文档库 最新最全的文档下载
当前位置:文档库 › 动点问题中的最值、最短路径问题(解析版)

动点问题中的最值、最短路径问题(解析版)

动点问题中的最值、最短路径问题(解析版)
动点问题中的最值、最短路径问题(解析版)

专题01 动点问题中的最值、最短路径问题

动点问题是初中数学阶段的难点,它贯穿于整个初中数学,自数轴起始,至几何图形的存在性、几何

图形的长度及面积的最值,函数的综合类题目,无不包含其中.

其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些

技巧性很强的数学思想(转化思想),本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深探讨此类题目的求解技巧及方法.

一、基础知识点综述

1. 两点之间,线段最短;

2. 垂线段最短;

3. 若A 、B 是平面直角坐标系内两定点,P 是某直线上一动点,当P 、A 、B 在一条直线上时,PA PB

最大,最大值为线段AB 的长(如下图所示);

(1)单动点模型

作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位

置. 如下图所示,P 是x 轴上一动点,求PA +PB 的最小值的作图.

(2)双动点模型

P 是∠AOB 内一点,M 、N 分别是边OA 、OB 上动点,求作△PMN 周长最小值.

作图方法:作已知点P 关于动点所在直线OA 、OB 的对称点P ’、P ’’,连接P ’P ’’与动点所在直线的交点

M 、N 即为所求. O B

P P'

P''M

N

5. 二次函数的最大(小)值

()2

y a x h k =-+,当a >0时,y 有最小值k ;当a <0时,y 有最大值k .

二、主要思想方法

利用勾股定理、三角函数、相似性质等转化为以上基本图形解答. (详见精品例题解析) 三、精品例题解析

例1. (2019·凉山州)如图,正方形ABCD 中,AB =12,AE =3,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ ⊥EP ,交CD 于点Q ,则CQ 的最大值为

例2. (2019·凉山州)如图,已知A 、B 两点的坐标分别为(8,0),(0,8). 点C 、F 分别是直线x =-5

和x 轴上的动点,CF =10,点D 是线段CF 的中点,连接AD 交y 轴于点E ,当△ABE 面积取最小值时,tan ∠BAD =( )

x y A B C F D E O

x=-5

A .

817 B . 717 C . 49 D . 59

例3. (2019·)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5,给出结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积的最大值为144;③当OD 最大时,点D 的坐标为)26

26125,262625(,其中正确的结论是 (填写序号).

例4. (2019·天津)已知抛物线2

y x bx c =-+(b 、c 为常数,b >0)经过点A (-1,0),点M (m ,0)是x 轴正半轴上的动点,若点Q (1,2

Q b y +

22QM +332b 的值.

例5. (2019·)如图,一副含30°和45°角的三角板ABC 和EDF 拼合在个平面上,边AC 与EF 重合,

12AC cm .

当点E 从点A 出发沿AC 方向滑动时,点F 同时从点C 出发沿射线BC 方向滑动.当点E 从点A 滑动到点C 时,点D 运动的路径长为

cm ;连接BD ,则△ABD 的面积最大值为 2

cm .

例6. (2019·)如图,在菱形ABCD 中,连接BD 、AC 交于点O ,过点O 作OH ⊥BC 于点H ,以O 为圆心,OH 为半径的半圆交AC 于点M .

(1)求证:DC 是圆O 的切线;

(2)若AC =4MC ,且AC =8,求图中阴影部分面积;

(3)在(2)的前提下,P 是线段BD 上的一动点,当PD 为何值时,PH +PM 的值最小,并求出最小值. A

B

C D

H O M N

专题01 动点问题中的最值、最短路径问题(解析)

例1. (2019·凉山州)如图,正方形ABCD中,AB=12,AE=3,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为

【答案】4.

【解析】解:∵PQ⊥EP,

∴∠EPQ=90°,即∠EPB+∠QPC=90°,

∵四边形ABCD是正方形,

∴∠B=∠C=90°,∠EPB+∠BEP=90°,

∴∠BEP=∠QPC,

∴△BEP∽△CPQ,

∴BE BP CP CQ

=,

∵AB=12,AE=3,

∴BE=9,

设CQ=y,BP=x,CP=12-x,(0

9

12

x

x y

=

-

()

()2

121

64

99

x x

y x

-

==--+,

∴当x=6时,y有最大值为4,即CQ的最大值为4.

【点睛】此题为“一线三直角模型”,解题方法为相似三角形性质求解,综合利用二次函数的性质求解最值问题.

例2.(2019·)如图,已知A、B两点的坐标分别为(8,0),(0,8). 点C、F分别是直线x=-5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取最小值时,tan∠BAD=()

A . 817

B . 717

C . 49

D . 59

【答案】B .

【解析】解:S △ABE =142

BE OA BE ??=, 当BE 取最小值时,△ABE 面积为最小值.

设x =-5与x 轴交于点G ,连接DG ,

因为D 为CF 中点,△CFG 为直角三角形,

所以DG =152

CD =,

∴D 点的运动轨迹为以G 为圆心,以5半径的圆上,如图所示 x

y

A B

D

E O x=-5G

由图可知:当AD 与圆G 相切时,BE 的长度最小,如下图,

x

y

A B

D

E

O x=-5G H

过点E 作EH ⊥AB 于H ,

∵OG =5,OA =8,DG =5,

在Rt △ADG 中,由勾股定理得:AD =12,

△AOE ∽△ADG , ∴AO AD OE DG =, 求得:OE =103, 由OB =OA =8,得:

BE =143

,∠B =45°,AB =82 ∴EH =BH =27223BE =,AH =AB -BH =1723

, ∴tan ∠BAD =72

7317

172EH AH ==, 故答案为B .

【点睛】此题解题的关键是找到△ABE 面积最小时即是AD 与D 的远动轨迹圆相切的时刻. 进而构造以∠BAD 为内角的直角三角形,利用勾股定理求出边长,代入三角函数定义求解.

例3. (2019·)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5,给出结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积的最大值为144;③当OD 最大时,点D 的坐标为)26

26125,262625(,其中正确的结论是 (填写序号).

【答案】②③.

