文档库 最新最全的文档下载
当前位置:文档库 › 隧道涌水量观测记录表

隧道涌水量观测记录表

隧道涌水量观测记录表
隧道涌水量观测记录表

涌水量观测记录

XXXX隧道出口日期:

xxxx隧道出口

涌水量观测记录xxxx年xx月xx日

岩溶地区隧道涌水量估算

岩溶地区隧道涌水量估算 岩溶区隧道的涌水预测是长期以来困扰生产实践的难题,其原因主要有:岩溶地下水赋存极不均一,很难确定隧道内确切的涌水部位及水量大小;勘察精度不够,无动态观测资料及试验资料较少,不能正确描述地质条件及水动力场特征;难以确定合理的计算方法和各类参数。 本次隧道涌水预测是根据隧址区岩溶发育特征、地下岩溶管道系统的分布、地下水补径排特点及各含水岩组富水性等特征,通过采用地下径流模数法和大气降水入渗法、结合地区经验,估算隧道涌水量。 标签:隧道涌水测量 1概况 隧道长2000m左右、最大埋深近200m。中山、溶蚀峰丛洼地地貌区,亚热带湿润季风气候,隧址区内无水库、堰塘。可溶性碳酸盐岩分布广泛,地表溶沟、溶槽、石牙、溶孔、溶穴、溶管、峰丛、洼地、溶丘及溶蚀沟谷等发育,地下岩溶形态则有落水洞、地下河、溶洞等。突水、突泥对隧道工程建设影响甚大。 隧址区位于向斜东翼,向斜轴近乎南北向,两翼岩层倾角约40°左右,近乎对称。轴部地层为三叠系巴东组及白垩系组成,白垩系不整合覆盖于巴东组之上。隧址区内无断裂。区内裂隙发育,一般为张性裂隙,张开宽1~35cm不等,面裂隙率在1.5~3条/m2之间;裂隙发育走向在N45°~65°W、N50°~60°E、N75°~80°E。 2水文地质条件 2.1隧址区岩溶发育规律 溶沟、溶槽、石牙、溶孔、溶穴、溶管在地表随处可见,落水洞口多呈圆形或椭圆形,直径在1~5m之间,普遍发育深度5~15m,少数深不见底,底部多充填黏土夹碎石,以缝状为主,竖井状较少。漏斗多见于斜坡地带或洼地周边缓坡地带,受地形影响多呈斜歪状和碟状,主要受层面、地形和裂隙控制发育而成,深度多为1~3m。隧址区岩溶发育具有以下规律和特征:①岩溶发育的呈层性,岩溶的发育与地壳的上升、停顿和岩溶水的变迁密切相关,故不同岩溶期发育着不同的岩溶形态,从而形成了区域上岩溶发育的呈层性特点;②岩溶发育深度与侵蚀基准面的一致性,河流和泉是调查区当地侵蚀基准面,各水平岩溶出口标高基本与最低侵蚀基准面一致;③岩溶发育方向具有与岩层走向一致性的特点,区内岩层走向N4°~9°W,倾向西,主要发育一组东西走向裂隙,地表落水洞多呈串珠状沿岩层走向分布,区内最大溶槽走向南北。因此,区内岩溶总体具顺岩层走向发育特征;④与地下水运动条件关系密切,区内含水地层与相对隔水层组成了区内四个相对独立的含水单元,这些隔水层顶底板附近,地下水活动相对强烈,

涌水量计算案例

集水面积 集水面积是指流域分水线所包围的面积。集水面积大都先从地形图上定出分水线用求积仪或其它方法量算求得,计算单位为平方公里。如长江集水面积180万 分水线图 平方公里,黄河集水面积约75万平方公里。 地面分水线 地下分水线

计算:复核: 引文一: 4.3隧道涌水量预测 隧道区以根据地质调查结果分析,目前隧道涌水量暂按降水入渗法和地下径流模数法进行预测计算。等深孔水文地质试验参数出来后再按地下水动力法核算。 (1)大气降水入渗法 采用公式:Q=2.74 a W A(m'/d) 采用公式:Q=2.74 a W A(m3/d) a:降水入渗系数。全隧道地表为可溶岩,裂隙发育、岩溶化程度高。DK63+165至DK64+600段洞身大部处于石英砂页岩、炭质页岩夹煤系下,考虑到断层构造影响严 重,降水入渗系数a取值0.25 ;DK64+600至DK67+651隧道处岩溶强烈发育的可溶岩中,降水入渗系数a取值0.5。W:年平均降水量,本测区取1448mm

A:集水面积。 DK63+165 ?DK64+600 段:计算集水面积2.79km2; DK64+600?DK67+651 段;计算集水面积7.32 km2; 涌水量分别计算如下: Q=2.74 汉0.25江1448^.79 =2767(m'/d)?2800 (m3/d) Q=2.74 0.5 1448 7.32 =14521(m'/d)?14500 (m3/d) 两项合计Q 平常=2800+14500=17300(m7d) 考虑到岩溶区有暗河发育并构造发育,影响入渗系数的因素可能要大,DK64+600?DK67+651段雨季涌水量期倍增系数按3考虑,DK63+165?DK64+600段按系数2 考虑; 隧道雨季涌水量Q洪=2800X2+14500X3 =5600+4350009100 (m3/d) ( 2)地下径流模数法 Q=86.4X M X A M—地下径流模数(m/d ? Km) A—为隧道通过含水体的地下集水面积( Km2) 测区集水面积A=10.11 (Knn)(大致估算),地下水径流模数M枯=10.3( 升/秒?平方公里)(依据都匀幅《区域水文地质普查报告》)则: Q 枯= M 枯X A =86.4 X10.3X 10.11 =9000 ( m3/d ) 考虑到岩溶区有暗河发育并构造发育,其雨季涌水量期倍增系数按 3 考虑 隧道雨季涌水量Q洪=9000X3 3 =27000( m3/d)

