化学热处理等。 ? 感应加热的基本原理 将工件放在感应器中,当感应器中通过交变电流时,在感应器周围产生与电流频率相同的交变磁场,在工件中相应地产生了感应电动势,在工件表面形成感应电流,即涡流。这种涡流在工件的电阻的作用下,电能转化为热能,使工件表面温度达到淬火加热温度,可实现表面淬火。 ? 感应表面淬火后的性能 1.表面硬度:经高、中频感应加热表面淬火的工件,其表面硬度往往比普通淬火高2~3 个单位(HRC)。 2.耐磨性:高频淬火后的工件耐磨性比普通淬火要高。这主要是由于淬硬层马氏体晶粒细小,碳化物弥散度高,以及硬度比较高,表面的高的压应力等综合的结果。 3.疲劳强度:高、中频表面淬火使疲劳强度大为提高,缺口敏感性下降。对同样材料的工件,硬化层深度在一定范围内,随硬化层深度增加而疲劳强度增加,但硬化层深度过深时表层是压应力,因而硬化层深度增打疲劳强度反而下降,并使工件脆性增加。一般硬化层深δ=(10~20)%D。较为合适,其中D。为工件的有效直径。 ◆退火工艺 退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。总之退火组织是接近平衡状态的组织。 ? 退火的目的 ①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。 ②细化晶粒,消除因铸、锻、焊引起的组织缺陷,均匀钢的组织和成分,改善钢的性能或为以后的热处理作组织准备。 ③消除钢中的内应力,以防止变形和开裂。

常用热处理工艺【详情】

常用的几种热处理方法 内容来源网络,由深圳机械展收集整理! 更多相关表面处理及精密零件加工展示,就在深圳机械展! 1.常用热处理方式 1.1.退火 把钢加热到一定温度并在此温度下保温,然后缓慢冷却到室温。 退火有完全退火、球化退火、去应力退火等几种。 a.将钢加热到预定温度,保温一段时间,然后随炉缓慢冷却称为完全退火.目的是降 低钢的硬度,消除钢中不均匀组织和内应力. b.把钢加热到750度,保温一段时间,缓慢冷却至500度下,最后在空气中冷却叫球 化退火。目的是降低钢的硬度,改善切削性能,主要用于高碳钢。 c.去应力退火又叫低温退火,把钢加热到500~600度,保温一段时间,随炉缓冷到 300度以下,再室温冷却.退火过程中组织不发生变化,主要消除金属的内应力。 1.2.正火 将钢件加热到临界温度以上30-50℃,保温适当时间后,在静止的空气中冷却的热处理工艺称为正火。 正火的主要目的是细化组织,改善钢的性能,获得接近平衡状态的组织。 正火与退火工艺相比,其主要区别是正火的冷却速度稍快,所以正火热处理的生产周期短。故退火与正火同样能达到零件性能要求时,尽可能选用正火。 1.3.淬火 将钢件加热到临界点以上某一温度(45号钢淬火温度为840-860℃,碳素工具钢的淬火温度为760~780℃),保持一定的时间,然后以适当速度在水(油)中冷却以获得马氏体或贝氏体组织的热处理工艺称为淬火。 淬火与退火、正火处理在工艺上的主要区别是冷却速度快,目的是为了获得马氏体组织。马氏体组织是钢经淬火后获得的不平衡组织,它的硬度高,但塑性、韧性差。马氏体的硬度随钢的含碳量提高而增高。

1.4.回火 钢件淬硬后,再加热到临界温度以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺称为回火。 淬火后的钢件一般不能直接使用,必须进行回火后才能使用。因为淬火钢的硬度高、脆性大,直接使用常发生脆断。通过回火可以消除或减少内应力、降低脆性,提高韧性;另一方面可以调整淬火钢的力学性能,达到钢的使用性能。根据回火温度的不同,回火可分为低温回火、中温回火和高温回火三种。 A 低温回火150~250.降低内应力,脆性,保持淬火后的高硬度和耐磨性。 B 中温回火350~500;提高弹性,强度。 C 高温回火500~650;淬火钢件在高于500℃的回火称为高温回火。淬火钢件经高温淬火后,具有良好综合力学性能(既有一定的强度、硬度,又有一定的塑性、韧性)。所以一般中碳钢和中碳合金钢常采用淬火后的高温回火处理。轴类零件应用最多。 淬火+高温回火称为调质处理。 2.Q235热处理工艺 Q235属于碳素结构钢,含碳量大概0.12%-0.2%之间,相当于普通的10、20钢,淬火后硬度改变不大。具有较高的强度,良好的塑性,韧性和焊接性能,综合性能好,能满足一般钢结构和钢筋混凝土结构用钢的要求。 Q235一般买来就用不热处理,一般它都用在工程上大量需要钢材的地方,数量巨大,一般是热轧后就使用,热轧也就是有正火这个热处理,不热处理的原因有几个: 1)这些场合不需要太高的力学要求。 2)这些钢构件的体积太大了,你想热处理也不现实。 3)这些钢很多情况下要被焊接使用的,你热处理了被焊接后也被焊接过程中将焊缝的 热处理给破坏了。 4)材料价格便宜,质量要求比较低,而且是低碳钢,热处理的效果也不太好。 5)如果非要用Q235淬出硬度那只能渗碳,但是一件很不划算的事情。 Q235在理论上是可以淬火得到马氏体的。但是由于马氏体碳过饱和度很低,淬火后的硬度很低,只有170HBS左右。而这种钢的供应状态硬度大概就有144HBS左右(出