【解析】解:根据题意可知:OE =12

AB =12,

即E 的轨迹为以O 为圆心以12为半径的四分之一圆(第一象限的部分),

根据弧长公式,得点E 的路径长为:

9012180π??=6π,故①错误; 因为AB =24,

当斜边AB 上的高取最大值时,△OAB 的面积取最大值,

点O 在以AB 为直径的圆上(圆心为E ),当OE ⊥AB 时,斜边AB 上的高最大,

所以△OAB 的面积取最大值为:

124122

??=144,故②正确; 连接OE 、DE ,

得:OD ≤OE +DE ,当O 、E 、D 三点共线时取等号,

即OD 的最大值为25,

如图,过点D 作DF ⊥y 轴于F ,过点E 作EG ⊥y 轴于G ,

25

DF OD 即:1225

EG DF =, 512

AF AD EG AE =

=, 即:51125

AF EG DF ==, 设DF =

x ,在Rt △ADF 中,由勾股定理得:

2

21255x x ??+= ???,解得:x =26, 在Rt △ODF 中,由勾股定理得:OF =26

即点D 的坐标为)26

26125,262625(,故③正确.

综上所述,答案为:②③. 例4. (2019·天津)已知抛物线2y x bx c =-+(b 、c 为常数,b >0)经过点A (-1,0),点M (m ,0)是x 轴正半轴上的动点.若点Q (1,2

Q b y +)在抛物线上,当22AM QM +的最小值为3324时,求b 的值. 【答案】见解析. 【解析】解:∵2

y x bx c =-+经过点A (-1,0),

∴1+b +c =0,即21y x bx b =--- ∵点Q (1,2

Q b y +

)在抛物线2y x bx c =-+上, ∴324Q b y =--, 即13,224b Q b ?

?+-- ???

, ∵b >0,∴Q 点在第四象限,

2222AM QM AM QM ??+=+ ???

所以只要构造出22AM QM ??+ ???

即可得到22AM QM +的最小值

取N (1,0),连接AN ,过M 作MG ⊥AN 于G ,连接QM ,如图所示,

△AGM 为等腰直角三角形,

GM =22

AM ,即当G 、M 、Q 三点共线时,GM +MQ 22QM +取最小值, 此时△MQH 为等腰直角三角形,

∴QM=2QH=

3

2

24

b??

+

?

??

,GM

=

2

2

AM=()

2

1

2

m+

∴()

223332

222=212

22244

b

AM QM AM QM m

????

??

+=++++=

???

?

??

????

①∵QH=MH,∴

3

24

b

+=

1

2

b m

+-,解得:m=

1

24

b

-②

联立①②得:m=

7

4

,b=4.

即当22

AM QM

+的最小值为

332

4

时,b=4.

【点睛】此题需要利用等腰直角三角形将22

AM QM

+转化为2

2

2

AM QM

??

+

?

??

,进而根据两点之间线段最短及等腰三角形性质求解.

例5. (2019·)如图,一副含30°和45°角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,12

AC cm

=.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为cm;连接BD,则△ABD的面积最大值为2

cm.

【答案】24-122362243126

【解析】解:如图1所示,当E运动至E’,F滑动到F’时,

D

D'

E'

G

图1

过D ’作D ’G ⊥AC 于G ,D ’H ⊥BC 交BC 延长线于点H ,

可得∠E ’D ’G =∠F ’D ’H ,D ’E ’=D ’F ’,

∴Rt △E ’D ’G ≌Rt △F ’D ’H ,

∴D ’G =G ’H ,

∴D ’在∠ACH 的角平分线上,

即C ,D ,D ’三点共线.

通过分析可知,当D ’E ’⊥AC 时,DD ’的长度最大,随后返回初始D 点,如图2所示,D 点的运动路径为D →D ’→D ,行走路线长度为2DD ’;

B

D'

图2

∵∠BAC =30°,AC =12,DE =CD

∴BC =CD =DE

=,

由图知:四边形E ’CF ’D ’为正方形,

CD ’=EF =12,

∴DD ’=CD ’-CD =12-D 点运动路程为2DD ’=24-

D'

图3

如图3所示,当点D 运动至D ’

时,△ABD ’的面积最大,最大面积为:

'''''

''ABC AE D BD F E CF

D S S S

S ++-△△△正方形

=(((211112222?++?--??

=-

【点睛】准确利用全等、角平分线判定得到D点的运动轨迹是关键,利用三角函数及勾股定理求解,计算较为繁琐,尤其是利用割补法求解三角形的面积时对学生计算能力要求较高,此题难度较大,新颖不失难度.

例6. (2019·)如图,在菱形ABCD中,连接BD、AC交于点O,过点O作OH⊥BC于点H,以O为圆心,OH为半径的半圆交AC于点M.

(1)求证:DC是圆O的切线;

(2)若AC=4MC,且AC=8,求图中阴影部分面积;

(3)在(2)的前提下,P是线段BD上的一动点,当PD为何值时,PH+PM的值最小,并求出最小值.

B D

【答案】见解析.

【解析】(1)证明:

过点O作ON⊥CD于N,

AC是菱形ABCD的对角线,

∴AC平分∠BCD,

∵OH⊥BC,ON⊥CD,

∴OH=ON,

又OH为圆O的半径,

∴ON为圆O的半径,

即CD是圆O的切线.

(2)由题意知:OC=2MC=4,MC=OM=2,

即OH =2,

在Rt △OHC 中,OC =2OH ,

可得:∠OCH =30°,∠COH =60°,

由勾股定理得:CH

=

=23OCH OMH

S S S π-=-△阴影扇形

(3)作点M 关于直线BD 的对称点M ’,连接M ’H 交BD 于点P , 可知:PM =PM ’

即PH +PM =PH +PM ’=HM ’,由两点之间线段最短,知此时PH +PM 最小, ∵OM ’=OM =OH ,∠MOH =60°,

∴∠MM ’H =30°=∠HCM ,

∴HM ’=HC

=即PH +PM

的最小值为

在Rt △M ’PO 及Rt △COD 中,

OP =OM ’ tan 30°

=3,OD =OC tan 30°

=3

, 即PD =OP +OD

=

B

D

七年级数学 线段上的动点问题

专训2线段上的动点问题 名师点金:解决线段上的动点问题一般需注意:(1)找准点的各种可能的位置;(2)通常可用设元法,表示出移动变化后的线段的长(有可能是常数,那就是定值),再由题意列方程求解. 线段上动点与三等分点问题的综合 1.如图,在射线OM上有三点A、B、C,满足OA=20 cm,AB=60 cm,BC=10 cm,点P从点O出发,沿OM方向以1 cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时,P、Q均停止运动),两点同时出发. (1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度. (2)若点Q运动速度为3 cm/s,经过多长时间P、Q两点相距70 cm. (第1题) 线段上动点问题中的存在性问题 2.如图,已知数轴上A,B两点对应的数分别为-2,6,O为原点,点P为数轴上的一动点,其对应的数为x. (第2题) (1)PA=,PB=(用含x的式子表示). (2)在数轴上是否存在点P,使PA+PB=10?若存在,请求出x的值;若不存在,请

