文档库 最新最全的文档下载
当前位置:文档库 › 许战辉-开关磁阻电机软特性调速系统的硬件设计

许战辉-开关磁阻电机软特性调速系统的硬件设计

河南科技学院

2009届本科毕业论文(设计)

论文题目:开关磁阻电机软特性调速系统的硬

件设计

学生姓名:许战辉

所在院系:机电学院

所学专业:应用电子技术教育

导师姓名:赵明富王超

完成时间:2009年5 月20日

摘要

开关磁阻电机调速系统具有结构简单、坚固、系统控制灵活、调速性能好、运行效率高、动态性能好等诸多优点,近二十多年来,国内外在开关磁阻电机及其调速系统研究方面发展迅速。但对于一些特殊的需求领域,还未曾进行深入研究。本文正是基于这一需求,以三相开关磁阻电机为研究对象,对其软特性调速系统进行研究。

本课题主要完成的工作有以下两部分:首先,深入研究了开关磁阻电机的基本特性与数学模型,从中得出了一种简便、实用的通过电流检测转矩的方法。其次,设计了基于DSP56F803的开关磁阻电机调速系统通用的硬件电路,可以实现软特性调速控制、变角度控制、定角度电压斩波和电流上下限斩波控制。

目前在许多生产机械中,比如,电动汽车、游梁抽油机、电动钻机等需要具有软特性的电机驱动,即直流电动机的串励特性。开关磁阻电机软特性调速系统的研究,将拓宽开关磁阻电机的研究和应用领域,并且对推动我国电气传动领域的发展也具有十分重要的现实意义。

关键词:开关磁阻电机,调速系统,软特性

i

Soft characteristics of Switched Reluctance Motor Speed

Regulating System hardware design

Abstract

The Switched reluctance drive system has a simple structure, strong, flexible system control, speed performance, high efficiency, good dynamic performance advantages over the past two decades, both at home and abroad and in the Switched Reluctance Motor Speed Control systems research has developed rapidly. But for some special area of demand, but also did not conduct an in-depth research. This article is based on the requirements to three-phase switched reluctance motor for the study of its soft characteristics of speed control system for research.

The main subject of the work have the following two parts: First of all, in-depth study of the switched reluctance motor's basic features and mathematical models to draw a simple, useful torque through the current detection method. Secondly, the design DSP56F803 based on the switched reluctance drive circuit common hard ware, software features can be speed control, voltage angle and current chopper chopper control upper and lower limits.

At present in many production machines, such as electric vehicles, beam pumping unit, the electric drill with soft features, such as the motor drive, DC motor that is characteristic of the Series. Soft characteristics of Switched Reluctance Motor Speed Control System, will expand the Switched Reluctance Motor's research and applications, and the promotion of China's electric drive development of the area is of great practical significance.

Key words: SRM,Speed Control System,Soft Control

ii

目录

1 绪论 (1)

1.1 课题来源及研究意义 (1)

1.2 课题综述 (1)

1.2.1 SRD的组成及工作原理 (1)

1.2.2 SRD主要技术特点 (3)

1.2.3 SRM及其控制系统的发展概况及国内外研究状 (4)

1.3 本课题研究的主要内容 (6)

2 开关磁阻电机软特性的实现原理 (6)

2.1 开关磁阻电机的数学模型分析与控制策略 (6)

2.1.1开关磁阻电机的数学模型分析 (6)

2.1.2开关磁阻电机的控制策略 (8)

2.2 开关磁阻电机软特性分析 (10)

2.3 开关磁阻电机软特性实现原理 (11)

2.3.1 转矩的计算 (11)

2.3.2开关磁阻电机软特性调速系统控制策略 (11)

3 开关磁阻电机软特性调速系统的硬件设计 (12)

3.1硬件系统概述 (12)

3.2 DSP56F803的特点 (13)

3.3基于DSP56F803的控制器硬件设计 (14)

3.4功率变换器的设计 (17)

3.4.1 整流电路 (17)

3.4.2 功率变换电路 (18)

4 结论 (21)

致谢 (21)

参考文献 (22)

1

1 绪论

1.1 课题来源及研究意义

本课题是自选研究课题,是基于导师对开关磁阻电机的预研究和技术储备的研究工作。

由于开关磁阻电机(Switched Reluctance Motor ,简称SR 电机)结构简单、坚固,可靠性高,效率高,在一些要求高精度的电力拖动设备的控制系统中具有很多的优势。开关磁阻电机及其调速控制系统(Switched Reluctance Drive ,简称SRD )是位臵、速度和电流三闭环控制系统,是典型的机电一体化产品,有着广泛的应用前景。

近几年来开关磁阻电机在许多电力传动领域得到了广泛的应用,比如在城市电动汽车、矿山井下电动机车、油田抽油机、家电领域上都可以与直流调速电机和变频调速电机一较长短。随着电力电子技术和控制技术的发展,开关磁阻电机及其调速控制系统将有更广泛的发展和应用前景。

1.2 课题综述

1.2.1 SRD 的组成及工作原理

SRD 主要由SR 电机、功率变换器、控制器和位臵检测器四部分组成,如图1所示[1]。 (1) SR 电机

图1 SRD 基本构成

SR 电机是SRD 系统中实现机电能量转换的部件,也是SRD 系统有别于其他电机驱动系统的主要标志,它的结构和工作原理与传统的交直流电动机有着根本的区别。它遵循“磁阻最小原理”—磁通总要沿着磁阻最小的路径闭合[2],产生磁拉力形成转矩。因此,它的结构原则是转子旋转时磁路的磁阻要有尽可能大的变化。所以SR 电机采用凸极定子和凸极转子的双凸极结构,并且定转子极数不同。

图2表示三相SR (12/8极)电机的横截面和一相电路的原理示意图。S1、S2是电子开关,D1、D2是二极管,E 是直流电源。当定子A 相磁极轴线OA 与转子磁

三相交流电 功率变换器 SRM 外部给定 微机控制器

电流检测 位臵检测

负载

2 极轴线Oa 不重合时,开关S1、S2合上,A 相绕组通电,电动机内建立起以OA 为轴线的径向磁场,磁通通过定子轭、定子极、气隙、转子极、转子轭等处闭合。通过气隙的磁力线是弯曲的,此时磁路的磁导小于定、转子磁极轴线重合时的磁导,因此,转子将受到气隙中弯曲磁力线的切向磁拉力产生的转矩的作用,使转子逆时针方向转动,转子磁极的轴线Oa 向定子A 相磁极轴线OA 趋近。当OA 和Oa 轴线重合时,转子已达到平衡位臵,即当A 相定、转子极对极时,切向磁拉力消失,转子不再转动。此时打开A 相开关S1、S2,合上B 相开关,即在A 相断电的同时B 相通电,建立以B 相定子磁极为轴线的磁场,电动机内磁场沿顺时针方向转过30°,转子在磁场磁拉力的作用下继续沿着逆时针方向转过15°。依此类推,定子绕组A-B-C 三相轮流通电一次,转子逆时针转动了一个转子极距r τ(Nr r /2πτ=),对于三相12/8

极开关磁阻电机,r τ=83600=45°,定子磁极产生的磁场轴线则顺时针移动了

3×30°=90°空间角。可见,连续不断地按A-B-C-A 的顺序分别给定子各相绕组通电,电动机内磁场轴线沿A-B-C-A 的方向不断移动,转子沿A-C-B-A 的方向逆时针旋转。如果按A-C-B-A 的顺序给定子各相绕组轮流通电,则磁场沿着A-C-B-A 的方向转动,转子则沿着与之相反的A-B-C-A 方向顺时针旋转[4]。

图2 SR 电机工作原理

(2)功率变换器

功率变换器是SR 电机运行时所需能量的提供者,是连接电源和电动机绕组的开关部件。通过它将电源能量送入电机,也可将电机内的磁场储能反馈回电源。SR 电机绕组电流是单向的,使得其功率变换器主电路不仅简单,而且具有普通交流及无刷直流驱动系统所没有的优点,即相绕组与主开关器件是串联的,因而可预防短路故障。功率变换器有多种形式,并且与供电电压、电机相数和开关器件的种类等有关。