井点降水涌水量计算

按照初定方案,本工程除埋深较深段使用拖拉管施工外,剩余大部分需使用井点降水大开挖施工。按照设计及规范初步设计沟槽底宽1.5m,沟槽深按照最大挖深设计取4m,开挖沟槽边坡按照1:1,基坑横剖面图如附图。经地质勘探,天然地面属耕植土,其下为粉质粘土(<=-4m),淤泥质粉质粘土(<=-7.14m)、淤泥质粉质粘土夹粉砂,底部为泥岩,基本都属于透水层。地下水位标高为-0.5m采用轻型井点降水施工。 1井点布设 根据工程地质及施工状况,轻型井点采用沟槽两侧单排布设,为是总管接近地下水位,井点管布设于已挖好的路床底。总管距沟槽开挖线边缘1m,总管长度 L=50×2=100(m) 水位降低值 S=4 (m) 采用一级轻型井点,井点管的埋设深度(总管平台面至井点管下口,不包括滤管) H2>=H1 +h+IL=4.0+0.5+0.1×5.75=5.1(m) 采用6m长的井点管,直径50mm,滤管长1m。井点管外露地面0.2m,埋入土中5.8m(不包括滤管)大于5.2m,符合埋深要求。按无压非完整井环形井点系统计算。 2).基坑涌水量计算 按无压非完整井环形点系统涌水量计算公式(式1—23)进行计算 Q= 先求出H、K、R、x0值。 H:有效带深度 H=1.85(S,+L) s’=6-0.2-1.0=4.8m求得H: H=1.85(s,+L)=1.85(4.8+1.0)=10.73(m) 由于H0

岩溶隧道涌水量的预测方法研究_郭玉法

为宁杭客运专线宜长段线位稳定提供了重要依据。通过本次工作也认识到:在采空区线位方案评价工作中,必须充分收集既有资料,多方走访调查,同时辅以必要的勘探工作,以查清采空区范围及影响边界,为安全、经济的线路方案做出可靠的分析评价。 参 考 文 献 [1] TB10027 2001 铁路工程不良地质勘察规程[S] [2] 铁道部工务局.铁路公务技术手册(路基篇)[M ].北京:中国铁道 出版社,1993 [3] 铁道第四勘察设计院.宁杭铁路采空区勘察报告[R ].武汉:铁道 第四勘察设计院,2007 收稿日期:2007-08-07 第一作者简介:郭玉法(1963 ),男,2003年毕业于河海大学水文水资源工程专业,工程师。 岩溶隧道涌水量的预测方法研究 郭玉法 鲍庆煜 (江苏省水文水资源勘测局南京分局,江苏南京 210008) Research on Forecasti ngM et hods for Gus hi ng W ater Vol u m e in Karst Tunnels Guo Yu fa Bao Q i n gyu 摘 要 系统分析了隧道涌水量预测的方法,并用数值模拟方法进行了某隧道涌水的预测研究,认为数值模拟方法是进行隧道涌水量预测的有效方法。 关键词 岩溶 隧道 涌水量 预测 数值模拟 铁路、公路隧道工程中经常发生较大规模的涌水现象,给隧道施工带来了严重的影响,甚至会造成很大的经济损失和人员伤亡。在岩溶地区,隧道涌水现象更为常见,对其进行预测与控制研究显得尤为重要。 根据对铁路、公路隧道涌水情况的初步统计,预测涌水量和实际涌水量相差小于20%的仅占15%,误差在20%~80%之间的占60%;误差超过80%的达25%以上,部分隧道的预测误差竟达到数十倍。如襄渝线大巴山隧道预计涌水量为4 14 104 m 3 /d ,施工时最大涌水为20 55 104 m 3 /d ;川黔线娄山关隧道预计涌水量为 6 0 104m 3/d ,施工时最大涌水量为19 20 104m 3 /d ;贵昆线岩脚寨隧道预计涌水量为0 66 104 m 3 /d ,施工时最大涌水量为10 08 104 m 3 /d [1] 。 造成上述结果的原因很多,归纳起来不外乎以下两方面:一是水文地质条件未调查清楚;二是用以预测隧道涌水量的数学模型不正确。前者是基础,若重要的水文地质条件未调查清楚,预测可能要犯大错误。但是,对于条件已经基本查清楚了的拟建隧道区,如果计算模型选得不正确,其预测效果同样也不好。无论预测结果偏小还是偏大,都将给工程的可行性论证、设 计及施工带来巨大损失。这在以往有不少教训:如果预测量偏大,可能使得已设计的既经济又方便的线路改道,或者使得设计防水系统更加复杂化,不仅会浪费大量的人力、物力及财力,而且浪费宝贵的建设时间;另一方面,如果预测量偏小,则可能使得工程在施工过程中发生灾难,甚至使得已建成隧道不能投入使用。因此,隧道涌水预测研究任重道远。 本文对现有的预测方法进行了综合评述,并采用数值模拟方法进行了某岩溶隧道工程涌水量预测的实例研究。 1 各类预测方法的综合评述 目前,隧道涌水量的预测方法主要有:水均衡法、解析法(地下水动力学法)、经验公式法、水文地质比拟法、降水入渗法、地下径流模数法、数值分析法以及非线性理论方法等。 1 1 水均衡法 水均衡法是应用水均衡原理预测隧道涌水量的一种方法。它通过研究某一时期(均衡期)均衡区地下水收支项目之间的关系,建立地下水均衡方程,从而计算隧道涌水量。其最基本的形式为 V 补-V 排= V 储73 岩溶隧道涌水量的预测方法研究:郭玉法 鲍庆煜

