文档库 最新最全的文档下载
当前位置:文档库 › 量子力学解答(5章)

量子力学解答(5章)

量子力学解答(5章)
量子力学解答(5章)

高等量子力学复习题

上册 1.3 粒子在深度为0V ,宽度为a 的直角势阱(如图1.3)中运动,求 (a)阱口刚好出现一个束缚态能级(即0V E ≈)的条件; (b)束缚态能级总和,并和无限深势阱作比较 . 解 粒子能量0V E 小于时为游离态,能量本征值方程为: []0)(22''=-+ ψψx V E m (1) 令002k mV = ,β=- )(20E V m (2) 式(1)还可以写成 ?? ???≥=-≤=+)(阱外)(阱内4)(2,03)(2,022''2''a x a x mE ψβψψψ 无限远处束缚态波函 数应趋于0,因此式(4)的解应取为()2,a x Ce x x ≥=-βψ 当阱口刚好出现束缚态能级时,0,0≈≈βV E ,因此 2,0)('a x Ce x x ≥≈±=-ββψ (6) 阱内波函数可由式(3)解出,当0V E ≈解为 ()()2,s i n ,c o s 00a x x k x x k x ≤?? ?==ψψ奇宇称 偶宇称 (7) 阱内、外ψ和ψ应该连续,而由式(6)可知,2a x =处,0'=ψ, 将这条件用于式(7),即得 ,5,3,,02cos ,6,4,2,02 sin 0000ππππππ====a k a k a k a k 奇宇称偶宇称(8) 亦即阱口刚好出现束缚能级的条件为 ,3,2,1, 0==n n a k π (9) 即2 22202π n a mV = (10) 这种类型的一维势阱至少有一个束缚能级,因此,如果 2 2202π< a mV ,只存在一个束缚态,偶宇称(基态)。如果22202π = a mV ,除基态外,阱口将再出现一个能级(奇宇称态),共两个能级。如() 222022π= a mV ,阱口将出现第三个能级(偶宇称)。依此类推,由此可知,对于任何20a V 值,束缚态能级总数为 其中符号[A]表示不超过A 的最大整数。 当粒子在宽度为a 的无限深方势阱中运动时,能级为 ,3,2,1,212 =?? ? ??=n a n m E n π 则0V E ≤的能级数为 120-=?? ????=N mV a n π (12) 也就是说,如果只计算0V E ≤的能级数,则有限深)(0V 势阱的能级数比无限深势阱的能级数多一个。注意,后者的每一个能级均一一对应的高于前者的相应能级。

高等量子力学习题汇总(可编辑修改word版)

2 i i i j i j ± 第一章 1、简述量子力学基本原理。 答:QM 原理一 描写围观体系状态的数学量是 Hilbert 空间中的矢量,只相差一个复数因子的两个矢量,描写挺一个物理状态。QM 原理二 1、描写围观体系物理量的是 Hillbert 空间内的厄米算符( A ? );2、物理量所能取的值是相应算符 A ? 的本征值;3、 一个任意态总可以用算符 A ? 的本征态 a i 展开如下: = ∑C i a i i C i = a i ;而 物理量 A 在 中出现的几率与 C i 成正比。原理三 一个微观粒子在直角坐标下的位置 算符 x ? 和相应的正则动量算符 p ? 有如下对易关系: [x ? , x ? ]= 0 , [p ? , p ? ] = 0 , [x ?i , p ? j ]= i ij 原理四 在薛定谔图景中,微观体系态矢量 (t ) 随时间变化的规律由薛定谔方程给 i ? ?t (t ) = H ? (t ) 在海森堡图景中,一个厄米算符 A ?(H ) (t ) 的运动规律由海森堡 方程给出: d A ?(H ) (t ) = 1 [A ?(H ), H ? ] 原理五 一个包含多个全同粒子的体系,在 dt i Hillbert 空间中的态矢对于任何一对粒子的交换是对称的或反对称的。服从前者的粒子称为玻色子,服从后者的粒子称为费米子。 2、薛定谔图景的概念? 答: (x, t ) =< x |(t )>式中态矢随时间而变而 x 不含 t ,结果波函数ψ(x ,t )中的宗量 t 来自 ψ(t ) 而 x 来自 x ,这叫做薛定谔图景. ?1 ? ? 0? 3、 已知 = ?,= ?. 0 1 (1)请写出 Pauli 矩阵的 3 个分量; (2)证明σ x 的本征态 ? ? ? ? 1 ?1 ? 1 | S x ± >= ? = ? 1? (± ). 4、已知:P 为极化矢量,P=<ψ|σ|ψ>,其中ψ=C 1α+C 2β,它的三个分量为: 求 证: 2 2

