文档库 最新最全的文档下载
当前位置:文档库 › 结构力学结课论文:结构动力学振动理论在建筑结构抗震中的应用研究

结构力学结课论文:结构动力学振动理论在建筑结构抗震中的应用研究

结构力学结课论文:结构动力学振动理论在建筑结构抗震中的应用研究
结构力学结课论文:结构动力学振动理论在建筑结构抗震中的应用研究

结构动力学振动理论在建筑结构

抗震中的应用研究

摘要:随着社会的不断发展,抗震功能在建筑结构设计中的要求日益提高。通过结构动力学振动理论的研究应用,抗震技术得到了很大发展。本文将运用单自由度无阻尼和有阻尼受迫振动的理论知识,通过对动力学中的结构动力特性、建筑结构设计中的抗震功能的分析,简要介绍装有粘弹性阻尼器的单自由度体系的应用实例。

关键词:建筑结构抗震结构动力学振动理论单自由度体系简谐荷载

一、综述

随着社会的不断向前发展,建筑结构形式日益多样化,结构设计中对于抗震功能的要求也越来越高。与此同时,各门学科的交叉发展使得建筑结构抗震技术的运用走上了一个新的阶段。

传统的结构抗震设计不仅仅使得结构的造价大大增加,而且由于地震的不确定性而往往难以达到预期效果。通过运用动力学的相关知识来分析隔震减震装置在地震作用下的反应可以发现,自振振动在结构的地震反应中经常占有主导地位,不能够忽略。那么运用动力学理论分析,找到结构反应的最大控制量,通过改进材料的性能参数,就能够使用最合适的材料来制造隔震减震装置,提高装置的使用效能,这样就有希望把被动控制技术推向一个新高度。

二、单自由度无阻尼受迫振动

当体系上作用的外荷载为简谐荷载,同时忽略体系的阻尼,单自由度体系的运动方程为:

式中:p0为简谐荷载的幅值;为简谐荷载的圆频率。

体系的初始条件为:

该方程的解为:

解的第一部分为结构的自振频率振动的部分,即伴生自由频率的振幅,记为:

其中,为自振频率的振幅:

解的第二部分为激振频率振动的部分,即稳态动部分,记为:

其中,为自振频率的振幅:

解的第二部分为激振频率振动的部分,即稳态动部分,记为:

其中:为激振频率振幅:

比较两部分振动的振幅得到:

由上面的式子可以看出,结构自振的振幅与稳态振动部分的振幅的比值是成反比例的。当1

θ≥时,按自振频率部分的振幅大于按荷载频率的部分的振幅,尤其是当1

θ>时,自振部分在结构反应中将占相当重要的部分。

三、单自由度有阻尼受迫振动

在简谐荷载作用下,单自由度体系的运动方程和初始条件为:

该方程解为:

式中:,

解的第一部分为自振频率振动部分,记为:

其中,

解的第二部分为荷载频率振动的部分,即激振频率振动的部分:

比较两部分的振幅可以得到:

在一般情况下,我们注重的是分析稳态反应项,但是在这里应当注意,可能出现在反应的初始阶段瞬态,反应项远远大于稳态反应项,从而成为结构反应的最大控制量。研究自振频率下的振动和激振频率下的振动,发现对于自振频率和激振频率比值较大的结构,当阻尼不

太大的时候,其自由振动的初试振幅比稳态振动的振幅大,并且振幅的衰减较慢。对于这种体系进行动力分析的时候,其自由振动部分不能忽略。这里我们比较简谐振动下自由振动和激振振动的对比就能够很清楚的认识到这点。

四、动力学中的结构动力特性

在建筑结构中,结构动力学反映抗震性质的微分方程:

12cos sin y c t c t ωω=+

其中的系数1c 和2c 能根据初始条件确定。运用能够妥善处理重复

变换加载的三维有限元方法分析钢筋混凝土柱在地震荷载作用下的非线性特性。钢筋混凝土墙—框架体系的非弹性地震反应,一般都参照了连续变化的轴向力和挠曲的相互影响和剪切变形的影响,加之轴向力变化对于动力反应的影响非常显著,但剪切变形的影响却不大。如果我们仔细研究钢框架建筑的非弹性地震反应,我们会发现柱的轴向塑性变形会朝一个方向积累,进而导致水平位移增大,从而加剧p—△效应。轴向力将减小挠曲为主的振型的自振频率,而且将加大拉伸振型的自振频率。我们可以运用离散变量方法,对整个体系进行处理,用拉格朗日方程进行一般性分析,以便考虑结构的空间特性。

五、建筑结构设计中的抗震分析

建筑结构设计中应全面周到地考虑来自两个主轴方向的地震作用力,各个方向和角度的水平地震作用全部由该方向抗侧力构件承担。有斜交抗侧力构件的结构,当相交角大于15度时,应考虑好各抗侧力构件方向的水平地震作用。质量、刚度不均匀、不对称的结构,则要充分考虑水平地震作用的扭转影响,同时还应充分把握双向水平地震的影响。不同方向的抗震力结构的共同构件,则需考虑双向水平地震的影响。8度和9度时的大跨度结构、长悬臂结构等应考虑竖向地震作用。

建筑结构设计还应考虑重力荷载。结构动力学中动力荷载下材料比静力学中的静力荷载下要高。地震时偶然作用,建筑结构的抗震可靠度要求可比承受其他荷载的可靠度要求低。

结构抗震是设计中应重点考虑的方面,特别是城市交通附近的建筑结构设计,要控制结构微振,就得分析结构防微振性能,设计合理的防微振方案。目前对于结构防微振的分析多集中于设备隔振、减振措施及动力分析等方面。

六、应用实例

假设有一装有粘弹性阻尼器的单自由度体系,质量为m ,简谐波荷载0sin P t ω作用,那么它的运动方程为:

()0,sin mu f u u P t ω+=

其中,(),

f u u 是位移u和速度u 的函数,它由两部分组成,一是由粘弹性材料变形而产生的弹性力,k'是粘

弹性阻尼器储能刚度;另一部分是由粘弹性材料变形产生

阻尼力,η为粘弹性材料的损耗因子,ω为激振频

率。即:

因为,所以,由式20可得:

而,利用可得:

我们在频率为ω的正弦荷载作用下,线性粘弹性材料的剪应变

和剪应力以相同的频率ω振动,那么可以用下式表示:

式中:、为峰值剪应变和峰值剪应力值;σ为相位差;对于给定的,和均为频率ω的函数,剪应力表达式展开则可得出:

式中:为储能剪切模量;为损耗剪切模量,下式表示:

相位角δ可表示为:

式中:为损耗因子。

将用代替,可得:

由,并利用,可得:

整理得:

上式即为应力-应变关系式,椭圆面积表示为单位体积的粘弹性材料在一个循环所消耗的能量,其表达式如下:

如果粘弹性阻尼器中粘弹性材料各点的应力和应变相等,则其应力和应变分别为:

式中:A、h分别为阻尼器中粘弹性材料的受剪面积和厚度。

令,,代入得:

得:

式中:为对应于粘弹性耗能材料最大应变时的应力;为零应变时粘弹性耗能材料的应力;为耗能材料的最大应变。

还可以得出:

式中:为粘弹性耗能材料的最大剪应力。

可得出粘弹性阻尼器的存储刚度为:

七、结语

虽然目前建筑结构抗震设计的研究已经取得了很大的发展,但还有很多方面需要完善和改进,结构动力学的振动理论在结构的抗震减震研究中拥有广阔的发展前景。通过相关理论研究,仍然需要进一步寻找性能更加适合隔震减震装置的材料,来提高隔震减震的效果。

参考文献

[1] 王焕定等.结构力学(第三版).北京:高等教育出版社,2010

[2] 陈国忠等.工程结构抗震设计原理.北京:中国水利水电出版社,2002.

[3] 包世华.结构动力学.武汉:武汉理工大学出版社,2005.

[4] 李国豪.桥梁结构稳定与振动.北京:中国铁道出版社.

[5] 李宏男等.结构振动与控制.北京: 中国建筑工业出版社, 2005.

房屋建筑结构抗震设计论文

房屋建筑结构抗震设计 摘要:在城市建设中进行建筑结构设计时一定要考虑到建筑的抗震设计。为了使整个建筑工程真正达到能够减轻甚至避免地震灾害,做好抗震设计是最根本的措施。笔者根据有关资料以及实践经验的总结,对城市建设中建筑结构抗震设计问题进行了探讨。 关键词:房屋建筑;结构;抗震设计 abstract: the design of building structures in urban construction must take into account the seismic design of buildings. in order to really achieve the goal of reducing or even avoiding the earthquake disaster, good seismic design is the most fundamental measures. the author according to a summary of relevant information and practical experience of urban construction in seismic design problems were discussed. key words: housing construction; structure; seismic design 中图分类号:tu973+.31 文献标识码:a文章编号: 房屋建筑在城乡建设中分量很大,涉及广大人民群众生产生活的方方面面,是人民群众生产生活的主要场所。提高房屋抗震设计质量,重视房屋抗震设计中的环节,使地震对房屋的破坏降低到最低程度。对保护广大人民群众的生命财产安全是至关重要的。为了保证结构具有足够的抗震可靠性,使地震破坏降到最低限度,达到抗震设计中“小震不坏,中震可修,大震不倒”的设防目标。在进

结构动力学读书笔记

《结构动力学》读书报告 学院 专业 学号 指导老师 2013 年 5月 28日

摘要:本书在介绍基本概念和基础理论的同时,也介绍了结构动力学领域的若干前沿研究课题。既注重读者对基本知识的掌握,也注重读者对结构振动领域研究发展方向的掌握。主要容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构动力学的前沿研究课题。侧重介绍单自由度体系和多自由度体系,重点突出,同时也着重介绍了在抗震中的应用。 1 概述 1.1结构动力学的发展及其研究容: 结构动力学,作为一门课程也可称作振动力学,广泛地应用于工程领域的各个学科,诸如航天工程,航空工程,机械工程,能源工程,动力工程,交通工程,土木工程,工程力学等等。作为固体力学的一门主要分支学科,结构动力学起源于经典牛顿力学,就是牛顿质点力学。质点力学的基本问题是用牛顿第二定律来建立公式的。牛顿质点力学,拉格朗日力学和哈密尔顿力学是结构动力学基本理论体系组成的三大支柱。 经典动力学的理论体系早在19世纪中叶就已建立,。但和弹性力学类似,理论体系虽早已建立,但由于数学求解上的异常困难,能够用来解析求解的实际问题实在是少之又少,能够通过手算完成的也不过仅仅限于几个自由度的结构动力体系。因此,在很长一段时间,动力学的求解思想在工程实际中并未得到很好的应用,人们依然习惯于在静力学的畴用静力学的方法来解决工程实际问题。 随着汽车,飞机等新时代交通工具的出现,后工业革命时代各种大型机械的创造发明,以及越来越多的摩天大楼的拔地而起,工程界日新月异的发展和变化对工程师们提出了越来越高的要求,传统的只考虑静力荷载的设计理念和设计方法显然已经跟不上时代的要求了。也正是从这个时候起,结构动力学作为一门学科,也开始受到工程界越来越高的重视,从而带动了结构动力学的快速发展。 结构动力学这门学科在过去几十年来所经历的深刻变革,其主要原因也正是由于电子计算机的问世使得大型结构动力体系数值解的得到成为可能。由于电子计算机的超快速度的计算能力,使得在过去凭借手工根本无法求解的问题得到了解决。目前,由于广泛地应用了快速傅立叶变换(FFT),促使结构动力学分析发生了更加深刻地变化,而且使得结构动力学分析与结构动力试验之间的相互关系也开始得以沟通。总之,计算机革命带来了结构动力学求解方法的本质改变。 作为一门课程,结构动力学的基本体系和容主要包括以下几个部分:单自由度系统结构动力学,;多自由度系统结构动力学,;连续系统结构动力学。此外,如果系统上所施加的动力荷载是确定性的,该系统就称为确定性结构动力系统;而如果系统上所施加的动力荷载是非确定性的,该系统就称为概率性结构动力系统。 1.2主要理论分析 结构的质量是一连续的空间函数,因此结构的运动方程是一个含有空间坐标和时间的偏微分方程,只是对某些简单结构,这些方程才有可能直接求解。对于绝大多数实际结构,在工程分析中主要采用数值方法。作法是先把结构离散化成为一个具有有限自由度的数学模