降雨入渗法涌水量计算

二、涌水量的预测 拟采用大气降水渗入量法对隧道进行涌水量计算 1.大气降水渗入法(DK291+028-DK292+150段) Q = 2.74*α*W*A Q—采用大气降水渗入法计算的隧道涌水量(m3/d) α—入渗系数 W—年降雨量(mm) A—集水面积(km2) 参数的选用: α—入渗系数选用0.16; W—隧址多年平均降雨量为508.7m,最大年降雨量为1496.88mm(月平均最大降雨量×12)。 A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.33km2 最大涌水量为: Q= 2.74*α*W*A = 2.74*0.16*1496.88*0.33= 216.56(m3/d),平均每延米每天涌水量为:0.19(m3/m.d)。 正常涌水量为: Q= 2.74*α*W*A= 2.74*0.16*508.7*0.33=73.59(m3/d),平均每延米每天涌水量为:0.07(m3/m.d)。 2. 大气降水渗入法(DK292+150-DK293+440段) Q = 2.74*α*W*A Q—采用大气降水渗入法计算的隧道涌水量(m3/d) α—入渗系数 W—年降雨量(mm) A—集水面积(km2) 参数的选用:

α—入渗系数选用0.18; W—隧址多年平均降雨量为508.7m,最大年降雨量为1496.88mm(月平均最大降雨量×12)。 A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.79km2 最大涌水量为: Q= 2.74*α*W*A = 2.74*0.18*1496.88*0.79= 583.23(m3/d),平均每延米每天涌水量为:0.45(m3/m.d)。 正常涌水量为: Q= 2.74*α*W*A = 2.74*0.18*508.7*0.79= 198.2(m3/d),平均每延米每天涌水量为:0.15(m3/m.d)。 3.大气降水渗入法(DK293+440- DK293+870段) Q = 2.74*α*W*A Q—采用大气降水渗入法计算的隧道涌水量(m3/d) α—入渗系数 W—年降雨量(mm) A—集水面积(km2) 参数的选用: α—入渗系数选用0.12; W—隧址多年平均降雨量为508.7mm,最大年降雨量为1496.88mm(月平均最大降雨量×12)。 A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.25km2 最大涌水量为: Q= 2.74*α*W*A = 2.74*0.12*1496.88*0.25 = 123.04(m3/d),平均每延米每天涌水量为:0.29(m3/m.d)。 正常涌水量为: Q= 2.74*α*W*A = 2.74*0.12*508.7*0.25= 41.82(m3/d),平均每延米每天涌水量为: 0.1 (m3/m.d)。

矿井涌水量计算的方法[1]

矿井涌水量的计算与评述 钱学溥 (国土资源部,北京 100812) 摘要:文章讨论了矿井涌水量的勘查、计算、精度级别、允许误差和有效数字。文章推荐了反求影响半径、作图法求解矿井涌水量的方法。 关键词:矿井涌水量;勘查;计算;精度级别;允许误差;有效数字 根据1998年国务院“三定方案”的规定,地下水由水利部门统一管理。水利部2005年发布了技术文件SL/Z 322-2005《建设项目水资源论证导则(试行)》。该技术文件6.7款规定,地下水资源包括地下水、地热水、天然矿泉水和矿坑排水。6.1.2款规定,计算的地下水资源量要认定它的精度级别。我们认为,认定计算的矿井涌水量的级别和允许误差,不仅是水利部门要求编写《建设项目水资源论证》的需要,而且有利于设计部门的使用。在发生经济纠纷的情况下,也有利于报告提交单位和报告评审机构为自己进行客观的申辩。下面,围绕这一问题,对矿井涌水量的勘查、计算、精度级别、允许误差和有效数字等方面,作一些论述和讨论。 1 矿井涌水量与水文地质勘查 矿井涌水量比较大,要求计算的矿井涌水量精度就比较高,也就需要投入比较多的水文地质勘查研究工作。表1,可以作为部署水文地质工作的参考。 表 1 矿井涌水量与水文地质勘查 Table 1 Mine inflow and hydrogeological exploration

注:○1多年生产的矿山是指:开采水平不变、开采面积基本不变的多年生产的矿山,如即将闭坑或是即将破产的矿山,即是这种多年生产的矿山。○2多孔抽水试验,是指带观测孔的一个抽水主孔的抽水试验,持续抽水几天。○3群孔抽水试验是指带观测孔的多个抽水主孔的抽水试验,其抽水总量,一般要达到计算矿井涌水量的1/3~3/4,持续抽水几十天。○4利用地下水动力学计算公式,计算矿井涌水量,就属于解析法的范畴。大井法、集水廊道法就是常用的解析法。○5数理统计包括一元线性回归、多元线性回归、逐步回归、系统理论分析、频率计算等(参考钱学溥,娘子关泉水流量几种回归分析的比较,《工程勘察》1983第4期,中国建筑工业出版社)。可以把水位抽降、巷道开拓面积、矿产产量、降水量等作为自变量,把矿井涌水量作为因变量。○6数值法也就是计算机模拟,是通过利用计算机模拟地下水流场的变化,计算矿井涌水量的一种方法。○7常用的大井法、集水廊道法等解析法计算矿井涌水量,只考虑了含水层的导水性,没有考虑地下水的补给量。因此,只有进行了解析法和水均衡的计算,用地下水的补给量验证解析法计算的结果,计算的矿井涌水量的精度才能达到C 级。 2 稳定流、非稳定流公式应用的主要条件 2.1一般报告采用的解析解大井法、集水廊道法,是基于稳定流理论推导的地下水动力学计算公式。它要求地下水有比较充分的补给条件,要求在该水平开采的几年到几十年内,矿井排水计算的地下水影响半径边界上的水头高度,永远稳定在计算采用的高度上。 2.2基于非稳定流理论推导的地下水动力学计算公式,恰恰相反,它的使用条件是地下水没有补给,含水层分布无限,地下水影响半径不断向外扩大。 2.3由于采用大井法、集水廊道法,一般都没有考虑地下水补给量的问题,因此,计算的结果可能有较大的误差,它的精度一般只有D级。

