文档库 最新最全的文档下载
当前位置:文档库 › 基于MC33035的无刷直流调速系统原理图

基于MC33035的无刷直流调速系统原理图

开环直流调速控制系统方案

一、绪论 直流调速是现代电力拖动自动控制系统中发展较早的技术。在20世纪60年代,随着晶闸管的出现,现代电力电子和控制理论、计算机的结合促进了电力传动控制技术研究和应用的繁荣。晶闸管-直流电动机调速系统为现代工业提供了高效、高性能的动力。尽管目前交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。现在的直流和交流调速装置都是数字化的,使用的芯片和软件各有特点,但基本控制原理有其共性。 长期以来,仿真领域的研究重点是仿真模型的建立这一环节上,即在系统模型建立以后要设计一种算法。以使系统模型等为计算机所接受,然后再编制成计算机程序,并在计算机上运行。因此产生了各种仿真算法和仿真软件。MATLAB提供动态系统仿真工具Simulink,则是众多仿真软件中最强大、最优秀、最容易使用的一种。它有效的解决了以上仿真技术中的问题。在Simulink中,对系统进行建模将变的非常简单,而且仿真过程是交互的,因此可以很随意的改变仿真参数,并且立即可以得到修改后的结果。另外,使用MATLAB中的各种分析工具,还可以对仿真结果进行分析和可视化。Simulink可以超越理想的线性模型去探索更为现实的非线性问题的模型, Simulink会使你的计算机成为一个实验室,用它可对各种现实中存在的、不存在的、甚至是相反的系统进行建模与仿真。 传统的研究方法主要有解析法,实验法与仿真实验,其中前两种方法在具有各自优点的同时也存在着不同的局限性。随着生产技术的发展,对电气传动在启制动、正反转以及调速精度、调速围、静态特性、动态响应等方面提出了更高要求,这就要求大量使用调速系统。由于直流电机的调速性能和转矩控制性能好,从20世纪30年代起,就开始使用直流调速系统。它的发展过程是这样的:由最早的旋转变流机组控制发展为放大机、磁放大器控制;再进一步,用静止的晶闸管变流装置和模拟控制器实现直流调速;再后来,用可控整流和大功率晶体管组成的PWM控制电路实现数字化的直流调速,使系统快速性、可控性、经济性不断提高。调速性能的不断提高,使直流调速系统的应用非常广泛。

转速单闭环直流调速系统设计

郑州航空工业管理学院 电力拖动自动控制系统课程设计 07 级电气工程及其自动化专业 0706073 班级 题目转速单闭环的直流拖动系统 姓名 学号 指导教师孙标 二ОО十年月日

电力拖动自动控制系统课程设计 一、设计目的 加深对电力拖动自动控制系统理论知识的理解和对这些理论的实际应用能力,提高对实际问题的分析和解决能力,以达到理论学习的目的,并培养学生应用计算机辅助设计的能力。 二、设计任务 设计一个转速单闭环的直流拖动系统

题目:单闭环不可逆直流调速系统设计 1 技术指标 电动机参数:PN=3KW, n N=1500rpm, UN=220V,IN=17.5A,Ra=1.25 。主回路总电阻R=2.5,电磁时间常数Tl=0.017s,机电时间常数Tm=0.075s。三相桥式整流电路,Ks=40。测速反馈系数=0.07。调速指标:D=30,S=10%。 2 设计要求 (1)闭环系统稳定 (2)在给定和扰动信号作用下,稳态误差为零。 3 设计任务(1)绘制原系统的动态结构图; (2)调节器设计; (3)绘制校正后系统的动态结构图; (4)撰写、打印设计说明书。 4 设计说明书 设计说明书严格按**大学毕业设计格式书写,全部打印.另外,设计说明书应包括以下内容: (1)中文摘要 (2)英文摘要

目录 第一章中文摘要 ································································································ - 1 -第二章英文摘要 ············································································错误!未定义书签。第三章课程设计的目的和意义·············································································· - 1 -1.电力拖动简介 ··························································································· - 1 - 2.课程设计的目的和意义·················································································· - 2 -第四章课程设计内容·························································································· - 2 -第五章方案确定 ································································································ - 3 - 5.1方案比较的论证 ······················································································ - 3 - 5.1.1总体方案的论证比较········································································ - 3 - 5.1.2主电路方案的论证比较····································································· - 4 - 5.1.3控制电路方案的论证比较·································································· - 6 -第六章主电路设计····························································································· - 7 - 6.1主电路工作设备选择 ················································································ - 7 -第七章控制电路设计·························································································· - 8 -第八章结论 ·····································································································- 11 -第九章参考文献 ·······························································································- 11 -

