文档库 最新最全的文档下载
当前位置:文档库 › BT33触发电路

BT33触发电路

BT33触发电路
BT33触发电路

BT33触发电路

电路图

电路分析

如图为单结晶体管触发电路,电路较简单,温度性能比较好,有一定的抗干扰能力,脉冲前沿陡,输

出功率较小,脉冲宽度较窄,只能承受调节RP无

法加入其它信号,移相范围≤180°,一般为150°

此电路可以用在单相可控硅整流电路要求不高的

场合,能触发50A以下的晶闸管。

交流电压经桥式整流和稳压管削波而得到梯形电

压。

脉冲电压形成时梯形同步电压经RP,R5对C充电,C两端电压上升到单结晶体管峰点电压Up时,单结晶体管由截止变为导通电容C通过e---b,R3放电,放电电流在电阻R3上产生一组尖顶脉冲电压,由R3输出一组触发脉冲,其中第一个脉冲使晶闸管触发导通,后面的脉冲对晶闸管工作没有影响,随着C的放电,当电器两端电压下降至单结晶体管谷点电压Uv时,单结晶体管重新截止,C重新充电,重复上述过程,R8上又输出一组峰顶脉冲电压,这个过程重复进行.

当梯形电压过零点时,电容C两端电压也为零,因此电容每一次连续充放电的起点,就是电源电压过零点,这样就保证输出电压的频率和电源频率的同步.

移相是通过改变RP的大小实现的,改变RP的大小可以改变C充电的速度,因此就改变了第一个脉冲

出现时间,从而达到移相的目的.

电路的元件选择要注意以下几点

RP一般取10K~几兆欧姆,RP过大单结晶体管达不到峰点电压,过小单结晶体管电流大于谷点电流不

能截止,因此RP过大或过小时电路不振荡无脉冲

电压输出

R2是温度补偿电阻一般取200~600欧姆.

R3是电路的输出部分,它的大小影响输出脉冲电压的幅度与宽度.一般取50~100欧姆.

C的大小影响振荡频率和输出脉冲宽度,一般取

0.047~0.5uF.

安装与调试

安装同前的要求

调试 :

用示波器观察输出波形(1~0)的电压波动。

观察稳压管(2~0)两端电压波形,为梯形波。

观察C两端(3~0)的电压为锯齿波。

观察R3两端(4~0)的输出电压波形为尖顶波形。故障检修

输出脉冲电压波形说明整流部分出故障

稳压两端电压波形与整流部分输出波形一样,稳压管击穿。

C两端电压波形不是锯齿波,则应检查C,R3,BT 是否损坏。

注意事项

焊接前要对电路进行仔细的检查,要特别注意稳压管应反向连接。

使用示波器观察波形要注意仪器仪表的使用。

要注意用电安全。

简易彩灯控制器电路

第一章.系统的方案的设计 1.1课程设计的要求 1. 要求电路能够控制8个以上的彩灯。 2. 要求彩灯组成四种以上的花形,每种花形连续循环两次,各种花形轮流显示。 1.2 课程设计的目的 1.阅读相关科技文献,本次课程设计需要对电子线路的设计与分析有一定的了解,所以对学生查阅一些科技文献能力提出了要求。 2.学习使用protel软件,本设计中需要画电路逻辑原理图,接线图,器件的引脚与功能图与功能表,真值表等的绘制,需要使用绘图软件。 3.要求会总节设计报告,终结报告时我们的一项基本能力,对所用原件及原理图进行解释,便于查找错误,也便于他人的阅读和了解。培养了我们的综合分析,解决问题的能力。 4.学会了解一些器件的参数及功能,对各种芯片的功能有所里了解并能够简单的应用。 5.培养电子设计的兴趣,有助于我们进一步了解数电课程。 1.3设计思路 设计电路系统可以由四部分组成,分别是:1.脉冲发生器,由555定时器,电阻及电容构成;2.分频电路,由四位二进制计数器74LVC161组成,为D触发器提供时钟信号;3.状态机电路,由双D触发器组成;4)移位显示器,由双向移位寄存器74HC194和发光二极管组成,实现花型显示。 1.4 设计框图 图1-4

把四花型彩光灯设计分为几个独立的功能模块进行设计,每个模块完成特定的功能,再它们有机的组织起来构成一个系统完成彩灯控制器的设计。系统可由四个模块组成。它们分别为:时钟振荡电路,555定时器构成多谐振荡器;分频电路,由四位二进制计数器 74LS161组成,为D 触发器提供时钟;状态机电路,由双 D 触发器组成;移位显示电路,由双向移位寄存器 74194 和发光二极管组成,实现花型显示。 电路系统由四部分组成: 1)时钟振荡电路由555定时器,电阻及电容构成时钟振荡电路,为系统提供时钟; 2)分频电路由四位二进制计数器74LVC161组成,为D触发器提供时钟信号,为状态机提供时钟; 3)状态机电路由双D触发器74LS74组成; 4)移位显示器由双向移位寄存器74HC194组成。 1.5 工作原理分析 由555定时器构成的时钟振荡电路产生固定频率的脉冲,一方面作用于由74161组成的分频电路,一方面作用于由74F194构成的移位输出电路,为他们提供时钟信号。由于74161是16分频计数器,故每十六个脉冲74LS161进位一次,致使触发器U1A翻转一次,而触发器U2A的3脚连接的是触发器U1A的5脚,实现了U1A的16分频和U2A的32分频。所以平均U1A翻转两次而U2A翻转一次。集成移位寄存器74194由个RS触发器及他们的输入控制电路组成,其中S1和S0是两个控制输入端。双D触发器的输出端改变S0,S1的值,实现左右移动控制。可组成U1A左移,U2A右移;U1A右移,U2A右移;U1A左移,U2A左移;U1A右移,U2A左移四种花型。每十六个脉冲每种花型恰好循环两次,而此时D触发器翻转,转换为下一种花型。 1.6 设计方案 用移位寄存器来控制彩灯的左右移动,用触发器和计数器组成的周期性触发电路,而此电路中的CP脉冲用NE555定时器通过外接电路实现。此种电路的优点就是CP脉冲的频率稳定,彩灯花样变换的效果好,而且实现了自动控制,于预期控制。

