文档库 最新最全的文档下载
当前位置:文档库 › 智能温度控制器的设计与实现

智能温度控制器的设计与实现

题目基于51单片机智能温度控制器设计与实现

本题目要求设计者以智能温度控制器为对象,完成硬件系统和软件设计并实现其功能。

1.熟悉任务,分析课题要求,熟悉温度控制器的原理,

进行方案设计;

2.熟悉硬件设计技术基础、单片机应用系统设计要领,

根据本课题的特点选择相应器件;

3.搜集素材,优选素材,整理素材;

4.完成所硬件电路的装配和调试,编写程序实现其功

能;

5.撰写毕业设计论文。

6.参加毕业设计论文答辩。

摘要

摘要

近年来,随着单片机档次的不断提高,功能的不断完善,其应用日趋成熟,应用领域日趋扩大,特别是工业测控、尖端武器和日用家电等领域更是因为有了单片机而生辉增色.单片机应用技术已成为一项新的工程应用技术.本毕业设计正是以AT89S51单片机为中心设计的温度控制器.虽然温度控制器电路功能比较简单,但是设计它的意义在于能使学生将所学到的知识综合应用,提高动手实践能力.

本系统采用AT89S51单片机作为核心,控制系统的模块分别为:单片机最小系统、显示模块、温度设定模块。当温度传感器感应到温度变化时,本设计可以判断温度是否设定范围之内,若不在,蜂鸣器发出警报。本设计的系统实用性强、判断精确、操作简单、扩展功能强.

关键词: 温度控制器单片机 AT89S51

目录

ABSTRACT

In recent years, with the continuous improvement of the microcontroller class, functional improvement, its application matures, application field, especially the increasing industry measurement and control, cutting-edge weapons and daily household appliances, etc but because a single-chip microcomputer and brightness graces. Microcomputer application technology has become a new engineering application technology. This graduation design is designed for the center with AT89S51. Although temperature controller is simpler, but design its meaning lies in the can make students will learn knowledge comprehensive application, improving practical capability.

This system uses AT89S51 as the core, the control system of the modules are respectively:single chip minimize system, display module, temperature-setting module. When the temperature sensors induction to temperature’s variation the design can judge whether the tempertaure comes within the range.If not,the buzzer alarms.This design system accurately strong practicality, judgment, simple operation,and function expansion is strong.

keywords: Temperature controller single-chip microcomputer AT89S51

目录 1

目录

第一章绪论 (3)

1.1单片机的发展 (3)

1.2智能温度控制器的背景 (4)

1.3智能温度控制器的意义 (4)

第二章整体设计 (7)

2.1 单片机的选择 (7)

2.1.1 单片机管脚功能说明 (7)

2.2 模块性能分析 (9)

2.2.1 按键 (9)

2.2.2 数码管 (9)

第三章硬件电路设计 (13)

3.1 最小系统设计 (13)

3.1.1 时钟电路 (13)

3.1.2 复位电路 (13)

3.2 数码管显示电路 (14)

3.3 按键电路的设计 (14)

3.4 DS18B20 的简介 (15)

3.4.1 DS18B20 概述 (15)

3.4.2 DS18B20 技术性能描述 (15)

3.4.3 DS18B20 引脚 (16)

3.5 智能温度控制器实物图 (16)

第四章软件设计 (19)

2 目录

4.1 流程图设计 (19)

4.2 主程序 (21)

4.3 Protel99SE 的简介 (29)

第五章软硬件调试 (31)

5.1 硬件调试 (31)

5.2 软件调试 (31)

第六章总结与展望 (33)

第七章结束语 (35)

致谢 (37)

参考文献 (39)

附录 (41)

附录A (41)

附录B (42)

第一章绪论 3

第一章绪论

1.1 单片机的发展

单片机是一种集成在电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。

单片机也被称为微控制器(Microcontroller Unit),常用英文字母的缩写MCU表示单片机,它最早是被用在工业控制领域。单片机由芯片内仅有CPU 的专用处理器发展而来。最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。

早期的单片机都是8位或4位的。其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。此后在8031上发展出了MCS51系列单片机系统。基于这一系统的单片机系统直到现在还在广泛使用。随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。目前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端的型号也只有10美元。当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。

由于单片机具有控制功能强,体积小,成本低,功耗小等一系列的特点,使它在工业控制,智能仪器,节能技术改造,通信系统,信号处理及家用电器产品

4 基于51单片机的智能温度控制器的设计与实现

中都得到广泛的应用,随着数字技术的发展及单片机在电子系统中的广泛应用,在很大程度上改变了传统的设计方法。以往采用模拟电路,数字电路实现的电路系统,大部分功能单元都可以通过对单片机硬件功能的扩展及专用程序的开发来实现系统提出的要求,这意味着许多电路设计问题将转化为程序设计问题。这种用模拟技术,数字技术的综合设计系统,用软件取代硬件实现和提供系统系能的新的设计思想体系,一般称之为微控制技术。在微控制系统的设计中,系统设计和软件设计起着关键性的作用。

1.2 智能温度控制器的背景

二十世纪跨越了三个“电”的时代,即电气时代、电子时代和现已进入的电脑时代。不过,这种电脑,通常是指个人计算机,简称PC机。它由主机、键盘、显示器等组成。还有一类计算机,大多数人却不怎么熟悉。这种计算机就是把智能赋予各种机械的单片机(亦称微控制器)。顾名思义,这种计算机的最小系统只用了一片集成电路,即可进行简单运算和控制。因为它体积小,通常都藏在被控机械的“肚子”里。它在整个装置中,起着有如人类头脑的作用,它出了毛病,整个装置就瘫痪了。现在,这种单片机的使用领域已十分广泛,如智能仪表、实时工控、通讯设备、导航系统、家用电器等。各种产品一旦用上了单片机,就能起到使产品升级换代的功效,常在产品名称前冠以形容词——“智能型”,如智能型洗衣机等。现在有些工厂的技术人员或其它业余电子开发者搞出来的某些产品,不是电路太复杂,就是功能太简单且极易被仿制。究其原因,可能就卡在产品未使用单片机或其它可编程逻辑器件上。

在实际生活中,比如空调的温度控制系统等,为了使其能够周围环境温度在适宜温度之内,必须要有一个系统来完成这个任务。若在实际生活之中,只靠人的感觉是很难判断出温度的确定值的。利用单片机编程来设计智能温度控制器,可以使以上问题得以解决,即使两个温度仅仅相差零点几度,也能轻松的判断出目前温度是否在适宜温度范围。本文主要介绍了智能温度控制器的工作原理及设计,以及它的实际用途。

1.3 智能温度控制器的意义

本系统采用单片机作为整个控制核心。控制系统的模块为:单片机最小系统模块、显示模块、温度设定模块。该系统利用一个数码管来完成显示功能;用温

第一章绪论 5 度传感器来获取外界温度,在数码管上显示此时温度值,从而实现温度测量的过程。在设计应用中,为了知道此时确定的温度值是否处于所设定的理想范围,必须要设计一个系统来完成这个任务。如果在温度测量中,靠自身感觉是几乎无法判断出此时的确切温度的。利用单片机系统来设计温度器,使以上问题得以解决,即使两个时刻的温度相差为零点几度,也可测量出准确温度。系统工作原理本系统采用AT89S51单片机作为核心。控制系统的模块分别为:单片机最小系统模块、显示模块、温度设定模块。本文主要介绍了单片机智能温度控制器设计及工作原理,以及它的实际用途。