开环直流调速系统

电气测量综合控制系统设计报告 设计名称:直流电动机开环调速系统仿真 姓名:田雪峰学号:20134680 专业班级:自动化13-02 指导教师:侯淑萍、勇 系(院):信息工程学院 设计时间:2016.05.22~2016.06.03 课程设计成绩评定表(在相应栏目打√) 评价质量 评价项目 优秀良好一般及格不及格工作量和态度 实验、计算可靠性

目录 1 绪论.................................................................1.1 技术数据............................................................. 1.2 设计任务............................................................. 2 开环系统直流调速系统的工作原理.....................................2.1开环直流调速系统的组成与原理........................................2.2开环直流调速系统的静特性分析........................................2.3开环直流调速系统的稳态结构图........................................ 2.4开环直流调速系统的数学模型.......................................... 3 开环系统直流调速系统的硬件电路设计与实现...........................3.1晶闸管整流电路及保护电路..............................................3.2触发控制电路..........................................................3.3系统给定..............................................................3.4检测电路.............................................................. 4 转速、电流调节器的设计与实现..........................................4.1电流调节器的设计与实现................................................4.2转速调节器的设计与实

单闭环无静差直流调速系统

8.3.4 单闭环无静差直流调速系统 上面介绍的采用比例调节器的单闭环调速系统,其控制作用需要用偏差来维持,属于有静差调速系统,只能设法减少静差,无法从根本上消除静差。对于有静差调速系统,如果根据稳态性能指标要求计算出系统的开环放大倍数,动态性能可能较差,或根本达不到稳态,也就谈不上是否满足稳态要求。采用比例积分调节器代替比例放大器后,可以使系统稳定且有足够的稳定裕量。但是采用PI调节器之后的系统稳态性能是否满足当时并未提及。通过下面的讨论我们将看到,将比例调节器换成比例积分调节器之后,不仅改善了动态性能,而且还能从根本上消除静差,实现无静差调速。 积分调节器和积分控制规律 图所示为用线性集成电路运算放大器构成的积分调节器(简称I调节器)的原理图。根据运算放大器的工作原理,我们可以很容易地得到 ()式中,——积分调节器的积分时间常数。 式()表明积分调节器的输出电压是输入电压对时间的积分。当积分调节器在输入和输出都为零时,突加一个阶跃输入,其输出将随时间线性增大(如图所示),即

() 其上升的速度取决于积分时间常数。在积分调节器中,只要在调节器输入端有Uin作用,电流i不为零,电容C就不断积分,输出Uex也就不断线性变化,直到运算放大器饱和为止。 图积分调节器 图阶跃输入时积分调节器的输出特性 从以上分析可知,积分调节器具有下述特点“ (1)积累作用。只要输入端有信号,哪怕是微小信号,积分就会进行,直至输出达到饱和值(或限幅值)。只有当输入信号为零,这种积累才会停止。 (2)记忆作用。在积分过程中,如果突然使输入信号为零,其输出将始终保持在输入信号为零瞬间前的输出值。 (3)延缓作用。即使输入信号突变,例如为阶跃信号,其输

晶闸管开环直流调速系统的仿真

晶闸管开环直流调速系统的仿真 一、工作原理 晶闸管开环直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发电机组等组成。 在本实验中,整流装置的主电路为三相桥式电路,控制电路课直接由给定电压Ug座位触发器的移相控制电压Uct,改变Ug的大小即可改变控制角α,从而获得可调的直流电压,以满足实验要求。实验系统的组成原理如图1所示。 图1 晶闸管开环直流调速实验控制原理图 二.设计步骤 1主电路的建模和参数设置 开环直流调速系统的主电路由三相对称交流电压源、晶闸管整流桥、平波电抗器、直流电动机灯部分组成。由于同步脉冲触发器与晶闸管整流桥是不可分割的两个环节,通常作为一个组合体来讨论,所以讲触发器轨道主电路进行建模。 ①三相对称交流电压源的建模与参数设置。首先从电源模块中选 取一个交流电压源模块,即,再用复制的方法得到三相电源的另外两个电压源模块,并用模块标题名修改方法将模块标签分别改为“A相”、“B相”,“C 相”,然后从连接器模块中选取,按图1主电路图进行连接。 为了得到三相对称交流电压源,其参数设置方法及参数设置如下。 双击A相交流电压源图标,打开电压源参数设置对话框,在A相交流电源参数设置中,幅值取220V,初相位设置成0°,频率为50Hz,其它为默认值,如图2所示,B、C相交流电源设置方法与A相基本相同,除了初相位设置成互差120°外,其它参数与A相相同。由此可以得到三相对称交流电源。