说明理由. (3)点P 以1个单位长度/s 的速度从点O 向右运动,同时点A 以5个单位长度/s 的速度向左运动,点B 以20个单位长度/s 的速度向右运动,在运动过程中,M ,N 分别是AP , OB 的中点,问:AB -OP MN 的值是否发生变化?请说明理由. 线段和差倍分关系中的动点问题 3.如图,线段AB =24,动点P 从A 出发,以每秒2个单位长度的速度沿射线AB 运动,M 为AP 的中点,设P 的运动时间为x 秒. (1)当PB =2AM 时,求x 的值. (2)当P 在线段AB 上运动时,试说明2BM -BP 为定值. (3)当P 在AB 延长线上运动时,N 为BP 的中点,下列两个结论:①MN 长度不变;②MA +PN 的值不变.选择一个正确的结论,并求出其值. (第3题)

中考专题复习——最短路径问题

B C D A L 图(3) C 中考专题复习——路径最短问题 一、具体内容包括: 蚂蚁沿正方体、长方体、圆柱、圆锥外侧面吃食问题; 线段(之和)最短问题; 二、原理: 两点之间,线段最短;垂线段最短。(构建“对称模型”实现转化) 三、例题: 例1、①如右图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点A 沿木块侧面爬到点B 处,则它爬行的最短路径是 。 ②如右图是一个长方体木块,已知AB=3,BC=4,CD=2,假设一只蚂蚁在点A 处,它要沿着木块侧面爬到点D 处,则蚂蚁爬行的最短路径是 。 例2、①如图,要在河边修建一个水泵站,分别向张村、李庄送水,水泵站修在河边什么地方可使所用的水管最短。 ②如图,直线L 同侧有两点A 、B ,已知A 、B 到直线L 的垂直距离分别为1和3,两点的水平距离为3,要在直线L 上找一个点P ,使PA+PB 的和最小。请在图中找出点P 的位置,并计算PA+PB 的最小值。 ③要在河边修建一个水泵站,向张村、李庄铺设管道送水,若张村、李庄到河边的垂直距离分别为1Km 和3Km ,张村与李庄的水平距离为3Km ,则所用水管最短长度为 。 四、练习题(巩固提高) (一)1、如图是一个长方体木块,已知AB=5,BC=3,CD=4,假设一只蚂蚁在点A 处,它要沿着木块侧面爬到点D 处,则蚂蚁爬行的最短路径是 。 2、现要在如图所示的圆柱体侧面A 点与B 点之间缠一条金丝带(金丝带的宽度忽略不计),圆柱体高为6cm ,底面圆周长为16cm ,则所缠金丝带长度的最小值为 。 3、如图是一个圆柱体木块,一只蚂蚁要沿圆柱体的表面从A 点爬到点B 处吃到食物,知圆柱体的高为5 cm ,底面圆的周长为24cm ,则蚂蚁爬行的最短路径为 。 4、正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN 的最小值 第2题 张村 李庄 A B B 第1题 第3题

因动点产生的线段和差问题专项讲解

因动点产生的线段和差问题专项讲解 线段和差的最值问题,常见的有两类: 第一类问题是“两点之间,线段最短”. 两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1). 三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2). 两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′. 解决线段和差的最值问题,有时候求函数的最值更方便,本讲不涉及函数最值问题. 图1 图2 图3 第二类问题是“两点之间,线段最短”结合“垂线段最短”. 如图4,正方形ABCD的边长为4,AE平分∠BAC交BC于E.点P在AE上,点Q在AB上,那么△BPQ周长的最小值是多少呢? 如果把这个问题看作“牛喝水”问题,AE是河流,但是点Q不确定啊. 第一步,应用“两点之间,线段最短”.如图5,设点B关于“河流AE”的对称点为F,那么此刻PF+PQ的最小值是线段FQ. 第二步,应用“垂线段最短”.如图6,在点Q运动过程中,FQ的最小值是垂线段FH.这样,因为点B和河流是确定的,所以点F是确定的,于是垂线段FH也是确定的. 图4 图5 图6

已知抛物线y=ax2+bx+c经过A(-1, 0)、B(2, 0)、C(0, 2)三点. (1)求这条抛物线的解析式; (2)如图1,点P是第一象限内此抛物线上的一个动点,当点P运动到什么位置时,四边形ABPC的面积最大?求出此时点P的坐标; (3)如图2,设线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,那么在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由. 图1 图2 拖动点P运动,可以体验到,当点P运动到CB的中点的正上方时,四边形ABPC的面积最大.拖动点G运动,可以体验到,当A、G、M三点共线时,GC+GM最小,△CMG 的周长最小. 思路点拨 1.设交点式求抛物线的解析式比较简便. 2.连结OP,把四边形ABPC的面积分割为三个三角形的面积和. 3.第(3)题先用几何说理确定点G的位置,再用代数计算求解点G的坐标. 图文解析 (1)因为抛物线与x轴交于A(-1, 0)、B(2, 0)两点,设y=a(x+1)(x-2). 代入点C(0, 2),可得a=-1. 所以这条抛物线的解析式为y=-(x+1)(x-2)=-x2+x+2. (2)如图3,连结OP.设点P的坐标为(x,-x2+x+2). 由于S△AOC=1,S△POC=x,S△POB=-x2+x+2, 所以S四边形ABPC=S△AOC+S△POC+S△POB=-x2+2x+3=-(x-1)2+4. 因此当x=1时,四边形ABPC的面积最大,最大值为4.此时P(1, 2). (3)第一步,几何说理,确定点G的位置: 如图4,在△CMG中,CM为定值,因此当GC+GM最小时,△CMG的周长最小.