量子力学第五章习题

第五章 微扰理论 5.1 如果类氢原子的核不是点电荷,而是半径为0r ,电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。 解: 这种分布只对0r r <的区域有影响, 对0r r ≥的区域无影响. 根据题意知 ()()0 ?H U r U r '=- 其中()0U r 是不考虑这种效应的势能分布, 即 ()2004ze U r r πε=- ()U r 为考虑这种效应后的势能分布, 在0r r ≥的区域为 ()2 04ze U r r πε=- 在0r r <的区域, ()U r 可由下式 ()r U r e Edr ∞ =-? 其中电场为 () () 3023300000201 4,443434Ze Ze r r r r r r r E Ze r r r ππεπεππε?=≤?? =? ?>? ? 则有: ()()()() 2 2 3 2 000 22222 2200 033000000 1443848r r r r r r U r e Edr e Edr Ze Ze rdr dr r r Ze Ze Ze r r r r r r r r r πεπεπεπεπε∞ ∞ =--=- - =---=--≤??? ? 因此有微扰哈密顿量为 ()()()() 222 200300 031?220s s Ze r Ze r r r r r H U r U r r r ???--+ ≤? ?'=-=????>? 其中s e =类氢原子基态的一级波函数为 ()( 32 10010000032 02exp 2Zr a R Y Z a Zr a Z e a ψ-==-?=?? 按定态微扰论公式,基态的一级能量修正值为 ()()()0 0*0011 11 100100 3 2222222000000?1 31sin 4422Zr r a s s E H H d Z e Ze Z r d d e r dr a r r r ππψψτ?θθπ -''==??????=--+?? ? ????????? ? ???

量子力学期末考试试卷及答案

量子力学期末试题及答案 红色为我认为可能考的题目 一、填空题: 1、波函数的标准条件:单值、连续性、有限性。 2、|Ψ(r,t)|^2的物理意义:t时刻粒子出现在r处的概率密度。 3、一个量的本征值对应多个本征态,这样的态称为简并。 4、两个力学量对应的算符对易,它们具有共同的确定值。 二、简答题: 1、简述力学量对应的算符必须是线性厄米的。 答:力学量的观测值应为实数,力学量在任何状态下的观测值就是在该状态下的平均值,量子力学中,可观测的力学量所对应的算符必须为厄米算符;量子力学中还必须满足态叠加原理,而要满足态叠加原理,算符必须是线性算符。综上所述,在量子力学中,能和可观测的力学量相对应的算符必然是线性厄米算符。 2、一个量子态分为本征态和非本征态,这种说法确切吗? 答:不确切。针对某个特定的力学量,对应算符为A,它的本征态对另一个力学量(对应算符为B)就不是它的本征态,它们有各自的本征值,只有两个算符彼此对易,它们才有共同的本征态。 3、辐射谱线的位置和谱线的强度各决定于什么因素? 答:某一单色光辐射的话可能吸收,也可能受激跃迁。谱线的位置决定于跃迁的频率和跃迁的速度;谱线强度取决于始末态的能量差。 三、证明题。

2、证明概率流密度J不显含时间。 四、计算题。 1、

第二题: 如果类氢原子的核不是点电荷,而是半径为0r 、电荷均匀分布的小球, 计算这种效应对类氢原子基态能量的一级修正。 解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。据题意知 )()(?0 r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 2004ze U r r πε=-() )(r U 为考虑这种效应后的势能分布,在0r r ≥区域, r Ze r U 024)(πε-= 在0r r <区域,)(r U 可由下式得出, ?∞ -=r E d r e r U )( ???????≥≤=??=)( 4 )( ,43441 02 003003303 420r r r Ze r r r r Ze r r Ze r E πεπεπππε ??∞ --=0 )(r r r Edr e Edr e r U ?? ∞ - - =00 20 2 3 002 144r r r dr r Ze rdr r Ze πεπε )3(84)(82 203 020*********r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤ ?? ???≥≤+--=-=')( 0 )( 4)3(8)()(?00022 2030020r r r r r Ze r r r Ze r U r U H πεπε