基本门电路实验报告处理

43121556423156实验三:基本门电路及触发器 实 验 室: 实验台号: 日 期: 2016.10.7 专业班级: 姓 名: 学 号: 一、 实验目的 1.了解TTL 门电路的原理,性能好使用方法,验证基本门电路逻辑功能。 2.掌握门电路的设计方法。 3.验证J-K 触发器的逻辑功能。 4.掌握触发器转换的设计方法。 二、实验内容 (一)验证以下门电路的逻辑关系 1. 用与非门(00)实现与门逻辑关系:F=AB 2. 异或门(86): (二):门电路的设计(二选一) 1.用74LS00和74LS86 设计半加器. 2.用TTL 与非门设计一个三人表决电路。 A B C 三个裁判,当表决某个提案时,多数人同意提案为通过。 (1为同意,0为不同意) 要求:用74LS00和 74LS10芯片。 (三)验证JK 触发器的逻辑关系 1.J-K 触发器置位端、复位端及功能测试。 图3-1 JK 触发器(74LS112)和D 触发器(74LS74) 2、设计J-K 触发器转化成D 触发器的电路 利用与非门和J-K 触发器设计并测试逻辑功能。 B A B A B A F ⊕=+=n n n n n n n B A B A B A S ⊕=+=' n n n B A C ='

A B F 三、实验原理图 图3-2与门电路 图3-3 异或门电路 图3-4半加器 四、实验结果及数据处理 1. 直接在实验原理图上标记芯片的引脚。 2. 写出实验结果。 (1)与门、异或门实验结果表(用数字万用表测量高低电平1、0的电压值。) (2)半加器实验结果 (3) 表决电路结果 =1A B F

双向可控硅及其触发电路

双向可控硅及其触发电路 双向可控硅是一种功率半导体器件,也称双向晶闸管,在单片机控制系统中,可作为功率驱动器件,由于双向可控硅没有反向耐压问题,控制电路简单,因此特别适合做交流无触点开关使用。双向可控硅接通的一般都是一些功率较大的用电器,且连接在强电网络中,其触发电路的抗干扰问题很重要,通常都是通过光电耦合器将单片机控制系统中的触发信号加载到可控硅的控制极。为减小驱动功率和可控硅触发时产生的干扰,交流电路双向可控硅的触发常采用过零触发电路。(过零触发是指在电压为零或零附近的瞬间接通,由于采用过零触发,因此需要正弦交流电过零检测电路) 双向可控硅分为三象限、四象限可控硅,四象限可控硅其导通条件如下图: 总的来说导通的条件就是:G极与T1之间存在一个足够的电压时并能够提供足够的导通电流就可以使可控硅导通,这个电压可以是正、负,和T1、T2之间的电流方向也没有关系。因为双向可控硅可以双向导通,所以没有正极负极,但是有T1、T2之分 再看看BT134-600E的简介:(飞利浦公司的,双向四象限可控硅,最大电流4A)

推荐电路: 为了提高效率,使触发脉冲与交流电压同步,要求每隔半个交流电的周期输出一个触发脉冲,且触发脉冲电压应大于4V ,脉冲宽度应大于20us.图中BT 为变压器,TPL521 - 2 为光电耦合器,起隔离作用。当正弦交流电压接近零时,光电耦合器的两个发光二极管截止,三极管T1基极的偏置电阻电位使之导通,产生负脉冲信号,T1的输出端接到单片机80C51 的外部中断0 的输入引脚,以引起中断。在中断服务子程序中使用定时器累计移相时间,然后发出双向可控硅的同步触发信号。过零检测电路A、B 两点电压输出波形如图2 所示。

基本门电路及触发器 电子版实验报告

J CP K S D R D Q Q S D R D D CP Q Q 43121556423156实验三:基本门电路及触发器 实 验 室: 实验台号: 日 期: 专业班级: 姓 名: 学 号: 一、 实验目的 二、实验内容 (一)验证以下门电路的逻辑关系 1. 用与非门(00)实现与门逻辑关系:F=AB 2. 异或门(86): (二):门电路的设计(二选一) 1.用74LS00和74LS86 设计半加器. 2.用TTL 与非门设计一个三人表决电路。 A B C 三个裁判,当表决某个提案时,多数人同意提案为通过。 (1为同意,0为不同意) 要求:用74LS00和 74LS10芯片。 (三)验证JK 触发器的逻辑关系 1.J-K 触发器置位端、复位端及功能测试。 图3-1 JK 触发器(74LS112)和D 触发器(74LS74) 2、设计J-K 触发器转化成D 触发器的电路 利用与非门和J-K 触发器设计并测试逻辑功能。 B A B A B A F ⊕=+=n n n n n n n B A B A B A S ⊕=+=' n n n B A C ='

&A B &F 三、实验原理图 图3-2与门电路 图3-3异或门电路 图3-4半加器 四、实验结果及数据处理 1. 直接在实验原理图上标记芯片的引脚。 2. 写出实验结果。 (1)与门、异或门实验结果表(用数字万用表测量高低电平1、0的电压值。) 输入 与门 异或门 A B F U o (V ) F 0 0 0 1 1 0 1 1 (2)半加器实验结果 (3) 表决电路结果 A n B n n S ' n C ' 0 0 0 1 1 0 1 1 A B C F 0 0 0 0 0 1 0 1 0 0 1 1 =1A B F

触发电路

触发电路 相控触发电路是将控制信号转变为在触发滞后角触发可控整流器、交流调压器、直接降频变频器或有源逆变器中晶闸管的门极驱动脉冲的电路。 大、中功率的变流器广泛应用的是晶体管触发电路,其中以同步信号为锯齿波的触发电路应用最多。 晶闸管门极对触发电路的要求: 1)、触发信号要有一定的功率和幅值; 2)、触发信号要有一定的宽度; 3)、触发信号要有一定的陡度; 4)、触发信号要有一定的移相范围并与主电路同步。 1 .同步信号为锯齿波的触发电路 输出可为双窄脉冲(适用于有两个晶闸管同时导通的电路),也可为单窄脉冲。三个基本环节:脉冲的形成与放大、锯齿波的形成和脉冲移相、同步环节。此外,有强触发和双窄脉冲形成环节. 图 1 同步信号为锯齿波的触发电路