一次函数动点问题(整理好的)

龙文教育学科教师辅导讲义 学生: 科目: 数学 第 阶段第 次课 教师: 课 题 一次函数的应用——动点问题 教学目标 1.学会结合几何图形的性质,在平面直角坐标系中列函数关系式。 2.通过对几何图形的探究活动和对例题的分析,感悟探究动点问题列函数关系式的方法,提高解决问题的能力。 重点、难点 理解在平面直角坐标系中,动点问题列函数关系式的方法。 教学内容 例题1:已知:在平面直角坐标系中,点Q 的坐标为(4,0),点P 是直线y=-2 1x+3上在第一象限内的一动点,设△OPQ 的面积为s 。 (1)设点P 的坐标为(x ,y ),问s 是y 的什么函数,并求这个函数的定义域。 (2)设点P 的坐标为(x ,y ),问s 是x 的什么函数,并求这个函数的定义域。 (3)当点P 的坐标为何值时,△OPQ 的面积等于直线y=-2 1x+3与坐标轴围成三角形面积的一半。 练习:已知:在平面直角坐标系中,点A 的坐标为(6,0),另有一动点B 的坐标为(x ,y ),点B 在第一象限,且点B 的横纵坐标之和为8,设△OAB 的面积为s ,求: (1)s 与点B 的横纵坐标x 之间的函数关系式,并写出定义域。 (2)当△OAB 的面积为20时,求B 点的坐标。 例题2:在矩形ABCD 中,AB=6cm,BC=12cm,点P 从点A 开始以1cm/s 的速度沿AB 边向点B 移动,点Q 从点B 开始以2cm/s 的速度沿BC 边向点C 移动, 当点P 运动到点B 时,点Q 也随之停止。如果P 、Q 分别从A 、B 同时出发,设△PAD 的面积为s ,运动时间为t ,求s 与t 的函数关系式?运动到何时△PBQ 为等腰三角形? 例题3:如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C . (1)求点D 的坐标; (2)求直线2l 的解析表达式; (3)求ADC △的面积;

动点问题中的最值、最短路径问题(解析版)

专题01 动点问题中的最值、最短路径问题 动点问题是初中数学阶段的难点,它贯穿于整个初中数学,自数轴起始,至几何图形的存在性、几何 图形的长度及面积的最值,函数的综合类题目,无不包含其中. 其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些 技巧性很强的数学思想(转化思想),本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深探讨此类题目的求解技巧及方法. 一、基础知识点综述 1. 两点之间,线段最短; 2. 垂线段最短; 3. 若A 、B 是平面直角坐标系内两定点,P 是某直线上一动点,当P 、A 、B 在一条直线上时,PA PB 最大,最大值为线段AB 的长(如下图所示); (1)单动点模型 作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位 置. 如下图所示,P 是x 轴上一动点,求PA +PB 的最小值的作图.

(2)双动点模型 P 是∠AOB 内一点,M 、N 分别是边OA 、OB 上动点,求作△PMN 周长最小值. 作图方法:作已知点P 关于动点所在直线OA 、OB 的对称点P ’、P ’’,连接P ’P ’’与动点所在直线的交点 M 、N 即为所求. O B P P' P''M N 5. 二次函数的最大(小)值 ()2 y a x h k =-+,当a >0时,y 有最小值k ;当a <0时,y 有最大值k . 二、主要思想方法 利用勾股定理、三角函数、相似性质等转化为以上基本图形解答. (详见精品例题解析) 三、精品例题解析 例1. (2019·凉山州)如图,正方形ABCD 中,AB =12,AE =3,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ ⊥EP ,交CD 于点Q ,则CQ 的最大值为 例2. (2019·凉山州)如图,已知A 、B 两点的坐标分别为(8,0),(0,8). 点C 、F 分别是直线x =-5 和x 轴上的动点,CF =10,点D 是线段CF 的中点,连接AD 交y 轴于点E ,当△ABE 面积取最小值时,tan ∠BAD =( )

最好的数轴上的线段与动点问题

1、已知线段AB =12,CD =6,线段CD 在直线AB 上运动,(A 在B 的左侧,C 在D 的左侧) (1)M 、N 分别是线段AC 、BD 的中点,若BC =4,求MN 。 (2)当CD 运动到D 点与B 点重合时,P 是线段AB 的延长线上一点,下列两个结论: ○1 PA + PB PC 是定值,○2 PA - PB PC 是定值。其中有一个正确,请你作出正确的选择,并求出其定值。 2、如图,已知数轴上有三点A 、B 、C ,AB = 1 2 AC ,点C 对应的数是200。 (1)若BC =300,求A 点所对应的数; (2)在(1)的条件下,动点P 、Q 分别从A 、C 两点同时出发向左运动,同时动点R 从A 点出发向右运动,点 P 、Q 、R 的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M 为线段PR 的中点,点N 为线段RQ 的中点,多少秒时恰好满足MR =4RN (不考虑点R 与点Q 相遇之后的情形) (3)在(1)的条件下,若点E 、D 对应的数分别为-800、0,动点P 、Q 分别从E 、D 两点同时出发向左运动, P 、Q 的速度分别为10单位长度每秒、5单位长度每秒,点M 为线段PQ 的中点,点Q 在从点D 运动到点 A 的过程中,3 2 QC -AM 的值是否发生变化?若不变,求其值;若变化,说明理由。 3、数轴上A 点对应的数为-5,B 点在A 点右边,电子蚂蚁甲、乙在B 分别以2个单位/秒、1个单位/秒的速度 C B A R Q P C A 200 -800 D C

向左运动,电子蚂蚁丙在A 以3个单位/秒的速度向右运动。 (1)若电子蚂蚁丙经过5秒运动到C 点,求C 点表示的数; (2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B 点表示的数; (3)在(2)的条件下,设它们同时出发的时间为t 秒,是否存在t 的值,使丙到乙的距离是丙到甲的距离的 2倍?若存在,求出t 值;若不存在,说明理由。 4、已知数轴上A 、B 两点对应数为-2、4,P 为数轴上一动点,对应的数为x 。 ⑴若P 为AB 线段的三等分点,求P 对应的数; ⑵数轴上是否存在P ,使P 到A 点、B 点距离和为10,若存在,求出x ;若不存在,说明理由。 ⑶A 点、B 点和P 点(P 在原点)分别以速度比1 :1 :2(长度:单位/分),向右运动几分钟时,P 为AB 的中点。 5、如图,若点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且a ,b 满足 ()0122 =-++b a -5B -5B -5 B 43210-1-2B A