涌水量计算

第三节、隧道洞室涌水量预测 一、水文地质参数计算 为取得计算洞室涌水量的水文地质参数,进行钻孔提(抽)水试验,利用提水试验和抽水试验结果,采用地下水动力学方法及相关计算公式,大部分按潜水非完整井计算出提水的渗透系数K 抽水,另外根据提水后的恢复水位与时间的关系,即s~t 关系计算出恢复的渗透系数K 恢复 ,并参照当地岩性的渗透系数K , 将该三种方法求得的渗透系数K 值并结合钻探过程中冲洗液的消耗量,岩体的破碎性、岩性的矿物组成及充填胶结情况,给定一个建议的渗透系数K 值。求得水文地质参数, 其提水时K 值计算公式如下: K= 2 2) lg (lg 733.0h H r R Q --ω 其中:K ——渗透系数(m/d )。 Q ——出水量(m 3/d )。 R ——影响半径(此值根据《工程地质手册》第二版表9-3-12查得) r ω——钻孔半径(m )。 H ——自然情况下潜水含水层的厚度(m )。 h ——抽水稳定时含水层的厚度(m )。 恢复水位计算渗透系数K 值公式如下: ()2 12 ln 25.3S S t r H r K ωω+= (完整井) 其中:K ——渗透系数(m/d )。 r ω——钻孔半径(m )。 H ——自然情况下潜水含水层的厚度(m )。 S 1——抽水稳定时的水位降深(m )。 S 2——地下水恢复时间t 后水位距离静止水位的深度(m )。 t ——水位从S 1恢复到S 2的时间(d )。 具体计算过程及计算结果见附表5:钻孔提(抽)水试验渗透系数(恢复水位)计算成果表。 二、洞室涌水量的估算方法 (一)、洞室涌水量的补给来源 为了更准确预测隧道洞室涌水量,通过野外水文地质调绘,并分析洞室地下水的补给来源,含水岩性的空间分布、富水性,结合钻孔对地下深处地质情况的揭露,参考物探测井成果,我们认为隧道洞室涌水量的补给来源由以下几部分组成: a .洞室影响范围内汇集的大气降水渗漏补给量; b .洞室附近地下水的补给量(包含隧道上行线、下行线间含水层的静储量及洞室两侧地下水的侧向补给量); c .地表水流过洞室上方时的渗入补给量; d .地表水通过节理裂隙、断层破碎带给洞室的侧向补给量; e .断层破碎带导入洞室的地下水量。 (二)、洞室涌水量的估算方法 根据以上对洞室涌水量补给来源的分析,结合隧址区工程地质、水文地质条件及隧址区气候、大气降雨等特征,本次计算我们按隧道开挖正常涌水量及特大暴雨、地表水沿断层或溶洞导入洞室等极端特殊情况下极端涌水量两种情况考虑。 1、正常涌水量 正常涌水量的计算我们选择以下的计算方法: (1)大气降水入渗法:

隧道涌水量预算

隧道涌水量预测 准确预测隧道涌水量一直是国内外隧道建设的难点,目前尚无成熟的方法。为了使我们的预测尽可能接近实际,进行了大量的水文地质调查与测试,采集了较丰富的数据,拟采用多种方法进行预测。考虑各段含水带渗透系数的差异,采取分段预测隧道涌水量。并根据水文地质条件选用三种不同方法(公式)分别计算,以便比较。 8.2.1 竖井比拟法 裂隙网络具分段独立性,含水体上、下部均有隔水边界。设单个竖井居各段裂隙发育系统之中,完全可以达到疏干目的。又因在不同地段内均有代表性抽水试验孔,按钻孔涌水量曲线方程推求各段隧道底板的涌水量,然后比拟成竖井涌水量,将会较为接近实际。 本次根据ZK28-3、ZK29-1、CZK53-1、CZK53-2抽水试验Q~S曲线曲线方程下推预测涌水量如下表8.2.1: 隧道涌水量预测(一)表8.2.1

8.2.2 地下水动力学法 考虑隧道在长期排水的情况下,位于无限厚的潜水含水带中,按有限含水厚度计算涌水量。采用潜水非完整式水平巷道公式: Q =] ) (2)(4cos )(4ln[kS )(22121212 2 212 1R R R R лb R R лb R H R H kb +-++ + 式中:H 1=H 2 R 1=R 2 Q —预测涌水量(m 3/d ); H —由隧道路肩起算的含水层厚度(m ); R —隧道排水影响宽度(m ); b —隧道宽度(m ); S —降深(m ); k —隧道围岩渗透系数(m/d )。 隧道涌水量预测(二) 表8.2.2

8.2.3 降水入渗系数法 采用的计算公式为: Q=2.74×α×ω×A 其中:Q—计算涌水量(m3/d); α—入渗系数; ω—年降水量(mm); A—隧道集水面积(k㎡)。 中条山大部分基岩裸露,地表裂隙发育,有利于大气降水入渗。但地形陡峭,大气降水易排走不易补给地下水,冲沟地段地势低平有利地下水入渗,根据有关经验数据,中条山混合花岗片麻岩和片岩地区的综合入渗系数取0.20。 Q=2.74×0.20×600×3.08=1013(m3/d)