1) 脉冲形成环节 V4、V5 —脉冲形成 V7、V8 —脉冲放大 控制电压u co加在V4基极上 脉冲前沿由V4导通时刻确定,脉冲宽度与反向充电回路时间常数R11C3有关。电路的触发脉冲由脉冲变压器TP二次侧输出,其一次绕组接在V8集电极电路中。 2)锯齿波的形成和脉冲移相环节 锯齿波电压形成的方案较多,如采用自举式电路、恒流源电路等;本电路采用恒流源电路。 恒流源电路方案,由V1、V2、V3和C2等元件组成 V1、VS、RP2和R3为一恒流源电路 3)同步环节 同步——要求触发脉冲的频率与主电路电源的频率相同且相位关系确定。 锯齿波是由开关V2管来控制的。 V2开关的频率就是锯齿波的频率——由同步变压器所接的交流电压决定。 V2由导通变截止期间产生锯齿波——锯齿波起点基本就是同步电压由正变负的过零点。 V2截止状态持续的时间就是锯齿波的宽度——取决于充电时间常数R1C1。 4) 双窄脉冲形成环节 内双脉冲电路 V5、V6构成“或”门 当V5、V6都导通时,V7、V8都截止,没有脉冲输出。 只要V5、V6有一个截止,都会使V7、V8导通,有脉冲输出。 第一个脉冲由本相触发单元的u co对应的控制角α产生。 隔60?的第二个脉冲是由滞后60?相位的后一相触发单元产生(通过V6)。2.集成触发器 可靠性高,技术性能好,体积小,功耗低,调试方便。 晶闸管触发电路的集成化已逐渐普及,已逐步取代分立式电路。 KJ004与分立元件的锯齿波移相触发电路相似,分为同步、锯齿波形成、移

简单时序电路

深圳大学实验报告 课程名称:数字电路 实验项目名称:简单时序电路 学院:光电工程学院 专业:光电信息工程 指导教师:许改霞 报告人:陈锦旺学号:2009170013班级:光信一班实验时间: 实验报告提交时间: 教务处制

一、实验目的与要求: 掌握简单时序电路的分析、设计、测试方法。 二、实验仪器: 1、双JK触发器74LS73 2片 2、双D触发器74LS74 2片 3、四2输入与非门74LS00 1片 4、示波器 四、实验内容与步骤: (一) 实验内容 1 双D触发器74LS74构成的二进制计数器(分频器) (1)按下图接线,CLR接逻辑开关输出,LED接逻辑状态指示。 图8.1 D触发器74LS74构成的二进制计数器 (2)使CLR=0,将Q0、Q1、Q2、Q3复位。 (3)由CLK端输入单脉冲,测试并记录Q0、Q1、Q2、Q3的状态。 (4)由CLK端输入连续脉冲,观察Q0、Q1、Q2、Q3的波形。 2、用2片74LS73构成一个二进制计数器,重做内容1的实验。 3、异步十进制计数器 (1)按图8.2构成一个十进制计数器,CLR接逻辑开关输出,LED接逻辑状态指示。(2)将Q0、Q1、Q2、Q3复位。 (3)由时钟端CLK输入单次脉冲,测试并记录Q0、Q1、Q2、Q3的状态。 (4)由时钟端CLK输入连续脉冲,观察Q0、Q1、Q2、Q3的波形。 图8.2异步十进制计数器

4、自循环计数器 (1)用双D触发器74LS74构成一个四位自循环计数器。方法是第一级的Q端接第二级的D端,依次类推,最后第四级的Q端接第一级的D端。四个D触发器的CLK端连接在一起,然后接单脉冲时钟。 (2)将触发器Q0置1,Q1、Q2、Q3清零。按单脉冲按钮,观察并记录Q0、Q1、Q2、Q3的值。 (二)实验接线及测试结果 1、实验1接线图及测试结果 (1)接线图 图8.3 74LS74构成二进制计数器接线图 图中,K1是逻辑开关,AK1是单次按钮,LED0、LED1、LED2、LED3是逻辑状态指示灯。 (2)置K1为低电平,四个逻辑状态指示灯为绿色,表示Q3Q2Q1Q0为0000。 (3)置K1为高电平,按单次脉冲AK1,Q3Q2Q1Q0的值变化如下 Q3 Q2 Q1 Q0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 0 0 表8.1 74LS74构成的计数器状态转移表

一种简易的自动开关机电路设计

一种简易的自动开/关机电路设计 内容摘要:本文介绍了一种结构简单、使用方便可靠的开/关机电路。电路使用一个D触发器,配合软件上的处理实现单键开/关机、关机前重要数据自动保存及自动关机功能。 引言 节电是各种电池供电设备所需考虑的首要因素。为防止用户忘记关机,一些设备采用了自动关机电路。此外,许多设备中使用一个开/关按键控制开启或关断电源,即使微处理器(MPU)正在处理关键程序,按键按下时,系统也会关断,造成重要数据的丢失。本文仅使用一个D触发器设计了一种结构简单,使用方便可靠的开/关机电路。 电路设计 实际设计的自动开/关机电路如图1所示。其中U1A为双D触发器CD4013,外接电池电源由Vin输入。Q输出通过阻值为472W 的R5、103W的R4和NPN型三极管Q2反向驱动后,与开关电源芯片的开关引脚相连。以MAX1626为例,当SHDN为高时关闭电源,SHDN为低时打开系统电源。 复位式按键S1为系统电源开/关键。C1和R2组成RC网络,使得在S1按下后,保证R有12×104×10-3=120ms的延迟时间处于高电平。CD4013的D、CLK端接输入电源地,保证其处于低电平。置位引脚R一端通过103W的电阻接电源地,另一端通过三极管Q 3与MPU的I/O口相连。S1的右端与阻值为103W的R1相连,控制Q1开通。Q1的集电极与地之间接通稳压管,稳压管的输出与M PU的I/O口相连。 图1自动开/关机电路原理图