最短路径问题教案

课题:§13·4 课题学习最短路径问题(第2课时) 内容分析 1.课标要求 “课题学习”,着重在于考查学生综合运用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力。本节课是“最短路径问题(第2课时)”,让学生经历用“平移变换”和“两点之间,线段最短”来寻求分析问题和解决问题的方法的过程,在观察、操作、想象、论证、交流的过程中,体会图形变化在解决问题中的作用,感悟转化的思想。 2.教材分析 知识层面:本节课的教学内容是研究一道有趣的“造桥选址”问题,充分体现了利用平移变换实现问题转化,从而有效求解。学生是在已经学习了三角形及平移、轴对称知识的基础上进行的有关最短路径问题的研究。最短路径问题在现实生活中经常遇到,初中阶段主要以“两点之间,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”为知识基础,有时还要借助轴对称、平移、旋转等变换进行研究。 本节课以“造桥选址”为背景,开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用平移将线段和最小问题转化为“两点之间,线段最短”(或“三角形两边之和大于第三边”)问题。对它的学习和研究,有助于对最短路径问题的分析、解决。为今后在求立体图形、圆、平面直角坐标系中求最值问题提供了方法。 能力层面:学生在七年级和上节课的学习过程中,已经掌握了用与最值有关的公理、定理解决问题的推理能力。“造桥选址”是实际生活中的极值问题,在这个问题中,平移起了一个桥梁作用,学习过程的本质是推理与化归的过程。有助于提高学生的推理能力、应用意识;分析问题、解决问题的能力。 思想层面:本节课在将实际问题抽象成几何图形的过程中渗透数学建模的思想。在如何将三条线段的和转化为两条线段的和的探索过程中体现了转化的思 想。在最值问题的证明中,“任取”一点'C(除了点C外),由于点'C的任意性, 所以结论对于直线上的每一点(除了点C外)都成立,这在数学中常采用的方法,体现了化归的思想。 3.学情分析 最短路径问题从本质上说是最值问题,作为初中学生,在此之前很少涉及最值问题,解决这方面问题的数学经验尚显不足,特别是面对具有具体背景的最值问题,更会感到陌生,无从下手。 与上节课相比,本节课的问题更为复杂,出现了三段线段的和最小问题,解答“当点N在直线2l的什么位置时,NB AM+ +最小?”需要将其转化为“当 MN 点N在直线2l的什么位置时,NB AM+最小?”。能否这样转化,如何实现这样的转化?有的学生会存在理解上和操作上的困难,还有的学生可能会受思维惯性的影响(上节课学习了“利用轴对称解决最短路径问题”)。在教学中要巧妙引导,其本质还是在于对“两点之间,线段最短”的深刻理解。

第8讲-因动点产生的线段和差问题

第8讲因动点产生的线段和差问题 例 1 市中考第26题 如图1,抛物线y=x2-4x与x轴交于O、A两点,P为抛物线上一点,过点P的直线y=x+m与抛物线的对称轴交于点Q. (1)这条抛物线的对称轴是_________,直线PQ与x轴所夹锐角的度数是______; (2)若两个三角形的面积满足S△OQP=1 3 S△P AQ,求m的值; (3)当点P在x轴下方的抛物线上时,过点C(2, 2)的直线AC与直线PQ交于点D,求: ①PD+DQ的最大值;②PD·DQ的最大值. 图 思路点拨 1.第(2)题△OQP与△P AQ是同底三角形,把面积比转化为对应高的比,进而确定线段OA的分点的位置,从而得到直线PQ与y轴的交点坐标. 2.第(3)题中,△CQD保持等腰直角三角形的形状. 满分解答 (1)抛物线的对称轴为直线x=2,直线PQ与x轴的夹角为45°. (2)因为△OQP与△P AQ有公共边PQ,所以它们的面积比等于对应高的比. 如图2,作OM⊥PQ于M,AN⊥PQ于N. 当S△OQP=1 3 S△P AQ时, 1 3 OM AN =. 设直线PQ与x轴交于点H,那么 1 3 OH OM AH AN ==. 由y=x2-4x=x(x-4),得A(4, 0).所以OA=4. ①如图2,当点H在线段OA上时,OH=1,H(1, 0).此时m=-1. ②如图3,当点H在AO的延长线上时,OH=2,H(-2, 0).此时m=2. (3)①如图4,由A(4, 0)、C(2, 2),得直线AC与x轴的夹角为45°,点C在抛物线的对称轴上.又因为直线PQ与x轴的夹角为45°,所以△CDQ是等腰直角三角形. 作点Q关于直线AC的对称点Q′,那么△CQQ′是等腰直角三角形,CQ′//x轴. 所以DQ=DQ′.因此PD+DQ=PD+DQ′=PQ′. 作PP′⊥CQ′,垂足为P′,那么△PP′Q′是等腰直角三角形. 因此当PP′最大时,PQ′也最大.

(完整版)有关线段的动点问题

有关线段的动点问题 1.如图,已知数轴上A、B两点所表示的数分别为﹣2和8. (1)求线段AB的长; (2)若P为射线BA上的一点(点P不与A、B两点重合,M为PA的中点,N为PB的中点,当点P在射线BA上运动时;MN的长度是否发生改变?若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由. 2.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒, (1)写出数轴上点B所表示的数; (2)点P所表示的数;(用含t的代数式表示); (3)M是AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,说明理由;若不变,请你画出图形,并求出线段MN的长. 3.如图,P是定长线段AB上一点,C、D两点同时从P、B出发分别以1cm/s和2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上).已知C、D运动到任一时刻时,总有PD=2AC. (1)线段AP与线段AB的数量关系是:; (2)若Q是线段AB上一点,且AQ﹣BQ=PQ,求证:AP=PQ; (3)若C、D运动5秒后,恰好有CD=AB,此时C点停止运动,D点在线段PB上继续运动,M、N分别是CD、PD的中点,问的值是否发生变化?若变化,请说明理由;若不变,请求出的值.

4.如图,已知:线段AD=10cm,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,设点B运动时间为t秒(0≤t≤10). (1)当t=6秒时,AB=cm; (2)用含t的代数式表示运动过程中AB的长; (3)在运动过程中,若AB中点为E,BD的中点为F,则EF的长是否发生变化?若不变,求出EF的长;若发生变化,请说明理由. 5.如图,C为线段AB延长线上一点,D为线段BC上一点,CD=2BD,E为线段AC上一点,CE=2AE (1)若AB=18,BC=21,求DE的长; (2)若AB=a,求DE的长;(用含a的代数式表示) (3)若图中所有线段的长度之和是线段AD长度的7倍,则的值为. 6.如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO 上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发. (1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm. (3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求的 值.