6 基于51单片机的智能温度控制器的设计与实现

第二章整体设计7

第二章整体设计

2.1 单片机的选择

AT89S51是一个低功耗,高性能COMS8位单片机,片内含4K Byte ISP(In-system programmable)的可反复擦写1000次的Flash的只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器SP Flash存储单元,AT89S51在众多嵌入式控制应用系统中得到广泛应用。

2.1.1单片机管脚功能说明[2]

VCC:供电电压。

GND:接地。

P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

图2.1 AT89S51的管脚图

P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,

8 基于51单片机的智能温度控制器的设计与实现

P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH 编程和校验时,P1口作为第八位地址接收。

P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。P3口除了作为普通I/O口,还有第二功能:

P3.0 RXD(串行输入口)

P3.1 TXD(串行输出口)

P3.2 /INT0(外部中断0)

P3.3 /INT1(外部中断1)

P3.4 T0(记时器0外部输入)

P3.5 T1(记时器1外部输入)

P3.6 /WR(外部数据存储器写选通)

P3.7 /RD(外部数据存储器读选通)

P3口同时为闪烁编程和编程校验接收一些控制信号。

I/O口作为输入口时有两种工作方式,即所谓的读端口与读引脚。读端口时实际上并不从外部读入数据,而是把端口锁存器的内容读入到内部总线,经过某种运算或变换后再写回到端口锁存器。只有读端口时才真正地把外部的数据读入到内部总线。89C51的P0、P1、P2、P3口作为输入时都是准双向口。除了P1口外P0、P2、P3口都还有其他的功能。

RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平。

第二章整体设计9 ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE 端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时, ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。

PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN 信号将不出现。

EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。在FLASH 编程期间,此引脚也用于施加12V编程电源(VPP)。

XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。

XTAL2:来自反向振荡器的输出。

2.2 模块性能分析

基于单片机的智能温度控制器的设计的主要模块为AT89S51、按键及数码管显示部分.AT89S51在上一部分已经介绍,这一部分主要介绍按键及数码管显示部分.

2.2.1 按键

本模块中的按键由设定键、上调键、下调键、确定键和复位键构成。

设定键用来设定温度上下限,上调下调键用来设置温度上下限的准确数值。

2.2.2数码管

数码管按段数分为七段数码管和八段数码管,八段数码管比七段数码管多一个发光二极管单元(多一个小数点显示);按能显示多少个“8”可分为1位、2位、4位等等数码管;按发光二极管单元连接方式分为共阳极数码管和共阴极数码管。

共阳数码管是指将所有发光二极管的阳极接到一起形成公共阳极(COM)的

10 基于51单片机的智能温度控制器的设计与实现

数码管,共阳数码管在应用时应将公共极COM接到+5V,当某一字段发光二极管的阴极为低电平时,相应字段就点亮,当某一字段的阴极为高电平时,相应字段就不亮。共阴数码管是指将所有发光二极管的阴极接到一起形成公共阴极(COM)的数码管,共阴数码管在应用时应将公共极COM接到地线GND上,当某一字段发光二极管的阳极为高电平时,相应字段就点亮,当某一字段的阳极为低电平时,相应字段就不亮。

译码器的逻辑功能是将每一个输入的二进制代码译成对应的输出高、低电平信号,是编码器的反操作。数码管可以用TTL或CMOS集成电路直接驱动,所以使用译码器将BCD编码译成数码管所需要的驱动信号,以便使数码管用十进制数字显示出BCD编码表示的数值。

图2.2 七段数码管

应根据实际情况决定究竟采用共阳还是共阴方式,其基本原则是:若单片机口线直接驱动数码管各段,最好采用共阳极数码管,因为8051系列单片机口线输出高电平时,输出的电流很小,数码管不会太亮。若数码管通过驱动芯片与单片机相连,就要看驱动芯片对数码管极性的要求了

点亮显示器分为静态和动态显示两种方法。所谓静态显示,就是当显示器显示某一字符时,相应的发光二极管恒定的导通或是截止。例如,其段数码管的a、b、c、d、e、f导通,g截止,则显示0.这对这种显示方式每一位都要有一个8位输出口控制,所占硬件较多,一般用于显示位数较少(很少)的场合。当位数较多时,用静态显示所需的I/O过多,一般采用动态显示方

第二章整体设计11 法。

所谓动态显示,就是逐位地轮流点亮各位显示器(扫描),对于每一位显示器而言,每个一段时间点亮一次。显示器的点亮既与点亮时的导通电流有关,也与点亮时间和间隔时间比例有关。调整电流和时间参数,可是实现亮度较高、较为稳定的显示,同时可减少工作电流中的COM是选通位,对于共阳极数码管,当a、b、c、d、e、f、g、h端接低电平时,COM位高电平,数码管各段全部点亮。例如,想让数码管显示“1”,就必须使数码管的b、c段点亮,其它段熄灭;所以使b、c段为低电平,其它各引脚均为高电平。在设计电路时,可将这几位分别接到单片机的引脚上,还要加上限流电阻,这样就可由程序控制数码管的工作情况了。但是如果用一个端口驱动一个数码管,四位数码管就需要四个空闲端口,而在许多系统中并无四个端口可用。此外,使用四个端口往往使得每一个数字都需要独立驱动(缓冲)电路和排阻,这将大大增加系统的成本。

最常见的解决方案是采用多路复用显示。这是指对于每一个显示只驱动1/4时间。只要在20Hz-50Hz之间循环所有显示,由于人眼存在视觉残留,在这样的显示方式下,数码管看起来时同时点亮的。在这次课程设计中根据实际需要采用了七段数码管共阴极和静态显示方式。

单片机体积小价格低,应用方便,稳定可靠。单片机将很多任务交给了软件编程去实现,大大简化了外围硬件电路,使外围电路的实现简单方便。由于单片机本身不具有软件编译测试的功能,我们需要借助其他软件编译,将编译好的程序“烧”入单片机内。

在实际电路设计中,需要先通过仿真软件测试电路以及编译的程序,检查外围电路设计是否合理,软件编译是否正确,以及软件和硬件电路能否正常配合工作,能否准确的实现所设计的功能。如果测试通过,电路仿真没有问题能完全实现功能的话就可以实际的做板子的焊接工作了。

12 基于51单片机的智能温度控制器的设计与实现

第三章硬件电路设计13

第三章硬件电路设计

3.1 最小系统设计

时钟电路及复位电路是单片机工作的基本电路,单片机加上这两部分

电路就构成了单片机最小系统,即单片机系统就可以工作了。

3.1.1 时钟电路

AT89S51虽然有内部振荡电路,但要形成时钟,必须外部附加电路。AT89S51单片机的时钟产生方法有两种。内部时钟方式和外部时钟方式(如图3-6所示)。

本设计采用内部时钟方式,利用芯片内部的振荡电路,在XTAL1、XTAL2引脚上外接定时元件,内部的振荡电路便产生自激振荡。本设计采用最常用的内部时钟方式,即用外接晶体和电容组成的并联谐振回路。