金属表面热处理渗碳工艺对比

金属表面热处理渗碳工艺的对比 一、热处理发展历史 在实用生产技术发展上值得回顾的有:①1890年英国首次公布了制备不可燃气氛发生炉的专利,该气氛用于金属的光亮热处理,德国的A.富利1921年申请了在井式炉中通氨渗氮的专利。②P.P.阿诺索夫在1837年就倡导用气体渗碳法,而经过100年后(1935年)前苏联的利哈乔夫汽车厂才有了第一台用煤油裂解气的罐式连续渗碳炉;直到20世纪50年代才逐步取代了固体渗碳和用氰盐的液体渗碳。③前苏联的G.V.沃罗格金在20世纪40年代逐步把感应加热技术应用到炼钢、锻造加热和表面淬火热处理等领域。④20世纪40年代末出现了用LiCl露点仪的碳势可控渗碳。⑤离子渗氮于20世纪30年代在德国就有了专利,而KlÊ;ckner公司是在20世纪50年代末才开发出商品设备,并推向工业应用。⑥20世纪60年代初瑞士的H.魏斯发明了在井式炉中的CARBOMAAG滴注可控渗碳法。⑦20世纪60年代中期,用吸热式气(载气)、甲烷或丙烷(作富化气)并用CO2红外仪测控炉气碳势的可控渗碳在汽车工业中得到推广。与此同时第一代的冷壁式真空加热油中淬火炉和真空渗碳炉问世。⑧20世纪50年代开发,60年代推广的被称作Tenifer或Tufftride商品名称的盐浴氮碳共渗,使渗氮周期由数十小时缩短到1h~2h,可明显提高传动件的抗疲劳、耐磨性和抗咬合能力;由于处理温度低(<580℃),工件畸变小,其缺点是所用氰盐剧毒、废盐废水需妥善处理。⑨为避免使用剧毒的氰盐,20世纪60年代后期开发出了NH3+吸热式气(Nikotrier)和NH3+CO2(Nitroc)在570℃的井式或箱式炉中施行的气体氮碳共渗法,随后在汽车曲轴、低载齿轮等零件上获得广泛应用。⑩20世纪50年代高分子聚合物溶液开始用做淬火剂。最早使用的此类聚合物是聚乙烯醇(PVA),以0.1%~0.3%的浓度用做感应加热件的喷冷淬火,其冷却能力介于水油之间,不易燃、无污染。20世纪60年代美国联碳公司推出UCON(PAG)系列合成淬火剂,可代替油用于铁和非铁合金的淬火及固溶处理的冷却。随后又有一系列其它类别的合成淬火剂商品问世。⑾高、中、工频以及超音频和超高频、超高频脉冲感应加热表面热处理工艺广泛应用。各种静态固体电路高频、大功率电源相继问世,全自动程控多工位淬火机床和自动装卸料机械手或机器人获得工业应用。?⑿20世纪80年代氧探头逐步代替红外仪用于炉气碳势控制的传感器和计算机仿真自适应控制、无损检测技术、机器人装卸结合,使大批量生产的汽车零件的渗碳、淬火、清洗、回火、质检全过程实现自动化和无人作业。?⒀20世纪90年代,欧洲IpsenInternational、ALD和ECM等公司相继推出低压渗碳、低压离子渗碳和高压气淬的周期炉和半连续生产线,为提高效率、改善质量、减少畸变和保护环境作出了贡献,为汽车工业热处理未来提供了前景。近20年来,热处理新技术的大量涌现,为机器制造业的发展、机械产品质量的提高、热处理企业的技术改造积累了大量的技术储备,为热处理生产技术的进步提供了广阔前景。 二、氨气的作用:提高淬透性 渗碳淬火后的齿轮零件正常的组织应该是马氏体与残余奥氏体,但在实际生产中经常发现在渗碳淬火件的表层出现连续、断续的黑色组织或沿晶界分布的黑色氧化物。普遍的理论认为是由于内氧化使合金元素贫化、淬透性下降导致形成屈氏体类组织,这类组织就被称为非马氏体组织。非马氏体组织深度如果超标严重,反映在力学性能上就是出现零件表面硬度低头的现象,影响硬度梯度。在实际使用中会降低齿轮的耐磨性和疲劳寿命,危害比较严重。尽可能选择含Cr、Mo、V、Mn和Ni等高淬透性的低碳合金钢作为齿轮原材料。对渗碳后的零件采取剧烈的冷却方式(比如强力搅拌)可以有效地减少非马氏体组织,但前提是不能使零件