设计原理 开/关机电路的核心器件是一个D型触发器,型号为CD4013。其真值表如表1所示。观察其真值表可已看出,无论CLK为何种状态,S为0时,输出Q为0;R为0时,输出Q为1;而当R、S均为1时,输出Q为1;当R和S均为0时,只要CLK不产生上升沿脉冲,输出Q会保持前一输出状态。本电路正是利用R、S均为零时的状态保持特性来实现开/关机功能的。 由于本电路处于开/关电源前端,在电池接入状态下,无论系统电源是否打开,都处于工作状态。CD4013的输入电压范围为3~15V,因此本电路可以保证在宽电压输入范围内稳定工作。 系统开机原理 当按下开机按钮S1时,S与高电平接通,S=1。查阅真值表可得,当R=1,S=1时,输出Q应稳定输出1,经过三极管反向后,电源控制引脚SHDN为低电平,打开系统电源。通常MPU进行初始化时会将I/O引脚置为高电平,由于RC网络的延迟作用,S1按下后可以保证S端约有120ms处于高电平(保证开机稳定条件:RC网络的延迟时间>系统上电复位并将POWER_CTL状态稳定为1的时间)。经过三极管Q3反向,此时S=1,R=0,Q端输出1,系统电源处于打开状态。 MPU延迟后读取STATE引脚的状态。如果此时STATE为低电平,则确认Q1导通,S1曾按下,确认用户开机程序正常运行。如果此时STATE为高电平,则表明Q1截止,开机信号为误动作,程序执行关机程序。 当RC网络的延迟时间过后,S端由1转为0,此时S=0,R=0,查阅真值表得出此时输出Q应该维持前一输出状态,即保持系统开通电源状态。 系统关机原理 作为节电产品,如果在规定时间内系统没有工作,系统会自动转入关机程序,在保存重要数据后,自动关闭系统。

东北大学电子实验三基本门电路及触发器

实验三:基本门电路及触发器 实 验 室:信息学馆347 实验台号: 27 日 期: 专业班级: 机械130班 姓 名: 学 号: 2013309 一、 实验目的 1.了解TTL 门电路的原理、性能和使用方法,验证基本门电路逻辑功能。 2. 掌握门电路的设计方法。 3.验证J-K 触发器的逻辑功能。 4.掌握触发器转换的设计方法。 二、实验内容 (一)验证以下门电路的逻辑关系 1. 用与非门(00)实现与门逻辑关系:F=AB 2. 异或门(86): (二):门电路的设计(二选一) 1.用74LS00和74LS86 设计半加器. 2.用TTL 与非门设计一个三人表决电路。 A B C 三个裁判,当表决某个提案时,多数人同意提案为通过。 (1为同意,0为不同意) 要求:用74LS00和 74LS10芯片。 B A B A B A F ⊕=+=n n n n n n n B A B A B A S ⊕=+='n n n B A C ='

&A B & F J CP K S D R D Q Q S D R D D CP Q Q 431215 5 6 42315 6 (三)验证JK 触发器的逻辑关系 1.J-K 触发器置位端、复位端及功能测试。 图3-1 JK 触发器(74LS112)和D 触发器(74LS74) 2、设计J-K 触发器转化成D 触发器的电路 利用与非门和J-K 触发器设计并测试逻辑功能。 三、实验原理图 图3-2与门电路 图3-3异或门电路 图3-4半加器 四、实验结果及数据处理 1. 直接在实验原理图上标记芯片的引脚。 =1 A B F

简易自动干手电路

摘要 近些年来,随着科学的发展,酒店、车站、网络会所等越来越多的公共场所的洗手间装有自动洗手器和自动干手器,给人们带来了很大的方便。其中,自动干手器是采用一种红外线控制的电子开关,当有人手伸过来时,手对红外线的反射作用,使红外线开关将电热吹风机自动打开,一段时间后,吹风机自动关闭。 自动干手电路是由红外线发射电路,红外线接收电路,时间延迟电路,自动干手器开关电路和电源电路五部分构成,合成后形成自动干手器。当时间延迟电路输出低电平时,继电器两端电压均为低电平,继电器不工作,开关断开,吹风机不吹出热风;当输出高电平,继电器有电压驱动,开关吸合,电磁阀通电,吹风机吹出热风,同时在继电器两端并联一个二极管实现保护。 关键词红外线发射器红外线接收放大器自动干手器开关控制器时间延迟电路电源电路

目录 第一章方案论证 (3) 第二章工作方案设计 (4) 第一节总体设计 (4) 第二节主要单元电路设计 (5) (一)红外线发射电路 (5) (二)红外接收放大电路 (6) (三)时间延迟电路 (7) (四) 吹风机开关电路 (8) (五)电源电路.................... (9) 第三章芯片简介 (9) 第一节 NE555 (9) 第二节 CD4069 (12) 总结与体会 (13) 参考文献 (14) 附录一元件清单 (15) 附录二工作原理图 (17)

第一章方案论证 自动干手器是一种高档卫生洁具,广泛应用于宾馆酒店、机场车站、体育场馆等公共场所的洗手间。其工作原理只是采用一种红外线控制的电子开关,当有人手伸过来时,红外线开关将电热吹风机自动打开,人离开时又自动将吹风机关闭。 成品的自动干手器将红外线控制开关和电热吹风机制作为一体,根据这个基本原理,用一只普通的电热吹风机,加装一个红外控制开关,就可组成一个自动千手器,其效果与成品自动干手器是一样的。经过查资料得知,以下两个方案。 方案一:红外线自动干手器电路由红外线发射器、红外线接收放大器和开关控制器组成。利用555定时器及多谐振荡器和单稳态触发器等元件即可组成红外线自动干手器电路。当人们需要干手时,人们把手靠近干手器时,由于手对红外线的反射作用,使555定时器构成的单稳态触发器产生一段时间的高电平定时。控制自动干手器会打开加热装置和吹风装置一段时间后会自动停止,并可以通过NE555自动的可变电阻器进行调节。 方案二:由单片机80C2051构成的最小系统,加上外围采用8个光电耦合管,大大提高了敏感度,由于手对红外线反射,光电耦合管接收产生一个高电平,通过单片机的I/O口如P1读取其状态,若检测到该口是高电平,通过程序控制另外一个I/O如P3^1输出一个高电平通过三极管放大驱动继电器工作,电机就开始工作,通过单片机中断定时。达到自动控制的目的。 比较上述两种方案,看似第二种方案更简单,不过其需要硬软件相结合,增加的原理上的理解难度,不符合本设计要求,而