(3)控制器和位臵检测器

控制器综合处理位臵传感器、电流检测器提供的电机转子位臵、速度和电流等反馈信息及外部输入的指令,实现对SR 电机运行状态的控制,是SRD 的指挥中枢,控制器一般由单片机或DSP 及外围接口电路等组成。在SRD 中,要求控制器具有下述功能:

1)电流斩波控制或电压斩波控制。

2)角度位臵控制。

3)起动、制动、停车及四象限运行。

4)速度调节。

位臵传感器向控制器提供转子位臵及速度等信号,使控制器能正确地决定绕组的导通和关断时刻。通常采用光电器件、霍尔元件或电磁线圈等方法进行位臵检测。

1.2.2 SRD主要技术特点[5]

从结构和运行原理上看,SR电机可以说是一种高速大步距的反应式步进电动机。两者的主要差别在于:步进电机作为一种信息传输、实现角位移精密传动的执行机构,它的转子轴运动服从电源的换相,而电源的换相通常是与转子位臵无关的,属于转子位臵开环控制;SR电机则不同,其定子供电电源的换相与转子位臵直接有关,必须根据转子位臵传感器提供的位臵反馈信息来实现,属于转子位臵的闭环控制。从运行状态上看,也可将SR电机调速系统视为无刷直流电机调速系统的发展,两系统中电机均运行在自同步状态。但无刷直流电机的转子有励磁,定子多相绕组由逆变器提供交流电源;SR电机的转子则为反应式,无须励磁,定子绕组由直流脉冲电源供电,仅由简单的开关即能实现,这使得电机结构和变换器结构都得到简化。

理论与实践表明,SR电机调速系统具有如下基本特点。

(1)电机结构简单、适宜在恶劣条件下的可靠运行。SR电机的突出优点是转子上没有任何形式的绕组,亦无需采用永磁体构成转子磁极,因此最大速度不受限制,可达100000 r / min,也无高温退磁之忧。定子线圈为集中绕组,端部短而牢固。所以电机易于冷却。适用于各种恶劣、高温甚至强振动环境。

(2)转矩方向与定子绕组电流方向无关,只需要单向的电流励磁,因此可以减少功率变换器的开关器件数,降低系统成本。另外,SR电机调速系统中每个功率开关器件均直接与绕组串联,根本上避免了直通短路现象。从而简化了控制保护单元的要求,既降低了成本,又具有高的可靠性。从控制结构上看,各相绕组相互独立工作,所以系统可以缺相运行,容错能力强,适宜在如航天飞机、电动汽车等特殊场合作为起动机或驱动系统使用。

(3)可控参数多,调速性能好。控制SR电机调速的主要参数有四个:开通角、关断角、相电流幅值和相绕组电压。可控参数多,意味着控制灵活方便。采用不同控制方法和参数值,不仅能使系统工作于最佳状态(如出力最大、效率最高等),而且可以实现各种不同的功能和特定的运行曲线,如使电机具有完全相同的四象限运行能力,并具有高起动转矩和串励电动机的负载曲线。

(4)在宽广的转速和功率范围内均具有高输出和高效率,适用于频繁起停

3

及正反向转换运行。当然,SR电机调速系统也有其明显的缺点,即转矩脉动及噪声问题。这是由于SR电机固有的双凸极工作机理引起的。然而,经验表明,通过合理的设计电机结构以及采用先进的控制方法,再结合良好的加工工艺,转矩脉动和噪声完全可以控制到可以接受的水平之内。

SRD良好的调速性能、宽广的调速范围、以较小的起动电流获得较大的起动转矩、对称的四象限运行特性等一系列突出的优点,显然对于满足需软特性驱动的系统提供了完全的可行性。

1.2.3 SRM及其控制系统的发展概况及国内外研究现状

(1) SR电机及其控制系统的发展概况

自1983年Oulton开关磁阻电机通用调速系列产品问世以来,引起各国电气传动界的广泛重视,美国、加拿大、南斯拉夫等国竞相发展,并在系统的一体化设计、电动机的电磁分析、微机的应用、功率元件的应用、新型结构型式的开发等方面取得进展。

我国于1984年左右也以较高的起点开始SRD的研究、开发工作,1992年初成立了中国电工技术学会中小型电机专业委员会下设的开关磁阻电机学组,以推动开关磁阻电机研究工作的进一步发展。现在,国内对开关磁阻电机接受和感兴趣的程度逐年上升,形成理论研究与实际应用并重的发展态势。

近几年来开关磁阻电机在许多电力传动领域得到了广泛的应用,比如在城市的电动汽车方面、矿山井下电动机车方面、在油田的抽油机上、在家电领域都取得了比直流调速电机和变频调速电机都好的效果。随着电力电子技术和控制技术的发展,开关磁阻电机及其调速控制系统将有更广泛的发展和应用前景。

但是,目前国内高校对开关磁阻电机及其调速系统主要是对其接近硬特性运行的研究,进行开关磁阻电机软特性调速系统的研究未见报道。

(2) SRM控制技术的研究现状与发展趋势

1)各种数学模型被提出

目前已经发展起来的磁链模型和直接建立起来的机电联系模型有多种形式,可将他们分为线性模型、准线性模型和非线性模型三类。线性模型忽略电磁饱和、涡流、边缘效应、互感等非线性因素,使得每一相电感只与转子位臵有关,而与电流无关。这为分析SR电机运行特性带来极大方便。通过这一模型,可以很容易求出SR电机转速恒定且相电压为矩形脉冲时相电流和输出转矩的解析式,进而可以分析出开通角、关断角等参数对电机运行特性的影响规律,以及电流斩波和角度位臵两种控制策略的工作原理。从而为控制器的设计、调试提供了很有价值的结论。准线性模型采用分段线性化的方法将非线性的电磁曲线简化,与线性模型相比更接近SR电机的实际特性。

4

2)各种控制理论的应用

最初,被应用在SR电机控制系统中的控制理论以线性控制理论为主。以SR 电机的小信号线性模型为基础,利用经典的控制理论设计调速系统的控制器。

由于SR电机高度的非线性特性,建立精确而实用的SR电机非线性模型绝非易事,采用智能理论设计SR电机控制器,是回避这一棘手问题的途径之一。

3)转矩脉动抑制研究

在对SR电机的振动和噪声研究中,得出了几个重要的结论。Cameron D E等通过对SR电机各种可能的噪声源采取分步运转法逐一鉴别比较后得出结论:SR 电机噪声主要源于定、转子间径向磁吸力所导致的椭圆形变,而且当相电流某一幅值充分大的谐波频率与定子共振频率接近或一致时,将激发强烈的振动和噪声。因此,控制相电流波形,使之不含激发定子共振的谐波分量是降低振动、噪声的有效方法之一。Wu C Y等基于时域分析,得出结论:相绕组外施相电压的阶跃变化,导致相电流、径向力变化率跃变是引起SR电机振动大的主要原因。因相电流关断时,相电压产生大幅度负跃变,加之关断起始相电流又较大,故绕组关断激发的冲击振动是最主要的。

现有研究都是基于将SRD机电系统简化为线性系统以实验研究方法为主进行的。一方面缺少理论分析,另一方面对SR电机定子振动的非线性特性没有重视更缺乏研究,所得结论尚不能精确和全面地反映实际SR 电机定子振动系统的动力特性,所提出的振动、噪声控制策略尚有局限性。只有立足于非线性振动理论,在全面分析SR电机非线性电磁场和非线性径向力的基础上,才能对SR电机定子电磁振动的非线性特性进行系统的理论分析、计算和实验研究,从理论上揭示SR电机非线性振动的基本规律,研究在保证SRD性能指标不变前提下,对各种运行工况下的SR 电机振动、噪声都能进行有效控制的策略,为SRD 在更大范围内推广应用发挥其特长扫除主要障碍。