金属热处理及表面处理工艺

一、热处理工艺简解 1、退火 操作方法:将钢件加热到Ac3+30~50℃或Ac1+30~50℃或Ac1以下的温度(能够查阅有关材料)后,通常随炉温缓慢冷却。 意图:1.下降硬度,进步塑性,改进切削加工与压力加工功能;2.细化晶粒,改进力学功能,为下一步工序做准备;3.消除冷、热加工所发生的内应力。 运用关键:1.适用于合金布局钢、碳素东西钢、合金东西钢、高速钢的锻件、焊接件以及供给状况不合格的原材料;2.通常在毛坯状况进行退火。 2、正火 操作方法:将钢件加热到Ac3或Accm 以上30~50℃,保温后以稍大于退火的冷却速度冷却。 意图:1.下降硬度,进步塑性,改进切削加工与压力加工功能;2.细化晶粒,改进力学功能,为下一步工序做准备;3.消除冷、热加工所发生的内应力。 运用关键:正火通常作为锻件、焊接件以及渗碳零件的预先热处理工序。关于功能需求不高的低碳的和中碳的碳素布局钢及低合金钢件,也可作为最终热处理。关于通常中、高合金钢,空冷可致使彻底或部分淬火,因而不能作为最终热处理工序。 3、淬火 操作方法:将钢件加热到相变温度Ac3或Ac1以上,保温一段时刻,然后在水、硝盐、油、或空气中疾速冷却。 意图:淬火通常是为了得到高硬度的马氏体安排,有时对某些高合金钢(如不锈钢、耐磨钢)淬火时,则是为了得到单一均匀的奥氏体安排,以进步耐磨性和耐蚀性。运用关键:1.通常用于含碳量大于百分之零点三的碳钢和合金钢;2.淬火能充分发挥钢的强度和耐磨性潜力,但一起会构成很大的内应力,下降钢的塑性和冲击韧度,故要进行回火以得到较好的归纳力学功能。 4、回火 操作方法:将淬火后的钢件从头加热到Ac1以下某一温度,经保温后,于空气或油、热水、水中冷却。 意图:1.下降或消除淬火后的内应力,削减工件的变形和开裂;2.调整硬度,进步塑性和耐性,取得作业所需求的力学功能;3.安稳工件尺度。 运用关键:1.坚持钢在淬火后的高硬度和耐磨性时用低温回火;在坚持必定韧度的条件下进步钢的弹性和屈从强度时用中温回火;以坚持高的冲击韧度和塑性为主,又有满足的强度时用高温回火;2.通常钢尽量防止在230~280℃、不锈钢在400~450℃之间回火,因为这时会发生一次回火脆性。5、调质 操作方法:淬火后高温回火称调质,行将钢件加热到比淬火时高10~20度的温度,保温后进行淬火,然后在400~720℃的温度下进行回火。 意图:1.改进切削加工功能,进步加工外表光洁程度;2.减小淬火时的变形和开裂; 3.取得杰出的归纳力学功能。 运用关键:1.适用于淬透性较高的合金布局钢、合金东西钢和高速钢;2. 不只能够作为各种较为重要布局的最终热处理,并且还能够作为某些严密零件,如丝杠等的