触发电路

第五章晶闸管触发电路 内容提要与目的要求 1.了解晶闸管对触发电路和脉冲的要求。 2.了解单结晶体管触发电路的工作原理与测试方法。 3.了解正弦波同步触发电路的工作原理与测试方法。 4.了解锯齿波同步触发电路的工作原理与测试方法。 5.了解IC集成触发电路的工作原理与测试方法。 6.掌握同步分析方法。 了解了晶闸管的结构特性、技术参数和主电路工作原理以后,更重要的是要了解触发电路的工作原理。主电路是强电部分,触发电路是弱电部分,变流装置具有弱电控制、强电输出的特点,触发电路工作不正常,整套装置就会工作不正常。晶闸管对触发电路的结构和触发脉冲信号波形均有一定的要求。 第一节晶闸管对触发电路的要求 1. 触发脉冲应有足够的幅度触发脉冲幅度太低,晶闸管因门极触发电压幅度不够而不能触发导通, 触发电压大小应根据晶闸管门极参数确定, 1000A以下晶闸管,门极正向峰值电压在6~16V之间,门极触发电压小于等于4V。 2. 触发脉冲应有足够的宽度触发脉冲应保证晶闸管阳极电流I a 上升到大于擎住电流I L 时才能消失,否则,晶闸管不能导通,一般晶闸管要求脉冲宽度τ>180 ,全控桥脉冲宽度为 600<τ<1200。电感性负载一般要求宽脉冲触发。 3. 触发脉冲应有足够的陡度所谓陡度是指脉冲前沿的上升率,可以减小晶闸管的起始导通时间,对于晶闸管多串、多并的电路,足够的上升率可以使晶闸管可靠地导通。 4. 触发脉冲应有足够的移相范围 为保证输出电压在要求的电压范围内连续可调,触发脉冲移相范围应足够大,防止输出电压升不上去或降不下来的现象发生。 5. 触发电路应能输出双窄脉冲或宽脉冲 为满足三相全控桥晶闸管的导通要求,触发电路应能输出双脉冲或宽脉冲。 6. 触发电路应有αmin、βmin限制 为满足反并联可逆电路的要求,防止逆变失败,触发电路应有αmin、βmin限制。 7.触发电路应能输出强触发脉冲 对于大功率变流设备的晶闸管多串、多并电路,为使晶闸管同时导通,触发电路应能实现强触发,脉冲前沿陡度应大于1A/us。

东北大学电子实验三基本门电路及触发器(终审稿)

东北大学电子实验三基本门电路及触发器 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

实验三:基本门电路及触发器 实 验 室:信息学馆347 实验台号: 27 日 期: 专业班级: 机械130班 姓 名: 学 号: 2013309 一、 实验目的 1.了解TTL 门电路的原理、性能和使用方法,验证基本门电路逻辑功能。 2. 掌握门电路的设计方法。 3.验证J-K 触发器的逻辑功能。 4.掌握触发器转换的设计方法。 二、实验内容 (一)验证以下门电路的逻辑关系 1. 用与非门(00)实现与门逻辑关系:F=AB 2. 异或门(86): (二):门电路的设计(二选一) 1.用74LS00和74LS86 设计半加器. 2.用TTL 与非门设计一个三人表决电路。 A B C 三个裁判,当表决某个提案时,多数人同意提案为通过。 (1为同意,0为不同意) 要求:用74LS00和 74LS10芯片。 B A B A B A F ⊕=+=n n n n n n n B A B A B A S ⊕=+='n n n B A C ='

&A B & F J CP K S D R D Q Q S D R D D CP Q Q 431215 5 6 42315 6 (三)验证JK 触发器的逻辑关系 1.J-K 触发器置位端、复位端及功能测试。 图3-1 JK 触发器(74LS112)和D 触发器(74LS74) 2、设计J-K 触发器转化成D 触发器的电路 利用与非门和J-K 触发器设计并测试逻辑功能。 三、实验原理图 图3-2与门电路 图3-3异或门电路 图3-4半加器 四、实验结果及数据处理 1. 直接在实验原理图上标记芯片的引脚。 =1 A B F

实验:简易红外遥控电路制作

焊接时,把这个文档打印带到实验室,或者单打印电路图也可。 实验简易红外遥控电路的制作 一、实验内容与要求 对指定的电路使用Proteus工具进行仿真;指定的电路为:①红外发射器,如图1所示;②红外接收器,如图2所示。 b)使用Protel工具设计图1和图2的印刷电路板图。 按照图1安装一个手持式红外发射器、按照图2安装一个红外接收器;完成的作品应具有如下功能:按动发射器上的一个按扭,能遥控接收器上的一个小型继电器,通过该继电器的触点,可以控制一般小功率的用电设备如电灯等。 d)完成实验报告。 二、实验电路及原理 1、发射器 电路如图1所示, 集成电路NE555(或7555>等元件组成自激多谐振荡器,振荡频率约为38KHZ~40 KHZ,该频率与C1、R1、RV1均有关系,可调节它们使振荡频率达到要求;当按钮AN按下时,脉冲电流流过红外发射二极管IR- LED,使之发出38KHZ左右的红外脉冲光。 图 1 红外发射电路 2、接收器

电路如图2所示,主要由一体化红外接收头、D触发器和小型继电器等组成。CD4013是CMOS集成电路D触发器,内含两个独立的D触发器,外形为双列直插14脚封装,第14脚为电源正极,第7脚为电源负极,工作电压3~18伏,S、R端对Q端的影响如下表1所示。 图 2 红外接收器 图 3 红外接收头表1 D触发器真值表 常态时,接收头Uo端输出为高电平,Q1饱和其集电极电位为零,因此U1: A的S=0, R=1,由表1可知,U1:A应有Q=0;当接收头收到红外光时,Uo端输出负脉冲,