竖井涌水量计算的经验公式法

竖井涌水量计算的经验公式法 [导读]本文详细介绍了竖井涌水量计算的经验公式法。 若在竖井位置及其附近有三个或三个以上降深的稳定流抽水试验资料,可用本方法计算竖井涌水量。 一、计算步骤 (一)根据抽水试验资料,作涌水量(Q)与降深(S)的关系吗线,即Q=f(s)曲线; (二)根据抽水试验资料,用图解法、差分法或曲度法判断涌水量曲线方程类型,并找出相应的涌水量方程式; (三)根据相应的方程式计算与设计竖井水位降深相同时的钻孔涌水量Qi; (四)根据钻孔涌水量Qi换算成为竖井涌水量。 二、计算方法 (一)绘制Q=f(s)曲线 根据钻孔抽水试验资料,绘制Q=f(s)曲线。 (二)涌水量曲线方程类型的判断 1、图解法 根据已绘出的Q= f(s)曲线如为非直线型应进行单位水位降深、双对数或单对数变换。根据Q= f(s)或经过变换后的直线图形形式即可判定涌水量曲线方程类型。 若Q= f(s),在Q,s直角座标中是直线关系,则涌水量曲线方程为直线型,见表1-2中图(1),即Q=qs; 若S0= f(Q)在S0,Q直角座标中是直线关系,则涌水量曲线方程为抛物线型,见表1-2中图(2)及图(3);即S=aQ+bQ2,亦即S0=a+bQ; 若lgQ=f(lgS)在lgQ,lgS直角座标中是直线关系,则涌水量曲线方程为指数型,见表1-2中图(4)及图(5),即Q= ,亦即;

若Q=f(lgS)在Q,lgS直角座标中是直线关系,则涌水量曲线方程为对数型,见表1-2中图(6)及图(7),即Q=a+blgS。 2、差分法 一般凡属直线方程或直线化的抛物线方程S0=a+bQ 、指数方程、对数方程Q=a+blgS的一阶差分虽为常数,但不相等。在这种情况下,可根据曲线拟台差的大小来判断接近那种涌水量方程。选取拟合误差最小的曲线相对应的涌水量方程式,作为竖井涌水量计算的方程式。 表1 Q=r(s)曲线方程式及其适用条件(一)

露天采矿场总涌水量计算

露天采矿场总涌水量计算 露天采矿场总涌水量是由地下水涌水量和降雨迳流量两部分组成。 一、地下水涌水量的计算 露天采矿场地下涌水量与地下开采矿坑地下水涌水量计算方法基本相同。 二、降雨迳流量计算 露天采矿场降雨迳流量,应按正常降雨迳流量和设计频率暴雨迳流量分别计算。 (一)计算方法 1、正常降雨迳流量(Qz)计算公式 Qz=FH 式中F——泵站担负的最大汇水面积,m2; H——正常降雨量,m; ——正常地表迳流系数,%。 2、设计频率暴雨迳流量(Qp)计算公式 Qp=FHp′ 式中Hp——设计频率暴雨量,m; ′——暴雨地表迳流系数,%; 其它符号同前。 (二)计算参数的选取 1、汇水面积(F)的圈定 根据排水方式确定的排水泵站担负的最大汇水面积进行圈定。应包括露天境界内和境界外的地形分水岭或地表截水沟范围以内的汇水面积。 2、地表迳流系数的确定 地表迳流系数的选取,可根据采矿场岩石性质、裂隙发育程度和降雨强度大小等因素确定。 对于扩建或改建矿山,在具备实测地表迳流系数的矿山,应尽可能采用实测值。对于不具备实测条件的新建矿山,当有类似生产矿山资料时,应选用类似生产矿山的实测值。对缺乏上述资料的矿山,可选用地表迳流系数经验值。 1)生产矿山实测地表径流系数 国内部分生产露天采矿场地表径流系数实测值,见表1、表2、表3、表4。 2)地表径流系数经验值 当无实测资料可按表5选取地表迳流系数经验值。 (

( 注:由于爆破人为地扩大了原岩的裂隙和破碎程度,岩石破碎、裂隙发育,整个采场约有90%地段属松散、松软和半坚硬的岩石。 ( 注:大冶铁矿采用井巷排水、地表迳流通过集水巷流入水仓。 注:1、本表内数值适用于暴雨径流量计算,对正常降雨量计算应将表中数值减去0.1~0.2。 2、表土指腐植土,表中未包括的岩土则按类似岩土性质采用。

矿井涌水量的计算

三、地下水动力学法 地下水动力学法的理论依据是地下水运动的线性渗透定律,即达西定律。根据这个原理和具体的水文地质条件,可选择不同的公式计算矿井井简的浦水量。 (一)垂直井筒涌水量的计算 1.潜水完整井涌水量计算 所谓潜水完整井是指开凿在潜水含水层中,井打穿含水层到隔水层底板的井筒 22 1.366lg lg H h Q K R r -=- 因为 h=H-S 所以 (2)1.366lg lg H S S Q K R r -=- 在井筒掘凿时,井筒中式不允许积水的,因此h=0,或者说S=H,这时, 2 1.366lg lg H Q K R r =- 式中 Q ——井筒涌水量(m3/d ) K ——含水层渗透系数(m/d ) H ——含水层厚度 h ——井中出水地段高度 S ——水位降低值 R ——影响半径 r ——井筒半径 2.承压水完整井涌水量计算 承压水完整井是指开凿在承压含水层中,并全部揭露含水层的井筒 ()2.73lg lg M H h Q K R r -=-或 2.73lg lg MS Q K R r =- 3.完整潜水承压井涌水量计算 当井筒穿过承压含水层水位下降很大,降到隔水顶板以下时,井筒附近变为无压水,这种情况称为潜水承压井 22(2)1.366lg lg HM M h Q K R r --=- 上述公式同样适用于钻孔涌水量计算 如果抽水试验是在井筒检查孔中进行,用钻孔涌水量可按下式换算成井筒涌水量 112122 lg lg lg lg R r Q Q R r -=- (二)水平尽道涌水量的预剐方法 计算水平巷道涌水量时,同样可将巷道看成为水平集水于程。因此,可利用地卞水向水平集水工程运动的公式计算。