图3.1 AT89S51时钟产生电路

3.1.2 复位电路

复位电路通常采用上电自动复位和按钮复位两种方式。

最简单的上电自动复位电路中上电自动复位是通过外部复位电路的电容充电来实现的。

除了上电复位外,有时还需要按键手动复位。本设计就是用的按键手动复位。按键手动复位有电平方式和脉冲方式两种。其中电平复位是通过RST端经电阻与电源Vcc接通而实现的。按键手动复位电路见图3-2。时钟频率选用12MHz。

14 基于51单片机的智能温度控制器的设计与实现

图3.2 手动复位电路

3.2数码管显示电路

图3.3 共阴极七段数码管

显示电路使用了七段数码管,它是共阴极的,由高电平点亮。

3.3 按键电路的设计

温度设定按键的输入按钮使用常规开关。

第三章硬件电路设计15

图3.4 温度上下限设定按键

这些常规开关组成了温度上下限设定按键,硬件电路简单,在程序设计上也不复杂。

3.4 DS18B20的简介[4]

3.4.1 DS18B20概述

DS18B20数字温度传感器接线方便,封装成后可应用于多种场合,如管道式,螺纹式,磁铁吸附式,不锈钢封装式,型号多种多样,有LTM8877,LTM8874等等。主要根据应用场合的不同而改变其外观。封装后的DS18B20可用于电缆沟测温,高炉水循环测温,锅炉测温,机房测温,农业大棚测温,洁净室测温,弹药库测温等各种非极限温度场合。耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。

图3.5 DS18B20实物图

3.4.2 DS18B20技术性能描述

①、独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口

16 基于51单片机的智能温度控制器的设计与实现

线即可实现微处理器与DS18B20的双向通讯。

② 、测温范围-55℃~+125℃,固有测温分辨率0.5℃。

③、支持多点组网功能,多个DS18B20可以并联在唯一的三线上,最多只能并联8个,实现多点测温,如果数量过多,会使供电电源电压过低,从而造成信号传输的不稳定。

④、工作电源: 3~5V/DC。

⑤、在使用中不需要任何外围元件。

⑥、测量结果以9~12位数字量方式串行传送。

⑦、不锈钢保护管直径Φ6。

⑧、适用于DN15~25, DN40~DN250各种介质工业管道和狭小空间设备测温。

⑨、标准安装螺纹M10X1, M12X1.5, G1/2”任选。

⑩、 PVC电缆直接出线或德式球型接线盒出线,便于与其它电器设备连接。

图3.6 DS18B20

3.4.3 DS18B20引脚

(1)DQ为数字信号输入/输出端;

(2)GND为电源地;

(3)VDD为外接供电电源输入端(在寄生电源接线方式时接地)。

3.5 智能温度控制器实物图

温度控制器的设计与制作共13页

温度控制器的设计与制作 一、功能要求 设计并制作一个温度控制器,用于自动接通或断开室内的电加热设备,从而使室内温度达到设定温度要求,并能实时显示室内温度。当室内温度大于等于设定温度时,控制器断 ?时,控制器接通电加热设备。 开电加热设备;当室内温度比设定温度小2C 控温范围:0~51C? 控温精度:≤1C? 二、硬件系统设计 1.硬件系统由七部分组成,即单片机及看门狗电路、温度检测电路、控制输出电路、键盘电路、显示电路、设置温度储存电路及电源电路。 (1)单片机及看门狗电路 根据设计所需的单片机的内部资源(程序存储器的容量、数据存储器的容量及I/O口数量),选择AT89C51-24PC较合适。为了防止程序跑飞,导致温度失控,进而引起可怕的后果,本设计加入了硬件看门狗电路IMP813L,如果它的WDI脚不处于浮空状态,在1.6秒内WDI不被触发(即没有检测到上什沿或下降沿),就说明程序已经跑飞,看门狗输出端WDO将输出低电平到手动复位端,使复位输出端RST发出复位信号,使单片机可靠复位,即程序重新开始执行。(注:如果选用AT89S51,由于其内部已具有看门狗电路,就不需外加IMP813L) (2)温度检测电路 温度传感器采用AD590,它实际上是一个与绝对温度成正比的电流源,它的工作电压为4~30V,感测的温度范围为-550C~+1500C,具有良好的线性输出,其输出电流与温度成正比,即1μA/K。因此在00C时的输出电流为273.2μA,在1000C时输出电流为373.2μA。温度传感器将温度的变化转变为电流信号,通过电阻后转变电压信号,经过运算放大器JRC4558运算处理,处理后得到的模拟电压信号传输给A/D转换部分。A/D转换器选用ADC0804,它是用CMOS集成工艺制成的逐次逼近型模数转换芯片,分辨率8位,转换时间100μs,基准电压0~5V,输入模拟电压0~5V。 (3)控制输出电路 控制信号由单片机的P1.4引脚输出,经过光耦TLP521-1隔离后,经三极管C8550直接驱动继电器WJ108-1C-05VDC,如果所接的电加热设备的功率≤2KW,则可利用继电器的常开触点直接控制加热设备,如果加热设备的功率>2KW,可以继电器控制接触器,由接触器直接控制加热设备。 (4)键盘电路 键盘共有四个按键,分别是S1(设置)、S2(+)、S3(-)、S4(储存)。通过键盘来设置室内应达到的温度,键盘采用中断方式控制。 (5)显示电路 显示电路由两位E10501_AR数码管组成,由两片74LS164驱动,实现静态显示,74LS164所需的串行数据和时钟由单片机的P3.0和P3.1提供。对于学过“串行口”知识的班级,实习时,可以采用串行口工作于方式0,即同步移位寄存器的输出方式,通过串行口输出显示数据(实时温度值或设置温度值);对于没学过“串行口”知识的班级,实习时,可以采用模拟串行口的输出方式,实现显示数据的串行输出。 (6)设置温度存储电路 为了防止设定温度在电源断电后丢失,此设计加入了储存电路,储存器选用具有I2C总线功能的AT24C01或FM24C01均可。每次通过键盘设置的室内设定温度都通过储存器储存起来,即使是电源断电,储存器存储的设定温度也不丢失,在电源来电后,单片机自动将设

智能温度控制器

DS18B20智能温度控制器 DALLAS最新单线数字温度传感器DS18B20简介新的“一线器件”体积更小、适用电压更宽、更经济Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。DS18B20、DS1822 “一线总线”数字化温度传感器同DS1820一样,DS18B20也支持“一线总线”接口,测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。DS1822的精度较差为±2°C 。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。而且新一代产品更便宜,体积更小。DS18B20、DS1822 的特性DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C。可选更小的封装方式,更宽的电压适用范围。分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。DS18B20的性能是新一代产品中最好的!性能价格比也非常出色!DS1822与DS18B20软件兼容,是DS18B20的简化版本。省略了存储用户定义报警温度、分辨率参数的EEPROM,精度降低为±2°C,适用于对性能要求不高,成本控制严格的应用,是经济型产品。继“一线总线”的早期产品后,DS1820开辟了温度传感器技术的新概念。DS18B20和DS1822使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。 DS18B20的内部结构 DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如下: DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地)。 光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5+X4+1)。光刻ROM 的作用是使每一个DS18B20都各不相同,这样就可以实现一根总线上挂接多个DS18B20的目的。 DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。 这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的前面5位是符号位,如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625即可得到实际温度。