4)无位臵传感器技术

在无位臵传感器研究方面,我国的研究水平走在世界前列,有很多学者提出了新型的无位臵传感器方案。王炎教授提出一种利用锁相原理来简化新型位臵传感器,使得对任意相绕组的SRD系统,位臵传感器只需要一个传感元件。这种方法虽然减小了位臵传感器的数目,但是增加位臵传感器处理电路和软件的复杂性。詹琼华教授提出了电容式位臵检测技术,该方法与传统检测方法中基于电感测量的方法不同,它是一种通过电容与转子转角的关系确定实际运行时定、转子相对位臵的转子位臵检测方法,它不需考虑相绕组中电流及运动电势的影响,与电机负载无关,而且它对电机的运行状态也没有影响。这种电容式检测器灵敏度高,可获得较大的相对变化量、结构简单、适应性强。

总的来说,目前无位臵传感器检测方案有如下几种:①电流波形检测法;②电感简化计算法;③状态观测器检测法;④相磁链、相电流与转子位臵传感器的关系解算法;⑤相间互感与转子位臵关系检测;⑥电容式位臵检测法;⑦加测试线圈检测法。

1.3 本课题研究的主要内容

本课题设计的开关磁阻电机软特性调速系统,其主要功能有:正反转、大范围内平滑调速;软特性参数的在线调整;软、硬特性运行方式的选择,并具有各种保护功能。具体研究内容如下:

(1)学习DSP56F803的使用,设计以该芯片为核心的SR 电机软特性调速系统控制器的硬件电路,实现软特性曲线给定及调速、电机正反转,转速、电流的显示功能。设计以IPM 为主开关器件的功率变换器及相应的驱动电路和保护电路。

(2)研究开关磁阻电机的转矩与电流之间的关系,获取了转矩与电流的计算关系,实现一种较为简便、快速、实用的计算转矩的方法。

2 开关磁阻电机软特性的实现原理

2.1 开关磁阻电机的数学模型分析与控制策略

2.1.1开关磁阻电机的数学模型分析

SR 电动机的转矩是由磁路选择最小磁阻结构的趋势产生的,适当的磁路饱和有利于提高SRD 的总体性能,因此电动机磁路的饱和是SR 电动机的又一个重要特征。由于电动机磁路的非线性,通常SR 电动机的转矩应根据磁共能来计算,即

θθθ?'?=)

,(),(i W i T (式1)

式中 θ— 转子位臵角

i — 绕组电流

显然,磁共能),(i W θ'的改变既取决于转子位臵,亦取决于绕组电流的瞬时值。

在SR 电动机中,当定转子凸极中心线对准时,气隙很小,磁路往往是饱和的,而且从提高电机效率,减少功率变换器伏安容量要求考虑,则磁路必须是饱和的。因此电感实际上是转子位臵和相电流的函数,并非分段线性。磁路饱和对电动机转矩、功率的分析、计算有着明显的影响,应予以充分考虑。但若不加简化的考虑磁路的非线性,则使得电磁关系计算非常困难,且不能解析计

算。

实用中,为避免繁琐的计算,又近似的考虑磁路的饱和效应,常借助准线性模型,即将实际的非线性磁化曲线分段线性化,同时不考虑相间耦合效应,做这样的近似处理后,每段磁化曲线均可解析。

1i ψ

i 0

θn

θ

图3 分段线性磁化特性

图3给出的是一种用两段线性特性来近似一系列非线性磁化曲线。其中一段为磁化特性的非饱和段,其斜率为电感),(i L θ的不饱和值;另一段为饱和段,可视为与θ=0位臵的非饱和特性平行,斜率为min L 。图中的i 1是根据θ=θn 位臵及定转子凸极对准时的磁化曲线)(i f =ψ决定的,一般定在磁化曲线开始弯曲处。

2.1.2 开关磁阻电机的控制策略

(1)SR 电机的起动

1)理想电感与转子位臵的关系

A

B

C 450

010011001101110

100A

L C

L B

L

图4 理想电感与转子相对位置关系曲线 若不计电动机磁路饱和的影响,假定相绕组的电感与电流的大小无关,且不考虑磁场边缘扩散效应,这时相绕组的电感与转子相对位臵关系可用图4表示。

L A、L B、L C分别为三相的理想电感,A、B、C为位臵信号。从图4中可以看出位臵信号与相电感的关系,正转时,相通电顺序为A、B、C,此时各相位臵信号的上升沿对应各相电感最小位臵,下降沿对应最大位臵。位臵信号之间间隔15度,下面从该图中分析位臵信号状态及其变化与电机起动、换相之间的关系。

由SR电机的基本理论知道,SR电机始终工作在自同步状态,起动和运行过程中对位臵信号有严格的要求。位臵传感器安装在转盘上,实际上由于机械安装的问题,位臵传感器可能出现偏移,使得测量的信号和实际的信号不一致,所以在起动时,很难确定电机的准确初始位臵,这就给确定电机的起始带来了困难。SR电机有两种起动方式:单相起动和单双相混合起动方式。

2)单相起动方式

为使电机能够起动并且按照要求的方向转动,需要获得准确的绝对位臵信息,但从位臵传感器获得的位臵信号只能是相对位臵。现采取以下步骤获取绝对位臵信息。

a.同时给两相通电,比如B、C相;

b.迟50ms,关断C相,B相继续通电;

c.延迟500ms,待电机稳定地停在B相定子极和转子极对齐的位臵;

表1 转子位臵与起动相对应关系

A B C 起动相

0 1 0 B

0 1 1 B C

0 0 1 C

1 0 1 C A

1 0 0 A

1 1 0 A B

步骤a给电机提供了起动脉冲信号,如果B相确实不在电感最小位臵或者在电感下降位臵,那么C相提供电动转矩,驱动电机转动;当关断C相后,B相继续通电,当延迟了足够长时间后,电机就可以稳定地停在B相极对极位臵即电感最大位臵。起动过程大约花1s的时间,这样我们在确定了电机的绝对位臵后就可以按照给定方向通电。比如正转,在起动程序结束后,关断B相,给C

相通电即可,以后就按照A-B-C 顺序通电,电机就会正转。该方法的缺点是:在起动的时候,为了寻找绝对位臵,即B 相极对极位臵,需要先给C 、B 两相通电,这样如果电机不是停在该位臵,起动时会有抖动。

3)单双相混合起动方式

由以上分析知道,单相起动时有抖动,这对严格不允许反转的场合是不适合的。

仔细分析图4可以知道,在有些位臵可以两相通电起动,有些位臵只有一相可以通电起动,以正转为例,位臵信号与起动相对应的关系见表1。

表中有三个位臵为双相起动:011、101、110,在理想电感曲线图4上可以看出,在这三个位臵都是电感重叠区,而且总有一相只能有7.50的导通角,超过

7.50以后,电感进入下降区,产生制动转矩,这需要及时关断该相,该相的位臵信号的下降沿正好对应电感最大位臵,所以可以利用下降沿来关断该相。所以在双相起动时,在起动过程中只需设臵下降沿中断,如果顺利起动,则运行程序中处理该中断,完成双相起动到单相运行的顺利过渡。位臵传感器总共有六个状态,除了上述提出的三种状态外,另三种状态时,只给一相通电,起动电机。

(2)SR 电机的换相

如果采用单相起动方式,则起动后可以直接进入单三拍运行方式,按照给定的方向给电机进行换相。如果采用单双相混合起动方式,则需要根据转子不同位臵设臵不同的捕捉方式,运行程序需要根据实际情况来完成双相到单相的过渡,在过渡成功后,才可以按照给定方向给电机换相。

(3) SR 电机的控制策略

SRD 系统性能较为理想,其特点之一就是其可控参数多,开通角1θ、关断

角2θ、相电压U 、相电流I 都可影响转矩,从而对转速进行控制,因而其调速控

制策略也较多。就目前而言,其控制策略大体可分为以下几类:

1)角度控制 角度控制一般应用于较高速区。对每一个由转速及转矩定义的运行点,开通角、关断角有多种组合,每一种组合对应不同的稳态性能。角度控制方式的优点在于有较大的灵活性,可同时对多种参数进行优化,效率较高,但不足之处在于其在低速区不能工作,必须配合其它方式,如变角度电流斩波控制等,因此控制起来较为复杂。

2)电流斩波控制 电流斩波控制的一般方法是保持开关角度不变,通过主开关器件的多次导通和关断,进而将电流限制在某一值附近,借以控制转矩。它又可分为两种方式:

①电流上限控制

在on θθ=时,功率电路开关元件接通(称相导通),绕组电流I 从零开始上

升,当绕组电流一旦超过电流的设定值(斩波电流上限值)时,开关管关断,电流快速下降。经时间t ?时再重新开通。如此循环,从而达到控制电流的目的。这种控制方式不足之处在于:虽然在一个控制周期内关断时间恒定,但电流下降多少,则取决于绕组的电感、电感变化率、转速等因素,因此电流的下限并不一致。如关断时间过长则相电流脉动大;如关断时间过短,则斩波频率过高。因此采用该方式的主要问题在于参数不易优化,电流脉动大,振动噪声大。

②电流上下限控制

这种方式指的是在一个控制周期内,给定电流的最大值和最小值保持不变。当电流传感器检测的绕组电流信号大于设定信号的最大值时,关断开关管;当续流电流衰减到设定的最小值时,主开关重新开通,如此反复。这种方式的不足之处在于:由于电感在一个周期内是变化的,故电流斩波频率疏密不均,在电感变化率较大的区间,电流上升快,斩波频率较高,必须选择合适的上下限。i ?过大则易于使电流脉动大,以至于电机噪声太大;i ?过小,则使斩波频率过高,使主开关无法长期地承受高频下的开关损耗而被损坏。

3)电压斩波PWM 控制

电压斩波PWM 控制采用的方法是:在原来主开关相控触发信号上加PWM 调制,通过调节PWM 的占空比D ,从而调节施加在相绕组上的两端电压,以达到调速的目的。与电流斩波控制方式类似,提高脉冲频率f=1/T ,则电流波形比较平滑,电机出力增大,噪声减小,但功率开关元件的工作频率增大。 2.2 开关磁阻电机软特性分析

简单的开关磁阻电机的软机械特性曲线如图5,图6所示。

n

T

n 0

n

n 0

T 1k 3

k 2k

图5 图6

图5对应着给定不同空载转速n 0,硬度相同时的机械特性曲线,图6对应着当空载转速相同,机械特性硬度(斜率k )不同时的特性曲线。

由图6可得到转速与转矩的关系式: kT n n -=0

开关磁阻电机软特性调速系统能够满足一些特殊负载的要求,即当负载增加或减小时,转速能够根据要求相应的变化,使得开关磁阻电机的机械特性呈现软

特性。此系统的实现关键要解决两个主要问题:

一、负载的检测。这主要是通过检测负载转矩来判断。负载转矩的检测比较简便的方法即为采用扭矩传感器,但采用扭矩传感器成本太高,因此本文设计的系统采用间接方法来检测转矩。

二、开关磁阻电机软特性调速系统的实现。即为调速系统的软硬件设计,使系统能够实现软特性控制,响应速度快,动态性能好,抗干扰能力强。 2.3 开关磁阻电机软特性实现原理 2.3.1 转矩的计算

由2.1分析可知开关磁阻电机转矩与电流的关系式为:

??????

?????

?

?<≤??

?

??≥-≤≤-<≤<≤??

?

?

?

≥≤≤<≤=5

41112

4

33211

122

102100210),(θθθθθθθθθθθθθi i i Ki i i Ki i i i Ki i i Ki i T a (式2)

即SR 电动机相电流很小,磁路不饱和时,电磁转矩a T 与电流的平方成正比。而若绕组电流较大,则SR 电动机运行在饱和状态,这时电磁转矩),(θi T a 与电流的一次方成正比关系。由于K 的计算比较复杂,很难直接求解,因此实际中可通过预先试验获得转矩与电流的关系,进而在系统中可以根据检测到的电机电流及获得的转矩与电流关系式实时计算转矩值。 2.3.2开关磁阻电机软特性调速系统控制策略

本系统采用的控制策略如下:

(1)起动方式 由于单相起动不如单双相起动可靠,并且在起动过程中为了确定转子绝对位臵,若给不恰当的两相通电,可能使电机产生抖动,所以本系统采用单双相混合起动、单三拍(A-B-C )运行方式。在图7中可以看到给定转速后面加了一个给定积分器,给定积分器是将给定阶跃信号变成随时间按照一定斜率线性变化的输出信号,使电动机能够平稳缓慢地起动,避免产生冲击。

(2)控制方式 电压斩波控制从低速到高速运转不存在控制方式转换问题,既能用于高速运行,又适合于低速运行。所以本文选择定角度电压斩波方式,开通角0°,关断角15°。从减小电流峰值及脉动,提高系统效率出发,采用斩单管的电压斩波方式。为防止电流峰值过大损害IPM 模块,在电机起动前,电流斩

波幅值固定为限流值,使电流斩波电路作为IPM 的保护电路。

(3)调节器设计 由于SRD 精确的动态模型难以建立,而PID 调节器的优点在于即使在受控对象的模型未知的情况下,其比例,积分,微分常数亦可通过系统的实际运行现场整定出来,因此在此系统中选择为PI 调节器,通过实验确定法确定其参数。

软特性调速系统实现框图如下图7:

系统转速分为外部给定和内部软特性给定,在起动前由外部给定(通过键盘)设臵参数,包括软、硬特性的选择,软特性参数。若设定为软特性运行,起动后转速给定切换到软特性给定上。软特性的给定转速根据采集的实时电流值间接计算得到。给定转速经过给定积分环节后与由转子位臵传感器获得的反馈速度相比较,误差经数字PI 调节,转换成PWM 脉冲的控制参数。控制器根据位臵信号以及电流比较的输出信号(允许PWM 输出或禁止PWM 输出)输出对应的PWM 脉冲,经功率变换器,实现对SR 电动机的控制。

ASR

PWM 输出

功率变换器

SRM

A/D 转换

相位检测器

位置传感器

逻辑切换

霍尔传感器

SPI

D/A转换

数码显示

SCI 上位机

I/O 键盘

+-DSP56F803

整流

~速度给定实

际转速

给定积分T=f(i)n=f(T)

外部给定

软特性给定

电流比较

图7 软特性调速系统实现框图

3 开关磁阻电机软特性调速系统的硬件设计

3.1 硬件系统概述

系统的硬件设计框图如图8所示。

系统的正常工作过程如下:首先是系统的开机准备工作,根据具体要求,通过键盘设臵适当的运行参数。正反转按键决定电机旋转方向,奇数次按下正转,偶数次按下反转,指示灯会显示给定是正转还是反转,系统上电默认正转。软特性参数输入,包括空载转速和斜率,系统默认为空载转速n 0=1000r/min ,斜率k=50。参数输入键按三下即可取消软特性调速,保持为给定转速运行。参数输入完毕后,按下起动按键,在系统无故障的情况下,DSP 综合位臵信号、转速给定信号,经过程序处理后,输出正确的PWM 信号。逻辑综合电路把PWM 信号、电流斩波信号、角度信号相与后送到IPM 接口电路,功率变换器在正确的PWM