②晶闸管整流桥的建模和参数设置。首先从电力电子模块组中选取 中的,并将模块标签改成“晶闸管整流桥”,然后双击模块图标,打开整流桥参数设置对话框,参数设置如图3所示。当采用三相整流桥时,桥臂数为3,A、B、C三相交流电源接到整流桥的输入端,电力电子选择晶闸管。参数设置原则如下,如果是针对某个具体的交流装置进行参数设置,对话框中的Rs、Cs、R ON、Vf应取该装置中晶闸管元件的实际值,若果是一般情况,不针对某个具体的变流装置,这些参数可先取默认值进行仿真。若仿真结果理想,就认可这些设置的参数,若仿真结果不理想,则通过仿真实验,不断进行参数优化,最后确定其参数。这一参数设置原则对其他环节的参数设置也是实用的。 图2 A相电源参数设置图3 整流桥参数设置 ③平波电抗器的建模和参数设置。首先从元件模块组中选取 ,并将标签改为“平波电抗器”,然后打开平波电抗器参数设置对话框,参数设置如图4所示,平波电抗器的电感值是通过仿真实验比较后得到的优化参数。 ④直流电动机的建模和参数设置。首先从电动系统模块中选取 ,并将模块标签改为“直流电动机”。直流电动机的励磁绕组“F+ —F-”接直流恒定励磁电源,励磁电源可从电源模块组中选取直流电压源 模块,即,并将电压参数设置为220V,电枢绕组“A+ —A-”经平波电抗器接晶闸管整流桥的输出,电动机经TL端口接恒转矩负载,直流电动机的输出参数有转速n、电枢电流Ia、励磁电流If、电磁转矩Te,通过“示波器”模块观察仿真输出

第七章 电气传动实验 (1)

第七章电气传动控制系统实验 第一节晶闸管直流调速系统参数和环节特性的测定 一、实验目的: 1、熟悉晶闸管直流调速系统的组成及其基本结构。 2、掌握掌握晶闸管直流调速系统参数及反馈环节测定方法。 二、实验设备 1、教学实验台主控制屏1个 2、负载组件1套 3、电机导轨及测速发电机1台 4、直流电动机1台 5、双踪示波器 1台 6、万用表 1台 三、背景知识 直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。因此,为了保持由浅入深的教学顺序,应该首先很好地掌握直流拖动控制系统。 晶闸管直流调速系统由三相调压器,晶闸管整流调速装置,平波电抗器,电动机——发电机组等组成。本实验中,整流装置的主电路为三相桥式电路,控制回路可直接由给定电压Uc作为触发器的移相控制电压,改变Uc的大小即可改变控制角,从而获得可调的直流电压和转速,以满足实验要求。工作原理图如图7-1所示。 图7-1晶闸管直流调速系统工作原理图

四、实验注意事项、实验内容与实验步骤 注: (1)由于实验时装置处于开环状态,电流和电压可能有波动,可取平均读数。 (2)为防止电枢过大电流冲击,每次增加U g须缓慢,且每次起动电动机前给定电位器应调回零位,以防过流。 (3)电机堵转时,大电流测量的时间要短,以防电机过热。 1、电枢回路电阻R的测定 电枢回路的总电阻R包括电机的电枢电阻R a,平波电抗器的直流电阻R L和整流装置的内阻R n,即R=R a+R L+R n。为测出晶闸管整流装置的电源内阻,可采用伏安比较法来测定电阻,其实验线路如图7-2所示。 图7-2 晶闸管直流调速系统电阻R测试线路图 (1)将变阻器R d接入被测系统的主电路,并调节电阻负载至最大。测试时电动机不加励磁,并使电机堵转。 (2)低压单元的G给定电位器RP1逆时针调到底,使U ct=0。调节触发电路及晶闸管主回路脉冲偏移电压电位器RP2,使α=150°。 (3)电源控制屏的“三相交流电源”开关拨向“直流调速”。合上主电源,即按下主控制屏绿色“闭合”开关按钮,这时候主控制屏U、V、W端有电压输出。 (4)调节G给定U g使整流装置输出电压U d=(30~70)%U ed(可为110V),然后调整Rd使电枢电流为(80~90)%I ed,读取电流表A和电压表V的数值为I1,U1,则此时整流装置的理想空载电压为 Udo=I1R+U1 (5)调节Rd,使电流表A的读数为40% I ed。在U d不变的条件下读取A,V表数值,则 Udo=I2R+U2 (6)求解两式,可得电枢回路总电阻