TRIZ理论的主要内容

TRIZ理论的主要内容 (一)冲突解决理论 1、技术冲突解决原理 TRIZ提出描述技术冲突的39个通用工程参数:运动物体质量、静止物体质量、运动物体长度、静止物体长度等。为了解决技术冲突,TRIZ理论提出了40 项发明原理,如分割、分离、局部质量、不对称等。通过研究,Altshuller提出了冲突矩阵,该矩阵将描述技术冲突的39个工程参数与40条发明原理建立了对应关系,解决了设计过程中选择发明原理的难题。 2、物理冲突解决原理 Terninko于1998年提出的物理冲突描述方法为:(1)为实现关键功能,子系统要具有一有用功能,但为了避免出现一有害功能,子系统又不能具有上述有用功能。(2)关键子系统的特性必须是一大值以能取得有用功能,但又必须是一小值以避免出现有害功能。(3)关键子系统必须出现以取得一有用功能,但又不能出现以避免出现有害功能。TRIZ提出采用分离原理解决物理冲突的方法,包括空间分离和时间分离、基于条件的分离、整体与部分的分离。英国Bath大学的Mann 提出,解决物理冲突的分离原理与解决技术冲突的发明原理之间存在关系,一条分离原理可以与多条发明原理存在对应关系。 (二)物—场模型分析方法 物—场分析是用符号表达技术系统变换的建模技术。物—场模型分析方法产生于1947—1977年,每一次的改进都增加了新的可用的知识,现在已经有了76 种标准解。这些标准解是最初解决问题方案的精华,因此,物—场分析为我们提供了一种方便快捷的方法,利用这种方法,可以在汲取基本知识的基础上产生不同想法。 TRIZ理论认为,技术系统构成要素S1、作用体S2、场F三者缺一就会造成系统不完整。而当系统中某一物质的特定机能没有实现时,系统就会产生问题。为了控制这一物质产生的问题,有必要引入另外的物质。由此产生这些物质之间的相互作用并伴随能量(场)的产生、变换、吸收等,物—场模型也从一种形式变换为另一种形式。因此各种技术系统及其变换都可用物质和场的相互作用形式表述。 利用物—场分析方法分析系统存在的问题,建立系统的物—场模型,并提出问题解决对策的步骤如下:(1)指定物体S1;(2)指定场;(3)建立物—场初期模型;(4)指定作用体S2;(5)生成所希望的物—场模型;(6)提出解决问题的对策。 (三)发明问题解决算法 TRIZ认为,一个问题解决的困难程度取决于对该问题的描述或程式化方法,描述得越清楚,问题的解就越容易找到。TRIZ中,发明问题求解的过程是对问题不断地描述、不断地程式化的过程。经过这一过程,初始问题最根本的冲突被清楚地暴露出来,能否求解已很清楚,如果已有的知识能用于该问题则有解,如果已有的知识不能解决该问题则无解,需等待自然科学或技术的进一步发展。该过程是靠ARIZ算法实现的。 ARIZ (Algorithm for Inventive Problem Solving)称为发明问题解决算法,是TRIZ

结构力学课程设计

一、 课程设计题目 一)矩阵方程 1. 利用全选主元的高斯约当(Gauss-Joadan )消去法求解如下方程组,并给出详细的程序注解和说明: ??? ?????? ? ????????=?????????????????????? ???????? ?? ???1536353424543214019753910862781071567554321x x x x x 2. 利用追赶法求解如下方程组,并给出详细的程序注解和说明。 ?? ? ?? ?? ?? ? ????????-=???????????????????????????????????862031234567891011121354321x x x x x 3. 利用全选主元的高斯约当(Gauss-Joadan )消去法如下求解大型稀疏矩阵的大型方程 组,并给出详细注解及说明。 ???? ?? ??????? ?????????????----=????????????????????????????? ??? ?????????????????????4292728642-0 1 -0 1 00001-0402003-0001050006000102-00034-000200000 6-00060020001-0087654321x x x x x x x x 二) 结构力学 1. 试求解图示平面桁架各杆之轴力图,已知各材料性能及截面面积相同, 27.90,210cm A Gpa E ==。(注:在有限元分析中,桁架杆的模拟只能选择Ansys 的Link 单元)。 2. 试求解图示平面刚架内力图(轴力图、剪力图和弯矩图),已知各材料性能及截面面

建筑抗震结构论文 建筑抗震设计论文

建筑抗震结构论文建筑抗震设计论文 浅议隔震设计在高层建筑结构中的应用 摘要:《建筑抗震设计规范》(GB50011—2010)中给出高层建筑结构的隔震设计要求,其中隔震层的设计和验算尤为重要,由于高层隔震建筑上部结构倾覆弯矩较大,对隔震支座的竖向压应力、竖向位移、水平剪应力、水平位移以及上部结构的变形等要求必须进行严格的控制。本文作者就此提出了自己的观点,进一步剖析了高层建筑结构的隔振设计实施方案。 关键词:建筑结构隔震设计高层建筑 通过隔震建筑和不隔震建筑的抗震效果比较,表明隔震结构采用橡胶垫隔震支座时具有明显的隔震效果。隔震结构的设计内容包括隔震目标的确定、上部结构设计、隔震层设计、隔震层验算、构造措施、经济性论证等诸多方面。 一、基础隔震结构体系动力分析 基础隔震结构目前多用于30层以下、高宽比较小、上部结构水平层刚度较大的建筑结构。如果上部结构层数较多、高宽比较大、层间刚度较小,则上部结构须视为多质点体系,采用多质点模型,并需要考虑结构的倾覆、扭转等因素。

在高烈度区地震波激励下,高层隔震结构体系的上部结构弯曲变形已开始占了较大部分,在高烈度地区应用橡胶隔震结构,结构中的隔震支座可能会出现一定的拉应力或者非线性变形,但是结构整体是安全的。对于高层隔震结构体系,上部结构的倾覆弯矩较大,水平地震作用会引起隔震层的转动,结构的垂直荷载也较大,隔震层可能产生明显的竖向变形。对于这种情况,隔震结构的地震反应不仅要按多质点平动体系进行分析,并且要考虑结构的摆动。因此应采用多质点平动加摆动计算模型。 二、高层建筑结构的隔震设计 1.隔震设计要求 (1)设计方案:建筑结构的隔震设计,应根据建筑抗震设防类别、抗震设防烈度、场地条件、建筑结构方案和建筑使用要求,与建筑抗震的设计方案进行技术、经济可行性的对比分析后,确定其设计方案。 (2)设防目标:采用隔震设计的房屋建筑,其抗震设防目标应高于抗震建筑。在水平地震方面,隔震结构具有比抗震结构至少高0.5个设防烈度的抗震安全储备。竖向抗震措施不应降低。 (3)隔震部件:设计文件上应注明对隔震部件的性能要求;隔震部件的设计参数和耐久性应由试验确定;并在安装前对工程中所有各种类型和规格的部件原型进行抽样检测,每种类型和每一规格的数量