矿井涌水量计算

郑煤集团(宝丰)盛源煤业有限公司 矿井涌水量计算 2008年06月09日

郑煤集团(宝丰)盛源煤业有限公司 矿井涌水量计算 一、矿井概况 1、地理位置 郑煤集团(宝丰)盛源煤业位于宝丰县大营镇宋坪村西南,东距宝丰县城约19Km,距韩庄至大营公路0.5Km。由公路通往该矿,交通十分便利。 2、企业性质 宝丰县盛源煤业公司是由宝丰县大营镇宋坪村办煤矿和大营镇双鱼山二矿于2005年资源整合而成,于2007年12月被郑煤集团整合,更名为郑煤集团(宝丰)盛源煤业有限责任公司。 3、可采煤层 主要开采山西组下部的二1煤层。其次为一4煤层。 4、煤层标高 二1煤层埋深270m~337m,煤层开采深度底板标高为-140m~0m。一4煤层埋深260m~400m,煤层开采深度底板标高为-160m~-30m。 5、技改简况 全矿井采用四立井开拓,主井深297.67m, 井筒直径

2.6m,装备JK2/30x提升绞车;副井深322m,井筒直径4.0m,装备JK-2.0×1.8提升绞车,风井井深300.1m,井筒直径2.6m,排水井井深332m,井筒直径2.6m。 通风方式为中央分列式,风井装备两台FBCDZ-N016/2×75型主扇抽出通风,其他三个井筒进风,已形成通风系统。 排水:井底安设6台水泵,其中:主井底2台,型号为D46-50×8,副井底D85-45×8水泵3台,D46-50×8水泵1台。 地面有三趟6KV供电电源,分别引自孙岭变电站14板、17板和22板,另外矿井配备发电机组4台,其中:主井400KW 两台,副井300KW一台,风井350KW一台。 井下6个掘进工作面,分别是:副井井下变电所、水仓、首采工作面风、机巷、下山水仓2个头。年产15万吨技改工作正加紧进行。 二、矿井水文地质 矿区主要含水层分为:寒武系上统崮山组,石炭系上统本溪组和太原组,二又叠系下统山西组、下石盒子组,第四系。 1、寒武系上统崮山组灰岩含水层 岩性为白云质灰岩,本组厚60~130m,野外观测结果裂隙、岩溶不甚发育,无泉水出露。 2、石炭系上统太原组含水层

隧道洞室涌水量预测

隧道洞室涌水量预测:采用大气降水入渗估算法、达西定律计算法、水平廊道集水计算法三种方法计算。 ⑴、大气降水入渗法: Q=α?F?P /365 式中:α-大气降水入渗系数(取10%); F-隧道影响带汇水面积(按隧道两侧各400m计); P-大气降水量(当地年平均降水量上限,查阅资料,计p=610mm)。⑵、达西定律计算法: Q=K?I?L?B 式中:K-渗透系数; I —水力坡降(根据经验,取I=1); B-计算断面宽度,取洞底以上部分渗水段周长(单洞三车道,计B=35m)。 L-计算断面长度。 ⑶、水平廊道集水半经验公式,计算断面如图。 式中:Q-隧道稳定涌水量(m3/d); L-隧道含水段长度(m); H-洞底以上含水层厚度(m),取厚度不同段平均值; h0-洞内排水沟设计水深(m),取0.5m; R-影响半径,取200m计; r为隧道宽度的一半(m)

地下水迳流模数法 Qs=M?A M=Q'/F 式中:Qs——隧道通过含水体地段的正常涌水量(m3/d); M——地下迳流模数[m3/(d?km2)]; A——隧道通过含水体地段的集水面积。 Q'——地下水补给的河流的流量或下降泉流量(m3/d),采用枯水期流量计算; F——与Q'的地表水或下降泉流量相当的地表流域面积(km2)。 水平巷道地下水动力学法 公式 式中:Q——隧道涌水量,m3/d ; B——隧道含水体长度; K——含水体渗透系数; H(S)——水柱高度(水位降低); R——隧道含水体降水影响半径(m),勘察区内地下水不具承压性按公式R=2S 进行计算; 6、地下水疏干静水量 古德曼经验式 式中:Q0——隧道通过含水体地段的最大涌水量(m3/d); K——含水体渗透系数; H——静止水位至洞身横断面等价圆中心的距离(m); d——洞身横断面等价圆直径(m); L——隧道通过含水体的长度(m)。 佐藤邦明非稳定流式 式中:Q0——隧道通过含水体地段的单位长度最大涌水量[m3/(s?m)]; m——换算系数,一般取0.86; K——含水体渗透系数, h2——静止水位至洞身横断面等价圆中心的距离(m); r0——洞身横断面等价圆直径(m); hc——含水体厚度(m)。 裘布依理论式 式中:Q0——隧道正常涌水量(m3/d); K——含水体渗透系数,H——洞底以上潜水含水体厚度(m); h——洞内排水沟假设水深(一般考虑水跃值)(m); Ry——隧道涌水地段的引用补给半径(m); L——隧道通过含水体的长度(m)。

涌水量计算

(1)解析法 根据井田水文地质条件和矿井主要充水因素,利用解析法进行矿坑涌水量预测时,直接充水含水层太原组灰岩岩溶水。 1)太原组灰岩岩溶水预测 2 0(2)5-1S M M h Q B K R --= () 5-2 () 式中:Q ——预测矿坑涌水量,m 3/h ; S ——水位降低值,m ; K K ——渗透系数,m/d ; M ——含水层厚度,m ; B ——进水廊道长度,m ; R ——影响半径,m ; K 取抽水实验资料0.4427 2、10+11号煤层矿井涌水量预算(大井法) 开采10+11号煤层布置一个工作面,工作面宽180 m ,推进长度1200m ,因此,将矩形工作面(长a=1200m,宽b=180m )看做一个大井,使用大井法预算矿井涌水量: 计算公式为:(2)1.366H M M Q K LgR Lgr -=-