XMT系列智能数显温控仪使用说明书

XMT-系列智能数显温控仪使用说明书 XMT-7000系列智能数显温控仪使用说明书 操作注意 ·断电后方可清洁仪器。 ·清楚显示器上的污渍请用软布或绵纸。 ·显示器易被划伤,禁止用硬物擦洗过触及。 ·禁止用螺丝刀或圆珠笔等硬物体操作面板按键,否则会损坏或划伤按键。 一、主要技术指标 1.1 输入 热电偶S R B K N E J T 热电阻Pt100 JPt100 Cu50 1.2 基本误差: 输入满量程的±0.5%±1个字 1.3 分辨率:1℃0.1℃ 1.4 采样周期:3次/sec,按需可达到8次/sec 1.5 报警功能:上限,下限,上偏差,下偏差上下限,上下偏差,

范围内及待机状态报警 1.6 报警输出:继电器触点AC250V 3A(阻性负载) 1.7 控制方式:模糊PID控制、位式控制 1.8 控制输出:继电器触点(容量:220VAC3A) SSR驱动电平输出(DC0/5V) 过零触发脉冲:光偶可控硅输出1A 600V 移相触发脉冲:光偶可控硅输出1A 600V 1.9 电源电压: AC85-264V(50/60Hz) 21.6-26.4V AC(额定24V AC) 21.6-26.4V DC(额定24V DC) 1.10 工作环境:温度0-50℃,湿度<85%RH的无腐蚀性场合,功耗<5VA 1.11 面板尺寸:80×160 96×96 72×72 48×96 96×48 48×48 二、产品型号确认 产品代码: X M T ①- 7 ②③④- ⑤⑥~⑦ ①仪表面板尺寸(高×宽mm) S:160×80 E:96×48 F:48×96 A:96×96 G:48×48 D:72×72 空:80×160

温度控制器的设计

目录 第一章课程设计要求及电路说明 (3) 1.1课程设计要求与技术指标 (3) 1.2课程设计电路说明 (4) 第二章课程设计及结果分析 (6) 2.1课程设计思想 (6) 2.2课程设计问题及解决办法 (6) 2.3调试结果分析 (7) 第三章课程设计方案特点及体会 (8) 3.1 课程设计方案特点 (8) 3.2 课程设计心得体会 (9) 参考文献 (9) 附录 (9)

第一章课程设计要求及电路说明 1.1课程设计要求与技术指标 温度控制器的设计 设计要求与技术指标: 1、设计要求 (1)设计一个温度控制器电路; (2)根据性能指标,计算元件参数,选好元件,设计电路并画出电路图; (3)撰写设计报告。 2、技术指标 温度测量范围0—99℃,精度误差为0.1℃;LED数码管直读显示;温度报警指示灯。

1.2课程设计电路说明 1.2.1系统单元电路组成 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。 1.2.2设计电路说明 主控制器:CPU是整个控制部分的核心,由STC89C52芯片连同附加电路构成的单片机最小系统作为数据处理及控制模块. 显示电路:显示电路采用4个共阳LED数码管,用于显示温度计的数值。报警电路:报警电路由蜂鸣器和三极管组成,当测量温度超过设计的温度时,该电路就会发出报警。 温度传感器:主要由DS18B20芯片组成,用于温度的采集。 时钟振荡:时钟振荡电路由晶振和电容组成,为STC89C52芯片提供稳定的时钟频率。

第二章课程设计及结果分析 2.1课程设计 2.1.1设计方案论证与比较 显示电路方案 方案一:采用数码管动态显示 使用一个七段LED数码管,采用动态显示的方法来显示各项指标,此方法价格成本低,而且自己也比较熟悉,实验室也常备有此元件。 方案二:采用LCD液晶显示 采用1602 LCD液晶显示,此方案显示内容相对丰富,且布线较为简单。 综合上述原因,采用方案一,使用数码管作为显示电路。 测温电路方案 方案一:采用模拟温度传感器测温 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。 方案二:采用数字温度传感器 经过查询相关的资料,发现在单片机电路设计中,大多数都是使用传感器,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 综合考虑,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。 2.1.2设计总体方案 根据上述方案比较,结合题目要可以将系统分为主控模块,显示模块,温度采集模块和报警模块,其框图如下:

简易温度控制器制作

电子技术综合训练 设计报告 题目:简易温度控制器制作 姓名:谢富臣 学号:08220404 班级:控制工程2班 学院:电信学院 日期:2010.07.16

摘要 我们本次课程设计的主题是做一个简易温度控制器。具体方法是采用热敏电阻作为温度传感器,将温度模拟量转化为数字量,再利用比较运算放大器与设置温度值进行比较,输出高或低电平至电路控制元件从而对控制对象进行控制。整个电路分为四个部分:测温电路,比较电路,报警电路,控制电路。其中后三者为技术重点。

目录 第一部分:任务要求 (4) 第二部分:概述 (5) 第三部分:技术要求及方案 (6) 第四部分:工作原理 (7) 第五部分:单元电路 (8) 第六部分:参考文献 (10) 第七部分:总结及体会 (11) 第八部分:附录 (12)

一:任务要求 2010 年春季学期

二:概述 设计并制作一个温度监控系统,用温度传感器检测容器内水的温度,以检测到的温度信号控制加热器的开关,将水温控制在一定的范围之内。具体要求如下: 1、当水温小于50℃时,H1、H2两个加热器同时打开,将容器内的水加热,; 2、当水温大于50℃,但小于60℃时,H1加热器打开,H2加热器关闭; 3、当水温大于60℃时,H1、H2两个加热器同时关闭; 4、当水温小于40℃,或者大于70℃时,用红色发光二极管发出报警信号; 5、当水温在40℃~70℃之间时,用绿色发光二极管指示水温正常; 6、电源:220V/50HZ的工频交流电供电。 (注:直流电源部分仅完成设计即可,不需制作,用实验室稳压电源调试) 按照以上技术完成要求设计出电路,绘制电路图,对设计的电路用Multisim或OrCAD/PspiceAD9.2进行必要的仿真,仿真通过后购买元器件,用万用板焊接电路,然后对制作的电路完成调试,撰写设计报告,通过答辩。设计电路时,应考虑方便调试。 三:技术要求及方案