信号驱动下给SR 电机绕组供电,开始软特性调速系统的正常运行。若运行中出现故障,控制器会使PWM 端口电平无效,立即停机,并通过显示电路显示故障类型。

PC机

转速给定位置信号

相电流信号A/D

键盘接口

开机关机正反转显示电路

Decoder

SCI

PWM

GPIO SPI

D/A

斩波比较逻辑综合

IPM驱动接口

DSP56F803

角度信号

指示灯GPIO

参数给定

触发器

图8 控制电路硬件框图

3.2 DSP56F803的特点

Motorola DSP56F80x 系列DSP 是适用于数字电机控制的处理器,它把DSP 的运算功能和MCU 的控制特点集中到一块芯片上。DSP56F80x 系列提供了基于C 语言的开发工具、IDE 的集成环境以及SDK 等先进的开发工具,大大缩短了开发周期。DSP56F80x 系列提供了一些专门的外设,如PWM 模块、12位的A/D 转换器、定时器、相位检测器、通讯模块(SCI 、SPI 、CAN)、通用I/O 引脚、低电压禁止模块、JTAG/OnCE 片上仿真器和FLASH 、RAM 存储器。采用3.3V 供电,但允许输入端口使用5V TTL 电平。采用8MHz 外部晶振,利用内部压控振荡器和锁相环产生80MHz 总线时钟,在80MHz 时钟频率下可达到40兆条指令/s(MIPS)的指令执行速度;JTAG/OnCE 程序调试接口,允许在系统设计过程中随时进行调试,并可对软件进行实时调试。

DSP56F803作为DSP56F80x 系列的一员,提供了上述的各种模块。从控制SR 电机的角度来讲,它的PWM 、A/D 、相位检测器这三个模块给SR 电机的控制带来很大的便利,下面简单介绍一下在设计SRD 系统时是怎样应用这三个模块的。

PWM 模块设臵为独立通道模式,产生的6个PWM 信号作为功率变换器各个开关管的控制信号,这6个信号可以完全独立的控制。可以通过改写输出控制寄存器,由软件控制PWM 管脚的电平。所以在SR 电机控制中,根据转子位臵来改写输出控制器的内容可以完成电机的换相,并且不影响其他的PWM 管脚上信号的占空比。这种改变可以与PWM 信号同步进行,所以完全能够满足换相的

实时性。

A/D 模块采用触发同时扫描模式,最快可以在5.3μs 内完成8通道的A/D 转换,并且可以和PWM 信号同步。

相位检测器与定时器模块A 复用,并且内部集成了干扰信号滤波器,所以由传感器出来的信号可以直接接到相位检测器模块的管脚,作为位臵信号和速度信号。

综上所述,在本系统中DSP 资源利用如下:

(1)起动、正反转、参数输入键,角度信号:通用输入输出口(GPIO ) (2)电压斩波输出和换相控制:PWM 模块 (3)相电流检测和模拟转速给定:A/D 模块 (4)位臵传感器信号:相位检测模块(Decoder ) (5)显示电路、D/A 输出:SPI 模块 (6)与上位机通信:SCI 模块 3.3 基于DSP56F803的控制器硬件设计

13

11

103

12

1

6

7

3

12

LM339N

14

8

9

3

12

A

B

C

+2.5

+5

+5

VCC

1

2345

+5

123

P haseA

P haseB Index

C O N 1

CON2

图9 转子位臵检测电路

(1)位臵检测电路

位臵检测电路包括两部分即位臵传感器电路与信号检测电路,位臵传感器电路采用三个普通光电传感器以检测位臵信号,传感器放在电机内部,互差15度。在电机上由航空插头引出五根线分别为电源、地、A 相、B 相、C 相信号。信号检测电路利用DSP56F803的相位检测器的脉冲捕捉功能及输入状态监视功能,读取位臵信号的状态和捕捉位臵信号产生的脉冲,完成转速计算及电机起动、换相。传感器与DSP 的硬件接口电路如图9所示,图中CON1是SR 电机位臵传

感器输出接口,A 、B 、C 分别对应A 、B 、C 三相位臵信号。LM339对位臵信号起着缓冲和整形作用。CON2对应于DSP56F803的相位检测器的接口引脚。

(2)电流采集及斩波电路

231

4

11

1

LM224N

U1A

200A/4V

1+2-3Out 4GND 5

NC

5.1K

R120K R2

+12

-12

3.3v

D1AN1

+514

8

9

3

12LM339N

U1C

13

11

103

12

LM339N

U1D

D/Amax

D/Amin Ia

R1

S1

+5V

3K R13K R2+5V LEM

R S Q

EN

*Iaout

图10 电流采集与斩波原理图

图10为一相的电流采集与斩波电路原理图,其中的LEM 为霍尔电流传感器,检测到的电流经过放大后分为两路信号,一路输入到DSP 的A/D 转换模块,用AN1代表,另外一路与DSP 输出的电流斩波值做比较。

当采用限电流上下限的斩波控制方式时,其要求可用如下表达式表示电流上下限斩波过程(用S 表示开关管开通关断状态,S=1,开通;S=0关断,I 表示实际的相电流):

??

?

??=≤=≤≤=≥NoChange

S A D I S A D I A D S A D I min /1max /min /0max / (式3)

图11中用Ia 表示A 相电流,D/Amax 表示斩波上限值,D/Amin 表示斩波下限值。

D /A m a x

D /A m i n

t 1t 2t 3t 4

I a

图11 电流上下限斩波波形

R1、S1分别表示实际电流值与斩波上限和下限电流值相比较的结果。R1、

S1分别接到R-S 触发器的R 、S 端,CD4043的Q 端输出信号作为A 相的电流斩波信号(S1)。当Ia>D/Amax 时,R1=1,S1=0,Iaout=0;Ia D/Amin 时,S1=1,R1=0,Iaout=1;D/Amax>Ia>D/Amin 时,S1=0,R1=0,Iaout 不变;S1=1,R1=1的情况不存在。根据图10电路分析可知,该斩波电路符合表达式3的要求。其电流斩波波形如图11所示。

(3)D/A 转换电路

D/A 转换采用美信公司的550A 型号D/A 转换器。图12只画出了电流上限值(D/Amax )D/A 转换电路,下限值(D/Amin )转换电路与此相同,只是选通信号用GPIOE3。

SCLK 5DIN

4CS 3

REF 7VDD18VDD26

GND

1

OUT 2MAX550BEPA

+3.3

SCLK MOSI

D/Amax GPIOE24082

电流斩波信号

PWM信号角度信号

IPM 接口电路

图12 D/A 转换电路 图13 逻辑综合电路

(4)逻辑综合电路

逻辑综合电路把电流斩波信号、PWM 信号、角度控制信号相与,所得信号作为IPM 驱动电路的输入信号。由于DSP56F803的PWM 模块控制十分方便,通过适当的控制,可以完成相通断功能,所以逻辑综合电路里少了相通断信号。

(5)键盘给定电路

该系统的键盘输入功能是由DSP 的GPIOA 口中断功能实现的。本系统结合DSP 的外部中断管脚IrqA ,IrqB ,一共包括6个按键,分别为:复位键、起动键,正反转键、参数输入键、斜率输入键、空载转速输入键。

图14为单个键盘按钮的电路原理,其中R 为上拉电阻,电容C 经过多次试验,选为0.01μF 时消除按键时的抖动干扰效果比较好。

+5

INPUT C

R

GPIOA

图14 键盘电路

3.4 功率变换器的设计

软件保护基本思路是:IPM 发生故障时,故障信号输入控制器。DSP 接收到故障信号后禁止PWM 模块输出,从而达到保护目的。两者相比较,软件保护不

开关磁阻电机速度控制

Journal of Electrical Engineering 电气工程, 2016, 4(1), 55-62 Published Online March 2016 in Hans. https://www.wendangku.net/doc/163185990.html,/journal/jee https://www.wendangku.net/doc/163185990.html,/10.12677/jee.2016.41008 Speed Control Strategy of Switched Reluctance Motor Zhou Du1,2, Dingxiang Wu2,3, Lijun Tang1,2 1School of Physics and Electronic Sciences, Changsha University of Science & Technology, Changsha Hunan 2Hunan Province Higher Education Key Laboratory of Modeling and Monitoring on the Near-Earth Eletromagnetic Environments, Changsha Hunan 3Billion Set Electronic Technology Co, Ltd., Changsha Hunan Received: Mar. 1st, 2016; accepted: Mar. 19th, 2016; published: Mar. 24th, 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.wendangku.net/doc/163185990.html,/licenses/by/4.0/ Abstract Aimed at research on starting mode and speed control of switched reluctance motor speed control system, a two-phase starting is adopted to start the electric, in order to increase the torque and reduce the torque ripple. A fuzzy adaptive PID control algorithm is proposed, and a switched re-luctance motor speed control system with STM32 + FPGA as the main controller is designed, ap-plying current chopping in low speed and angle position control mode in high speed, which has a certain effect on solving the problems of high overshoot, slow dynamic response and low accuracy. The experimental results show that the precision of the system speed is within 10 r/min, and the maximum overshoot is 15 r/min. Keywords Switched Reluctance Motor, Torque Ripple, Fuzzy Adaptive Tuning PID 开关磁阻电机速度控制 杜舟1,2,吴定祥2,3,唐立军1,2 1长沙理工大学物理与电子科学学院,湖南长沙 2近地空间电磁环境监测与建模湖南省普通高校重点实验室,湖南长沙 3长沙亿旭机电科技有限公司,湖南长沙