渗碳淬火热处理工艺教案资料

渗碳淬火热处理工艺

渗碳淬火工艺 1、钢的淬火 钢的淬火与回火是热处理工艺中最重要,也是用途最广泛的工序。淬火可以显著提高钢的强度和硬度。为了消除淬火钢的残余应力,得到不同强度,硬度和韧性配合的性能,需要配以不同温度的回火。所以淬火和回火又是不可分割的、紧密衔接在一起的两种热处理工艺。淬火、回火作为各种机器零件及工、模具的最终热处理是赋予钢件最终性能的关键工序,也是钢件热处理强化的重要手段之一。 1.1 淬火的定义和目的 把钢加热到奥氏体化温度,保温一定时间,然后以大于临界冷却速度进行冷却,这种热处理操作称为淬火。钢件淬火后获得马氏体或下贝氏体组织。图4为渗碳齿轮20CrNi2Mo材料淬火、回火工艺。 温 830℃ 度 ℃油 冷 时间h 图4 渗碳齿轮20CrNi2Mo材料淬火、回火工艺 淬火的目的一般有: 1.1.1 提高工具、渗碳工件和其他高强度耐磨机器零件等的强度、硬度和耐磨性。例如高速工具钢通过淬火回火后,硬度可达63HRC,且具有良好的红硬性。渗碳工件通过淬火回火后,硬度可达58~63HRC。 1.1.2 结构钢通过淬火和高温回火(又称调质)之后获得良好综合力学性能。例如汽车半轴经淬火和高温回火(280~320HB)及外圆中频淬火后,不仅提高了花键耐磨性,而且使汽车半轴承受扭转、弯曲和冲击载荷能力(尤其是疲劳强度和韧性)大为提高。 淬火时,最常用的冷却介质是水、盐水、碱水和油等。通常碳素钢用水冷却,水价廉易得,合金钢用油来冷却,但对要求高硬度的轧辊采用盐水或碱水冷却,辊面经淬火后硬度高而均匀,但对操作要求非常严格,否则容易产生开裂。 1.2 钢的淬透性 2.2.1 淬透性的基本概念 所谓钢材的淬透性是指钢在淬火时获得淬硬层深度大小的能力(即钢材淬透能力),其大小用钢在一定条件下(顶端淬火法)淬火获得的有效淬硬层深度来表示,淬透性是每种钢材所固有的属

表面渗碳处理介绍

表面渗碳处理介绍 表面渗碳是一种常见的热处理方式,渗碳可以使零件表层得到高含碳量和一定 的浓度梯度,提高表面的硬度、耐磨性及疲劳强度,而心部仍保持良好的塑性及韧性。渗碳主要用于表面耐磨而承受冲击负荷的零件,用于处理低碳钢及低碳合金的 零件,如机床主轴、风动工具,汽车、拖拉机齿轮。 一般常见渗碳方式有以下三种: 1、固体渗碳:将零件和固体渗碳剂装入密封的渗碳箱中,在炉中加热至 900℃~950℃,保温足够长时间,活性碳原子渗入零件表层形成一定厚度的渗碳层。 2、气体渗碳:将零件置于密封的渗碳炉中,加热至900℃~950℃,向炉内加入易分解的有机液体(煤油、苯、甲醇)或直接通入渗碳气体(煤气、石油液化气等)产生活性碳原子渗入钢中形成渗碳表面。 3、液体渗碳:用液体介质(如碳化硅、成品渗碳剂)进行渗碳。 发布于:2008年11月10日 09:03:00 表面渗碳处理介绍 表面渗碳是一种常见的热处理方式,渗碳可以使零件表层得到高含碳量和一定 的浓度梯度,提高表面的硬度、耐磨性及疲劳强度,而心部仍保持良好的塑性及韧性。渗碳主要用于表面耐磨而承受冲击负荷的零件,用于处理低碳钢及低碳合金的 零件,如机床主轴、风动工具,汽车、拖拉机齿轮。 一般常见渗碳方式有以下三种: 1、固体渗碳:将零件和固体渗碳剂装入密封的渗碳箱中,在炉中加热至 900℃~950℃,保温足够长时间,活性碳原子渗入零件表层形成一定厚度的渗碳层。 2、气体渗碳:将零件置于密封的渗碳炉中,加热至900℃~950℃,向炉内加入易分解的有机液体(煤油、苯、甲醇)或直接通入渗碳气体(煤气、石油液化气等)产生活性碳原子渗入钢中形成渗碳表面。 3、液体渗碳:用液体介质(如碳化硅、成品渗碳剂)进行渗碳。 发布于:2008年11月10日 09:03:00

(完整版)淬火回火工艺

渗碳淬火 目录 渗碳(carburizing/carburization) 渗碳是指使碳原子渗入到钢表面层的过程。也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。 渗碳工件的材料一般为低碳钢或低碳合金钢(含碳量小于0.25%)。渗碳后﹐钢件表面的化学成分可接近高碳钢。工件渗碳后还要经过淬火﹐以得到高的表面硬度﹑高的耐磨性和疲劳强度﹐并保持心部有低碳钢淬火后的强韧性﹐使工件能承受冲击载荷。渗碳工艺广泛用于飞机﹑汽车和拖拉机等的机械零件﹐如齿轮﹑轴﹑凸轮轴等。 渗碳工艺在中国可以上溯到2000年以前。最早是用固体渗碳介质渗碳。液体和气体渗碳是在20世纪出现并得到广泛应用的。美国在20年代开始采用转筒炉进行气体渗碳。30年代﹐连续式气体渗碳炉开始在工业上应用。60年代高温(960~1100℃)气体渗碳得到发展。至70年代﹐出现了真空渗碳和离子渗碳。 编辑本段 原理 渗碳与其他化学热处理一样﹐也包含3个基本过程。 ①分解 渗碳介质的分解产生活性碳原子。