原子物理讲义 第五章 多电子原子

第五章 多电子原子:泡利原理(YCS ) §5-1 氦光谱和能级 氦原子是1868年分析日全蚀光谱时发现的,30年后在地球矿物中找到.实验表明,氦及元素周期表第二族元素铍、镁、钙、锶、钡、镭、锌、镉、汞的光谱结构相仿.氦原子光谱的特点(详见P.213氦原子能级图)(氦能谱的以上4个特点分别包含着4个物理概念): 1)明显地分成两套谱线系,左边一套为单层,右边一套多为三层;两套能级间无跃迁,各自内部的跃迁产生了两套独立的光谱.每一套都象碱金属原子光谱一样含有主线系,辅线系和伯格曼系等.但两套线系的构成截然不同. 2)存在几个亚稳态,表明某种选择规则限制了这些态以自发辐射的形式发生衰变; 3)基态01 S 1与第一激发态13 S 2 间能量相差很大,为eV .7719;电离能也是所有元素中最大的,为eV .5824; 4)在三层结构那套能级中没有来自2 (1S)的能级. §5-2 电子组态和原子态 1.电子组态:原子中各电子状态的组合 描述一个电子的状态可用s l m m l n 、、、四个量子数. 考虑电子的自旋-轨道相互作用,s l m m 、不再有确定值,则电子的状态用j j m l n 、、、描述. 氢原子只有一个电子,在不考虑原子核运动时,电子状态就表示原子状态. 对于碱金属原子,理论上可证明原子实的总角动量为0且不易被激发,被激发的只是价电子,可认为价电子的状态就表示碱金属原子状态. 多电子原子则必须考虑电子间的相互作用,原子的状态是价电子运动状态的耦合. 由于轨道运动的能量只取决于量子数l n 、,所以常用nl 来标记电子状态. 例如:氢原子处于基态时,电子处于01=、= l n 的状态,记为s 1;氦原子处于基态时,两个电子都处于s 1态,则用两个电子状态的组合s 1s 1或21s 来表示;若一个原子有 3个电子,其中两个处在0,2==l n 的状态,另一个处在1,2==l n 的状态,则电子 组态为p s 222 . 在给定的电子组态中,各电子的轨道角动量大小是确定的,但其轨道角动量和自旋角动量的方向不确定.因此每一个电子组态 可耦合成若干原子态,由同一电子组态耦合成的不同原子态将且具有不同的能量,因为不同的角动量耦合产生的附加能量不同. 2.价电子间的相互作用 价电子间的相互作用除电子自身的轨道与自旋耦合外,电子间的轨道与轨道、自旋与自旋、轨道与自旋等角动量都要发生耦合作用.如两个价电子间可有6种耦合方式(如图示):),(),(),(),(),(),(126215224113212211s l G s l G s l G s l G s s G l l G 、、、、、. 这6种耦合的强弱不等,一般情况下,65G G 、较弱可不考虑.下面考虑两种极端情况. 1)S L -耦合:21G G 、较43G G 、强得多,将两个轨道角动量和两个自旋角动量分别合 成总轨道角动量L 和总自旋角动量S ,再将L 和S 合成总角动量J .(S L -耦合对于较轻元素 的低激发态成立,适用性较广) 2)j j -耦合:43G G 、较21G G 、强得多,将各个电子的轨道与自旋耦合成各个电子的总 角动量1j 和2j ,再将其耦合成原子的总角动量J .(j j -耦合则较少见,只在较重元素的激发态中出现) 对于多电子耦合的情况可记为:? ??==-==-J j j j l s l s l s j j J L S l l l s s s S L )())()((:),(),,)(,,(:323322113213211 3.S L -耦合的原子态 21l l L +=.L 的大小为: 212121,,1,,)1(l l l l l l L L L L --++=+= 21s s S +=.S 的大小为:???=±=+=0 1,)1(21s s S S S S 原子的总角动量S L J +=,量子数S L S L S L J --++=,,1, 对于具有两个价电子的原子,当L 给定时,对应于0,1==S S 的两种情况,J 的取值分别 为: 1)0=S 时,L J =,表示原子只有一个可能的角动量状态,所以是单态. 2)1=S 时,1,,1-+=L L L J ,所以原子是三重态. 由以上分析知,具有两个价电子的原子都有单态和三重态的能级结构. 例:原子有两个价电子,其角动量状态分别为 2 1 ,2;21,12211= ===s l s l ,用

高等量子力学考试知识点

1、黑体辐射: 任何物体总在吸收投射在它身上的辐射。物体吸收的辐射能量与投射到物体上的辐射能之比称为该物体的吸收系数。如果一个物体能吸收投射到它表面上的全部辐射,即吸收系数为1时,则称这个物体为黑体。 光子可以被物质发射和吸收。黑体向辐射场发射或吸收能量hv的过程就是发射或吸收光子的过程。 2、光电效应(条件): 当光子照射到金属的表面上时,能量为hv的光子被电子吸收。 临界频率v0满足 (1)存在临界频率v0,当入射光的频率v

7、一维无限深势阱(P31) 8、束缚态:粒子只能束缚在空间的有限区域,在无穷远处波函数为零的状态。 一维无限深势阱给出的波函数全部是束缚态波函数。 从(2.4.6)式还可证明,当n分别是奇数和偶数时,满足 即n是奇数时,波函数是x的偶函数,我们称这时的波函数具有偶宇称;当n是偶数时,波函数是x的奇函数,我们称这时的波函数具有奇宇称。 9、谐振子(P35) 10、在量子力学中,常把一个能级对应多个相互独立的能量本征函数,或者说,多个相互独立的能量本征函数具有相同能量本征值的现象称为简并,而把对应的本征函数的个数称为简并度。但对一维非奇性势的薛定谔方程,可以证明一个能量本征值对应一个束缚态,无简并。 11、半壁无限高(P51例2) 12、玻尔磁子 13、算符 对易子 厄米共轭算符 厄米算符:若,则称算符为自厄米共轭算符,简称厄米算符 性质:(1)两厄米算符之和仍为厄米算符 (2)当且仅当两厄米算符和对易时,它们之积才为厄米算符,因为 只在时,,才有,即仍为厄米算符

量子力学知识点小结(良心出品必属精品)

第一章 ⒈玻尔的量子化条件,索末菲的量子化条件。 ⒉黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。 ⒎普朗克量子假说: 表述1:对于一定频率ν的辐射,物体只能以hν为能量单位吸收或发射电磁辐射。 表述2:物体吸收或发射电磁辐射时,只能以量子的方式进行,每个量子的能量为:ε=hν。 表述3:物体吸收或发射电磁辐射时,只能以能量ε的整数倍来实现,即ε,2ε,3ε,…。 ⒏光电效应:光照射到金属上,有电子从金属上逸出的现象。这种电子称之为光电子。 ⒐光电效应有两个突出的特点: ①存在临界频率ν0:只有当光的频率大于一定值v0 时,才有光电子发射出来。若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。 ②光电子的能量只与光的频率有关,与光的强度无关。光的强度只决定光电子数目的多少。 ⒑爱因斯坦光量子假说: 光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出