在负脉冲的低平期间,Q1截止,使U1:A的S=1,R=0,故U1:A的Q=1,随后,U o端负脉冲消失,U1:A回到常态

可控硅触发电路.doc

可控硅触发电路必须满足的三个主要条件 一、可控硅触发电路的触发脉冲信号应有足够的功率和宽度 为了使所有的元件在各种可能的工作条件下均能可靠的触发,可控硅触发电路所送出的触发电压和电流,必须大于元件门极规定的触发电压UGT与触发电流IGT的最大值,并且留有足够的余量。另外,由于可控硅的触发是有一个过程的,也就是可控硅触发电路的导通需要一定的时间,不是一触即通,只有当可控硅的阳极电流即主回路电流上升到可控硅的擎住电流IL以上时,管子才能导通,所以触发脉冲信号应有一定的宽度才能保证被触发的可控硅可靠导通。例如:一般可控硅的导通时间在6μs左右,故触发脉冲的宽度至少在6μs以上,一般取20~50μs,对于大电感负载,由于电流上升较慢,触发脉冲宽度还应加大,否则脉冲终止时主回路电流还未上升到可控硅的擎任电流以上,则可控硅又重新关断,所以脉冲宽度下应小于300μs,通常取1ms,相当广50Hz正弦波的18°电角度。 二、触发脉冲的型式要有助于可控硅触发电路导通时间的一致性 对于可控硅串并联电路,要求并联或者串联的元件要同一时刻导通,使两个管子中流过的电流及或承受的电压及相同。否则,由于元件特性的分散性,在并联电路中使导通较早的元件超出允许范围,在串联电路中使导通较晚的元件超出允许范围而被损坏,所以,针对上述问题,通常采取强触发措施,使并联或者串联的可控硅尽量在同一时间内导通。 三、触发电路的触发脉冲要有足够的移相范围并且要与主回路电源同步 为了保证可控硅变流装置能在给定的控制范围内工作,必须使触发脉冲能在相应的范围内进行移相。同时,无论是在可控整流、有源逆变还是在交流调压的触发电路中,为了使每—周波重复在相同位置上触发可控硅,触发信号必须与电源同步,即触发信号要与主回路电源保持固定的相位关系。否则,触发电路就不能对主回路的输出电压Ud进行准确的控制。逆变运行时甚至会造成短路事故,而同步是由相主回路接在同一个电源上的同步变压器输出的同步信号来实现的。 可控硅(晶闸管)的交流调压原理 一、双向可控硅交流调压原理 一只双向可控硅的工作原理,可等效两只同型号的单向可控硅互相反向并联,然后串联在调压电路中实现其可控硅交流调压的。为50Hz交流电的电压波形。在0~a′时间内,SCR1因控制极G无正脉冲信号而正向阻断,而SCR2则反向不导通。在a′~?π时间内,SCR1控制极G受触发脉冲触发而导通. 将可控硅在正向阳极电压作用下不导通的范围称为控制角,用字母a表示,而导通范围称为导通角,用字母θ表示。显然控制角a的大小,可改变正负半周波形切割面积的大小。当a越小被切割的波形面积越小,输出交流电压的平均值越大。相反,当a角越大,被切割的波形面积越大,输出交流电压的平均值越小。 二、单向可控硅交流调压原理 50Hz交流电压通过四个二极管组成的单向器,将50Hz正负半波变换为相对应时刻的单向电压,再用一只单向可控硅来实现交流调压。 可控硅的工作电流就等于I,在实际应用中SCR的工作电流一般取1~1.5I。由于采用了单向器,所以SCR不承受反向电压,为了防止单向器二极管击穿短路而损坏可控硅,实际应用时SCR反向工作电压仍应取≥400V。 双向可控硅交流稳压器电路

简单适用电路图

LED手电具有省电、耐用、亮度强等优点。非常受欢迎,这里介绍一个LED手电制作的经典电路,供大家参考。 1、1.5V低成本LED驱动电路 磁环选用T9*5*3/2K,也可用T10*6*5等,用0.3mm漆包线双线并绕20T,按图中同名端连接。TR1选8050或9014,D1选4937或107,PCB用一片废板自制。 2、1.2v升3.4v电源电路 红外发射和接收电路制作

工作原理: CD4541是具有振荡计数的IC。工作时1脚接振荡电阻R1,2脚接振荡电容C1,3脚接稳频电阻R8,R8=(2~3)R1*C1,8脚为输出脚,9脚可以选择8脚输出状态,10脚为"0"时IC为定时器。8脚设定的时间输出状态会跳变,要重新复位。10脚为"1"时IC为振荡器,8脚输出为2脚振荡频率若干次分频后的信号。12和13脚可以设定时间或8脚输出频率设定,CD4541分频或计数见附表。 IC1的2脚产生频率约40 kHz的信号。10脚置高电平IC为振荡器,12脚接低电平,13脚接高电平,8脚输出39Hz的方波。三极管9013基极得到一串调制过的40kHz 波形,驱动红外发射管LED1。 IC2为红外接收组件,只接收40kHz红外线。当接收时1脚输出39Hz的脉冲,F1、F2是CD4069(IC3)的两个非门。IC2接收不到信号时,1脚输出高电平,收到信号后1脚跳变成低电平,所以用F1对IC2的1脚信号反相,再经过D1整流,C2滤波,其R7是泻放电阻,在F2的3脚得到一高电平信号,F2接成放大器形式,经放大反相后,Q2基集得到低电平信号,电路不动作,当有物体挡住红外线时,IC2收不到信号,IC2的1脚输出高电平,经F1反相后,F1的2脚为低电平,F2的3脚为低电平,Q2基集得到高电平信号,驱动继电器J1动作,驱动报警机构动作。 中心接收频率为40kHz,接收距离为10~16m。 元件选择: R1:1K C1:0.01U IC1:CD4541 R2:10K C2:22U IC2:PIC-1023SMB (1脚为信号输出,2脚接地,3脚接电源2.4~6.5V)R3:2.2K C3:0.01U R4:100 Q1:9013 IC3:CD4069或MC14584 (六非门器) R5:1M Q2:9013 R6:4.7K D1:IN4148 LED1 及电阻1K R7:22K R8:4.7K 高精度6~60秒定时器