②吸附 活性碳原子被钢件表面吸收后即溶到表层奥氏体中﹐使奥氏体中含碳量增加。 ③扩散 表面含碳量增加便与心部含碳量出现浓度差﹐表面的碳遂向内部扩散。碳在钢中的扩散速度主要取决于温度﹐同时与工件中被渗元素内外浓度差和钢中合金元素含 量有关。 渗碳零件的材料一般选用低碳钢或低碳合金钢(含碳量小於0.25%)。渗碳后必须进行淬火才能充分发挥渗碳的有利作用。工件渗碳淬火后的表层显微组织主要为高硬度的马氏体加上残余奥氏体和少量碳化物﹐心部组织为韧性好的低碳马氏体或含 有非马氏体的组织﹐但应避免出现铁素体。一般渗碳层深度范围为0.8~1.2毫米﹐深度渗碳时可达2毫米或更深。表面硬度可达HRC58~63﹐心部硬度为HRC30~42。渗碳淬火后﹐工件表面产生压缩内应力﹐对提高工件的疲劳强度有利。因此渗碳被广泛用以提高零件强度﹑冲击韧性和耐磨性﹐借以延长零件的使用寿命。 编辑本段 分类 按含碳介质的不同﹐渗碳可分为固体渗碳﹑液体渗碳﹑气体渗碳和碳氮共渗。 编辑本段 渗碳工艺 1、直接淬火低温回火 组织及性能特点:不能细化钢的晶粒。工件淬火变形较大,合金钢渗碳件表面残余奥氏体量较多,表面硬度较低 适用范围:操作简单,成本低廉用来处理对变形和承受冲击载荷不大的零件,适用于气体渗碳和液体渗碳工艺。 2 、预冷直接淬火、低温回火,淬火温度800-850℃ 组织及性能特点:可以减少工件淬火变形,渗层中残余奥氏体量也可稍有降低,表面硬度略有提高,但奥氏体晶粒没有变化。 适用范围:操作简单,工件氧化、脱碳及淬火变形均小,广泛应用于细晶粒钢制造的各种工具。 3、一次加热淬火,低温回火,淬火温度820-850℃或780-810℃ 组织及性能特点:对心部强度要求较高者,采用820-850℃淬火,心部为低碳M,表面要求硬度高者,采用780-810℃淬火可以细化晶粒。 适用范围:适用于固体渗碳后的碳钢和低合金钢工件、气体、液体渗碳的粗晶粒钢,某些渗碳后不宜直接淬火的工件及渗碳后需机械加工的零件。 4、渗碳高温回火,一次加热淬火,低温回火,淬火温度840-860℃

渗碳处理技术详解

滲碳處理技術 滲碳硬化乃表面硬化法之一種,屬於化學表面硬化法。滲碳者先於鋼之表面產生初生態之碳,而後使之滲入鋼之表面層,逐漸擴散入內部。初生態之碳乃由CO或CH4等氣體分解而得。CO之來源或由含有CO之氣體得之,或由固體滲碳劑之反應而產生於滲碳容器內,或者由含有氰化物之鹽浴得之。初生態之碳由鋼之表面擴散入內部時,鋼之溫度須增高至沃斯田鐵化溫層範圍內,使初生態之碳埂於擴散,蓋沃斯田鐵可溶解較多之〞C〞而肥粒鐵則溶解力極小,故滲碳溫度必須在Ac3要以上之溫度。以便滲碳作用得以進行。再配合各種熱處理法,使得鋼之去面生成高碳硬化心部低碳之低硬度層。使處理供具有表面硬而耐磨,心部韌而耐衝擊之性質。 一、滲碳處理之種類與特點: (一)滲碳法之種類 滲碳法按使用之滲碳劑而可分為如下三大類: (1)固體滲碳法:以木炭為主劑的滲碳法。 (2)液體滲碳法:以氰化鈉(NaCN)為主劑之滲碳法。 (3)氣體滲碳法:以天然氣、丙烷、丁烷等氣體為主劑的滲碳法。(二)滲碳法之比較 (1)固體滲碳法