现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子。爱因斯坦方程 ⒒光电效应机理: 当光射到金属表面上时,能量为 E= h ν 的光子立刻被电子所吸收,电子把这能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面后的动能。 ⒓解释光电效应的两个典型特点: ①存在临界频率v 0:由上式明显看出,当h ν- W 0 ≤0时,即ν≤ν0 = W 0 / h 时,电子不能脱出金属表面,从而没有光电子产生。 ②光电子动能只决定于光子的频率:上式表明光电子的能量只与光的频率ν有关,而与光的强度无关。 ⒔康普顿效应:高频率的X 射线被轻元素如白蜡、石墨中的电子散射后出现的效应。 ⒕康普顿效应的实验规律: ①散射光中,除了原来X 光的波长λ外,增加了一个新的波长为λ'的X 光,且λ' >λ; ②波长增量Δλ=λ-λ随散射角增大而增大。 ⒖量子现象凡是普朗克常数h 在其中起重要作用的现象 ⒗光具有微粒和波动的双重性质,这种性质称为光的波粒二象性 ⒘与运动粒子相联系的波称为德布罗意波或物质波。 ???? ? ???? ======n k h k n h P h E λππλων2 ,2

量子力学周世勋习题解答第五章范文

第五章习题解 5.1 如果类氢原子的核不是点电荷,而是半径为0r 、电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。 解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。据题意知 )()(?0 r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 r ze r U 02 4πε- =)( )(r U 为考虑这种效应后的势能分布,在0r r ≥区域, r Ze r U 02 4)(πε-= 在0r r <区域,)(r U 可由下式得出, ?∞ -=r Edr e r U )( ??? ????≥≤=??=)( 4 )( ,4344102 00300330420r r r Ze r r r r Ze r r Ze r E πεπεπππε ??∞ --=0 )(r r r Edr e Edr e r U ?? ∞ - - =00 20 2 3 002 144r r r dr r Ze rdr r Ze πεπε )3(84)(82 203 020*********r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤ ?? ???≥≤+--=-=')( 0 )( 4)3(8)()(?00022 2030020r r r r r Ze r r r Ze r U r U H πεπε 由于0r 很小,所以)(2??022)0(r U H H +?-=<<'μ ,可视为一种微扰,由它引起的一级修正为(基态r a Z e a Z 02/130 3) 0(1)(-=πψ)

高等量子力学习题汇总

第一章 1、简述量子力学基本原理。 答:QM 原理一 描写围观体系状态的数学量是Hilbert 空间中的矢量,只相差一个复数因子的两个矢量,描写挺一个物理状态。QM 原理二 1、描写围观体系物理量的是Hillbert 空间内的厄米算符(A ?);2、物理量所能取的值是相应算符A ?的本征值;3、一个任意态 总可以用算符A ?的本征态i a 展开如下:ψψi i i i i a C a C ==∑,;而物理量A 在 ψ 中出现的几率与2 i C 成正比。原理三 一个微观粒子在直角坐标下的位置算符i x ?和相应的正则动量算符i p ?有如下对易关系:[]0?,?=j i x x ,[]0?,?=j i p p ,[] ij j i i p x δ =?,? 原理四 在薛定谔图景中,微观体系态矢量()t ψ随时间变化的规律由薛定谔方程给 ()()t H t t i ψψ?=?? 在海森堡图景中,一个厄米算符() ()t A H ?的运动规律由海森堡 方程给出: ()()()[] H A i t A dt d H H ? ,?1? = 原理五 一个包含多个全同粒子的体系,在Hillbert 空间中的态矢对于任何一对粒子的交换是对称的或反对称的。服从前者的粒子称为玻色子,服从后者的粒子称为费米子。 2、薛定谔图景的概念? 答:()()t x t ψψ|,x =<>式中态矢随时间而变而x 不含t ,结果波函数()t x ,ψ中的宗量t 来自()t ψ而x 来自x ,这叫做薛定谔图景. 3、 已知.10,01??? ? ??=???? ??=βα (1)请写出Pauli 矩阵的3个分量; (2)证明σx 的本征态).(211121|βα±=??? ? ??±>=±x S 4、已知:P 为极化矢量,P=<ψ|σ|ψ>,其中ψ=C 1α+C 2β,它的三个分量为: 求证: 答案:设:C 1=x 1+iy 1,C 2=x 2+iy 2