式中:Q%~矿井涌水量(m 3/d) K%~渗透系数(m/d) H%~水头高度(m) M%~含水层厚度(m) r%~大井半径(m),r=η 4 a b + R 0%~引用半径(m),R 0=10S K (S=H) R%~影响半径(m),R=R 0+ r 0 根据ZK504号孔资料,太原组含水层水位标高1120.58m ,渗透系数(K )0.4427m/d,含水层厚度(M )约9.5m,先期开采地段10+11号煤层底板标高最低为884m,由此确定水头高度: (H=S )=1120.58-884=236.58(m) r=η 4 a b +=379.5m R 0=10S K =1574.1m R = R 0+ r 0=1953.6m 将上述参数代入上述公式得开采10+11号煤层矿井正常涌水量Q=3743m 3/d (156m 3/h ) 最大涌水量Qmax=δQ 正,δ: 季节影响比值系数 开采2号煤层时,季节影响比值系数δ=1.2 故最大涌水量Qmax=3743×1.2=4492 m 3/d (187.2m 3/h ) 2号煤层与10+11号煤层联合开采,矿井正常涌水量为上述涌水量之和,即矿井正常涌水量:Q 正=355+3743=4098 m 3/d(170.75 m 3/h) 最大涌水量Qmax=425+4492 =4917 m 3/d(204.88m 3/h)

涌水量计算

涌水量计算

第三节、隧道洞室涌水量预测 一、水文地质参数计算 为取得计算洞室涌水量的水文地质参数,进行钻孔提(抽)水试验,利 用提水试验和抽水试验结果,采用地下水动力学方法及相关计算公式,大部 分按潜水非完整井计算出提水的渗透系数K抽水,另外根据提水后的恢复水位与时间的关系,即s~t关系计算出恢复的渗透系数K恢复,并参照当地岩性的渗透系数K,将该三种方法求得的渗透系数K值并结合钻探过程中冲洗液的消耗量,岩体的破碎性、岩性的矿物组成及充填胶结情况,给定一个建议的渗透系数 K 值。求得水文地质参数, 其提水时K值计算公式如下: H2- h2 其中:K ------- 渗透系数(m/d) Q ----- 出水量(m3/d) R ――影响半径(此值根据《工程地质手册》第二版表9-3-12查 得) r w ---- 钻孔半径(m )。 H――自然情况下潜水含水层的厚度(m)h――抽水稳定时含水层的厚度(m)。 恢复水位计算渗透系数K值公式如下: r w----- 钻孔半径(m)。 H――自然情况下潜水含水层的厚度(m) 51——抽水稳定时的水位降深(m)。 52——地下水恢复时间t后水位距离静止水位的深度(m)。t――水 位从Si恢复到S2的时间(d)。 具体计算过程及计算结果见附表5:钻孔提(抽)水试验渗透系数(恢 复水位)计算成果表。 二、洞室涌水量的估算方法 (一)、洞室涌水量的补给来源 为了更准确预测隧道洞室涌水量,通过野外水文地质调绘,并分析洞室地下水的补给来源,含水岩性的空间分布、富水性,结合钻孔对地下深处地质情况的揭露,参考物探测井成果,我们认为隧道洞室涌水量的补给来源由以下几部分组成: a.洞室影响范围内汇集的大气降水渗漏补给量; b洞室附近地下水的补给量(包含隧道上行线、下行线间含水层的静储量及洞室两侧地下水的侧向补给量); c. 地表水流过洞室上方时的渗入补给量; d. 地表水通过节理裂隙、断层破碎带给洞室的侧向补给量; e. 断层破碎带导入洞室的地下水量。 (二)、洞室涌水量的估算方法 根据以上对洞室涌水量补给来源的分析,结合隧址区工程地质、水文地质条件及隧址区气候、大气降雨等特征,本次计算我们按隧道开挖正常涌水量及特大暴雨、地表水沿断层或溶洞导入洞室等极端特殊情况下极端涌水量两种情况考虑。 1、正常涌水量 正常涌水量的计算我们选择以下的计算方法: (1)大气降水入渗法: K = 0.733Q(lg R-lgr.) 其中:K _3.5r _ i n S1 H 2r t S2 渗透系数(m/d) (完整井)

基坑总涌水量计算公式汇总

一、基坑总涌水量计算 按井管(筒)是否穿透整个含水层分为完整井和非完整井。按井深分为浅井、中深井和深井。当水井开凿在承压含水层中,而承压水头又高于地面时称承压井或自流井。 (一)、均质含水层潜水完整井基坑涌水量计算: 1、基坑远离水源时: 如图1(a ) 图1 注:(1)、降水影响半径宜根据试验确定,当基坑安全等级为二、三级时, 当为潜水含水层时: 当为承压水时: (2)、基坑等效半径当基坑为圆形时就是基坑半径, 当基坑为矩形时如下计算:γ0=0.29(a+b) 当基坑为不规则形状时: )1lg()2(366.10 r R S S H K Q +-=kH S R 2=k S R 10=πA r =0

2、基坑近河岸: (二)、均质含水层潜水非完整井基坑涌水量计算: 1、基坑远离地面水源: 如图2(a ) 02lg )2(366.1r b S S H k Q -=)2.01lg()1lg(366.10 02 2r h l l h r R h H k Q m m m +-++-=)2(h H h m +=

2、基坑近河岸:(含水层厚度不大时) b>M/2 如图2(b ) 式中:b 为基坑中心至河岸的距离,M 为过滤器向下至不透水土层的深度 1、基坑远离水源时: 如图3-a ]14.0lg 25.066.0lg 2lg [366.12 220 l M b M l r l l r b s l ks Q -+++=)1lg(73.20 r R MS k Q +=