智能型数字显示温度控制器使用说明书

XMT-2000 智能型数字显示温度控制器使用说明书 此产品使用前,请仔细阅读说明书,以便正确使用,并妥善保存,以便随时参考。 操作注意 为防止触电或仪表失效,所有接线工作完成后方能接通电源,严禁触及仪表内部和改动仪表。 断电后方可清洗仪表,清除显示器上污渍请用软布或棉纸。显示器易被划伤,禁止用硬物擦拭或触及。 禁止用螺丝刀或书写笔等硬物体操作面板按键,否则会损坏或划伤按键。 1.产品确认 本产品适用于注塑、挤出、吹瓶、食品、包装、印刷、恒温干澡、金属热处理等设备的温度控制。本产品的PID参数可以自动整定,是一种智能化的仪表,使用十分方便,是指针式电子调节器、模拟式数显温控仪的最佳更新换代产品。本产品符合Q/SQG01-1999智能型数字显示调节仪标准的要求。 请参照下列代码表确认送达产品是否和您选定的型号完全一致。 XMT□-□□□□-□ ①②③④⑤⑥ ①板尺寸(mm)3:时间比例(加热) 5:下限偏差报警 省略:80×160(横式) 4:两位PID作用(继电器输出) 6:上下限偏差报警 A:96×96 5:驱动固态继电器的PID调节⑤输入代码 D:72×72 6:移相触发可控硅PID调节 1:热电偶 E:96×48(竖式) 7:过零触发可控硅PID调节 2:热电阻 F:96×48(横式) 9:电流或电压信号的连续PID调节 W:自由信号 G:48×48 ④报警输出⑥馈电变送输出 ②显示方式 0:无报警 V12:隔离12V电压输出 6:双排4位显示 1:上限绝对值报警 V24:隔离24V电压输出 ③控制类型 2:下限绝对值报警 GI4:隔离4-20mA变送输出 0:位式控制3:上下限绝对值报警 2:三位式控制 4:上限偏差报警 2.安装 2.1 注意事项(5)推紧安装支架,使仪表与盘面结合牢固。 (1)仪表安装于以下环境 (2)大气压力:86~106kPa。2.3 尺寸 环境温度:0~50℃。 相对湿度:45~85%RH。 (3)安装时应注意以下情况 H h 环境温度的急剧变化可能引起的结露。 腐蚀性、易燃气体。 直接震动或冲击主体结构。 B l 水、油、化学品、烟雾或蒸汽污染。 b b’ 过多的灰尘、盐份或金属粉末。 空调直吹。阳光的直射。 热辐射积聚之处。 h’ 2.2 安装过程(1)按照盘面开孔尺寸在盘面上打出用来安装单位:mm 仪表的矩形方孔。型号 H×B h×b×1 h’×b’ (2)多个仪表安装时,左右两孔间的距离应大 XTA 96×96 92×92×70 (92+1)×(92+1) 于25mm;上下两孔间的距离应大于30mm。 XTD 72×72 68×68×70 (68+1)×(68+1) (3)将仪表嵌入盘面开孔内。 XTE 96×48 92×44×70 (92+1)×(44+1) (4)在仪表安装槽内插入安装支架 XTG 48×48 44×44×70 (44+1)×(44+1) 3.接线 3.1接线注意 (1)热电偶输入,应使用对应的补偿导线。 (2)热电阻输入,应使用3根低电阻且长度、规格一致的导线。 (3)输入信号线应远离仪表电源线,动力电源线和负荷线,以避免引入电磁干扰。 3.2接线端子 4.面板布置 ①测量值(PV)显示器(红) ?显示测量值。 ?根据仪表状态显示各类提示符。 ②给定值(SV)显示器(绿) ?显示给定值。 ?根据仪表状态显示各类参数。 ③指示灯 ?控制输出灯(OUT)(绿)工作输出时亮。 ?自整定指示灯(AT)(绿) 工作输出时闪烁。 ?报警输出灯1(ALM1)(红)工作输出时亮。 ?报警输出灯2(ALM2)(红)工作输出时亮。 ④SET功能键 ?参数的调出、参数的修改确认。 ⑤移位键 ?根据需要选择参数位,控制输出的ON/OFF。 ⑥▲、▼数字调整键 ?用于调整 数字,启动/退出自整定。

温度控制器课程设计要点

郑州科技学院 《模拟电子技术》课程设计 题目温度控制器 学生姓名 专业班级 学号 院(系)信息工程学院 指导教师 完成时间 2015年12月31日

郑州科技学院 模拟电子技术课程设计任务书 专业 14级通信工程班级 2班学号姓名 一、设计题目温度控制器 二、设计任务与要求 1、当温度低于设定温度时,两个加热丝同时通电加热,指示灯发光; 2、当水温高于设定温度时,两根加热丝都不通电,指示灯熄灭; 3、根据上述要求选定设计方案,画出系统框图,并写出详细的设计过程; 4、利用Multisim软件画出一套完整的设计电路图,并列出所有的元件清单; 5、安装调试并按规定格式写出课程设计报告书. 三、参考文献 [1]吴友宇.模拟电子技术基础[M]. 清华大学出版社,2009.52~55. [2]孙梅生.电子技术基础课程设计[M]. 高等教育出版社,2005.25~28. [3]徐国华.电子技能实训教程[M]. 北京航空航天大学出版社,2006.13 ~15. [4]陈杰,黄鸿.传感器与检测技术[M].北京:高等教育出版社,2008.22~25. [5]翟玉文等.电子设计与实践[M].北京:北京中国电力出版社,2005.11~13. [6]万嘉若,林康运.电子线路基础[M]. 高等教育出版社,2006.27 ~29. 四、设计时间 2015 年12月21 日至2015 年12 月31 日 指导教师签名: 年月日

本设计是一种结构简单、性能稳定、使用方便、价格低廉、使用寿命长、具有一定的实用性等优点的温度控制电路。本文设计了一种温度控制器电路,该系统采用模拟技术进行温度的采集与控制。主要由电源模块,温度采集模块,继电器模块组成。 现代社会科学技术的发展可以说是突飞猛进,很多传统的东西都被成本更低、功能更多、使用更方便的电子产品所替代,本课程设计是一个以温度传感器采用LM35的环境温度简易测控系统,用于替代传统的低精度、不易读数的温度计。但系统预留了足够的扩展空间,并提供了简单的扩展方式供参考,实际使用中可根据需要改成多路转换,既可以增加湿度等测控对象,也能减少外界因素对系统的干扰。 首先温度传感器把温度信号转换为电流信号,通过放大器变成电压信号,然后送入两个反向输入的运算放大器组成的比较器电路,让电位器来改变温度范围的取值,最后信号送入比较器电路,通过比较来判断控制电路是否需要工作。此方案是采用传统的模拟控制方法,选用模拟电路,用电位器设定给定值,反馈的温度值与给定的温度值比较后,决定是否加热。 关键词:温度传感器比较器继电器