量子力学曾谨言习题解答第五章

第五章: 对称性及守恒定律 [1]证明力学量A ?(不显含t )的平均值对时间的二次微商为: ]?],?,?[[2 22 H H A A dt d -= (H ?是哈密顿量) (解)根据力学量平均值的时间导数公式,若力学量A ? 不显含t ,有 ]?,?[1H A i dt A d = (1) 将前式对时间求导,将等号右方看成为另一力学量 ]?,?[1H A i 的平均值,则有: ]?],?,?[[1]?],?,?[1 [ 1222 H H A H H A i i dt A d -== (2) 此式遍乘2 即得待证式。 [2]证明,在不连续谱的能量本征态(束缚定态)下,不显含t 的物理量对时间t 的导数的平均值等于零。 (证明)设A ?是个不含t 的物理量,ψ是能量H ?的公立的本征态之一,求A ?在ψ态中的平均值,有: ???= τ τψψ d A A ?* 将此平均值求时间导数,可得以下式(推导见课本§5.1) ???-≡= τ τψψd A H H A i H A i dt A d )????(*1]?,?[1 (1) 今ψ代表H ?的本征态,故ψ满足本征方程式 ψψE H =? (E 为本征值) (2) 又因为H ?是厄密算符,按定义有下式(ψ需要是束缚态,这样下述积公存在) τψψτψψτ d A H d A H ??????=)? (*)?()~ (?* (3) (题中说力学量导数的平均值,与平均值的导数指同一量) (2)(3)代入(1)得:

τψψτψψd A H i d H A i dt A d )? (*)?(1)?(?*1?????? -= ??? ???-= τψψ τψψd A i E d A i E ?**?* 因*E E =,而0=dt A d [3]设粒子的哈密顿量为 )(2??2r V p H +=μ 。 (1) 证明 V r p p r dt d ??-=? μ/)(2 。 (2) 证明:对于定态 V r T ??=2 (证明)(1)z y x p z p y p x p r ??????++=? ,运用力学量平均值导数公式,以及对易算符的公配律: ]?,??[1)??(H p r i p r d t d ?=? )],,(?21,??????[]?,??[2z y x V p p z p y p x H p r z y x +++=?μ )],,()???(21,??????[2 22z y x V p p p p z p y p x z y x z y x +++++=μ )],,(,[21],??????[2 2 2z y x V zp yp xp p p p p z p y p x z y x z y x z y x +++++++=μ (2) 分动量算符仅与一个座标有关,例如x i p x ?? = ,而不同座标的算符相对易,因此(2)式 可简化成: ]?,??[21]?,??[21]?,??[21]?,??[222z z y y x x p p z p p y p p x H p r μ μμ++=? )],,(,??????[z y x V p z p y p x z y x +++ ],??[],??[],??[]?,??[21]?,??[21]?,??[2122 2 V p z V p y V p x p p z p p y p p x z y x z z y y x x ++++ + = μ μ μ (3)

完整word版,量子力学试题(2008年)含答案,推荐文档

2008~2009郑州大学物理工程学院电子科学与技术专业 光电子方向量子力学试题(A 卷) (说明:考试时间120分钟,共6页,满分100分) 计分人: 复查人: 一、填空题:(每题 4 分,共 40 分) 1. 微观粒子具有 波粒 二象性。 2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为: E=h ν, p=/h λ 。 3.根据波函数的统计解释,dx t x 2 ),(ψ的物理意义为:粒子在x —dx 范围内的几率 。 4.量子力学中力学量用 厄米 算符表示。 5.坐标的x 分量算符和动量的x 分量算符x p 的对易关系为:[],x p i =h 。 6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量 F 所得的数值,必定是算符F ?的 本征值 。 7.定态波函数的形式为: t E i n n e x t x η -=)(),(?ψ。 8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 。 9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的_______ _。 10.每个电子具有自旋角动量S ρ,它在空间任何方向上的投影只能取两个数值为: 2 η± 。

二、证明题:(每题10分,共20分) 1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系: 证明: z y x L i L L? ] ?, ?[η = ] ? ? , ? ? [ ] ?, ?[ z x y z y x p x p z p z p y L L- - = ] ? ? , ? [ ] ? ? , ? [ z x y z x z p x p z p z p x p z p y- - - = ] ? , ? [ ] ? , ? [ ] ? , ? [ ] ? , ? [ z y x y z z x z p x p z p z p z p x p y p z p y+ - - = ] ? , ? [ ] ? , ? [ z y x z p x p z p z p y+ = y z z y z x x z p p x z p x p z p p z y p z p y?] ? , [ ] ? , ?[ ?] ? , [ ] ? , ?[+ + + = y z x z p p x z p z p y?] ? , [ ] ? , ?[+ = y z y z x z x z p p x z p p z x p z p y p p yz? ?] , [ ?] ?, [ ?] , ?[ ] ?, ?[+ + + = y x p i x p i y?) ( ?) (η η+ - = ] ? ? [ x y p y p x i- =η z L i?η =