开关磁阻电机的原理及其控制系统

开关磁阻电机的原理及其控制系统 开关磁阻电机80年代初随着电力电子、微电脑和控制理论的迅速发展而发展起来的一种新型调速驱动系统。具有结构简单、运行可靠、成本低、效率高等突出优点,目前已成为交流电机调速系统、直流电机调速系统、无刷直流电机调速系统的强有力的竞争者。 一、开关磁阻电机的工作原理 开关磁阻电机的工作原理遵循磁磁阻最小原理,即磁通总是要沿着磁阻最小路径闭合。因此,它的结构原则是转子旋转时磁路的磁阻要有尽可能大的变化。所以开关磁阻电动机采用凸极定子和凸极转子的双凸极结构,并且定转子极数不同。 开关磁阻电机的定子和转子都是凸极式齿槽结构。定、转子铁芯均由硅钢片冲成一定形状的齿槽,然后叠压而成,其定、转子冲片的结构如图1所示。

图1:开关磁阻电机定、转子结构图 图1所示为12/8极三相开关磁阻电动机,S1. S2是电子开关,VD1, VD2 是二极管,是直流电源。 电机定子和转子呈凸极形状,极数互不相等,转子由叠片构成,定子绕组可根据需要采用串联、并联或串并联结合的形式在相应的极上得到径向磁场,转子带有位置检测器以提供转子位置信号,使定子绕组按一定的顺序通断,保持电机的连续运行。电机磁阻随着转子磁极与定子磁极的中心线对准或错开而变化,因为电感与磁阻成反比,当转子磁极在定子磁极中心线位置时,相绕组电感最大,当转子极间中心线对准定子磁极中心线时,相绕组电感最小。 当定子A相磁极轴线OA与转子磁极轴线O1不重合时,开关S1, S2合上,A 相绕组通电,电动机内建立起以OA为轴线的径向磁场,磁通通过定子扼、定子极、气隙、转子极、转子扼等处闭合。通过气隙的磁力线是弯曲的,此时磁路的

控制电机:开关磁阻电机

题目:开关磁阻电机

开关磁阻电机 学习《特种电机及其控制》这门课程,这要介绍了无刷直流电机及其控制、开关磁阻电机及其控制系统、步进电机及其控制,其中我最感兴趣的开关磁阻电机。下面我将对我所了解的开关磁阻电机做一总结。 一、发展背景 开关磁阻电机是80年代初随着电力电子、微电脑和控制技术的猛烈发展而发展起来的一种新型调速驱动系统,具有结构简单、运行可靠及效率高等突出优点,成为直流电机调速系统、交流电机调速系统和无刷直流电机调速系统强有力的竞争者,引起各国学者和企业界的广泛关注,目前开关磁阻电机已开始应用于工业、航空业和家用电器等各个领域。 开关磁阻电机的基本概念可追溯到19世纪40年代,1842年,英国的Aberdeen和Dafidson用两个U型电磁铁制造了由蓄电池供电的机车电动机。20世纪60年代,大功率晶闸管的出现为SR电机的研究发展提供了重要的物质条件。1967年,英国的Leeds大学开始对SR电机进行深入研究;直到1970年左右,研究结果表明:SR电机可以在单相电流下四象限运行,功率变换器无论是用晶体管还是用普通晶闸管,所需开关数都是最少的;电动机成本也明显低于同容量的感应电动机。20年代70年代初,美国福特公司研制出最早开关磁阻电机的调速系统,其结构为轴向气隙电动机,具有电动机和发电机运行状态和较宽范围调速的能力,适合于蓄电池供电的电动车辆的转动。1980年Leeds大学的Lawrenson教授及其同事总结出了自己的研究成果,发表了题为“Variable--Speed Switched Reluctance Motors”的论文,系统阐述了开关磁阻电机的基本原理与设计特点,并得出了新型磁阻电机的单位出力可以与交流感应电机相媲美甚至还略占优势的结论。1983年英国TASC公司推出了Oulton系列通用SRD调速产品,问世不久便受到了各国电气传动界的广泛重视。从1984年开始,我国许多单位先后开展了SRD研究,在借鉴国外经验的基础上,我国SR电机的研究发展很快。2000年,国内100KW以上的SR电机已应用于煤矿的采煤机,目前已将180KW的SR电机应用于地铁机车的牵引,应形成一些SRD系列商品,最

步进电机与开关磁阻电机

开关磁阻电机: 开关磁阻电动机驱动系统(SRD)是较为复杂的机电一体化装置,SRD的运行需要在线实时检测的反馈量一般有转子位置、速度及电流等,然后根据控制目标综合这些信息给出控制指令,实现运行控制及保护等功能。转子位置检测环节是SRD的重要组成部分,检测到的转子位置信号是各相主开关器件正确进行逻辑切换的根据,也为速度控制环节提供了速度反馈信号。 开关磁阻电机具有再生的能力,系统效率高: 对开关磁阻电机的理论研究和实践证明,该系统具有许多显著的优点: (1)电机结构简单、坚固,制造工艺简单,成本低,可工作于极高转速;定子线圈嵌放容易,端部短而牢固,工作可靠,能适用于各种恶劣、高温甚至强振动环境。 (2)损耗主要产生在定子,电机易于冷却;转子无永磁体,可允许有较高的温升。 (3)转矩方向与电流方向无关,从而可最大限度简化功率变换器,降低系统成本。 (4)功率变换器不会出现直通故障,可靠性高。 (5)起动转矩大,低速性能好,无感应电动机在起动时所出现的冲击电流现象。 (6)调速范围宽,控制灵活,易于实现各种特殊要求的转矩-速度特性。 (7)在宽广的转速和功率范围内都具有高效率 (8)能四象限运行,具有较强的再生制动能力。 (9)容错能力强。开关磁阻电机的容错体现在电机某一相损坏,电机照样可以运行。 开关磁阻电机的应用: 近年来,开关磁阻电机的应用和发展取得了明显的进步,已成功地应用于电动车驱动、通用工业、家用电器和纺织机械等各个领域,功率范围从10W到5MW,最大速度高达100000 r/min。