智能温度控制器方案

智能温湿度控制器硬件总体方案 注:(参考大部分电器生产厂家温湿度控制器与干式变压器温度控制器比较,发现两者使用的范围和环境完全不同,一般的温湿度控制器温度测量及控制范围都0oC -50oC之间,而干变式温度控制器温度的测量范围0oC -200oC,而控制温度在100oC以上,控制器的长期工作温度在85oC以上,而在这总情况下一般的湿度传感器已经超出正常工作温度范围,所以在干式变压器中并不适用。这里湿度部分主要是为以后温湿度控制器设计而准备,可以设计电路部分,但保留为以后做准备,这里设计方案主要用于干式变压器温度控制器)。 1、智能温湿度控制器硬件组成 智能温湿度控制器需要采集温度和湿度两个部分,这里我们以各3路来说明,即3路温度采集,3路湿度采集,通过内部分析计算,来显示各路的温度、湿度数值,另外还需要配置一定的输出接口。如RS485、开关量输出(主要用于输出报警、跳闸、风机、故障)等。以组成温湿度监测系统。 1.1硬件组成原理 根据温湿度控制器功能,选择“A/D转换芯片+微处理器(带捕捉功能)”来实现(注:对于现在大多数AD采样功能都是内置的,捕捉功能是在湿度传感器中使用的,一般的湿度传感器都是电容式的,通过555振荡电路将其转换为频率信号,再通过CCP功能检测频率)。如图1-1所示为系统硬件原理图。 图1-1 智能温湿度控制器硬件组成原理图 1.2 硬件模块划分 根据硬件原理图,把硬件划分成模拟采样微处理部分、操作显示、模拟采样、开关量输出、电源、通信等几个部分。为了便于硬件的模块化开发,把各个模块设计为独立的硬件模块,而通过组装各个模块,来组成所需要的硬件系统。 控制器设计成3个印制板来制作,将电源、通信和开关两输出设计在同一块板子上,模拟采样和微处理部分设计在同一块板子上,在有就是将操作和显示部

温控器使用说明书

一周编程电子智能室温控器LOGIC 578001使用指南 引言 感您选择了我们的产品及对我们的信任与支持。本装置是电子式定时恒温器,可设置一星期为周期的运行程序。通过该装置,可对安装环境的温度进行十分精确的调节控制,满足用户对创造一个舒适生活环境的要求。 符合标准:符合欧盟法令: EN 60730-1 标准及其修订容欧盟B.T.73/23/EEC号法令EN 60730-2-7 标准欧盟E.M.C.89/336/EEC号法令及93/68/EEC修改法令 EN 60730-2-9 标准 产品规格: 电源:二节LR6型1.5V碱性电池 温度调节围:10至35℃ 显示屏显示之环境温度:0至40℃(分辩率0.1℃) 温度修正频率:每分钟一次 微分:0.2至0.4K 探针传感器:NTC3% 保护等级:IP20 绝缘等级: 热梯度:1K/15分 输出:转换继电器

触点容量:8(2.5)A250V~ 作用类型:1BU 绝缘条件:正常环境 最大工作温度:50℃ 储存温度:0-60℃ 防冻温度:6℃恒定 运行程序:以一星期为周期设置 软件等级:A 液晶显示屏 夏季/冬季(采暖/空调)切换 程序设置中的最小增减允许时间:1小时 安装:壁式安装 安装及连接: 安全预防措施 在进行定时恒温器的连接之前,请确认受其控制的设备系统(采暖锅炉、泵和空调系统等)电源已断开,并需检查这些设备的使用电压是否与定时恒温器底座上表明的电压相符(最大250V~).(图4) 安装位置 定时恒温器须安装在远离热源(暖气装置、、厨房)和门窗之处,安装高度离地面约1.5米。(图5) 安装

见图6-7-8 电气连接 将受定时恒温器控制的设备系统电线与定时恒温器的1号及2号接线柱连接见接线图10所示U=受定时恒温器控制的设备 1=共用接线柱 2=常开接线柱 3=常闭接线柱 重要事项: 请务必严格遵照相关现行法律的规定及安全规安装定时恒温器。 电池更换: 当在显示屏上闪烁显示“”标志时,定时恒温器还可正常工作约一个月左右,然后将会停止工作并固定显示“”。 更换电池时,请打开恒温器的前板按照前板上的说明进行操作,电池寿命为一年。(图9) 提示:建议在采暖设备开启时更换电池。(一年更换一次)完成电池更换以后,装回电池座的盖子,按RESET键,按照“时钟设置”的说明重新设定时间。

模电课设—温度控制系统设计

目录 1.原理电路的设计 (11) 1.1总体方案设计 (11) 1.1.1简单原理叙述 (11) 1.1.2设计方案选择 (11) 1.2单元电路的设计 (33) 1.2.1温度信号的采集与转化单元——温度传感器 (33) 1.2.2电压信号的处理单元——运算放大器 (44) 1.2.3电压表征温度单元 (55) 1.2.4电压控制单元——迟滞比较器 (66) 1.2.5驱动单元——继电器 (88) 1.2.6 制冷部分——Tec半导体制冷片 (99) 1.3完整电路图 (1010) 2.仿真结果分析 (1111) 3 实物展示 (1313) 3.1 实物焊接效果图 (1313) 3.2 实物性能测试数据 (1414) 3.2.1制冷测试 (1414) 3.2.2制热测试 (1818) 3.3.3性能测试数据分析 (2020) 4总结、收获与体会 (2121) 附录一元件清单 (2222) 附录二参考文献. (2323)

摘要 本课程设计以温度传感器LM35、运算放大器UA741、NE5532P及电压比较器LM339 N为电路系统的主要组成元件,扩展适当的接口电路,制作一个温度控制系统,通过室温的变化和改变设定的温度,来改变电压传感器上两个输入端电压的大小,通过三极管开关电路控制继电器的通断,来控制Tec制冷片的工作。这样循环往复执行这样一个周期性的动作,从而把温度控制在一定范围内。学会查询文献资料,撰写论文的方法,并提交课程设计报告和实验成品。 关键词:温度;测量;控制。

Abstract This course is designed to a temperature sensor LM35, an operational amplifier UA741,NE5532P and a voltage comparator LM339N circuit system of the main components. Extending the appropriate interface circuit, make a temperature control system. By changing the temperature changes and set the temperature to change the size of the two input ends of the voltage on the voltage sensor, an audion tube switch circuit to control the on-off relay to control Tec cooling piece work. This cycle of performing such a periodic motion, thus controlling the temperature in a certain range. Learn to query the literature, writing papers, and submitted to the curriculum design report and experimental products. Key words: temperature ; measure ;control

温度控制系统毕业设计

摘要 在日常生活及工农业生产中,对温度的检测及控制时常显得极其重要。因此,对数字显示温度计的设计有着实际意义和广泛的应用。本文介绍一种利用单片机实现对温度只能控制及显示方案。本毕业设计主要研究的是对高精度的数字温度计的设计,继而实现对对象的测温。测温系数主要包括供电电源,数字温度传感器的数据采集电路,LED显示电路,蜂鸣报警电路,继电器控制,按键电路,单片机主板电路。高精度数字温度计的测温过程,由数字温度传感器采集所测对象的温度,并将温度传输到单片机,最终由液晶显示器显示温度值。该数字温度计测温范围在-55℃~+125℃,精度误差在±0.5℃以内,然后通过LED数码管直接显示出温度值。数字温度计完全可代替传统的水银温度计,可以在家庭以及工业中都可以应用,实用价值很高。 关键词:单片机:ds18b20:LED显示:数字温度. Abstract In our daily life and industrial and agricultural production, the detection and control of the temperature, the digital thermometer has practical significance and a wide range of applications .This article describes a programmer which use a microcontroller to achieve and display the right temperature by intelligent control .This programmer mainly consists by temperature control sensors, MCU, LED display modules circuit. The main aim of this thesis is to design high-precision digital thermometer and then realize the object temperature measurement. Temperature measurement system includes power supply, data acquisition circuit, buzzer alarm circuit, keypad circuit, board with a microcontroller circuit is the key to the whole system. The temperature process of high-precision digital thermometer, from collecting the temperature of the object by the digital temperature sensor and the temperature transmit ted to the microcontroller, and ultimately display temperature by the LED. The digital thermometer requires the high degree is positive 125and the low degree is negative 55, the error is less than 0.5, LED can read the number. This digital thermometer could