结构动力检测研究概述读书报告

结构动力检测研究概述 读书报告

结构动力检测研究概述 一.引言 土木工程事故的发生,造成了人员伤亡和财产损失,必然引起人们对土木工程安全性的关心和重视。评估已有建筑物或桥梁等结构在灾害性事件(如:地震、台风、爆炸等)后的健康情况,采用常规检测方法进行检测是费时的。因为主要的结构构件或节点一般都在外覆盖物或者建筑装饰物的下面。为迅速营救生命、拯救财产,立即对它们的健康情况做出评估是很有必要的。例如,1994年1月17日,美国加州Northridge大地震,一些建筑物在主震后并未倒塌,但是结构的损伤没有及时发现并进行处理,在后来的一次余震作用下结构发生了倒塌。1995年日本神户大地震和1999年台湾台中大地震也有类似的情况发生[1]。 人们在基于振动的结构健康监测方面进行了一系列的研究。20世纪70年代和80年代初,石油工业投人大量的人力和物力开发海洋平台健康监测系统;20世纪70年代后期,美国航天航空部门开展了有关航天飞机动力健康监测的研究;1987年以来,美国所有的人造卫星都配置了航天模型的健康监测系统,美国国家航空和宇航局要求所有的发射设备安置结构健康监测系统[2]。20世纪80年代初,土木工程部门开展了桥梁健康监测系统的研究。在连接香港新机场的青马大桥上安装了600多个传感器[3]。期间,虽然得出了一些较为成功的健康监测技术,但是如何从测量的信息来解释结构的健康状态和损伤情况,至今还没有完善的理论体系,基于振动的结构健康监测仍然是一个挑战。 综观结构损伤检测的研究历史,从损伤的定义来划分,大体上可以划分为单元刚度整体下降的损伤检测法和单元之间连接刚度下降的损伤检测法。对于前者,结构的损伤程度可由单元刚度折减系数来表示[4];对于后者,损伤程度可以由单元之间连接部分(连接单元)刚度的减小来表示,如钢结构梁柱连接部位螺栓的破坏、混凝土与钢筋之间粘结的破坏都属于连接单元失效问题。前者把损伤简单地假定为结构某些单元刚度减小,在此基础上开展的损伤检测研究已经很多了;后一种损伤定义更加接近结构的实际破坏形式,但目前开展的研究工作尚不多。 结构损伤检测从研究对象来看,研究的结构形式是由简单到复杂的一个过程:由简支梁开始到平面框架结构,再到桁架结构和空间结构,如海洋石油井架等。 从研究方法上来划分,可以划分为基于力学理论的损伤检测方法,基于神经网络的损伤检测方法,基于小波分析的损伤检测方法和基于模糊逻辑(fuzzy logic)的损伤检测方法等。基于力学理论的方法可以划分为基于静力学理论和基于动力学理论的方法。基于动力学理论的方法又可以划分为:线弹性理论的损伤检测方法和非线性理论的损伤检测方法。线弹性理论的方法又可以分为:基于模态理论的损伤检测和基于波动理论的损伤检测方法。基于非线性力学理论损伤检测方面的研究文献尚不多见[5]。 二.开展工程结构动力检测的意义 开展工程结构动力检测有如下重大意义:(1)传统的检测手段(如目测和静力检测)和无损检测技术(如超声波)均是结构局部损伤的检测方法,这些方法要求事先知道结构破损的大致位置,所以只能检测到结构表面或附近的损伤。如果是大体量结构,则不仅工作量巨大,而且难以预测结构性能的整体变化。基于结构振动的损伤识别可应用于复杂结构的定量的整体检测,能够有效克服静态检测方法中存在的应用条件限制和工作效率相对较低的缺点。(2)在土木工程实践中,设计、施工存在失误或正常使用中超载、环境腐蚀均可对结构造成不同程度的损伤,利用结构的健康检测技术,不仅可及时发现这些损伤的具体部位,甚至检测到无法接近的或隐蔽的损伤部位,为制定技术、经济水平均较高的加固方案提供充分的技术支持。(3)将结构的健康检测技术应用于结构在线监测,可发现早期的结构损伤,以便及时对结构进行维修,从而排除隐患。结构动力检测方法可不受结构规模和隐蔽的限制,只要在可

关于学习triz理论的心得体会

关于学习triz理论的心得体会 篇一:TRIZ理论学习心得 TRIZ意译为发明问题的解决理论。成功地揭示了创造发明的内在规律和原理,着力于澄清和强调系统中存在的矛盾,其目标是完全解决矛盾,获得最终的理想解。在经过7月4号到7月8号,5天的学习之后,我对TRIZ理论有了一定的了解,并且有了一点心得。 TRIZ理论是基于知识的方法、是系统化的方法、是发明问题解决理论。最早的TRIZ理论由一位俄国学者阿利赫舒列尔及他的同事于1946年提出,最初是从二十万份专利中取出符合要求的四万份作为各种发明问题的最有效的解。但是现代人认为,TRIZ更多的是一种思想或者方法,人们应该通过大量的习题来掌握它,计算机是无法完全取代人的作用的。并且运用TRIZ理论,结合数学、化学、生物、电子等领域中的原理解决了机械许多设计中的创新问题。 现实中的冲突是千差万别的,如果不加以归纳则无法建立稳定的解决途径。TRIZ理论归纳出39个通用工程参数描述冲突。 现实中的矛盾是千差万别的,如果不加以归纳则无法建立稳定的解决途径,这就是我对TRIZ理论最感兴趣的地方。TRIZ理论归纳出40个通用工程参数描述矛盾。实际应

用中,首先要把组成冲突的双方内部性能用该40个工程参 数中的至少2个来表示,然后在冲突矩阵中找出解决矛盾 的办法,通过老师的讲解,我学到了分割原理,抽取原理,局部质量原理,组合原理等能够真正用于解决生活中实际 问题矛盾的源头方法,通过认真分析问题,运用这40种发 明原理,我们真的可以得出一些改造生活环境的发明和想法。如带橡皮的铅笔、USB接口正反不对称、杠推门,等等,这些生活中的小细节,都是可以通过TRIZ理论,得出这些 让我们生活变得更加方便的发明。TRIZ理论中的这些创造 性思维方法一方面能够有效地打破我们的思维定势,扩展 我们的创新思维能力,同时又提供了科学的问题分析方法,保证我们按照合理的途径寻求问题的创新性解决办法。物-场模型分析,这是老师为我们介绍的一种非常重要的分析 方法,通过建立物场模型,找出我们需要解决的事物与其 他事物的相关联系,运用76个标准节,就可以轻松的得出 我们想要的答案。 通过5天的TRIZ理论学习,我初步体会到了创造和解 决问题的乐趣,并且了解了生活中许多细节都是TRIZ理论 的良好体现,但是要想真正把TRIZ理论笑话吸收,并且更 好的运用到实际工作中,除了要找准系统的先进法则,准 确找到技术矛盾,还要熟练的运用40个原理来分析问题。 根据理想标准解来选择最佳解法外,更要注意的是改变自