長處: (a)設備費便宜,操作簡單,不需高度技術。 (b)加熱用熱源,可用電氣、瓦斯、燃料油。 (c)大小工件均適,尤其對大形或需原滲碳層者有利。 (d)適合多種少量生產。 短處: (a)滲碳深度及表面碳濃度不易正確調節,有過剩滲碳的傾向。處理件變形大。 (b)滲碳終了時,不易直接淬火,需再加熱。 (c)作業環境不良,作業人員多。 (2)液體滲碳法 長處: (a)適中小量生產。設備費便宜。不需高度技術。 (b)容易均熱、急速加熱,可直接淬火。 (c)適小件、薄滲碳層處理件。 (d)滲碳均勻,表面光輝狀態。 短處: (a)不適於大形處理件的深滲碳。 (b)鹽浴組成易變動,管理上麻煩。 (c)有毒、排氣或公害問題應有對策。

机械加工常见热处理工艺解读

渗碳 渗碳热处理 渗碳:是对金属表面处理的一种,采用渗碳的多为低碳钢或低合金钢,具体方法是将工件置入具有活性渗碳介质中,加热到900--950摄氏度的单相奥氏体区,保温足够时间后,使渗碳介质中分解出的活性碳原子渗入钢件表层,从而获得表层高碳,心部仍保持原有成分。相似的还有低温渗氮处理。这是金属材料常见的一种热处理工艺,它可以使渗过碳的工件表面获得很高的硬度,提高其耐磨程度。 概述 渗碳(carburizing/carburization)是指使碳原子渗入到钢表面层的过程。 也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。 渗碳工件的材料一般为低碳钢或低碳合金钢(含碳量小于0.25%)。渗碳后﹐钢件表面的化学成分可接近高碳钢。工件渗碳后还要经过淬火﹐以得到高的表面硬度﹑高的耐磨性和疲劳强度﹐并保持心部有低碳钢淬火后的强韧性﹐使工件能承受冲击载荷。渗碳工艺广泛用于飞机﹑汽车和拖拉机等的机械零件﹐如齿轮﹑轴﹑凸轮轴等。 渗碳工艺在中国可以上溯到2000年以前。最早是用固体渗碳介质渗碳。液体和气体渗碳是在20世纪出现并得到广泛应用的。美国在20年代开始采用转筒炉进行气体渗碳。30年代﹐连续式气体渗碳炉开始在工业上应用。60年代高温(960~1100℃)气体渗碳得到发展。至70年代﹐出现了真空渗碳和离子渗碳。 分类 按含碳介质的不同﹐渗碳可分为气体渗碳、固体渗碳﹑液体渗碳﹑和碳氮共渗(氰化)。

气体渗碳是将工件装入密闭的渗碳炉内,通入气体渗剂(甲烷、乙烷等)或液体渗剂(煤油或苯、酒精、丙酮等),在高温下分解出活性碳原子,渗入工件表面,以获得高碳表面层的一种渗碳操作工艺。 固体渗碳是将工件和固体渗碳剂(木炭加促进剂组成)一起装在密闭的渗碳箱中,将箱放入加热炉中加热到渗碳温度,并保温一定时间,使活性碳原子渗人工件表面的一种最早的渗碳方法。 液体渗碳是利用液体介质进行渗碳,常用的液体渗碳介质有:碳化硅,“603”渗碳剂等。 碳氮共渗(氰化)又分为气体碳氮共渗、液体碳氮共渗、固体碳氮共渗。 原理 渗碳与其他化学热处理一样﹐也包含3个基本过程。 ①分解 渗碳介质的分解产生活性碳原子。 ②吸附 活性碳原子被钢件表面吸收后即溶到表层奥氏体中﹐使奥氏体中含碳量增加。 ③扩散 表面含碳量增加便与心部含碳量出现浓度差﹐表面的碳遂向内部扩散。碳在钢中的扩散速度主要取决于温度﹐同时与工件中被渗元素内外浓度差和钢中合金元素含量有关。 渗碳零件的材料一般选用低碳钢或低碳合金钢(含碳量小於0.25%)。渗碳后必须进行淬火才能充分发挥渗碳的有利作用。工件渗碳淬火后的表层显微组织主要为高硬度的马氏体加上残余奥氏体和少量碳化物﹐心部组织为韧性好的低碳马氏体或含有非马氏体的组织﹐但应避免出现铁素体。一般渗碳层深度范围为0.8~1.2毫米﹐深度渗碳时可达2毫米或更深。表面硬度可达HRC58~63﹐心部硬度为HRC30~42。渗碳淬火后﹐工件表面产生压缩内应力﹐对提高工件的疲劳强度有利。因此渗碳被广泛用以提高零件强度﹑冲击韧性和耐磨性﹐借以延长零件的使用寿命。 渗碳工艺流程 1、直接淬火低温回火 组织及性能特点:不能细化钢的晶粒。工件淬火变形较大,合金钢渗碳件表面残余奥氏体量较多,表面硬度较低