中考压轴题汇编因动点产生的等腰三角形问题

因动点产生的等腰三角形问题 例1 2017年重庆市中考第25题 如图1,在△ABC中, ACB=90°,∠BAC=60°,点E是∠BAC的平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF.(1)如图1,若点H是AC的中点,AC=23,求AB、BD的长; (2)如图1,求证:HF=EF. (3)如图2,连接CF、CE,猜想:△CEF是否是等边三角形若是,请证明;若不是,请说明理由. 图1 图2

例2 2017年长沙市中考第26题 如图1,抛物线y=ax2+bx+c(a、b、c是常数,a≠0)的对称轴为y轴,且经过(0,0)和1 (,) a两点,点P在该抛物线上运动,以点P为圆心 16 的⊙P总经过定点A(0, 2). (1)求a、b、c的值; (2)求证:在点P运动的过程中,⊙P始终与x轴相交; (3)设⊙P与x轴相交于M(x1, 0)、N(x2, 0)两点,当△AMN为等腰三角形时,求圆心P的纵坐标. 图1

例3 2018年上海市虹口区中考模拟第25题 如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上的一动点,点Q为边AC 上的一动点,且∠PDQ=90°. (1)求ED、EC的长; (2)若BP=2,求CQ的长; (3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP 的长.

图1 备用图 例4 2017年扬州市中考第27题 如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.

(完整word版)一次函数的动点问题简单练习题

一次函数动点问题练习题 1、如果一次函数y=-x+1的图象与x 轴、y 轴分别交于点A 点、B 点,点M 在x 轴上,并且使以点A 、B 、M 为顶点的三角形是等腰三角形,那么这样的点M 有( )。 A .3个 B .4个 C .5个 D .7个 2、直线与y=x-1与两坐标轴分别交于A 、B 两点,点C 在坐标轴上,若△ABC 为等腰三角形,则满足条件的点C 最多有( ). A .4个 B .5个 C .6个 D .7个 3、直线64 3+-=x y 与坐标轴分别交于A 、B 两点,动点P 、Q 同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O ?B ?A 运动. (1)直接写出A 、B 两点的坐标; (2)设点Q 的运动时间为t (秒),△ OPQ 的面积为S ,求出S 与t 之间的函数关系式; 4、如图,在平面直角坐标系xOy 中,直线1y x =+与334 y x =-+交于点A ,分别交x 轴于点B 和点C ,点D 是直线AC 上的一个动点. (1)求点A B C ,,的坐标. (2)当CBD △为等腰三角形时,求点D 的坐标. A y x D C O B

x y O B A 5、如图:直线3+=kx y 与x 轴、y 轴分别交于A 、B 两点, 43=OA OB ,点C(x ,y)是直线y =kx +3上与A 、B 不重合的动点。 (1)求直线3+=kx y 的解析式; (2)当点C 运动到什么位置时△AOC 的面积是6; (3)过点C 的另一直线CD 与y 轴相交于D 点,是否存 在点C 使△BCD 与△AOB 全等?若存在,请求出点 C 的坐标;若不存在,请说明理由。 6、如图,点A 、B 、C 的坐标分别是(0,4),(2,4),(6,0).点M 是折线ABC 上一个动点,MN ⊥x 轴于N ,设ON 的长为x ,MN 左侧部分多边形的面积为S. ⑴写出S 与x 的函数关系式; ⑵当x =3时,求S 的值. 7、如图,已知在平面直角坐标系中,直线l :y =-2 1x +2分别交两坐标轴于A 、B 两点,M 是线段AB 上一个动点,设M 的横坐标为x ,△OMB 的面积为S ; ⑴写出S 与x 的函数关系式; ⑵若△OMB 的面积为3,求点M 的坐标; ⑶当△OMB 是以OB 为底的等腰三角形时,求它的面积; ⑷画出函数s 图象. l M y x O B A

线段角动点问题

七年级线段动点问题 1、如图1,直线AB 上有一点P ,点M 、N 分别为线段PA 、PB 的中点AB=14. (1)若点P 在线段AB 上,且AP=8,则线段MN 的长度为 ; (2)若点P 在直线AB 上运动,试说明线段MN 的长度与点P 在直线AB 上的位置无关; (3)如图2,若点C 为线段AB 的中点,点P 在线段AB 的延长线上,下列结论:①PC PB PA - 的值不变;②PC PB PA +的值不变, 请选择一个正确的结论并求其值. 2、已知直线l 上有一点O ,点A 、B 同时从O 出发,在直线l 上分别向左、向右作匀速运动,且A 、B 的速度比为1:2,设运动时间为t s . (1)当t =2s 时,AB =12cm .此时, ① 在直线l 上画出A 、B 两点运动2秒时的位置,并回答点A 运动的速度是________cm /s ; 点B 运动的速度是________cm /s . ② 若点P 为直线l 上一点,且P A -PB=OP ,求OP AB 的值; (2)在(1)的条件下,若A 、B 同时按原速向左....运动,再经过几秒,OA=2OB . 3、已知数轴上A 、B 两点对应数分别为-2和4,P 为数轴上一点,对应数为x . (1)若P 为线段AB 的三等分点,求P 点对应的数 (2)数轴上是否存在点P ,使P 点到A 点、B 点距离和为10?若存在,求出x 的值;若不存在,请说明理由 (3)若点A 、点B 和点P (P 点在原点)同时向左运动,它们的速度分别为1、2、1个单位长度/分,则第几分钟时,P 为AB 的中点.

4、如图所示,在数轴上A 点表示数a ,B 点表示数b ,且a 、b 满足2690a b ++-= (1) 点A 表示的数为 , 点B 表示的数为 ; (2) 若点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC ,请在点A .、点.B .之间的数轴上...... 找一点C ,使BC=2AC ,则C 点表示的数为 ; (3) 在(2)的条件下,若一动点P 从点A 出发,以3个单位长度/秒速度由A 向B 运动;同 一时刻,另一动点Q 从点C 出发,以1个单位长度/秒速度由C 向B 运动,终点都为B 点.当一点到达终点时,这点就停止运动,而另一点则继续运动,直至两点都到达终点时才结束整个运动过程.设点Q 运动时间为t 秒. ① 用含t 的代数式表示:点P 到点A 的距离PA= ,点Q 到点B 的距离QB= ; ② 当t 为何值时,点P 与点Q 之间的距离为1个单位长度. 5、已知数轴上有A 、B 、C 三点,分别表示有理数-26,-10,10,动点P 从A 出发,以每秒1 个单位的速度向终点C 移动,设点P 移动时间为t 秒. (1)用含t 的代数式表示P 到点A 和点C 的距离:PA=______,PC=______. (2)当点P 运动到B 点时,点Q 从A 出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回点A ,在点Q 开始运动后,P,Q 两点之间的距离能否为 2个单位长度?如果能,请求出t 的值和此时P 表示的数;如果不能,写明理由。 6、如图1,在长方形ABCD 中,12AB =厘米,6BC =厘米.点P 沿AB 边从点A 开始向点B 以2厘米/秒的速度移动;点Q 沿DA 边从点D 开始向点A 以1厘米/秒的速度移动.如果P 、Q 同时出发,用t (秒)表示移动的时间, 那么: ⑴ DQ = 厘米, AP = 厘米(用含t 的代数式表示) ⑵ 如图1,当t = 秒时,线段AQ 与线段AP 相等? ⑶ 如图2,P 、Q 到达B 、A 后继续运动,P 点到达C 点后都停止运动。当t 为何值时,线段AQ 的长等于线段CP 的长的一半。