调光台灯的电路

调光台灯的电路非常简单,仅仅是一个可控硅调压电路而已。市场上见到的电路大多是第二个图所示的电路,工作原理是:当交流电的正半周或副半周到来是,经过全桥整流,加到可控硅上的电源是单向的。该电压通过电位器给电容充电,当电容C1上的电压达到一定数值后,就会触发可控硅导通。调节电位器的旋钮,可以改变充电的时间,从而控制可控硅的导通角。其中单向可控硅使用MCR100-6,二极管使用1N4007。灯泡应选择60W以下的白炽灯。 第一个图所示的电路性能更好一些,可以控制更大功率的电器。 调光台灯电路图一:

调光台灯的典型电路如附图所示。主电路由电源开关S、灯泡H、双向可控硅SCR、电感L等构成;电位器RP1(微调)、RP2(带开关)、电阻R1、电容C2和双向二极管SD组成双向可控硅的触发电路。UC充电电压达到双向二极管正负导通电压阈值时,触发双向控硅SCR 双向导通;当输入电源电压过零时,SCR自动关断。调整电位器阻值可调整充电速率,即可调整可控硅的导通角,从而调节灯光的强弱。另外,L和C1构成高频滤波电路,使高频触发信号不致污染电网。它们的工频阻抗很小,不会影响灯光的亮度。 调光台灯电路图二: 无级调光台灯电路图

1.双向可控硅SCR可根据负载功率大小选择97A6(约1A)、TLC336A(约3A)、BT136-500D(约6A)中的一个,选择原则是触发电流要小于25mA。 2.C4取值在0.1 " 0.47uF之间,C2取值在2200 " 4700pF

之间。五、主要技术指标:电源电压:5V。输出脉宽:40ms。输出触发脉冲导通角:41°"159°。调光周期(从最亮到最亮):4.2s。电源电流:1.5"2.5mA。输出端灌入电流:≤25mA。输出触发脉冲幅度:Vss-3V。渐暗脉冲:83±3。

门电路和触发器

第九节门电路和触发器 电子电路通常分模拟电子电路和数字电子电路两大类。前面介绍的放大电路属于第一类,电路中的工作信号是连续变化的电信号(模拟信号)。数字电路的基本工作信号是二进制的数字信号,它在时间上和数值上是离散的,即不是连续渐变的,而且只有0和1两个基本数字,反映在电路上就是低电平和高电平两种状态。因此在稳态时,电路中的半导体器件都是工作在开、关状态。数字电路是由几种最基本的单元电路组成的。在这些基本单元中,对元件的精度要求不高,只要在工作时能够可靠地区分0和1两种状态就可以了。数字电路中研究的主要问题是输入信号的状态(0或1)和输出信号的状态(0或1)之间的关系,即所谓逻辑关系,采用的数学工具是逻辑代数。 一、逻辑代数基础 在逻辑代数中变量具有二值性,即只有两个可能的取值“0”和“1”。 (一)基本的逻辑运算 逻辑代数的基本运算有三种,即“与”运算、“或”运算和“非”运算。 1.“与”运算也称“与”关系,它可表述为:当决定一事件的所有条件都具备之后,这事件才会而且一定会发生。在现实生活中,“与”逻辑关系很多,如图8-9-1,开关 A,B控制一盏灯Z。灯亮的条件是开关A、B同时合上。假定灯亮为“1”,不亮为“0”。开关合上为“1”。断开为“0”,把灯的状态和开关所处位置之间的关系列如表8-9-1 所示。这种表称真值表(或称功能表),其逻辑表达式为, Z=A·B 所以“与”关系也称为逻辑乘。运算规则为:0·0=0,0·1=0,1·0=0,1·1=1。 2.“或”运算:在决定一事件的各个条件中,只要具备一个或一个以上的条件,这事件就会发生,这样的因果关系称“或”逻辑关系。用并联的两个开关控制一盏灯,如图 8-9-2所示只要开关A或月有一个处于合上位置灯就会亮。按前面的假定来赋值“0”、“1”,可列出真值表如表8-9-2,其逻辑表达式为Z=A+B。所以“或”关系也称为逻辑加。运算规则为:0+0=0,0+1=1,1+0=1,1+1=1。

调光灯电路仿真

摘要:晶闸管调光电路是模拟电路的课程教学和中级维修电工电子技术实训教学中的一个重点和难点内容。在教学中应用Multisim 10仿真软件,研究控制角对输出电压的影响,仿真结果与理论分析计算一致。计算机仿真辅助教学可以使课堂教学更形象、更直观,使复杂深奥的知识简单化,从而加深学生对理论知识的理解,提高教学效率,取得很好的教学效果。 关键词:Multisim 10;晶闸管;调光电路;计算机仿真 调光电路在日常生活中应用较为广泛。在教学中,它不仅是学习晶闸管应用的入门电路,也是中级维修电工电子技能实训的经典项目。调光电路内容涉及广,具体包括晶闸管、单相半波可控整流电路、单结晶体管触发电路等工作原理,以及控制角和同步触发的概念、控制角对被控电压的影响等。对于学生来说,要理解和掌握这些知识点,借助传统的仪器仪表获取波形图来分析无疑具有很大的挑战性。利用Mult isim 10软件进行实验仿真,可以动态直观地观察不同参数对调光电路性能的影响,对于理解原理,熟悉调试过程具有很大的帮助。 1 Multisim 10简介 Multisim 10是美国国家仪器公司最新推出的版本。Multisim 10用软件的方法虚拟电子与电工元器件,虚拟电子与电工仪器和仪表,实现了“软件即元器件”、“软件即仪器”,是一个原理电路设计、电路功能测试的虚拟仿真软件。 Multisim 10的元器件库提供了千种电路元器件供实验选用,也可以