2、基坑近河岸: b<0.5γ0 如图3-b b 为基坑中心至河岸的距离 (四)、均质含水层承压水非完整井基坑涌水量计算 如图4 ) 2lg(73.20r b MS k Q =) 2.01lg()1lg(7 3.20 r M l l M r R MS k Q +-++=

渗透系数+基坑总涌水量计算公式汇总

3. 经验估算法 渗透系数k值还可以用一些经验公式来估算,例如1991年哈森提出用有效粒径d10计算较均匀砂土的渗透系数的公式 哈森(Hazen) (2-9) 1955年,太沙基提出了考虑土体孔隙比e的经验公式 太沙基(Kael·Terzaghi 1883~1963),近代土力学及基础工程学的创始人,1883年10月2日生于布拉格(当时属奥地利)。早期从事钢筋混凝土的研究工作,1912年获奥地利格拉茨高等工业学院博士学位。1921~1923年,发表了饱和粘土的一维固结理论,提出了有效应力原理。1925年出版了最早的《土力学》专著。1929~1938年任维也纳技术大学教授,1938年后任美国哈佛大学教授。他一生论著有200多篇,代表性的论著有《理论土力学》和《土力学的工程实践》。1936年太沙基发起成立国际土力学及基础工程协会,并任协会主席至1957年。 (2-10) 以上二式中的d10均以mm计,k值的单位是cm/s 。 这些经验公式虽然有其实用的一面,但都有其适用条件和局限性,可靠性较差,一般只在作粗略估算时采用。在无实测资料时,还可以参照有关规或已建成工程的资料来选定k值,有关常见土的渗透系数参考值如表2-1 。 表2-1 土的渗透系数参考值 土的类别渗透系数k cm/s 土的 类别 渗透系数k cm/s 粘土<10-7中砂10-2粉质粘土10-5~ 10-6粗砂10-2粉土10-4~ 10-5砾砂10-1粉砂10-3~ 10-4砾石>10-1细砂10-3

一、基坑总涌水量计算 按井管(筒)是否穿透整个含水层分为完整井和非完整井。按井深分为浅井、中深井和深井。当水井开凿在承压含水层中,而承压水头又高于地面时称承压井或自流井。 (一)、均质含水层潜水完整井基坑涌水量计算: 1、基坑远离水源时: 如图1(a ) 图1 符号 意义 单位 k 土的渗透系数 m/d H 潜水含水层厚度 m S 基坑水位降深 m R 降水影响半径 m γ0 基坑等效半径 m Q 基坑总涌水量 m 3/d 当为潜水含水层时: 当为承压水时: (2)、基坑等效半径当基坑为圆形时就是基坑半径, 当基坑为矩形时如下计算:γ0=0.29(a+b) 当基坑为不规则形状时: )1lg()2(366.10 r R S S H K Q +-=kH S R 2=k S R 10=A

岩溶地区隧道涌水量的预测方法

岩溶地区隧道涌水量的预测方法 【摘要】文章从分析岩溶地区隧道工程实施涌水量预测的必要性入手,分析几种行之有效的涌水量预测办法。 【关键词】岩溶区;隧道涌水量;勐乃河龙头水库 引言 当前,研究者们展开对隧道涌水量预测办法的研究,如今已有半个多世纪之久了,并取得了一定的成效,提出了相应的理论计算办法与经验计算公式,然而,不同的计算方法与公式间却存在着较大的差别,即使是最优预测结果,也可能同实际情况有着一定的出路,为此,关于隧道涌水量的预测技术还有待进一步提高[1]。而至今隧道涌水量预测仍然是水文地质学科中重点关注的一个问题,并仍未形成统一的预测办法与计算公式。为此,对于隧道涌水量的预测还有待进一步研究与验证,进而在结合实际工程建设情况的基础上,构建与之相适应的数学模型。 1 开展岩溶地区隧道涌水量预测的必要性分析 众所周知,在众多隧道建设工程施工过程中,涌水灾害是其中一个被高度关注的问题,不仅直接影响到工程的有序进展,而且还可能造成隧道建成投入使用的安全隐患。为此,如何更为准确地预测出隧道涌水量,从而根据结果制定出相应的防排水措施,是当前众多岩土工程学者们重点关注的一个课题。对于隧道用户随量的有效预测,最先是由定性分析开始的,即通过勘察隧道周边含水围岩中的地下水分布情况及其规律,并对隧道开挖地段的工程地质与水文地质条件进行分析,进应用物探、钻探与水文测定等各种手段,以明确该工程区域地下水法富集区与断裂构造带等可能富含地下水的用水通道,进而采用均衡法估算出该隧道的涌水量[2]。伴随施工技术水平与要求的不断提高,隧道涌水量预测在定性分析研究基础上,逐渐发展成为定量评价与计算,即对隧道涌水具体位置和涌水量实施有效预测。 同时,对于岩溶地区的隧道涌水量预测研究,关键就在于对工程区水文地质条件的研究,因为不论何种预测方法、预测公式的提出,均是建立在分析工程地质条件基础之上的。然而,岩溶地区的地质条件,多半比较复杂,且从那些隧道施工期间发生的较严重涌水事件来看,该区域易出现涌水地质条件主要有以下四种:一,由向斜盆地形构成的储水构造;二,断层破坏带、侵入岩接触面与不整合面;三,岩溶的管道与地下河区域;四,其它富含地下水的含水体与构造。而上述仅仅是从宏观上列举了几种可能出现较严重涌水问题的地质条件,具体的隧道涌水条件还需结合具体隧道工程进行分析,而这也正是隧道涌水研究的前提所在,必须给予其高度重视。 2 岩溶地区隧道涌水量预测的原则与方法分析

相关文档
相关文档 最新文档