专题训练之最短路径问题(最全面的经典例题)

最短路径问题 1、①如右图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点面 爬到点B处,则它爬行的最短路径是 _______________ 。 ②如右图是一个长方体木块,已知AB=3,BC=4,CD=2假设一只蚂蚁在点A处, 它要沿着木块侧面爬到点D处,则蚂蚁爬行的最短路径是____________________ 。 2、①如图,要在河边修建一个水泵站,分别向张村、李庄送水,水泵站修在河边什么地方可使所用的水管最短。 *李庄 张村. ②如图,直线L同侧有两点A B,已知A、B到直线L的垂直距离分别为1和3, 两点的水平距离为3,要在直线L上找一个点P,使PA+PB勺和最小。请在图中找出点P的位置,并计算PA+P啲最小值。.B A■ _____________________ L ③要在河边修建一个水泵站,向张村、李庄铺设管道送水,若张村、李庄到河边的垂直距离分别为1Km和3Km张村与李庄的水平距离为3Km则所用水管最短长度为。 A沿木块侧 A B

是一个长方体木块,已知 AB=5,BC=3,CD=4假设一只蚂 蚁在点A D 处,则蚂蚁爬行的最短路径是2、 现要在如图所示的圆柱体侧面 A 点与B 点之间缠一条金丝带(金丝带的宽度 忽略不计),圆柱体高为6cm 底面圆周长为16cm ,则所缠金丝带长度的最小值 为 。 3、 如图是一个圆柱体木块,一只蚂蚁要沿圆柱体的表面从 A 点爬到点B 处吃到 食物,知圆柱体的高为5 cm ,底面圆的周长为24cm 则蚂蚁爬行的最短路径 为 。 5、 在菱形ABCD 中 AB=2 / BAD=60,点E 是AB 的中点,P 是对角线 AC 上 的一个动点,贝S PE+PB 勺最小值为 ___________ 。 6、 如图,在△ ABC 中, AC= BC= 2,Z ACB= 90°, D 是 BC 边的中点,E 是 AB 边 上一动点,则EO ED 的最小值为 ____________ 。 7、 AB 是OO 的直径,AB=2 OC 是O O 的半径,OCL AB,点 D 在 AC 上,AD 二 2CD 点P 是半径OC 上的一个动点,贝S AP+PD 勺最小值为 __________ 。 &如图,点P 关于OA OB 的对称点分别为 C D,连接CD 交OA 于M 交OB 于N 若CD= 18cm 则厶PMN 勺周长为 ___________ 。 9、已知,如图DE >^ ABC 的边AB 的垂直平分线,D 为垂足,DE 交BC 于 E ,且 AC= 5, BC= 8,则厶 AEC 的周长为 __________ 。 10、已知,如图,在△ ABC 中, AB

(完整版)汇编《因动点产生的面积问题》含答案

例1如图1,边长为8的正方形ABCD的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上A、C两点间的一个动点(含端点),过点P作PF⊥BC于点F.点D、E的坐标分别为(0, 6)、(-4, 0),联结PD、PE、DE. (1)直接写出抛物线的解析式; (2)小明探究点P的位置发现:当点P与点A或点C重合时,PD与PF的差为定值.进而猜想:对于任意一点P,PD与PF的差为定值.请你判断该猜想是否正确,并说明理由; (3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”. 请直接写出所有“好点”的个数,并求出△PDE周长最小时“好点”的坐标. 图1 备用图

如图1,边长为8的正方形ABCD 的两边在坐标轴上,以点C 为顶点的抛物线经过点A ,点P 是抛物线上A 、C 两点间的一个动点(含端点),过点P 作PF ⊥BC 于点F .点D 、E 的坐标分别为(0, 6)、(-4, 0),联结PD 、PE 、DE . (1)直接写出抛物线的解析式; (2)小明探究点P 的位置发现:当点P 与点A 或点C 重合时,PD 与PF 的差为定值.进而猜想:对于任意一点P ,PD 与PF 的差为定值.请你判断该猜想是否正确,并说明理由; (3)小明进一步探究得出结论:若将“使△PDE 的面积为整数” 的点P 记作“好点”,则存在多个“好点”,且使△PDE 的周长最小的点P 也是一个“好点”. 请直接写出所有“好点”的个数,并求出△PDE 周长最小时“好点”的坐标. 图1 备用图 动感体验 请打开几何画板文件名“15河南23”,拖动点P 在A 、C 两点间的抛物线上运动,观察S 随P 变化的图像,可以体验到,“使△PDE 的面积为整数” 的点P 共有11个. 思路点拨 1.第(2)题通过计算进行说理.设点P 的坐标,用两点间的距离公式表示PD 、PF 的长. 2.第(3)题用第(2)题的结论,把△PDE 的周长最小值转化为求PE +PF 的最小值. 满分解答 (1)抛物线的解析式为21 88 y x =-+. (2)小明的判断正确,对于任意一点P ,PD -PF =2.说理如下: 设点P 的坐标为21(,8)8x x -+,那么PF =y F -y P =218 x . 而FD 2=22222222111+(86)+(2)(2)888x x x x x -+-=-=+,所以FD =2128 x +. 因此PD -PF =2为定值. (3)“好点”共有11个. 在△PDE 中,DE 为定值,因此周长的最小值取决于FD +PE 的最小值. 而PD +PE =(PF +2)+PE =(PF +PE )+2,因此当P 、E 、F 三点共线时,△PDE 的周长最小(如图2).