结构力学课程设计报告

一. 课程设计的目的 1. 通过实验及数据分析熟练掌握结构力学求解器的使用方法,了解求解器的主要 功能,了解数据输入和输出的基本操作过程,主要参数的意义和编辑方法。 2. 通过实践进一步了解结构在广义荷载作用下内力和位移的分布状态和变化规 律,从而指导我们探索和发现更合理的结构形式,为将来的学习和科研工作打 下坚实的基础 二. 课程设计的内容 (1).对图示两类桁架进行分析 在相同荷载作用下,比较各类桁架的受力特点; 讨论各种杆件(上弦杆,下弦杆,竖杆,斜杆)内力随 随高跨比变化的规律; 若增加杆件使其成为超静定桁架,内力有何变化。 (2).两种结构在静力等效荷载作用下,内力有哪些不同? 平行弦桁架 1/2 1 1 1 1 1 1/2 三角桁1/2 1 1 1 1 1 1/2

(3)、用求解器自动求解功能求a=2和a=1.0时的各杆内力。比较两种情况内力分布,试用试算法调整a 的大小,确定使弯矩变号的临界点a 0,当a=a 0时结构是否处于无弯矩状态? (4) 、图示为一个两跨连续梁,两跨有关参数相同(l =6m ,E =1.5*106kPa ,截面0.5*0.6m 2,线膨胀系数1.0*10-5)。第一跨底部温度升高60oC ,分析变形和内力图的特点。 (4) 、计算下支撑式五角形组合屋架的内力,并分析随跨高 比变化内力变化规律。当高度确定后内力随f 1,f 2的比例不同的变化规律(四个以上算例)。 1/4 11×(1/2) 1/4 1/2 1 1 1 1 1 1/2 a a a a 3 6m 6m

一. 课程设计的数据 1. 第(1)题数据 1) 平行弦桁架 a) 高跨比1:4(每小格比例2:3) 输出图形: 输出内力值: 内力计算 杆端内力值 ( 乘子 = 1) ----------------------------------------------------------------------------------------------- 3m 3m 3m 3m f 2 f 1 f =1.2m q =1kN/m

结构动力学读书报告

《结构动力学》 读书报告

结构动力学读书报告 学习完本门课程和结合自身所学专业,我对本门课程内容的理解和在各方面的应用总结如下: 1. (1)结构动力学及其研究内容: 结构动力学是研究结构系统在动力荷载作用下的振动特性的一门科学技术,它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。本书的主要内容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。 (2)主要理论分析 结构的质量是一连续的空间函数,因此结构的运动方程是一个含有空间坐标和时间的偏微分方程,只是对某些简单结构,这些方程才有可能直接求解。对于绝大多数实际结构,在工程分析中主要采用数值方法。作法是先把结构离散化成为一个具有有限自由度的数学模型,在确定载荷后,导出模型的运动方程,然后选用合适的方法求解。 (3)数学模型 将结构离散化的方法主要有以下三种:①集聚质量法:把结构的分布质量集聚于一系列离散的质点或块,而把结构本身看作是仅具有弹性性能的无质量系统。由于仅是这些质点或块才产生惯性力,故离散系统的运动方程只以这些质点的位移或块的位移和转动作为自由

度。对于大部分质量集中在若干离散点上的结构,这种方法特别有效。 ②广义位移法:假定结构在振动时的位形(偏离平衡位置的位移形态)可用一系列事先规定的容许位移函数fi (它们必须满足支承处的约束条件以及结构内部位移的连续性条件)之和来表示,例如,对于一维结构,它的位形u(x)可以近似地表为: @7710 二送 结构动力学 (1)式中的qj称为广义坐标,它表示相应位移函数的幅值。这样,离散系统的运动方程就以广义坐标作为自由度。对于质量分布比较均匀,形状规则且边界条件易于处理的结构,这种方法很有效。 ③有限元法:可以看作是分区的瑞利-里兹法,其要点是先把结构划 分成适当数量的区域(称为单元),然后对每一单元施行瑞利-里兹法。通常取单元边界上(有时也包括单元内部)若干个几何特征点(例如三角形的顶点、边中点等)处的广义位移qj作为广义坐标,并对每个广义坐标取相应的插值函数作为单元内部的位移函数(或称形状函数)。在这样的数学模型中,要求形状函数的组合在相邻单元的公共边界上满足位移连续条件。一般地说,有限元法是最灵活有效的离散化方法,它提供了既方便又可靠的理想化模型,并特别适合于用电子计算机进行分析,是目前最为流行的方法,已有不少专用的或通用的程序可供结构动力学分析之用。 (4)运动方程

TRIZ理论八大技术系统进化法则

机械创新设计课程论文(TIZE理论的八大技术系统进化法则) 专业机械设计制造及其自动化 班级10机自职1 学号1010113126 姓名姚巧珍 成绩 教师刘小鹏 2013年5月23日

TRIZ理论的八大技术系统进化法则 姚巧珍 (10机自职1班,学号:1010113126) [摘要] 技术系统的这八大进化法则可以应用于产生市场需求、定性技术预测、产生新技术、专利布局和选择企业战略制定的时机等。它可以用来解决难题,预测技术系统,产生并加强创造性问题的解决工具。本文讲述了TRIZ理论的八大技术系统进化法则,这些技术系统进化法则基本涵盖了各种产品核心技术的进化规律,每条法则又包含多种具体的进化路线和模式。它可以帮助设计者在方案设计阶段迅速地产生个具有创造性的新概念,实现产品的快速创新。 [关键词] 技术系统,进化法则,子系统,S曲线。 引言 一个产品或物体都可以看做是一个技术系统,技术系统可以简称为系统。系统是由多个子系统组成的,并通过子系统间的相互作用来实现一定的功能,子系统可以是零件或部件甚至于构成元素。系统是处于超系统之中的,超系统是系统所在的环境,环境中的其他相关的系统可以看做是超系统的构成部分。技术系统的进化是指实现系统功能的技术从低级向高级变化的过程,进化是客观进行着的,不管人们是认识了它还是没有认识它。如果认识和掌握了系统的进化规律,有利于设计者开发出更先进的产品,从而提升产品的竞争力。 1.八大技术系统进化法则 TRIZ的技术系统八大进化法则分别是:1)技术系统的S曲线进化法则; 2)提高理想度法则; 3)子系统的不均衡进化法则; 4)动态性和可控性进化法则;5)增加集成度再进行简化法则; 6)子系统协调性进化法则; 7)向微观级和场的应用进化法则; 8)减少人工进入的进化法则 1.1技术系统的S曲线进化法则 图1-1是一条典型的S曲线。S曲线描述了一个技术系统的完整生命周期,图中的横轴代表时间;纵轴代表技术系统的某个重要的性能参数,比如飞机这个技术系统,飞行速度、可靠性就是其重要性能参数,性能参数随时间的延续呈现S形曲线。 一个技术系统的进化一般经历4个阶段,分别是: 1)婴儿期 2)成长期 3)成熟期 4)衰退