谈齿轮渗碳淬火有效硬化层及硬度梯度

浅谈齿轮渗碳淬火有效硬化层及硬度梯度 随着机械工业的发展,对齿轮的质量要求日益提高,而齿轮的强度寿命和制造精度与热处理质量有很大关系。为了检验齿轮材料热处理质量,在1987年以前,我国的齿轮渗碳淬火内在质量检验标准多为终态金相检验标准。由于检测仪器的精度、分辨率等因素以及检验人员的经验参差不齐,造成检验结果有很大差异和争议。为了解决金相法内在检验存在的弊端,机械部在1987年借鉴了DIN.ISO等标准中有关内容,修订了我国现行齿轮渗碳淬火内在质量检验标准。此检验标准中,其金相组织检验标准基本与原标准相似,主要是对渗碳层深度及碳浓度梯度的测定作了较大的修改。下面就渗碳层深度和碳浓度梯度分别采用金相法与硬度法测定进行简述。 一、渗碳层深度的检测 1.1、金相法 1.1.1、取本体或与零件材料成分相同,预先热处理状态基本 相似的圆试样或齿形试样进行检测。 1.1.2、送检试样热处理状态为平衡状态,即退火状态。 1.1.3、低碳钢渗层深度为:过共析层+共析层+1/2亚共析层。 1.1.4、低碳合金钢渗层深度为:过共析层+共析层+亚共析层。 1.2、硬度法 1.2.1、取样方法同金相法取样方法一致。 1.2.2、送检试样状态为淬火+回火状态。 1.2.3、渗碳深度用有效硬化层来表示,其极限硬度根据不同要

求进行选择。 1.2.4、有效硬化层深度(DCp):从试样表面测至极限硬度(如 HV550)之间垂直距离。 1.3、两种关于渗碳深度检测的方法存在着一定的对应关系,下面 用图形来描述。 从图中可看出:DCp(芯部)>DCp(HV500)>DCp(HV550) DCp(HV550)对应渗碳层中碳含量约为0.35~0.38%,此界限处即为金相法中1/2亚共析层处。 DCp(HV500)对应渗碳层中碳含量约为0.31~0.33%,此界限处为金相法中1/2亚共析层处。 DCp(芯部)对应渗碳层中碳含量为基体碳含量,一般为0.17~0.23%,此界限处为金相法中基体组织。

CrMnTi热处理工艺

20CrMnTi 齿轮钢的热处理工艺 1.前言 1.120CrMnTi钢概述 20CrMnTi是低碳合金钢,该钢具有较高的机械性能,零件表面渗碳0.7-1.1mm。在渗碳淬火低温回火后,表面硬度为58-62HRC,心部硬度为30-45HRC。20CrMnTi的工艺性能较好,锻造后以正火来改善其切削加工性。此外,20CrMnTi 还具有较好的淬透性,由于合金元素钛的影响,对过热不敏感,故在渗碳后可直接降温淬火。且渗碳速度较快,过渡层较均匀,渗碳淬火后变形小。适合于制造承受高速中载及冲击、摩擦的重要零件,因此根据齿轮的工作条件选用20CrMnTi 钢是比较合适的。经过910-940℃渗碳,870℃淬火,180-200℃回火后机械性能的抗拉强度≥1100Mpa、屈服强度≥850Mpa、延伸率≥10%、断面收缩率≥45%,冲击韧性≥680,硬度为58-62HRC。 20CrMnTi合金成分表1.1 C Si Mn Cr S P Ni Cu Ti 0.17~0.230.17~0.370.80~1.10 1.00~1.30≤0.035≤0.035≤0.030≤0.0300.04~0.10 1.220CrMnTi泵体齿轮的的工艺流程: 1.320CrMnTi钢常见的热处理工艺 表1.2 20CrMnTi钢常见的热处理工艺表 热处理工 艺工艺参数硬度要 求 工艺特点 完全退火加热860~880℃,保温,炉 冷 ≤ 217HB S 消除残余应力,降低硬度 正火加热920~950℃,保温,空 冷156~2 07HBS 加热温度在Ac3825℃线之上,细化晶 粒,消除组织缺陷,以获得珠光体+少 量铁素体组织 淬火加热860~900℃,保温,油 冷48~54 HRC 淬火温度高,淬透性中等,变形较大, 硬度不高,耐磨性差 回火加热500~650℃,保温2h, 油冷30~36 HRC 回火索氏体组织 下料锻造正火清洗淬火回火 加工渗碳 包装 清洗检验

渗碳工艺的几种常见方法)