双闭环直流调速系统工程设计

第七章 双闭环直流调速系统 工程设计方法 本章要点 本章主要介绍典型系统的数学模型、参数和性能指标关系,系统结构的近似处理 和非典型系统的典型化,速度、电流双闭环直流调速系统工程设计方法 在双闭环调速系统中,电动机、晶闸管整流装置、触发装置都可按负载的工艺要求来选择和设计。根据生产机械和工艺的要求提出系统的稳态和动态性能指标,而系统的固有部分往往不能满足性能指标要求,所以需要设计合适的校正环节来达到。 校正方法有许多种类,而且对一个系统来说,能够满足性能指标的校正方案也不是唯一的。在直流调速系统中,常用的校正方法有串联校正和并联校正两种,其中串联校正简便,且可利用系统固有部分中的运算放大器构成有源校正网络来实现。因此,本章重点讨论直流调速系统的串联校正方法。 自动控制原理中,为了区分系统的稳态精度,按照系统中所含积分环节的个数,把系统分为0型、I 型、II 型…系统 。系统型别越高,系统的准确度越高,但相对稳定性变差。0型系统的稳态精度最低,而III 型及III 型以上的系统则不易稳定,实际上极少应用。因此,为了保证一定的稳态精度和相对稳定性,通常在I 型和II 型系统中各选一种作为典型,称为典型I 型和II 型系统,作为工程设计方法的基础。 第一节 典型系统 一、典型I 型系统 1、 数学模型 1)框图及标准传递函数 典型I 型系统的框图如图7-1所示,其开环传递函数为: ) 1()(+= Ts s K s G 其中,参数有二个:K 、和T ,T 一般为系统保留下来的固有参数,K 为需要选定的参数。

2)Bode 图 由图可知,在ω=1处,L(ω)=20lgK ,在ω=ωc 处,L(ω)=0,根据 20lg 1lg 0lg 20-=--c K ω (当ωc <1/T 时) 可得 K=ωc 为使系统具有较好的相对稳定性,通常要求T c 1< ω,即T K 1< ,这也是典型I 型系统的条件。 3)参数和性能指标关系 典型I 型系统为二阶系统,典型二阶系统的参数和性能指标关系在第三章中已分析由图7-1可得典型I 型系统的闭环传递函数为: 2 2 2 2 2 2///) 1(1)1() ()(n n n s s T K T s s T K K s Ts K Ts S K Ts s K s R s C ωξωω++= ++= ++= ++ +=

转速闭环控制的直流电动机有静差调速系统仿真

目录 一 绪论 1 二 系统的结构与原理 1 2.1 系统结构及电流 1 2.2 系统静特性 2 三 电流截至负反馈环节的设计 2 3.1 电流截止负反馈环节结构设计 2 3.2 电流截止负反馈环节参数设计 3 四 利用matlab/simulink绘制系统的仿真 3 4.1 仿真原理图 3 五 总结 5 参考文献 5

一 绪论 对于单闭环转速调节系统而言存在以下问题: 1. 起动的冲击电流——直流电动机全电压起动时,如果没有限流措 施,会产生很大的冲击电流,这不仅对电机换向不利,对过载能力低的电力电子器件来说,更是不能允许的。 2. 闭环调速系统突加给定起动的冲击电流——采用转速负反馈的闭环 调速系统突然加上给定电压时,由于惯性,转速不可能立即建立起来,反馈电压仍为零,相当于偏差电压,差不多是其稳态工作值的1+K 倍。这时,由于放大器和变换器的惯性都很小,电枢电压一下子就达到它的最高值,对电动机来说,相当于全压起动,当然是不允许的。 3. 堵转电流——有些生产机械的电动机可能会遇到堵转的情况。例 如,由于故障,机械轴被卡住,或挖土机运行时碰到坚硬的石块等等。由于闭环系统的静特性很硬,若无限流环节,硬干下去,电流将远远超过允许值。如果只依靠过流继电器或熔断器保护,一过载就跳闸,也会给正常工作带来不便。 为解决问题可以电枢串电阻起动;引入电流截止负反馈;加积分给定环节。本设计主要讨论如何采用电流截止负反馈来限制起动电流。 二 系统的结构与原理 2.1 系统结构及电流 考虑到,限流作用只需在起动和堵转时起作用,正常运行时应让电流自由地随着负载增减。如果采用某种方法,当电流大到一定程度时才接入电流负反馈以限制电流,而电流正常时仅有转速负反馈起作用控制转速。这种方法叫做电流截止负反馈,简称截流反馈。 电流截止负反馈环节的I/O特性如图1-2所示。它表明当输入信号俄日正值时,输出输入相等;当为负值时,输出为零。这是一个两段线性环节。