量子力学习题解答-第5章

第五章 全同粒子 本章主要内容概要 1. 全同粒子:质量、电荷、自旋等固有性质完全相同的微观粒子称为全同粒子。在一个量子体系中全同粒子是不可区分的,两全同粒子相互交换不会引起物理性质的改变(全同性原理)。所有的微观粒子可以分为两类:波色子和费米子。所有自旋为 整数倍的粒子称为波色子,而所有自旋为/2 奇数倍的粒子称为费米子。由费米子组成的量子体系,不能有两个或两个以上的费米子处于同一个状态(泡利不相容原理),体系的波函数在交换任意两个费米子时是反对称的。对由波色子组成的量子体系,则不受泡利不相容原理的限制,两个或两个以上的波色子可以处于同一个状态,体系的波函数在交换任意两个波色子时是对称的。 如果体系的波函数可以由归一化的单粒子波函数()i q αφ的积表示,其中i 表示不同的单粒子态,q α表示第α个粒子的量子数(包括空间与自旋),则由N 个费米子组成体系的反对称波函数可以用N 阶行列式表示为 12121212() ()()()()()(,,...,,...,)()()() i i i N j j j N A N k k k N q q q q q q q q q q q q q αφφφφφφΦ= 交换任何两个粒子就是交换行列式中的两列,这使行列式改变符号,即波函数A Φ在交换两粒子时是反对称的。当任两粒子处于相同状态,即行列式中两行相同,行列式为零,表示不能有两个或两个以上的费米子处于同一个状态。 对由N 个波色子组成的体系,体系的对称波函数可以表示为 1212(,,...,,...,)()()...()A N i j k N P q q q q C P q q q αφφφΦ=∑ 其中P 表示N 个粒子在波函数中的某一种排列,P ∑表示对所有可能排列求和,由于波色 子可以处于相同的状态,,,...,i j k 可以相等,C 是归一化常数为求和的项数,,,...,i j k 完全相等时为1 ,全不相等时为1/ 2.交换力:以两粒子体系为例,若体系的波函数可以表示为空间部分和自旋部分之积,对称和反对称的空间波函数为 121212(,)()()()()]a b b a x x x x x x ψψψψψ±=± 这种波函数对称化的要求会使两粒子间出现一种力的作用,称为交换力。对对称空间波函数这个力是吸引力,倾向于把两粒子拉近;对反对称空间波函数,这个力是排斥力,倾向于让两粒子相互远离。固体中属于不同原子的两个电子组成的共价键可以由这种力解释,两电子体系的波函数是反对称的,当两个电子的自旋波函数为反对称的自旋单态时,空间波函数必是对称的,所以这种状态下的两个电子倾向于相互靠近,形成共价键。 3. 元素周期表:原子中一个单粒子态(),,n l m 称之为轨道,因为电子是费米子,受到泡利不相容原理的制约,一个轨道上只能有两个电子(一个自旋向上,一个自旋向下)。当原子处于基态时,电子将从最低能态开始依据洪特定则依次填充。1n =这个壳层能容纳两个电子,2n =壳层能容纳8个,3n =容纳18个,第n 个壳层可以容纳2 2n 个电子。(洪特第一定则:在其它量都相同时,总自旋(S )取最大值的状态的能量最低。第二定则:当

高等量子力学

研究生课程教学大纲 高等量子力学 一、课程编码:21-070200-B01-17 课内学时: 64 学分: 4 二、适用学科专业:理学,工学 三、先修课程:数理方法,理论力学,电动力学,量子力学,热力学统计物理 四、教学目标 通过本课程的学习,使研究生掌握希尔伯特空间,量子力学基本理论框架,了解狄拉克 方程,量子力学中的对称性与守恒定律,二次量子化等理论知识,提升在微观体系中运用量 子力学的基本能力。 五、教学方式:课堂讲授 六、主要内容及学时分配 1 希尔伯特空间10学时 1.1 矢量空间 1.2 算符 1.3 本征矢量和本征值 1.4 表象理论 1.5 矢量空间的直和与直积 2 量子力学基本理论框架20学时 2.1 量子力学基本原理 2.2 位置表象和动量表象 2.3 角动量算符和角动量表象 2.4 运动方程 2.5 谐振子的相干态 2.6 密度算符 3 狄拉克方程 6学时 4 量子力学中的对称性 5学时 5 角动量理论简介 5学时 6 二次量子化方法16学时 6.1 二次量子化 6.2 费米子 6.3 玻色子 复习 2学时七、考核与成绩评定:以百分制衡量。 成绩评定依据: 平时作业成绩占30%,期末笔试成绩占70%。 八、参考书及学生必读参考资料 1. 喀兴林,《高等量子力学》,.[M]北京:高等教育出版社,2001 2. Franz Schwabl,《Advanced Quantum Mechanics》,.[M]北京:世界图书出版公司:2012 3. 曾谨言,《量子力学》,.[M]北京:科学出版社:第五版2014或第四版2007 4. https://www.wendangku.net/doc/125653224.html,ndau, M.E.Lifshitz,《Quantum Mechanics (Non-reativistic Theory)》,.[M]北京:世界 图书出版公司:1999 5. 倪光炯,《高等量子力学》,. [M]上海:复旦大学出版社:2005 九、大纲撰写人:曾天海