渗碳工艺的几种常见方法 1、一次加热淬火低温回火,渗碳温度820~850oC或780~810oC 特点:对心部强度要求高者,采用820~850oC淬火,心部组织为低碳马氏体;表面要求硬度高者,采用780~810oC加热淬火可以细化晶粒 适用范围:适用于固体渗碳后的碳钢和低合金钢工件。气体、液体渗碳后的粗晶粒钢,某些渗碳后不宜直接淬火的工件及渗碳后需机械加工的零件 2、渗碳、高温回火,一次加热淬火、低温回火,渗碳温度840~860oC 特点:高温回火使马氏体和残留奥氏体分解,渗层中碳和合金元素以碳化物形式析出,便于工削加工及淬火后渗层残留奥氏体减少 适用范围:主要用于CR-NI合金钢渗碳工件 3、二次淬火低温回火 特点:第一次淬火(或正火),可以消除渗层网状碳化物及细化心部组织。第二次淬火主要改善渗层组织,但对心部性能要求较高时应在心部AC3以上淬火 适用范围:主要用于对力学性能要求很高的重要渗碳工件,特别是对粗晶粒钢。但在渗碳后需进行两次高温加热,使工件变形及氧化脱碳增加,热处理过程较复杂 4、二次淬火冷处理低温回火 特点:高于AC1或AC3(心部)的温度淬火,高合金钢表层残留奥氏体较多,经冷处理(-70~80oC)促使奥氏体转变,从而提高表面硬度和耐磨性 适用范围:主要用于渗碳后不需要机械加工的高合金钢工件 5、直接淬火低温回火 特点:不能细化钢的晶粒。工件淬火畸变较大,合金钢渗碳件表面残留奥氏体量较多,表面硬度较低 适用范围:操作简单,成本低廉。井式炉用来处理对变形和承受冲击载荷不大的零件,适用于气体渗碳和液体渗碳工艺

6、预冷直接淬火低温回火,淬火温度800~850oC 特点:可以减少工件淬火畸变,渗碳层中残留奥氏体量也可稍有降低,表面硬度略有提高,但奥氏体晶粒没有变化 适用范围:操作简单,工件氧化、脱碳及淬火变形均较小。广泛用于细晶粒钢制造的各种工件

金属热处理和金属表面处理的区别和联系【详解】

金属热处理和金属表面处理的区别和联系 内容来源网络,由深圳机械展收集整理! 金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度在不同的介质中冷却,通过改变金属材料表面或内部的显微组织结构来控制其性能的一种工艺。 金属材料表面处理技术与金属热处理和表面热处理不是一个类型的慨念。一般把金属表面防护和改性称之为金属材料表面处理,改变金属材料表面组织结构和力学性能指标称为金属表面热处理。 表面防护的内容:电镀、涂装、化学处理层;电镀包括(镀锌、铜、铬、铅、银、镍、锡、镉等);涂装包括(油漆涂装、静电喷粉、喷塑工艺);化学处理包括(发黑处理、磷化处理)。另一方面是金属的表面改性,也称表面优化,就是借助离子束、激光、等离子体等新技术手段,改变材料表面及近表面的组分、结构与性质,从而获得用传统的冶金和表面处理技术无法得到的新薄层材料,或者使传统材料具有更好的性能。现代先进的表面改性技术主要有物理气相沉积(简称PVD)、化学气相沉积(简称CVD)、等离子体化学气相沉积(简称PCVD)、离子注入和离子束沉积。 至于工艺步骤的确是太多了,电镀有挂镀和滚镀、油漆涂层分类更多,有刷涂、

浸漆、烤漆、电泳、静电喷涂等,不同的要求,工艺方法区别也大。 热处理主要包括:淬火、回火、退火、调质等等;目的是改变金属材料的机械性能;都与加热有关; 表面处理包括的内容太多:涂覆(涂漆,喷塑)、热浸镀、电镀、氧化、发蓝、着色、磷化、钝化、酸洗、化学抛光、电解抛光、电铸、抛丸、磨沙、拉丝、振光、火焰喷涂、渗碳、渗氮.... 表面处理的目的最多的是防腐蚀,其次是改善外观质量;但渗碳、渗氮是为了改变金属材料的机械性能;表面处理大多与加热无关。 热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。这些过程互相衔接,不可间断。 加热是热处理的重要工序之一。金属热处理的加热方法很多,最早是采用木炭和煤作为热源,进而应用液体和气体燃料。电的应用使加热易于控制,且无环境污染。利用这些热源可以直接加热,也可以通过熔融的盐或金属,以至浮动粒子进行间接加热。 金属加热时,工件暴露在空气中,常常发生氧化、脱碳(即钢铁零件表面碳含量降低),这对于热处理后零件的表面性能有很不利的影响。因而金属通常应在可

相关文档