温度控制器的设计与制作

6.4实施—制作过程 6.4.1硬件设计 温度测量采用最新的单线数字温度传感器DS18B20,DS18B20是美国DALLAS 半导体公司最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,它能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。可以分别在93.75ms 和750ms 内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。因而,使用DS18B20可使系统结构更趋简单,可靠性更高。 降温控制系统采用低压直流电风扇。当温度高于设定最高限温度时,启动风扇降温,当温度降到指定最高限温度以下后,风扇自动停止运转。 温控系统的温度显示和温度的设定直接采用综合实训板上的显示和键盘。当环境温度低于设定的最低限温度值时,也采用综合实训板上的蜂鸣器进行报警。用0#、1#键作为温度最高限、最低限的设定功能键;2#、3#键作为温度值设定的增加和减小功能键。 0#键:作为最高限温度的设定功能键。按一次进入最高限温度设定状态,选择最高限温度值后,再按一次确认设定完成。 1#键:作为最低限温度的设定功能键。按一次进入最低限温度设定状态,选择最低限温度值后,再按一次确认设定完成。 2#键:+1功能键,每按一次将温度值加1,范围为1~99℃。 3#键:-1功能键,每按一次将温度值减1,范围为99~1℃。 6.4.2软件设计 (1)温控系统采用模块化程序结构,可以分成以下程序模块: ①系统初始化程序:首先完成变量的设定、中断入口的设定、堆栈、输入输出口及外部部件的初始化工作。 ②主程序MAIN :完成键盘扫描、温度值采集及转换、温度值的显示。当温度值高于设定最高限时,驱动风扇工作;当温度值低于设定最低限时,驱动蜂鸣器报警。 ③键盘扫描程序KEYSCAN :完成键盘的扫描并根据确定的键值执行相应的功能,主要完成最高温度、最低温度的设定。 ④温度采集程序GET_TEMPER :完成DS18B20的初始化并发出温度转换命令,经过指定时间后读取转换的温度值。 根据DS18B20的通信协议,主机控制DS18B20完成温度转换必须经过3个步骤:每一次读写之前都要对DS18B20进行复位,复位成功后发送一条ROM 指令,最后发送RAM 指令,这样才能对DS18B20进行预定的操作。复位要求CPU 将数据线下拉500μs ,然后释放。DS18B20收到信号后等待16~60μs EA/VP 31X119X218R ESET 9R D 17WR 16INT012INT113T014T115P101P112P123P134P145P156P167P178P0039P0138P0237P0336P0435P0534P0633P0732P2021P2122P2223P2324P2425P2526P2627P2728PSEN 29ALE/P 30TXD 11R XD 10U18051AD012PA021AD113PA122AD214PA223AD315PA3 24AD416PA425AD517PA5 26AD618PA627AD719PA7 28PB 029C E 8PB 1 30R D 9PB 231WR 10PB 3 32IO/M 7PB 433ALE 11PB 534PB 635PB 736TMR OUT 6PC 037PC 138TMR IN 3PC 2 39PC 31PC 42R ESET 4PC 55U28155B ELL 1 2 3A 74ALS02+5V 12M 20p 20p +5V G N D 1 D Q 2 V c c 3DS18B 20 +5V 4.7 k +5V 8550D24004+5V A - ++5V a b c d e f g h p LED1LED2+5V 012345PC 0PC 1PC 2PA0PA1 PB 0PB 7图2.2.1温控系统硬件接线原理图

温控器的分类

温控器,温控控制器(英文Thermostat)是指控制温度的智能或非智能开关,所以在有些场合又被称为温控开关,一般用于各类家用电器,机电设备等的温度控制场合,并能按照用户设定好的数值进行温度调节,以达到合适的温度。对家用电器,温控器除了调节温度的作用,同时也具有节省能源的作用,这十分符合现代提倡绿色家电的理念。 温控器的分类五花八门,对于非专业用户来说,选购温控器是一件非常困难的事情,本文从以下几个方面来对温控器进行大概的分类,希望同行斧正。 以温控器制造原理来分,温控器分为: 一.突跳式温控器:各种突跳式温控器的型号统称KSD,常见的如KSD301,KSD302等,该温控器是双金属片温控器的新型产品,主要作为各种电热产品具过热保护时,通常与热熔断器串接使用,突跳式温控器作为一级保护。热熔断器则在突跳式温控器失娄或失效导致电热元件超温时,作为二级保护自,有效地防止烧坏电热元件以及由此而引起的火灾事故。 二,液涨式温控器:是当被控制对象的温度发生变化时使温控器感温部内的物质(一般是液体)产生相应的热胀冷缩的物理现象(体积变化),与感温部连通一起的膜盒产生膨胀或收缩。以杠杆原理,带动开关通断动作,达到恒温目的液胀式温控器具有控温准确,稳定可靠,开停温差小,控制温控调节范围大,过载电流大等性能特点。液涨式温控器主要用于家电行业,电热设备,制冷行业等温度控制场合用。 三,压力式温控器,改温控器通过密闭的内充感温工质的温包和毛细管,把被控温度的变化转变为空间压力或容积的变化,达到温度设定值时,通过弹性元件和快速瞬动机构,自动关闭触头,以达到自动控制温度的目的。它由感温部、温度设定主体部、执行开闭的微动开关或自动风门等三部分组成。压力式温控器适用于制冷器具(如电冰箱冰柜等)和制热器等场合。 以上是市场上最为常见的温度控制器种类,当然按用途分类也可以分为地暖温控器,空调温控器,电机温控器等等,但温控器的用途非常广难以一概而论,而且按用途分类并不精确,经常有同一款温控器有不同名字的现象。 以上几种是常见的机械式温控器。 四,电子式温控器,电子式温度控制器(电阻式)是采用电阻感温的方法来测量的,一般采用白金丝、铜丝、钨丝以及热敏电阻等作为测温电阻,这些电阻各有其优确点。一般家用空调大都使用热敏电阻式。