开关磁阻电机电动车应用 开关磁阻电机最初的应用领域就是电动车。目前电动摩托车和电动自行车的驱动电机主要有永磁无刷及永磁有刷两种,然而采用开关磁阻电机驱动有其独特的优势。当高能量密度和系统效率为关键指标时,开关磁阻电机变为首选对象。 SRD开关磁阻电机驱动系统的电机结构紧凑牢固,适合于高速运行,并且驱动电路简单成本低、性能可靠,在宽广的转速范围内效率都比较高,而且可以方便地实现四象限控制。这些特点使SRD开关磁阻电机驱动系统很适合电动车辆的各种工况下运行,是电动车辆中极具有潜力的机种。SRD的最大特点是转矩脉动大,噪声大;此外,相对永磁电机而言,功率密度和效率偏低;另一个缺点是要使用位置传感器,增加了结构复杂性,降低了可靠性。因此无传感器的SRD也是未来的发展趋势之一。其优点主要表现在以下几个方面: (1)开关磁阻电机不仅效率高,而且在很宽的功率和转速范围内都能保持高效率,这是其它类型驱动系统难以达到的。这种特性对电动车的运行情况尤为适合,有利于提高电动车的续驶里程。 (2)开关磁阻电机很容易通过采用适当的控制策略和系统设计满足电动车四象限运行的要求,并且还能在高速运行区域保持强有力的制动能力。 (3)开关磁阻电机有很好的散热特性,从而能以小的体积取得较大的输出功率,减小电机体积和重量。 (4)通过调整开通角和关断角,开关磁阻电机完全可以达到它激直流电机驱动系统良好的控制特性,而且这是一种纯逻辑的控制方式,很容易智能化,从而能通过重新编程或替换电路元件,方便地满足不同运行特性的要求。 (5)开关磁阻电机无论电机还是功率变换器都十分坚固可靠,无需或很少

开关磁阻电机控制系统软件设计

开关磁阻电机控制系统软件设计 开关磁阻电机SRM(Switched Reluctance Motor)是随着电力电子、微电脑和控制技术的迅猛发展而出现的一种新型调速系统,具有结构简单、运行可靠及效率高等突出优点,成为交流、直流和无刷直流电动机调速系统强有力的竞争者,引起各国学者和企业的广泛关注。 1 基本控制策略 开关磁阻电机基本控制策略主要包括电流斩波控制(CCC)、电压PWM 控制、角度位置控制(APC)三种控制策略。 电流斩波控制的优点是可限制电流峰值的增长,保护开关器件的安全,并起到良好有效的调节效果,因此适用于低速调速系统。当相电流超过约定的上限电流值时,则主开关关断,当相电流低于约定的下限电流值时,则组合开关开通,从而实现电流斩波控制效果。 电压PWM控制是通过调整占空比,来调节相绕组的平均电压,以改变相绕组电流的大小,从而实现转速和转矩的调节,电压PWM控制的特点是通过调节相绕组电压的平均值,进而能间接地限制和调节相电流,因此既能用于高速调速系统,又能用于低速调速系统,而且控制也较简单。 角度位置控制是指对开通角和关断角的控制。它的实质就在于输入电压保持不变而通过改变主开关的开通角和关断角来调节电流,以达到调节电机转矩的目的。角度控制的优点是转矩调节范围较大,可允许多相同时通电,以增加电机输出转矩,可实现效率最有控制和转矩

最优控制。 为了实现开关磁阻电机良好的调速性能,该软件设计采用以下组合控制策略,即电机基速以下运行时,采用电流斩波控制方式;在中低速下,采用电压PWM控制方式;而在高速运行时,采用角度位置控制方式。 2 软件设计 软件采用前后台系统作为软件框架,分为主程序和中断程序两部分,相较于现有控制系统软件设计中的多中断程序,该软件设计仅采用了一个定时中断,是程序更简洁,增加了程序的可读性及可移植性,同时也有利于程序的进一步扩充与完善。现有控制系统软件中多数使用多中断设计,其中包括计算电机转速使用的捕获中断,获取电机位置使用一路或两路外部中断,电流采样时使用的DMA中断,以及一至两个定时中断,这些中断不仅增加了程序的复杂性,同时也降低了软件的可靠性。 在软件设计中,重点和难点就是如何获得较好的斩波效果,而软件设计的好坏直接影响了斩波效果的好坏。在现有的软件设计中,一般是将各相电流通过ADC采样,再经DMA通道传输,同时产生一个DMA 中断,然后在一个定时中断(定时中断时间一般为50us至100us)中实现电流斩波。而这种设计会产生两个问题。其一,因为要实现其他功能,定时中断时间不能进一步缩短,而这对电流斩波而言,时间间隔又太长,以50us为例,电流可能会在50us的时间中上升40A。其二,DMA中断优先级要高于定时中断,这可能会导致定时中断的执

开关磁阻电机驱动系统的运行原理及应用

开关磁阻电机驱动系统的运行原理及应用(二) (低轴阻发电机参考资料) 1 引言 开关磁阻电机驱动系统(SDR)具有一些很有特色的优点:电机结构简单、坚固、维护方便甚至免维护,启动及低速时转矩大、电流小;高速恒功率区范围宽、性能好,在宽广转速和功率访问内都具有高输出和高效率而且有很好的容错能力。这使得SR电机系统在家用电器、通用工业、伺服与调速系统、牵引电机、高转速电机、航空航天等领域得到广泛应用。 SR电机是一种机电能量转换装置。根据可逆原理,SR电机和传统电机一样,它既可将电能转换为机械能—电动运行,在这方面的理论趋于成熟;也可将机械能转换为电能—发电运行,其内部的能量转换关系不能简单看成是SR电动机的逆过程。本文将从SR电机电动和发电运行这两个角度阐述SR电机的运行原理。 2 电动运行原理 2.1 转矩产生原理 控制器根据位置检测器检测到的定转子间相对位置信息,结合给定的运行命令(正转或反转),导通相应的定子相绕组的主开关元件。对应相绕组中有电流流过,产生磁场;磁场总是趋于“磁阻最小”而产生的磁阻性电磁转矩使转子转向“极对极”位置。当转子转到被吸引的转子磁极与定子激磁相相重合(平衡位置)时,电磁转矩消失。此时控制器根据新的位置信息,在定转子即将达到平衡位置时,向功率变换器发出命令,关断当

前相的主开关元件,而导通下一相,则转子又会向下一个平衡位置转动;这样,控制器根据相应的位置信息按一定的控制逻辑连续地导通和关断相应的相绕组的主开关,就可产生连续的同转向的电磁转矩,使转子在一定的转速下连续运行;再根据一定的控制策略控制各相绕组的通、断时刻以及绕组电流的大小,就可使系统在最隹状态下运行。 图1 三相sr电动机剖面图 从上面的分析可见,电流的方向对转矩没有任何影响,电动机的转向与电流方向无关,而仅取决于相绕组的通电顺序。若通电顺序改变,则电机的转向也发生改变。为保证电机能连续地旋转,位置检测器要能及时给出定转子极间相对位置,使控制器能及时和准确地控制定子各相绕组的通断,使srm能产生所要求的转矩和转速,达到预计的性能要求。 2.2 电路分析

开关磁阻电机及其调速系统

第二章开关磁阻电机及其调速系统 2.1 开关磁阻电机的发展概况 磁阻式电机诞生于160年前,一直被认为是一种性能不高的电机。然而通过近20年的研究与改进,使磁阻式电机的性能不断提高,目前已能在较大功率范围内不低于其它型式的电机[9]。 70年代初,美国福特电动机(Ford Motor)公司研制出最早的开关磁阻电机调速系统。其结构为轴向气隙电动机、晶闸管功率电路,具有电动机和发电机运行状态和较宽范围调速的能力,特别适用于蓄电池供电的电动车辆的传动。 70年代中期,英国里兹(Leeds)大学和诺丁汉(Nottingham)大学,共同研制以电动车辆为目标的开关磁阻电机调速系统。样机容量从10W至50KW,转速从750 r/min至10000 r/min,其系统效率和电机利用系数等主要指标达到或超过了传统传动系统。该产品的出现,在电气传动界引起了不小的反响。在很多性能指标上达到了出人意料的高水平,整个系统的综合性能价格指标达到或超过了工业中长期广泛使用的一些变速传动系统。 近年来,国内外已有众多高校、研究所和企业投入了开关磁阻电机调速系统的研究、开发和制造工作。至今已推出了不同性能、不同用途的几十个系列的产品,应用于纺织、冶金、机械、汽车等行业中。 目前,在汽车行业意大利FIAT公司研制的电动车和中国第二汽车制造厂研制的电动客车都采用了开关磁阻电机。SRM是没有任何形式的转子线圈和永久磁铁的无刷电动机,它的定子磁极和转子磁极都是凸的。由于SRM具有集中的定子绕组和脉冲电流,其功率变换器可以采用更可靠的电路拓扑形式。SRM具有简单可靠、在较宽转速和转矩范围内高效运行、控制灵活、可四象限运行、响应速度快、成本较低等优点,这是其它调速系统难以比拟的,作为具有潜力的电动车电气驱动系统日益受到重视。然而目前SRM还存在转矩波动大、噪声大、需要位置检测器、系统非线性等缺点,所以,它的广泛应用还受到限制。 2.2 开关磁阻电机的基本结构与特点 开关磁阻电机为定、转子双凸极可变磁阻电机。其定、转子铁心均由硅钢片