高等量子力学复习综述

高等量子力学复习 主讲老师:张盈 记录整理:王宏辉 开始第一节课我们告诉大家了,什么是高等量子学,它和普通量子学的一个区别。其实按理说这门课学完,我们应该回过头来想一想,为什么?至少你可以通过描述一个问题来回答清楚,比如说量子力学适用于研究怎样的对象? 这个问题并不是那么好回答,不能简单的说低速的就可以,微观的就行,不是这么简单。那么它有几个层次。 一个就是量子力学和薛定谔方程实际上是不一样,不能把薛定谔方程适用的对象看成是量子力学的对象。这个我给大家说过吧,因为你像狄拉克方程啊,克莱因-戈登方程都属于量子力学。所以量子力学适用于研究的对象是量子力学搭建的这个理论构架所适用研究的对象。这是我们说的第一个层次,你要区分量子力学和薛定谔方程。 第二个层次,你要从量子力学的基本原理,或者说薛定谔方程里面,其他的方面看出来,它适用研究的对象,为什么具有这个特点。也就是说,你说它适用于微观,我们从薛定谔方程或者狄拉克方程里面,怎么能看出来它适用微观。你说它适用于也就是这种粒子数不变的体系,你要能说明这一点,这个方程的体系里面,要能把这些东西对应上。这是第二个层次。 所以回答这个问题的时候应该是站在高等量子的高度,从你们学过的这个课程的基础之上来回答,不再是像以前那个量子力学低速微观OK。简单是这样子。所以这个问题有时候蛮复杂的。 首先我们说这门课的时候,你要理清几个大块,也就是我们这几章。 在第一个大章里面,我们给大家介绍的是量子力学的一个理论的构架。在这个理论构架里面,我们先给大家讲了三条基本假设,大家还能举起来吗?第一条:态,就是关于希尔伯特空间的。第二条:厄米算符是力学量的候选者,第三条:统计解释。 那么我们一个一个来回顾一下。 第一条假设,物理的状态对应希尔伯特空间中的一个矢量,更准确的说,实

量子力学讲义第五章

第五章 中心力场 §5.1 中心力场中粒子运动的一般性质 一、角动量守恒与径向方程 设质量为μ的粒子在中心力场中运动,则哈密顿量算符表示为: 2??()2p H V r μ=+ 22 ()2V r μ =-?+ , 与经典力学中一样,角动量 l r p =? 也是守恒量,即 ?0l t ?=? ??[,]0l H = 2 22221?()22l H r V r r r r r μμ????=-++ ????? 2,0z l l ??=???? ; 2?,0l H ??=???? ; ( ) 2?,,z H l l 构成力学量完全集,存在共同本征态; 定态薛定谔(能量本征方程):2 22 22 1()22l r V r E r r r r ψψμμ????????-++= ????????? 上式左边第二项称为离心势能,第一项称为径向动能算符。 取ψ为 () 2,,z H l l 共同本征态,即:()()(),,,l lm r R r Y ψθ?θ?= (),lm Y θ?是() 2 ,z l l 共同本征态:0,1,2,...l =,0,1,2,...,m l =±±± 分离变量:()()2222 2120l l l E V l l d d R R R r dr dr r μ-+?? ++-= ??? 径向方程可写为:()()2222 2()120l l l E V r l l dR d R R dr r dr r μ-+?? ++-=???? ,0,1,2,...l = (1) 为求解径向方程,引入变换:() ()l l r R r r χ= ; 径向方程简化为:()()2 222 2()10l l E V r l l d dr r μχχ-+??+-=??? ? (2) 不同的中心力场中粒子的能量本征波函数的差别仅在于径向波函数R l (r )或χl (r ),它们由中心势V (r )的性质决定。一般而言,中心力场中粒子的能级是2l +1重简并的。 在一定边条件下求解径向方程(1)或(2),即可得出能量本征值E 。对于非束缚态,E 是连续变化的。对于束缚态,则E 取离散值。在求解径向方程时,由于束缚态边条件,将出现径向量子数n r ,

量子力学-第四版-卷一-(曾谨言-著)习题答案第5章-1

第五章: 对称性及守恒定律 P248设粒子的哈密顿量为 )(2??2r V p H +=μ 。 (1) 证明 V r p p r dt d ??-=? μ/)(2。 (2) 证明:对于定态 V r T ??=2 (证明)(1)z y x p z p y p x p r ??????++=? ,运用力学量平均值导数公式,以及对易算符的公配律: ]?,??[1)??(H p r i p r dt d ?=? ]?,??[H p r =? =)],z y (2) ?[r ? x x x x p x p p x p p x ?????]?,??[23 2-= x x x x x x p x p p x p p x p p x ???????????22 23-+-= x x x x x p p x p p p x ?]?,?[??]?,?[2+= 222?2??x x x p i p i p i =+= (4) ],?[?????????????],??[V p x p V x V p x p x V V p x V p x x x x x x x =-=-=

x V x i ??=?? (5) 将(4)(5)代入(3),得: }{)???(]?,??[222z V z y V y x V x i p p p i H p r z y x ??+??+??+++=? μ }?{2V r p i ??+= μ 代入(1),证得题给公式: V r p p r dt d ??-=? μ 2?)( (6) 的平均值,按前述习题2的结论,其 则=?p r dt d 由前式 P249 ) (2)库仑场 T V 2-= (3)T V n Cr V n 2,== (解)先证明维里定理:假设粒子所在的势场是直角坐标),,(z y x 的n 次齐次式,则不论n 是正、负数,势场用直角坐标表示的函数,可以表示为以下形式,式中V假定是有理函数(若是无理式,也可展开成级数): ∑=ijk k j i ijk z y x C z y x V ),,( (1)