RKC温控器CD-901中文说明书模板

o o o RKC温控器- CD-901 o RKC温控器系列- 精品推荐 o RKC温控器- CB-900 RKC温控器- CD-701 RKC温控器- CH-102 REX-C400 o RKC温控器- CD-901 - 详细信息

o RKC温控器CD-901 主要结构及功能:·自主校正功能 ·加热/制冷控制 ·外型、接线与RKC一致 ·大屏LED显示 ·温度报警 ·操作、性能与RKC相同 o RKC温控器使用警告 ·接线警告: - 如果仪器失效或发生错误,可引起系统故障,安装外部保护电路以防止类事故; - 为防止仪器损坏或失效,选用适当的保险丝保护电源线及输入/输出线以防强电源冲击。 ·电源供给: - 为防止仪器损坏或失效,用额定电夺供电; - 为防止仪器损坏或失效,所有接线工作完成后方可供电。 ·禁止在易燃气体附近使用: - 为防火、防爆或仪器损坏,禁止在有易燃、易爆气体,排方蒸气的场所中使用。 ·严禁触及仪器内部: -- 为防止触电或燃烧,严禁触及仪器内部。只有本厂服务工程师可以检查内部线路或更换部件,仪器内部有高电压、高温部件,非常危险! ·严禁改动仪器: - 为防止事故或仪器失效,不禁改动仪器。 ·保养: - 为防止触电,仪器报废或失效,只有本厂服务工程师可以更换部件; - 为保证仪器持续且安全使用,应定期保养,仪器内某些部件可能随使用时间的延长而损坏。 RKC温控器操作注意 ·断电后方可清洁仪器; ·清除显示器上的污渍请用软布或棉纸; ·显示器易被划伤,禁止使用硬物体操作面板按键,否则会损坏或划伤按键。 RKC温控器概述 CH、CD系列智能温度控制器是采用专用微处理的多功能调节仪表,它采用开关电源和表面贴装技术(SMT),因而仪表精致小巧,性能可靠。特有的自诊断功能,自整定功能和智能控制功能,使操作者可能通过简单的操作而获得良好的效果。 主要特点: 热电偶、热电阻、模拟量等多种信号自由输入,量程自由设置; 软件调零满度,冷端单独测温,放大器自稳零,显示精度优于0.5%FS; 模糊理论结合传统PID方法,控制快速平稳,先进的整定方案; 输出可选:断电器触点、逻辑电平、可控硅单相或三相过零或移相触发肪冲或移发脉冲、模拟量。另附二路可定义的报警点输出。RKC温控器主要技术指标 ·输入:各种热电偶(TC)、热电阻(RTD)标准电流电压信号(见输入类型表); ·基本误差:输入满量程的±0.5%±1个字; ·分辨率:1℃、0.1℃; ·采样周期:3次/sec ·报警功能:上限,下限,上偏差,下偏差,区间内,区间外; ·报警输出:继电器触点AC250V 3A(阻性);

简易温度控制器的设计(DOC)

" 简易温度控制器的设计 摘要 简易温度控制器是采用热敏电阻作为温度传感器,由于温度的变化而引起电压的变化,再利用比较运算放大器与设置的温度值对应的电压进行比较,输出高或低电平从而对控制对象即加热器进行控制。其电路可分为三大部分:测温电路,比较/显示电路,控制电路。 关键词:测温,显示,加热 ! }

目录 一、设计任务和要求 0 设计内容 0 设计要求 0 二、系统设计 0 系统要求 0 系统工作原理 0 方案设计 0 三.单元电路设计 (1) 温度检测电路 (1) 电路结构及工作原理 (1) 电路仿真 (2) 、元器件的选择及参数的确定 (3) 比较/显示电路 (3) 电路结构及工作原理 (3) 电路仿真 (4) 元件的选择及参数的确定 (5) 、温度控制单元电路 (5) 电路结构及工作原理 (5) 温度控制单元仿真电路 (6) 电源部分 (7) 四.系统仿真 (9) 结论 (9) 致谢 (9) 参考文献 (9)

一、设计任务和要求 设计内容 采用热敏电阻作为温度传感器,由于温度变化而引起电压的变化,再利用比较运算放大器与设置的温度值对应的电压进行比较,从而通过输出电平对加热器进行控制。 设计要求 首先通过电源变压器把220V的交流电变成所需要的5V电压;当水温小于40℃时,H1、H2两个加热器同时打开,将容器内的水加热;当水温大于50℃,但小于70℃时,H1加热器打开,H2加热器关闭;当水温大于50℃时,H1、H2两个加热器同时关闭;当水温小于30℃,或者大于80℃时,红色发光二极管报警;当水温在30℃~80℃之间时,用绿色发光二极管指示水温正常[2]。 二、系统设计 系统要求 系统主要要求将温度模拟量转化为数字量,再将其转化为控制信号,从而对显示电路和控制电路进行控制,从而自动的调节水温, 系统工作原理 通过对水温进行测量,将所测量的温度值与给定值进行比较,利用比较后的输出信号至加热部分,让加热部分调控水温,从而实现对水温控制的目的。同时也反应到显示部分,让其正确的表示温度的状态。温度值的变化引起电阻值的变化,从而最终引起测温电路输出的电压值的变化,经过后边比较电路进行比较,从而控制显示电路和加热电路。 方案设计 为了使信号输出误差很小,选用桥式测压电路,这样可以得出较为准确的与温度相对应的电压值,关于比较部分可以选用比较器LM339构成窗口比较器,再利用滑动变阻

智能温度控制器程序

/**************************************************************************/ /*** 名称:智能温度控制器***/ /*** 功能:读取当前DS18B20温度,由五个八段数码管显示出来。***/ /*** 描述:选择DS18B20的最高精度——12位精度转换,增量为0.0625.使测温***/ /*** 温度有较高的精度, 五个数码管能实现00.000--99.999范内较高精度***/ /*** 的数值显示,可应用于对温度控制有较高要求的场合。***/ /*** 连线:DS18B20的2脚与单片机的P1.0口连接***/ /***************************************************************************/ #include #define uchar unsigned char uchar xdata wei _at_ 0x0ff20; //数码管的位选 uchar xdata duan _at_ 0x0ff21; //8255的PB口,数码管的段选 uchar xdata ctrl _at_ 0x0ff23; //写8255控制字 sbit M=P3^0;//接直流电机 sbit Y=P3^1;//接加热电器(黄色LED) sbit R=P3^2;//接红色故障灯(红色LED) sbit G=P3^3;//接温度正常指示灯(绿色LED) sbit DQ =P1^0;//DS18B20数据线引脚通信接口 uchar code scan[5] = {0xdf,0xef,0xf7,0xfb,0xfd,};//位扫描数组 //数码管的显示段码表 uchar code table[20] ={ 0xc0,/*0*/ 0xf9,/*1*/ 0xa4,/*2*/ 0xb0,/*3*/ 0x99,/*4*/ 0x92,/*5*/ 0x82,/*6*/ 0xf8,/*7*/ 0x80,/*8*/ 0x90,/*9*/ 0x40,0x79,0x24,0x30,0x19,0x12,0x02,0x78,0x00,0x10,//带小数点的0-9 }; uchar dispbuf[5];//数据显示缓冲区2位整数+3位小数 uchar temper[2];//存放温度的数组 float c,d; //中间量 /*****************************延时函数**************************/ void delay (unsigned int us) { while(us--) ; } /*****************************读写时序控制函数**************************/ void reset(void) { uchar x=0;

相关文档
相关文档 最新文档