中考数学二次函数动点问题-因动点产生的线段和差问题

因动点产生的线段和差问题 例2 2012年滨州市中考第24题 如图1,在平面直角坐标系中,抛物线y =ax 2+bx +c 经过A (-2, -4 )、O (0, 0)、 B (2, 0)三点. (1)求抛物线y =ax 2+bx +c 的解析式; (2)若点M 是该抛物线对称轴上的一点,求AM +OM 的最小值. 图1 动感体验 请打开几何画板文件名“12滨州24”,拖动点M 在抛物线的对称轴上运动(如图2),可以体验到,当M 落在线段AB 上时,根据两点之间线段最短,可以知道此时AM +OM 最小(如图3). 请打开超级画板文件名“12滨州24”,拖动点M , M 落在线段AB 上时, AM +OM 最小. 答案 (1)212 y x x =-+。 (2)AM +OM 的最小值为 图2 图3

例3 2012年山西省中考第26题 如图1,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D 是抛物线的顶点. (1)求直线AC的解析式及B、D两点的坐标(2)点P是x轴上的一个动点,过P作直线l//AC交抛物线于点Q.试探究:随着点P的运动,在抛物线上是否存在点Q,使以A、P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由; (3)请在直线AC上找一点M,使△BDM的周长最小,求出点M的坐标. 图1 动感体验 请打开几何画板文件名“12山西26”,拖动点P在x轴上运动,可以体验到,点Q有3个时刻可以落在抛物线上.拖动点M在直线AC上运动,可以体验到,当M落在B′D上时,MB+MD最小,△MBD的周长最小. 思路点拨 1.第(2)题探究平行四边形,按照AP为边或者对角线分两种情况讨论. 2.第(3)题是典型的“牛喝水”问题,构造点B关于“河流”AC的对称点B′,那么M落在B′D上时,MB+MD最小,△MBD的周长最小. 满分解答 (1)由y=-x2+2x+3=-(x+1)(x-3)=-(x-1)2+4, 得A(-1, 0)、B(3, 0)、C(0, 3)、D(1, 4). 直线AC的解析式是y=3x+3.(2)Q1(2, 3),Q2(13-),Q3(13-). (3)设点B关于直线AC的对称点为B′,联结BB′交AC于F. 联结B′D,B′D与交AC的交点就是要探求的点M. 作B′E⊥x轴于E,那么△BB′E∽△BAF∽△CAO.

线段中的动点问题

线段中的动点问题专项练习 1、已知方程564m m -=的解也是关于x 的方程()234x n --=的解. (1)求m 、n 的值; (2)已知线段AB=m ,在直线AB 上取一点P ,恰好使AP n PB =,点Q 为PB 的中点,求线段AQ 的长. 2、如图,已知数轴上有三点A 、B 、C ,AB= 1 2 AC ,点C 对应的数是200. (1)若BC=300,求点A 对应的数; (2)在(1)的条件下,动点P 、Q 分别从A 、C 两点同时出发向左运动,同时动点R 从A 点出发向右运动,点P 、Q 、R 的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M 为线段PR 的中点,点N 为线段RQ 的中点,多少秒时恰好满足MR=4RN (不考虑点R 与点Q 相遇之后的情形); (3)在(1)的条件下,若点E 、D 对应的数分别为-800、0,动点P 、Q 分别从E 、D 两点同时出发向左运动,点P 、Q 的速度分别为10单位长度每秒、5单位长度每秒,点M 为线段PQ 的中点,点Q 在从是点D 运动到点A 的过程中,32 QC -AM 的值是否发生变化?若不变,求其值;若不变,请说明理由. B A A C

3、如图, 已知线段AB 上有两点C 、D, 且AC =BD , M 、N 分别是线段AC 、AD 的中点, 若AB =a cm , AC =BD =b cm , 且a 、b 满足2(10)|4|02 b a -+-=. (8分) (1)求AB 、 AC 的长度(4分)。 (2)求线段MN 的长度(4分)。 4、如图,点A 从原点出发沿数轴向左运动,同时,点B 也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B 的速度是点A 的速度的4倍(速度单位:单位长度/秒). (1)求出点A 、点B 运动的速度,并在数轴上标出A 、B 两点从原点出发运动3秒时的位置;(4分) 解: (2)若A 、B 两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A 、点B 的正中间?(4分) 解: (3)若A 、B 两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C 同时从B 点位置出发向A 点运动,当遇到A 点后,立即返回向B 点运动,遇到B 点后又立即返回向A 点运动,如此往返,直到B 点追上A 点时,C 点立即停止运动.若点C 一直以20单位长度/秒的速度匀速运动,那么点C 从开始运动到停止运动,行驶的路程是多少个单位长度?(4分) 解: 21题图N C B A

人教版八年级数学讲义最短路径问题(含解析)(2020年最新)

第6讲最短路径问题 知识定位 讲解用时:5分钟 A、适用范围:人教版初二,基础较好; B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习最短路径 问题,现实生活中经常涉及到选择最短路径问题,最值问题不仅使学生难以理解,也是中考中的一个高频考点。本节将利用轴对称知识探究数学史上著名的“将军饮马问题”。 知识梳理 讲解用时:20分钟 两点之间线段最短 C D A B E A地到B地有3条路线A-C-D-B,A-B,A-E-B,那么选哪条路线最近呢? 选A-B,因为两点之间,直线最短 垂线段最短 如图,点P是直线L外一点,点P与直线上各 点的所有连线中,哪条最短? PC最短,因为垂线段最短

两点在一条直线异侧 A P L B 如图,已知A点、B点在直线L异侧,在L上选一点P,使PA+PB最短. 连接AB交直线L于点P,则PA+PB 最短. 依据:两点之间:线段最短 两点在一条直线同侧 相传,古希腊亚历山大里亚城里有一位 久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不 得其解的问题: 从图中的A地出发,到一条笔直的河边 l饮马,然后到B地.到河边什么地方饮马可使他所走的路线全程最短? 作法: 1、作B点关于直线L的对称点B’; 2、连接AB’交直线L于点C; 3、点C即为所求. 证明:在直线L上任意选一点C’(点C’不与C重合),连接AC’、BC’、B’C’. 在△AB’C’中, AC’+B’C’>AB’ ∴AC’+BC’>AC+BC 所以AC+BC最短.

课堂精讲精练 【例题1】 已知点A,点B都在直线l的上方,试用尺规作图在直线l上求作一点P,使得PA+PB的值最小,则下列作法正确的是() A.B. C.D. 【答案】D 【解析】根据作图的方法即可得到结论. 解:作B关于直线l的对称点,连接这个对称点和A交直线l于P,则PA+PB的值最小, ∴D的作法正确, 故选:D. 讲解用时:3分钟 解题思路:本题考查了轴对称﹣最短距离问题,熟练掌握轴对称的性质是解题的关键. 教学建议:学会处理两点在直线同侧的最短距离问题. 难度: 3 适应场景:当堂例题例题来源:无年份:2018 【练习1.1】 如图,直线L是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需

相关文档
相关文档 最新文档