新建或扩充已有的元器件库,因此也很方便的在工程设计中使用。Mu ltisim 10的虚拟测试仪器仪表种类齐全,有一般实验用的通用仪器,如万用表、函数信号发生器、双踪示波器、直流电源;而且还有一般实验室少有或没有的仪器,如波特图仪、字信号发生器等。 Multisim 10不仅可以设计、测试和演示各种电子电路,而且还具有较为详细的电路分析功能。可以完成电路的瞬态分析和稳态分析、时域和频域分析等电路分析方法,以帮助设计人员分析电路的性能。 2 调光电路设计 2.1 电路组成 调光电路如图1所示,由整流电路、触发电路和主电路3部分组成。VD1~VD4组成的桥式整流电路和稳压管VD2组成的稳压电路产生一个梯形波电压,用来作为单结晶体管的电源电压,也用来保证触发电路与主电路同步。充电回路(R2+R3)C1和可编程单结晶体管PUT构成触发电路,用来产生晶闸管的同步触发脉冲。主电路由晶闸管VT1和照明灯X1组成,电源直接由220 V市电提供。 2.2 调光原理 接通电源前,电容C1上电压为零。接通电源后,电容C1经由R2、R3充电,电容的电压uC逐渐升高。当达到峰点电压UP时,PUT的e~b1间导通,电容上电压uC经e~b1向电阻R5放电。当电容上的电压uC降到谷点电压UV时,PUT恢复阻断状态。此后,电容C1又重新充电,重复上述过程,结果在电容C1上形成锯齿状电压,在R5上则形成脉冲电压。此脉冲电压作为可控硅VT1的触发信号。在VD1~VD4

东北大学电子实验三:基本门电路及触发器

实验三:基本门电路及触发器 实验室:信息学馆347实验台号:27 日期:___________ --- 专业班级:机械130班姓名:学号:2013309 、实验目的 1. 了解TTL门电路的原理、性能和使用方法,验证基本门电路逻辑功能。 2. 掌握门电路的设计方法。 3. 验证J-K触发器的逻辑功能。 4. 掌握触发器转换的设计方法。 、实验内容 S n A n B n A n B n A n B n (一)验证以下门电路的逻辑关系 C n A n Bi 1. 用与非门(00)实现与门逻辑关系:F=AB F AB AB A B 2. 异或门(86): (二):门电路的设计(二选一) 1. 用74LS00和74LS86设计半加器. 2. 用TTL与非门设计一个三人表决电路。 ABC 三个裁判,当表决某个提案时,多数人同意提案为通过。 (1为同意,0为不同意) 要求:用74LS00和74LS10芯片(三)验证JK触发器的逻辑关系 1. J-K触发器置位端、复位端及功能测试

图3-1 JK触发器(74LS112)和D触发器(74LS74) 2、设计J-K触发器转化成D触发器的电路 利用与非门和J-K触发器设计并测试逻辑功能 三、实验原理图 F 图3-2与门电路图3-3异或门电路 图3-4半加器 四、实验结果及数据处理 1.直接在实验原理图上标记芯片的引脚

2.写出实验结果。 (1)与门、异或门实验结果表(用数字万用表测量高低电平 1、0的电压值。) (2)半加器实验结果 决电路结果

(5) 输入端输出原态输出次态R D S D J K Q Q+1 01*** 1 A B C F 0000 0010 0100 0111 1000 1011 1101 1111决电路图(可以拍照 (4)表 图): A A

如何分析简易电路图

如何分析电路图 电路图有两种,一种是模拟电子电路工作原理的。它用各种图形符号表示电阻器、电容器、开关、晶体管等实物,用线条把元器件和单元电路按工作原理的关系连接起来。这种图长期以来就一直被叫做电路图。 另一种则是数字电子电路。它用各种图形符号表示门、触发器和各种逻辑部件,用线条把它们按逻辑关系连接起来,它是用来说明各个逻辑单元之间的逻辑关系和整机的逻辑功能图叫做逻辑电路图,简称逻辑图。 要分析电路图,还得从认识元器件开始。熟悉有关电阻器、电容器、电感线圈、晶体管等元器件的用途、类别、使用方法 电阻器与电位器 符号详见图 1 所示,其中( a )表示一般的阻值固定的电阻器,( b )表示半可调或微调电阻器;( c )表示电位器;( d )表示带开关的电位器。电阻器的文字符号是“ R ”,电位器是“ RP ”,即在 R 的后面再加一个说明它有调节功能的字符“ P ”。 在某些电路中,对电阻器的功率有一定要求,可分别用图 1 中( e )、( f )、( g )、( h )所示符号来表示。 几种特殊电阻器的符号: 第 1 种是热敏电阻符号,热敏电阻器的电阻值是随外界温度而变化的。有的是负温度系数的,用NTC来表示;有的是正温度系数的,用PTC来表示。它的符号见图( i ),用θ或t° 来表示温度。它的文字符号是“ RT ”。 第 2 种是光敏电阻器符号,见图 1 ( j ),有两个斜向的箭头表示光线。它的文字符号是“ RL ”。

第 3 种是压敏电阻器的符号。压敏电阻阻值是随电阻器两端所加的电压而变化的。符号见图 1 ( k ),用字符 U 表示电压。它的文字符号是“ RV ”。这三种电阻器实际上都是半导体器件,但习惯上我们仍把它们当作电阻器。 第 4 种特殊电阻器符号是表示新近出现的保险电阻,它兼有电阻器和熔丝的作用。当温度超过500℃ 时,电阻层迅速剥落熔断,把电路切断,能起到保护电路的作用。它的电阻值很小,目前在彩电中用得很多。它的图形符号见图 1 ( 1 ),文字符号是“ R F ”。 电容器的符号 详见图 2 所示,其中( a )表示容量固定的电容器,( b )表示有极性电容器,例如各种电解电容器,( c )表示容量可调的可变电容器。( d )表示微调电容器,( e )表示一个双连可变电容器。电容器的文字符号是 C 。 电感器与变压器的符号 电感线圈在电路图中的图形符号见图 3 。其中( a )是电感线圈的一般符号,( b )是带磁芯或铁芯的线圈,( c )是铁芯有间隙的线圈,( d )是带可调磁芯的可调电感,( e )是有多个抽头的电感线圈。电感线圈的文字符号是“ L ”。 变压器的图形符号见图 4 。其中( a )是空芯变压器,( b )是滋芯或铁芯变压器,( c )是绕组间有屏蔽层的铁芯变压器,( d )是次级有中心抽头的变压器,( e )是耦合可变的变压器,( f )是自耦变压器,( g )是带可调磁芯的变压器,( h )中的小圆点是变压器极性的标记。

相关文档
相关文档 最新文档