电力拖动自动控制直流调速系统的课后习题

1.设控制对象的传递函数为1 1234()(1)(1)(1)(1) obj K W s T s T s T s T s = ++++,式中K 1=2; T 1=0.4s ;T 2=0.08s ;T 3=0.015s ;T 4=0.005s 。要求阶跃输入时系统超调量σ%<5%。 用PI 调节器将系统设计成典型I 型系统,试设计调节器参数并计算调节时间t s 。 解:用PI 调节器校正时,调节器传递函数为1 ()i PI pi i W s K s ττ+= 取10.4i T s τ==,并将2T 、3T 、4T 看成小时间常数,令 2340.080.0150.0050.1T T T T s s s s =++=++= 则按典型I 型系统校正时系统开环传递函数为 1 111()(1)(1)(1) pi i pi i i K s K K W s K s T s Ts s Ts τττ+== +++ 取1 1 2pi i K K K T τ= = ,则 10.4 12220.1 i pi K K T τ= = =?? 调节时间 660.10.6s t T s s ≈=?= 所以PI 调节器的参数0.4i s τ=,1pi K =;调节时间0.6s t s =。 2.画出直流电动机理想启动时的转速、电流与时间的关系曲线。采用理想启动的目的是什么?如何实现? , (∞) (a) (b) i n I 图1-30 调速系统启动过程的电流和转速波形 理想启动是使启动电流一直保持最大允许值,此时电动机以最大转矩启动, 转速迅速以直线规律上升,以缩短启动时间。 工程上常采用转速电流双闭环负反馈调速系统。启动时,让转速外环饱和不起作 用,电流内环起主要作用,调节启动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用。

转速闭环控制的直流电动机有静差调速系

学号 某某大学 运动控制系统课程设计 设计说明书 转速闭环控制的直流电动机有静差调速系 统仿真 起止日期:2015 年1 月15日至2015 年1 月22 日 学生姓名 班级 成绩 指导教师(签字) 控制与机械工程学院 2015年1 月22 日

附表2 天津城建大学 课程设计任务书 2014 —2015学年第 1学期 控制与机械工程 学院 电气工程及其自动化 专业11电气1 班级 课程设计名称:运动控制系统课程设计 设计题目: 转速闭环控制的直流电动机有静差调速系统 完成期限:自 2015 年 1 月 16 日至 2015 年 1 月 22 日共 1 周 设计依据、要求及主要内容(可另加附页): 一、 设计题目: 转速闭环控制的直流电动机有静差调速系统仿真(n =13V U *,Kp=50) 二、 已知条件及控制对象的基本参数: 已知直流电动机额定参数为nom =220V U ,nom I =136A ,nom n =1460r/min ,4极, a R =0.21Ω,22=GD 22.5m N 。励磁电压f =220V U ,励磁电流f =1.5I A 。采用三相桥式 整流电路,整流器内阻rec =1.3R Ω。平波电抗器p =200L mH 。n =13V U *,Kp=50 三、 设计要求 (1)分析系统结构、原理 (2)利用matlab/simulink 绘制系统的仿真模型并对模块参数进行设置。 (3)设计反馈系数 (4)对该调速系统进行仿真,并观察电动机在全压启动和启动后加额定负载时电动机的转速、转矩和电流的变化情况。 指导教师(签字): 系(教研室)主任(签字): 批准日期: 2015 年 1 月 22 日

实验三 开环直流调速系统Matlab仿真

实训三 晶闸管开环直流调速系统的 MATLAB 仿真实训 一、实验实训目的 1.学习并掌握晶闸管开环直流调速系统模型建立及模型参数设置的方法和步骤。 2.熟悉并掌握系统仿真参数设置的方法和步骤。 3.学会利用 MA TLAB 软件对系统进行稳态与动态计算与仿真。 4.巩固并加深对晶闸管开环直流调速系统理论知识的理解。 二、实验实训原理及知识准备 1. 晶闸管开环直流调速系统的原理图如图3-3-1 所示。 图 3-1 晶闸管开环直流调速系统原理图 2.晶闸管开环直流调速系统的直流电动机电枢电流、电磁转矩与转速之间的关系。 3.复习实验实训指导书中 MA TLAB 基本操作和 MA TLAB/Simulink/Power System工具 箱内容。 4.预习实验实训指导书中实验实训二,并写好预习报告。 5.画出晶闸管开环直流调速系统的动态结构图。 三、实验实训内容及步骤 直流调速系统的仿真有两种方法,一是根据系统的动态结构图进行仿真,二是用 Power System的相关模块仿真,下面分别对两种方法进行介绍。 方法一:使用 Simulink 中的 Power System模块对直流调速系统进行仿真 1.建立系统的仿真模型和模型参数的设置 (1)建立一个仿真模型的新文件。在 MA TLAB 的菜单栏上点击工具栏上的 simulink工 具 ,选择 File→New→Model,新建一个 simulink文件,绘制电路的仿真模型如图 3-3-1。