结构力学钢结构课程设计

华北水利水电学院 课程设计 任务书及计划书 2012——2013学年 第一学期 环节名称:结构力学与钢结构课程设计学生专业班级:2009059——2009063 指导老师:高勇伟王利英 院系:机械学院 教研室:工程机械

课程设计任务书 教研室

课程设计计划书 注:指导老师在课程设计期间每天指导时间不少于2小时。 教学院长、教学主任:_________________ 教研室主任:__________________填表人:____________________填表时间:2012 年12月20日

结构力学与钢结构课程设计 钢吊车梁设计分组及设计参数 2、吊车采用大连重工起重集团有限公司2003年DSQD系列产品。

华北水利水电学院 课程设计 指导书 2012——2013学年 第一学期 环节名称:结构力学与钢结构课程设计学生专业班级:2009059——2009063 指导老师:高勇伟王利英 院系:机械学院 教研室:工程机械

结构力学与钢结构课程设计指导书 钢吊车梁设计概述 一、吊车梁所承受的载荷 吊车在吊车梁上运动产生三个方向的动力荷载:竖向荷载和沿吊车梁纵向的水平荷载。如图1所示。 图1 吊车梁承受荷载 纵向水平荷载是指吊车刹车力,其沿轨道方向由吊车梁传给柱间支撑,计算吊车梁截面时不予考虑。吊车梁的竖向荷载标准值应采用吊车最大轮压或最小轮压。 吊车沿轨道运行、起吊、卸载、以及工件翻转时将引起吊车梁振动。特别是当吊车越过轨道接头处的空隙时还将发生撞击。因此在计算吊车梁及其连接强度时吊车竖向荷载应诚意动力系数。对悬挂吊车(包裹电动葫芦)及工作级别A1--A5的软钩吊车,动力系数可取1.05:对工作级别A6--A8的软钩吊车、硬钩吊车和其他种吊车,动力系数可取1.1。 吊车的横向水平荷载由小车横行引起,其标准值赢取横行小车重量与额定起重之和的下列百分数,并乘以重力加速度: (1)软钩吊车:当额定起重量不大于10吨时,应取12%;当额定起重量为16--50吨时,应取10%;当额定起重量不小于75吨时,应取8%。

建筑抗震设计论文_建筑抗震结构论文

建筑抗震设计论文建筑抗震结构论文 浅谈复杂连体结构的抗震设计 【摘要】复杂连体结构从抗震的角度是一种抗震性能差的结构形式,因此要采取特别的措施进行加强设计。论文首先阐述了高层连体结构的特点及高层连体结构的震害情况,探索复杂连体结构建筑抗震设计建议,达到使复杂连体结构设计日臻完善的目的。 【关键词】复杂连体结构;抗震;设计 高层建筑连体结构是一种新型结构形式,所谓连体结构是指两个塔楼或多个塔楼由设置在一定高度处的连接体(又称连廊)相连而组成的建筑物,其结构外观更加别致,受到众多建筑师的青睐,但是由于两个塔楼或者多个塔楼是连接体,在地震作用下,原来独立发生振动的塔楼必然要相互作用、相互影响。高层建筑连体结构在地震作用下的反应远比单塔结构和无连接体的多塔结构受力复杂,由于连接体的设置改变了结构的动力特性高层建筑连体结构的抗震性能较差。强化结构的抗震安全目标并提高结构的抗震功能要求,已经成为工程抗震领域亟待解决的课题。 1 工程概况 本工程位于成都繁华商业地段,地理位置十分重要,城市景观的要求很高,建筑的使用功能也要求多元化,房屋的下部三层为商城,其上有21层的塔楼,工程总建筑面积约30000平方米,24层,总高度83米,为多功能的写字间,塔楼的顶上三层为观光连廊,因此形成了

大底盘双塔的连体建筑结构。自然条件和设计依据:1)基本风压:035N/km2;2)抗震设防烈度:7度,设计基本地震加速度为0.109,设计地震分组为第一;3)建筑抗震设防类别:丙类;4)钢筋混凝土结构的抗震等级:剪力墙二级,框架二级。与连接体相连的部分的梁柱构件为一级。 2 结构方案的确定 2.1 结构方案的确定。高层建筑的抗震设计首先应该注重的是概念设计。一般应掌握以下原则:根据结构的层数、房屋的高度、抗震设防要求、施工技术、材料等条件来选择合理的结构形式;对抗震结构要尽可能的设置多道防线,采用具有联肢墙、壁式框架的剪力墙结构、框架—剪力墙结构、框架—核心筒结构、筒中筒结构等多重抗侧力结构体系;结构的承载力、变形能力和侧向刚度要均匀连续变化,以适应地震反应的要求,结构的平面布置要力求简单、规则、对称,要避免应力集中的凹角和狭长的缩颈部;构件的设计要采取有效的措施防止脆性破坏,保证结构有足够的延性。要减轻结构的自重,降低结构的地震作用。 2.2 本工程从平面形状来看,平面狭长的形状,属于抗震不利平面,从竖向来看,底下三层为大底盘,其上有二栋21层的塔楼,在塔楼的顶上三层设有连接体,因此竖向刚度不均匀,形成竖向刚度二次突变,对抗震非常不利。本工程的难点就在于要在建筑方案己经基本定性的原则下从结构方面来采取措施,尽量满足抗震的要求,尽可能的减轻地震的反应。这些措施包括结构体系的选择,剪力墙的布置,

结构动力学3-3w总结

T p —荷载的周期 7/63 单自由度体系对周期荷载的反应 任意周期荷载作用下结构总的稳态反应为: 用复数Fourier 级数将周期荷载展开, 先计算单位复荷载e i ωj t 作用下,体系稳态反应的复幅值,设: 总的稳态反应为: 复频反应函数,也称为频响函数,传递函数

单位脉冲:作用时间很短,冲量等于1的荷载。 单位脉冲反应函数:单位脉冲作用下体系动力反应时程。 积分 时刻的一个单位脉冲作用在单自由体系上,使结构的质点获得一个单位冲量,在脉冲结束后,质点获得一个初速度: 由于脉冲作用时间很短,ε→0,质点的位移为零:

13/63 —Duhamel 积分无阻尼体系的单位脉冲反应函数为: 有阻尼体系的单位脉冲反应函数为: 、单位脉冲反应函数 单位脉冲及单位脉冲反应函数 15/63 在任意时间t 结构的反应,等的和: Duhamel 积分: 任意荷载作用下单自由度体系的反应等于作用于结构的外荷载与单位脉冲反应函数的卷积。 3.8.1时域分析方法—Duhamel 积分 无阻尼体系动力反应的Duhamel 积分公式: 阻尼体系动力反应的Duhamel 积分公式:

17/63杜哈曼积分法给出了计算线性SDOF体系在任意荷载作用下动力反应的一般解,适用于线弹性体系。 因为使用了叠加原理,因此杜哈曼积分法限于弹性范 速度和加速度的Fourier变换为:

21/63单自由度体系时域运动方程: 对时域运动方程两边同时进行Fourier 正变换,得单自由度体系频域运动方程: —Fourier 变换法频域解为: )—复频反应函数,i 是用来表示函数是一复数。再利用Fourier 逆变换,即得到体系的位移解: 作Fourier 变换, 得到荷载的Fourier 谱P (ω)和复频反应函数到结构反应的频域解—Fourier 谱U (逆变换,由频域解U (ω)得到时域解u (t ): 在用频域法分析中涉及到两次Fourier 变换,均为无穷域积分,特别是Fourier 逆变换,被积函数是复数,有时涉及复杂的围道积分。

TRIZ理论论文3000字(湖北工业大学赵俊峰)

TRIZ理论简介 冷战时期,以美国为首西方国家的特工与前苏联的克格勃曾经进行过无数次惊心动魄的间谍战,其中一次就是围绕被称为神奇的“点金术”展开的。因为美国、德国等西方国家惊异于前苏联在军事、工业等方面的创造能力,他们把创造这种奇迹的神秘武器称为“点金术”,可结果强大的克格勃使欧美国家只能望“术”兴叹。那么这种神奇的“点金术”到底是什么呢?它为什么有这么大的威力?这个“点金术”就是当前世界上著名的发明问题解决理论,被简称为TRIZ理论,TRIZ就是“发明问题解决理论”的俄语缩写,是由前苏联发明家阿奇舒勒在1946年创立的,因而阿奇舒勒也被尊称为TRIZ理论之父。TRIZ理论被公认为是使人聪明的理论。 1946年,阿奇舒勒开始了发明问题解决理论的研究工作。当时阿奇舒勒在前苏联里海海军专利局工作,在处理世界各国著名的发明专利过程中,他总是考虑这样一个问题:当人们进行发明创造、解决技术难题时,是否有可遵循的科学方法和法则,从而能迅速地实现新的发明创造或解决技术难题呢?答案是肯定的!阿奇舒勒发现任何领域的产品改进、技术的变革、创新和生物系统一样,都存在产生、生长、成熟、衰老、灭亡的过程,是有规律可循的。人们如果掌握了这些规律,就会能动地进行产品设计并能预测产品未来发展趋势。以后数十年中,阿奇舒勒穷其毕生的精力致力于TRIZ理论的研究和完善。在他的领导下,前苏联的数十家研究机构、大学、企业组成了TRIZ的研究团体,分析了世界近250万份高水平的发明专利,总结出各种技术发展进化遵循的规律模式,以及解决各种技术矛盾和物理矛盾的创新原理和法则,建立一个由解决技术问题,实现创新开发的各种方法、算法组成的综合理论体系,并综合多学科领域的原理和法则,建立起TRIZ理论体系。 TRIZ的核心是技术进化原理。按这一原理,技术系统一直处于进化之中,解决矛盾是其进化的推动力。它们大致可以分为3类:TRIZ的理论基础、分析工具和知识数据库。其中,TRIZ的理论基础对于产品的创新具有重要的指导作用;分析工具是TRIZ用来解决矛盾的具体方法或模式,它们使TRIZ理论能够得以在实际中应用,其中包括矛盾矩阵、物-场分析、ARIZ发明问题解决算法等;而知识数据库则是TRIZ理论解决矛盾的精髓,其中包括矛盾矩阵(39个工程参数和40条发明原理)、76个标准解决方法…… TRIZ理论的基本内容 矛盾。TRIZ理论认为,创造性问题是指包含至少一个矛盾的问题。当技术系统某个特性或参数得到改善时,常常会引起另外的特性或参数劣化,该矛盾称为“技术矛盾”。解决技术矛盾问题的传统方法是在多个要求间寻求“折中”,也就是“优化设计”,但每个参数都不能达到最佳值。而TRIZ则是努力寻求突破性方法消除冲突,即“无折中设计”。TRIZ的另一类矛盾是“物理矛盾”:系统同时具有矛盾或相反要求的状态。例如,软件应该容易使用,但同时需要许多复杂功能和选项。在TRIZ中,工程中所出现的种种矛盾可以归结为3类:一类是物理矛盾,一类是技术矛盾,一类是管理矛盾。通俗来讲,物理矛盾就是指系统(系统指的是机器、设备、材料、仪器等的统称)中的问题是由1个参数导致的。其中的矛盾是,系统一方面要求该参数正向发展,另一方面要求该参数负向发展;技术矛盾就是指系统中的问题是由2个参数导致的,2个参数相互促进、相互制约;管理矛盾是指子系统之间产生的相互影响。 物理矛盾。物理矛盾一般来说有2种表现:一是系统中有害性能降低的同时

振动力学课程设计报告

振动力学课程设计报告 课设题目: 单位: 专业/班级: 姓名: 指导教师: 2011年12月22日

一、前言 1、课题目的或意义 振动力学课程设计是以培养我们综合运用所学知识解决实际问题为目的,通过实践,实现了从理论到实践再到理论的飞跃。增强了认识问题,分析问题,解决问题的能力。带着理论知识真正用到实践中,在实践中巩固理论并发现不足,从而更好的提高专业素养。为认识社会,了解社会,步入社会打下了良好的基础。 通过对GZ电磁振动给料机的振动分析与减振设计,了解机械振动的原理,巩固所学振动力学基本知识,通过分析问题,建立振动模型,在通过软件计算,培养了我们独立分析问题和运用所学理论知识解决问题的能力。 2、课题背景: 随着科学技术发展的日新月异,电磁振动给料机已经成为当今工程应用中空前活跃的领域,在生活中可以说是使用的广泛,因此掌握电磁振动给料机技术是很有必要的和重要的。 GZ系列电磁振动给料机广泛应用于矿山、冶金、煤炭、建材、轻工、化工、电力、机械、粮食等各行各业中,用于把块状、颗粒状及粉状物料从贮料仓或漏斗中均匀连续或定量地给到受料装置中去。特别适用于自动配料、定量包装、给料精度要求高的场合。例如,向带式输送机、斗式提升机,筛分设备等给料;向破碎机、粉碎机等喂料,以及用于自动配料,定量包装等,并可用于自动控制的流程中,实现生产流程的自动化。 GZ电磁振动给料机的工作原理: GZ电磁振动给料机的给料过程是利用电磁振动器驱动给料槽沿倾斜方向做直线往复运动来实现的,当给料机振动的速度垂直分量大于策略加速度时,槽中的物料将被抛起,并按照抛物线的轨迹向前进行跳跃运动,抛起和下落在1/50秒完成,料槽每振动一次槽中的物料被抛起向前跳跃一次,这样槽体以每分钟3000次的频率往复振动,物料相应地被连续抛起向前移动以达到给料目的。 GZ系列电磁振动给料机主要用途:

结构动力学 读书报告

《结构动力学》读书报告

结构动力学读书报告 学习完本门课程和结合自身所学专业,我对本门课程内容的理解和在各方面的应用总结如下: 1.(1)结构动力学及其研究内容: 结构动力学是研究结构系统在动力荷载作用下的振动特性的一门科学技术,它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。本书的主要内容包括运动方程的建立、单自由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。 (2)主要理论分析 结构的质量是一连续的空间函数,因此结构的运动方程是一个含有空间坐标和时间的偏微分方程,只是对某些简单结构,这些方程才有可能直接求解。对于绝大多数实际结构,在工程分析中主要采用数值方法。作法是先把结构离散化成为一个具有有限自由度的数学模型,在确定载荷后,导出模型的运动方程,然后选用合适的方法求解。 (3)数学模型 将结构离散化的方法主要有以下三种:①集聚质量法:把结构的分布质量集聚于一系列离散的质点或块,而把结构本身看作是仅具有弹性性能的无质量系统。由于仅是这些质点或块才产生惯性力,故离散系统的运动方程只以这些质点的位移或块的位移和转动作为自由

度。对于大部分质量集中在若干离散点上的结构,这种方法特别有效。 ②广义位移法:假定结构在振动时的位形(偏离平衡位置的位移形态)可用一系列事先规定的容许位移函数fi(它们必须满足支承处的约束条件以及结构内部位移的连续性条件)之和来表示,例如,对于一维结构,它的位形u(x)可以近似地表为: 结构动力学 (1) 式中的qj称为广义坐标,它表示相应位移函数的幅值。这样,离散系统的运动方程就以广义坐标作为自由度。对于质量分布比较均匀,形状规则且边界条件易于处理的结构,这种方法很有效。 ③有限元法:可以看作是分区的瑞利-里兹法,其要点是先把结构划分成适当数量的区域(称为单元),然后对每一单元施行瑞利-里兹法。通常取单元边界上(有时也包括单元内部)若干个几何特征点(例如三角形的顶点、边中点等)处的广义位移qj作为广义坐标,并对每个广义坐标取相应的插值函数作为单元内部的位移函数(或称形状函数)。在这样的数学模型中,要求形状函数的组合在相邻单元的公共边界上满足位移连续条件。一般地说,有限元法是最灵活有效的离散化方法,它提供了既方便又可靠的理想化模型,并特别适合于用电子计算机进行分析,是目前最为流行的方法,已有不少专用的或通用的程序可供结构动力学分析之用。 (4)运动方程 可用三种等价但形式不同的方法建立,即:①利用达朗伯原理引

TRIZ理论课感想

TRIZ理论课感想 经过一个学期的课程,我对TRIZ理论有了深刻的理解和感受.尤其是作为一名冶金的学生,程老师对韩国浦项公司的生动讲解给我留下了深刻印象。浦项在引进德国和日本的2条钢铁生产线后,经过取长补短创造出了自己的生产线,导致德国和日本开始向浦项学习。 TRIZ理论是由前苏联发明家根里奇?阿奇舒勒(G. S. Altshuller)在1946年创立的,根里奇?阿奇舒勒也被尊称为TRIZ之父。此理论是从250万份专利中仔细研究、寻找规律、总结分析而得出。许多技术问题可以利用其他领域或相似问题的原理和方法得到解决,也就是发明创造是有规律可寻和有法可依的。 TRIZ的经典理论体系主要包括有8个技术系统进化法则、最终理想解、39个通用工程参数与矛盾矩阵、40个发明原理、物理矛盾与分离原理、物-场模型分析、发明问题的76个标准解、ARIZ创新问题解决算法、计算机辅助创新等等。 其中,8大技术系统进化法则揭示了一项技术或某一产品如何遵循规律在历史中发展和演变的,为技术创新指明了努力方向。最终理想解则通过抛弃客观条件,以理想化定义问题的最终理想解,保证在解决问题的过程中不偏离目标。最终理想解应该是有用功能最大化,有害功能最小化,而不是用传统的折中法去解决问题。 39个通用工程参数一般是物理、几何和技术性能的参数。技术矛盾就是由系统中两个因素相互制约和相互促进。阿奇舒勒将工程参数作了横向—纵向排列,横向表示恶化参数,纵向表示改善参数,纵

横交错的方格表示建议使用发明原理的序号。 40个发明原理则是阿奇舒勒总结专利的精华部分,也是TRIZ理论应用最普遍的部分。发明创造的过程在某种意义上说就是解决矛盾的过程。 物理矛盾是指系统中某一参数既要求向正方向运动,又要向反方向发展。如飞机的体积既要大,保证容纳旅客数增加;同时飞机的体积又不希望大,会有成本问题和动力问题等。这就是很简单的物理矛盾。物理矛盾的解决通常采用四大分离原理,即空间分离、时间分离、条件分离、整体与部分分离。 物-场分析方法建立在现有产品的功能分析基础上,通过建立现有产品的功能模型的过程,可以发现有害作用、不足作用及过剩作用等小问题。产品或系统中小问题存在的区域是设计冲突可能存在的区域,根据场-物表示的功能模型的类型就可以判定矛盾的存在。该方法适用于发现已有产品中的冲突以便改进设计。物-场模型分析方法是TRIZ的一个重要的发明创造问题的分析工具,可以用来分析现存技术系统有关的模型性问题,从而改进技术系统。 标准解法是根里奇?阿奇舒勒在1985年创立的,是针对标准问题而提出的解法,适用于解决标准问题并快速获得解决方案,标准解法是根里奇?阿奇舒勒后期进行TRIZ理论研究的最重要课题,同时也是TRIZ高级理论的精华之一。 ARIZ是TRIZ中最强有力的解决发明问题工具,专门用于解决复杂的困难的发明问题,是基于技术系统进化法则的一套完整的分析问

相关文档