《 高等量子力学》课程教学大纲

《高等量子力学》课程教学大纲 一、课程名称(中英文) 中文名称:高等量子力学 英文名称:Advanced Quantum Mechanics 二、课程代码及性质 课程编码: 课程性质:学科(大类)专业选修课/选修 三、学时与学分 总学时:64(理论学时:64学时) 学分:4 四、先修课程 先修课程:无 五、授课对象 本课程面向物理学各专业学生开设 六、课程教学目的(对学生知识、能力、素质培养的贡献和作用) 量子力学理论是20世纪物理学取得的两个(相对论和量子理论)最伟大的进展之一,以研究微观物质运动规律为基本出发点建立的量子理论开辟了人类认识客观世界运动规律的新途径,开创了物理学的新时代。 本课程是物理学专业本科课程《量子力学》的后续课程,用以弥补量子力学课程与学生实际进入科研前沿之间的知识鸿沟。其内容分为两部分:第一部分是在量子力学课程的基础上归纳阐述量子力学的基本原理(公设)及表述形式。第二部分主要是讲述量子力学的基本方法及其应用。在分析清楚各类基本应用问题的物理内容基础上,掌

握量子力学对一些基本问题的处理方法。 课程的教学目的是使得学生掌握微观粒子的运动规律、量子力学的基本假设、基本原理和基本方法,掌握量子力学的基本近似方法及其对相关物理问题的处理,并了解量子力学所揭示的互补性认识论及其对人类认识论的贡献。 七、教学重点与难点: 课程重点:本课程所讲授的内容均为学生从事前沿科学研究所必备,因此所有内容均为重点 课程难点:本课程所讲授的内容抽象程度较高,理论推导计算量大,因此所有内容均为难点 八、教学方法与手段: 教学方法:采用课堂讲授、讨论、习题等多种授课形式相结合的教学新模式。课堂讲授基本概念、基本原理,通过讨论课加深学生对基本内容的理解,通过习题课提高学生运用基本理论分析问题、解决问题的能力。 教学手段:采用多媒体与板书相结合的教学手段,传统授课手段与现代教育技术手段相互取长补短,相得益彰。特别的,将Mathematica 和Matlab等计算软件引入本课程的教学,以实现抽象复杂的数学物理问题的直观展现,提高学生的学习兴趣。重要理论推导采用板书与多媒体相结合的手段,以形成师生的良好互动。 九、教学内容与学时安排 (一)量子力学的公理体系(教师课堂教学6小时+ 学生课后学习12小时) 教学内容:Hilbert空间、左矢、右矢、算符矩阵表示与表象变换

高等量子力学

量子计算机中的量子力学 ——量子力学理论在现代科技中的应用 06级物理学2班 张洪(40606085) 从1946年第一台计算机诞生以来,其在冯·诺依曼体系结构上已经走过了60余年,其采用Alan Turing 于1936年提出的图灵机模型为计算模型。但随着科学的不断发展,以及计算机制造工艺的不断进步,计算机的尺寸也越来越小,其集成度也越来越高。按照摩尔定律,计算机芯片的集成度不久将达到原子分子量级,但是当电子器件小到原子分子量级的时候,这便受到了量子效应的干扰,这便把量子力学引入了计算机。物理学家Feynman 于1982年提出量子计算机的概念,并指出量子计算机在速度上对于传统计算机可能有本质的超越。 所谓量子计算机,是指利用处于多现实态下的原子进行运算的计算机。某种条件下,原子世界存在着多现实态,即原子和亚原子粒子可以同时存在于此处和彼处,可以同时表现出高速和低速,可以同时向上和向下运动。如果用这些不同原子状态分别代表不同的数字或数据,就可以利用一组具有不同潜在状态组合的原子,在同一时间对某一问题的所有答案进行探寻,就可以使代表正确答案的组合快速脱颖而出。 量子计算机的存储原理 传统计算机信息系统采用物理上最容易实现的二进制数据位存储数据或程序,每一个二进制数据位由0或1表示,成为一个比特(bit )或位,以其作为最小的信息单元。在传统计算机中,每一个数据位要么是0,要么是1,二者必取其一。而量子计算机是根据物理系统的量子力学性质和规律执行计算任务的装置,其计算方式是量子计算。在量子计算机中,量子位(量子计算机的数据位)可以是0或者1,也可以是0和1的任何线性叠加它以一定的概率存在于0和1之间。 为了便于量子系统的表示和运算,狄拉克提出用符号|x>来表示量子态,|x>是一个列向量,称为右矢;其共轭转置用ψ |描述,可表示为↓>+↑>>=|||b a ψ,式中↑>|和↓>|表示量子位的基向量,在量子计算中一般表示 为>0 |和>1|;它们相互正交,a 和b 称为概率幅, 皆为复数;2a 和2b 分别表示>ψ|为>0|和>1|的概率,且1a 22=+b 。在传统计算机中, 一个数据位的值是确定性的, 而在量子计算机中, 量子位的叠加态不是确定性的, 而是概率性的。从另一个角度讲,在传统计算机里,一个二进制位只能存储一个数据,;而在量子计算机里,一个量子位可以同时存储两个数据。从而大大提高了计算机的存储能力。

相关文档
相关文档 最新文档