3-3-1 (2)按图 3-3-1 要求提取电路元器件模块。在仿真模型窗口的菜单上点击图标调出模 型库浏览器,在模型库中提取所需的模块放到仿真窗口,设置各模块参数。晶闸管开环直流 调速系统由主电路(交流电源、晶闸管整流桥、平波电抗器、直流电动机、触发电路)和控 制电路(给定环节)组成,具体设置如下: 1)三相交流电源的模型建立和参数设置 ①三相交流电源的模型建立 首先从Simpowersystes 中的Electrical sources 电源模块组 中选取一个交流电压源模块 AC Voltage Source,再用复制的 方法得到三相电源的另两个电压源模块,用 Format(格式设 定)菜单中 Rotate block(Ctrl +R)将模块水平放置,并点击模 块标题名称,将模块标签分别改为“Uu ” 、 “Uv ” 、 “Uw ” ,然 后从连接器模块 Connectors 中选取“Ground (output )” 元件 , 按图 3-3-2 进行连接。 ②三相交流电源的参数设置 双击 U 相交流电源图标,打开电压源参数设置对话框,幅值取 220V ,初相位设置成 0 图 3-3-2 三相交流电源模型

带转速负反馈的有静差直流调速系统仿真

黑龙江科技大学电气与控制工程学院 M a tla b考试论文 题目带转速负反馈的有静差直流调速系统仿真专业自动化 姓名 班级 学号 2013年12 月 03日

带转速负反馈的有静差直流调速系统仿真 摘要:为了提高直流调速系统的动态、静态性能,通常采用闭环控制系统(主要包括单闭环、双闭环)。而在对调速指标要求不高的场合,采用单闭环即可。闭环系统较之开环系统能自动侦测把输出信号的一部分拉回到输入端,与输入信号相比较,其差值作为实际的输入信号;能自动调节输入量,能提高系统稳定性。在对调速系统性能有较高要求的领域常利用直流电动机,但直流电动机开环系统稳定性不能够满足要求,可利用转速单闭环提高稳态精度,而采用比例调节器的负反馈调速系统仍是有静差的,为了消除系统静差,可采用积分调节器代替比例调节器。 MATLAB仿真在科学研究中的地位越来越高,本文就简单的带转速负反馈的有静差直流调速系统这个例子,通过对MATLAB的仿真,改变Un*、Kp得到不同的仿真结果。通过对仿真结果的对比,从而总结出如何在仿真过程中对MATLAB的仿真做到最优选择。 关键词:直流调速单闭环稳态精度比例调节MATLAB仿真

1引言 直流调速是现代电力拖动自动控制系统中发展较早的技术。在20世纪60年代,随着晶闸管的出现,现代电力电子和控制理论、计算机的结合促进了电力传动控制技术研究和应用的繁荣。晶闸管-直流电动机调速系统为现代工业提供了高效、高性能的动力。尽管目前交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。现在的直流和交流调速装置都是数字化的,使用的芯片和软件各有特点,但基本控制原理有其共性。 长期以来,仿真领域的研究重点是仿真模型的建立这一环节上,即在系统模型建立以后要设计一种算法。以使系统模型等为计算机所接受,然后再编制成计算机程序,并在计算机上运行。因此产生了各种仿真算法和仿真软件。 由于对模型建立和仿真实验研究较少,因此建模通常需要很长时间,同时仿真结果的分析也必须依赖有关专家,而对决策者缺乏直接的指导,这样就大大阻碍了仿真技术的推广应用。 MATLAB提供动态系统仿真工具Simulink,则是众多仿真软件中最强大、最优秀、最容易使用的一种。它有效的解决了以上仿真技术中的问题。在Simu link中,对系统进行建模将变的非常简单,而且仿真过程是交互的,因此可以很随意的改变仿真参数,并且立即可以得到修改后的结果。另外,使用MATL AB中的各种分析工具,还可以对仿真结果进行分析和可视化。 Simulink可以超越理想的线性模型去探索更为现实的非线性问题的模型,如现实世界中的摩擦、空气阻力、齿轮啮合等自然现象;它可以仿真到宏观的星体,至微观的分子原子,它可以建模和仿真的对象的类型广泛,可以是机械的、电子的等现实存在的实体,也可以是理想的系统,可仿真动态系统的复杂性可大可小,可以是连续的、离散的或混合型的。Simulink会使你的计算机成为一个实验室,用它可对各种现实中存在的、不存在的、甚至是相反的系统进行建模与仿真。 传统的研究方法主要有解析法,实验法与仿真实验,其中前两种方法在具有各自优点的同时也存在着不同的局限性。随着生产技术的发展,对电气传动在启制动、正反转以及调速精度、调速范围、静态特性、动态响应等方面提出了更高要求,

运动控制转速单闭环直流调速系统设计

题目:单闭环不可逆直流调速系统设计 1 技术指标 电动机参数:PN=3KW, n N=1500rpm, UN=220V,IN=17.5A,Ra=1.25 。主回路总电阻R=2.5,电磁时间常数Tl=0.017s,机电时间常数Tm=0.075s。三相桥式整流电路,Ks=40。测速反馈系数=0.07。调速指标:D=30,S=10%。 2 设计要求 (1)闭环系统稳定 (2)在给定和扰动信号作用下,稳态误差为零。 3 设计任务(1)绘制原系统的动态结构图; (2)调节器设计; (3)绘制校正后系统的动态结构图; (4)撰写、打印设计说明书。 4 设计说明书 设计说明书严格按**大学毕业设计格式书写,全部打印.另外,设计说明书应包括以下内容: (1)中文摘要 (2)英文摘要

目录 第一章中文摘要 ··········································································错误!未定义书签。第二章英文摘要 ··········································································错误!未定义书签。第三章课程设计的目的和意义·············································································· - 1 -1.电力拖动简介 ··························································································· - 1 - 2.课程设计的目的和意义·················································································· - 1 -第四章课程设计内容·························································································· - 2 -第五章方案确定 ································································································ - 2 - 5.1方案比较的论证 ······················································································ - 2 - 5.1.1总体方案的论证比较········································································ - 2 - 5.1.2主电路方案的论证比较····································································· - 4 - 5.1.3控制电路方案的论证比较·································································· - 6 -第六章主电路设计····························································································· - 7 - 6.1主电路工作设备选择 ················································································ - 7 -第七章控制电路设计·························································································· - 8 -第八章结论 ·····································································································- 11 -第九章参考文献 ··········································································错误!未定义书签。

有静差转速单闭环直流调速系统的建模与仿真

院系电子信息工程系班级 10电气(4)姓名齐国昀学号 107301427 实验名称有静差转速单闭环直流调速系统的建模与仿真实验日期 2012 - 12- 6 一、实验目的 1、掌握有静差转速单闭环直流调速系统的组成和工作原理; 2、掌握使用MATLAB的Simulink工具箱对其进行计算机仿真; 3、检验仿真结果与理论分析的关系。 二、实验步骤: 1、主电路的建模和参数设置: 有静差转速单闭环直流调速系统的主电路大部分与开环调速系统相同,同样由三相对称交 流电压源、晶闸管整流桥、平波电抗器、直流电动机等部分组成。参数设置基本与开环相同, 三相对称交流电压源(交流峰值电压取176.75、初相位0°,频率50HZ,其它为默认值,B、 C相与A相基本相同,除了初相位设置成互差120°外)、晶闸管整流桥(缓冲电阻Rs=50K、 缓冲电容Cs为无穷大inf、内电阻Ron=0.001、内电抗Lon=0)、平波电抗器(阻抗R=0、电感 L=5Ml/电容C为无穷大inf)、直流电动机(励磁电阻Rf=146.7、电感取0、电枢电阻Ra=1.5、 电枢电感La=0.016、电枢绕组和励磁绕组互感Laf=0.76H、电机转动惯量J=0.57kg.m^2、额定 负载转矩Tl=18N.m); 2、控制电路的建模和参数设置: 有静差转速单闭环直流调速系统的控制电路由给定信号、速度调节器、速度反馈等环节组成。仿真模型中根据需要,另增加了限幅值和自定义的函数模块Fcn。 “给定信号”模块的建模和参数设置方法与开环调速系统相同,此处参数设置为10rad/s。有静差调速系统的速度调节器ASR采用比例调节器,放大倍数可以根据实际需要选择,通常通 过仿真优化而得。当给定信号90-6*u后作为同步触发器的移相控制信号Uct。将主电路和控制 电路的仿真模型按照单闭环转速负反馈调速系统电气原理图的连接关系进行模型连接。 3、系统的仿真参数设置: 第 1 页共 4 页指导教师签名

开环直流调速控制系统与仿真

《计算机仿真及应用B》答卷 学号: 姓名: 班级: 任课老师:

开环直流调速控制系统的仿真 1、开环直流调速控制系统的组成 开环控制系统是根据给定的控制量进行控制,而被控制量在整个控制过程中对控制量不产生任何影响。对于被控制量相对于其预期值可能出现的偏差,开环控制系统不具备修正能力。而直流调速开环控制系统通常是采用调节电枢电压方案,具体实现在20世纪60年代晶闸管整流器的应用而采用由晶闸管整流器和电动机(V-M )系统实现开环或闭环控制调速系统。 2、开环直流调速控制系统仿真 (1)基于数学模型的开环直流调速系统仿真。 ①开环直流调速控制系统数学模型。 开环直流调速控制系统主要包括给定信号、晶闸管触发装置及整流环节、平波电抗器和直流电动机等4个环节。这里所说的基于数学模型的系统仿真主要是指基于传递函数的matlab 下的Simulink 下的实现,再通过机理法可以建立开环直流调速控制系统动态结构图,如图1-1所示。 然后,根据系统I 直接给出各个环节的传递函数及参数。可以得到系统I 开环控制的动态结构图,如图1-2所示。 ②开环直流调速系统仿真实现。 图1-1 开环直流调速控制系统动态结构图 图1-2 系统I 的开环系统动态结构图 根据系统I 的开环系统动态结构图及其参数值,在matlab 的Simulink 环境可以轻松的建立系统的仿真结构,如图1-3所示。电动机的转速输出动态曲线,如图1-4所示。 I L (S) — n(s) U *n (s) 一 1/R a T d S+1 R a C e T m S C e K s T s S+1 U d (s) I d (s) I L (S) — n(s) U *n (s) 一 1/0.08 0.025s+1 0.08 0.185×0.8s 0.185 23 0.0017s+1 U d (s) I d (s)

第七章磁场定向矢量控制系统

第七章磁场定向矢量控制系统 判断题 1.不同电机模型彼此等效的的原则是在不同的坐标系下所产生的磁动势完全一致。√ 2.矢量控制系统可以分为电压型和电流型,现代牵引传动系统中,电流型矢量控制系 统应用最为普遍。? 3.低速情况下,采用电压模型法观测转子磁链性能比采用电流模型法好。? 4.转子磁链准确的检测与计算是进行矢量变换控制的前提。√ 5.直接矢量控制系统是转速和磁链闭环控制的矢量控制系统。√ 6.CRH2型动车组在低速时采用异步调制,高速时采用分段同步调制,弱磁控制采用 单脉冲控制。√ 7.间接矢量控制系统是转速闭环、磁链开环控制的矢量控制系统。√ 8.转子磁链观测模型中电流模型比较适用于微机数字控制。? 9.在电传动系统中,电机是实现机电能量转换的主体。√ 10.转子系统与静止系统之间的变换是一种旋转变换,而不是静止的三相/两相变换。√ 11.矢量控制是以定子磁链的矢量来定向的。? 12.电机转子时间常数会随着转子绕组温度而变化。√ 13.德国的BR152电力机车采用的是间接矢量控制方式。? 14.一般情况下,我们希望电动机工作在额定满磁场的状态。√ 15.直接转矩控制方式比矢量控制方式具有更优良的动、静态性能。√选择题 1.我国CRH2型动车组采用的控制策略是______ (B) A. 恒压频比控制策略 B. 转子磁场定向间接矢量控制策略 C. 转子磁场定向直接矢量控制策略 D. 直接转矩控制策略 2.下面几种异步电机控制方式中,属于智能控制的是______ (C) A. 恒压频比控制 B. 直接转矩控制

C. 人工神经网络控制 D. 矢量控制 3.下面几种转子磁链观测的方法中,哪一种是在两相旋转坐标系上实现的 (D) A. 电压模型法 B. 电流模型法 C. 电压—电流模型法 D. 根据指令电流和转速检测值计算磁链法 4.在电压—电流转子磁链观测模型中,没有用到的信号是______ (B) A. 定子电流信号 B. 转子电流信号 C. 定子电压信号 D. 转速信号 5.下列车型中,采用间接矢量控制的是______ (A) A. CRH2型动车组 B. 德国BR152电力机车 C. 奥地利1012电力机车 D. CRH3型动车组 6.在电力牵引交流传动电力机车和高速动车组上,异步牵引电动机控制方法经历了几 个发展过程。(B) A.2个 B.3个 C.4个 D.5个 7.影响电机转子时间参数的因素为______ (D) A.磁路饱和 B.温度变化 C.频率变化 D.以上三项都是 8.在矢量控制系统中,用于两个正交量求取模及幅角的运算的坐标变换是______ (D) A.3/2变换 B.2/3变换 C.VR变换 D.K/P变换 9.下面哪项不是人工神经网络的优点______ (B) A.具备快速并行计算能力 B.控制电路简单 C.容错能力强 D.对参数变化的影响较小 10.数字信号处理器(DSP)的优点有______ (D) A.硬件简单、控制算法灵活 B.抗干扰性强 C.无漂移、兼容性好 D.上述三项都是

相关文档
相关文档 最新文档