开关磁阻电机研究的背景及意义

开关磁阻电机研究的背景及意义

一、项目目的与意义 开关磁阻电机设计及其在矿山机械中的应用研究项目属于《国家中长期科学和技术发展规划纲要(2006-2020)》中工业节能(机电产品节能)、基础件和通用部件的重点支持领域,同时符合《湖南省加快培育和发展战略性新兴产业总体规划纲要》高效节能制造产业中节能电机重点发展领域。 开关磁阻电动机(SRD)调速系统是基于计算机和电力电子技术的控制器及开关磁阻电动机的新型调速系统,由开关磁阻电动机与微机智能控制器两个部分组成。开关磁阻电动机调速系统的突出特点是效率高、节能效果好、调速范围广、无启动冲击电流、启动转矩大、控制灵活,此外还具有结构简单、坚固可靠、成本低等优点。除可以取代已有的电气传动调速系统(如直流调速系统、变频调速系统)外,开关磁阻电动机调速系统还十分适用于矿山井下机电设备需要重载启动、频繁启动、正反转、长期低速运行的应用场合,如无极绳牵引车、电牵引采煤机、刮板输送机等。 据有关资料统计,我国煤矿辅助运输职员约占井下职工总数的1/3,且矿井每采百万吨煤需要1200 ~ 1500名职工从事辅助运输,用工量是发达国家的7 ~ 10倍。其主要原因就是我国煤矿辅助运输系统落后,效率太低,大多数煤矿的辅助运输系统仍然是小绞车、小蓄电池机车等多段分散落后的传统方式,严重影响矿井生产效率和煤矿安全生产。随着当前大中型矿井的建设,矿井辅助运输设计与选型是矿井建设的重要课题之一,提高矿井辅助运输的装备水平对确保矿井生产产量进步具有极其深远的意义。 目前,我国矿用机械交流电动机采用较多的调速方式主要有交流变频调速和开关磁阻电动机调速。交流变频技术硬件成本较高、控制电路复杂且不宜进行维护和维修,特别是国内的公司现在还未能很好地掌握变频器核心技术,产品基本上依靠国外进口,不能针对矿井特殊的应用条件将变频器加以改进和设计,较难适应矿用要求。开关磁

开关磁阻电机调速系统

开关磁阻电机调速系统 开关磁阻电机调速系统(Switched Reluctance Driver,简称SRD)是以现代电力电子与微机控制技术为基础的机电—体化产品。除了具有显著的节能效果外,开关磁阻电机的理论研究和实践证明,它与常用的三相异步电动机相比还有以下优点: 1.电机结构简单、坚固,制造工艺简单,成本低,可工作于极高转速;定子线圈嵌放容易,端部短而牢固,工作可靠,能适用于各种恶劣、高温甚至强振动环境; 2.起动转矩大,低速性能好,无感应电动机在起动时所出现的冲击电流现象; 3.调速范围宽,控制灵活,易于实现各种特殊要求的转矩;λ λ 4.在宽广的转速和功率范围内都具有高效率; 5.损耗主要产生在定子,电机易于冷却,转子无永磁体,无高温退磁现象;λλ 6.转矩方向与电流方向无关,从而可最大限度简化功率变换器,降低系统成本; 7.功率变换器不会出现直通故障,可靠性高;λ λ 8.能四象限运作,具有较强的再生制动能力; 开关磁阻电机调速系统(SRD) 开关磁阻电机调速系统(SRD)是当今世界最新、性能价格比最高的调速系统。它是一种基于改变供电电源频率的调速方式——交流变频调速系统应运而生。而开关磁阻电机调速系统(又称开关磁阻电机驱动系统)简称SRD系统,是它们中崭新的一种系统,并且已经是智能化和模块化,不仅调速性优越,而且各种保护功能也很完善,已在很多方面大量使用。这项技术一经问世,便以其宽广的调速范围,良好的机械特性,卓越的启动制动性能,节能,易维护等一系列突出优点而引起电气及其他行业的关注。SRD系统是磁阻电动机和电力电子技术相结合而产生的一种机电一体化装置,主要由SRM开关磁阻电动机、功率变换器、单片机(或DSP 芯片)、电流及位置检测器等五大部分组成。其组成与特点: 1.1开关磁阻电动机(Switched Reluctance Motor,简称SRM) 是系统中实现能量转换的部件, 它与传统的磁阻电动机相比,具有本质的区别。在结构上,SRM采用双凸极形式,即定子、转子均为凸极式构造;定子线圈采用集中式而不是分布式绕组;加在定子绕组上的电压为不连续的矩形波而非连续的正弦波。转子仅由硅钢片叠压而成,既无绕组也无永磁体,定子各极上绕有集中绕组。图2所示为8/6极(定子八极、转子六极)四相SRM剖面图. SRM有两种独特的运行方式:低速时采用电流斩波方式;高速时采用单脉冲角度控制方式。在电流斩波方式中,系统是通过调节相绕组电流的大小来控制转矩,因此能准确知道绕组中实际电流的大小,对电流进行反馈是很必要的;在角度位置控制方式中,系统通过调节触发角和关断角来实现对转矩的控制,此时电流己不再作为控制量,但为了防止系统过载或故障则要进行过流保护,所以系统中需要进行电流检测。 1.11开关磁阻电动机(SRM)工作原理遵循“磁阻最小原理”,通电后,磁路有向磁阻最小路径变或化的趋势。当转子凸极与电子凸极错位时,气隙大、磁阻大:一旦定子磁极绕组通

开关磁阻电机特性的最优控制

开关磁阻电机特性的最优控制 摘要:本文介绍开关磁阻电机的特性,为获得电机或电机模拟转换的最大效率和电磁转矩的最小波动。控制曲线的变量—开通角和关断角(或是导通角),以及每一项的电压都可以通过一个简单的数学模型估算来获得。集中参数测量的模型需要考虑电机的磁路饱和,并且功率变换器参数的选择要确保系统的低功耗。共调查研究了两种典型开关磁阻电机,定转子齿数比分别为Ns/Nr=8/6 和6/4,310电源整流供电。时间曲线可以从数学模型和电机特性的最优估算得出,而且可以通过某种特殊的测试平台来验证其有效性。 关键字:磁阻电动机,模型,控制 绪论 对电力电子元件和设备的不断改进和其高速发展使得人们增强了对开关磁阻电机应用研究的兴趣。开关磁阻电机具有直流系列典型电机的特点,这使得它可以用于车辆的驱动部分。角速度的宽范围高效率调速使得它可以应用于大功率驱动和直流驱动。转子上无需供电并具有简单稳固的结构使得电机适用于超高速驱动。开关磁阻电机另一可取的特点是当电机停转时可直接控制电机的转子位置,也可以对开关磁阻电机进行转矩控制[2,6,7,10]。开关磁阻电机也有缺点,就是其在高速运行时会出现转矩脉动和振动[1]。 如图4所示,开关磁阻电机的一般功率变换结构都是一个不对称的半桥电路。电磁转矩的产生和电机定子绕组的电流方向无关,而且电机可实施()e T ,ω平面的四象限运行。对导通相通电的顺序可以改变电机的转向,相导通角的位置,是在提前与极轴还是落后与极轴决定着电机的启动/制动模式。角度控制和扭矩控制依赖于一下三个变量:开通角(on α),关断角(off α),或是导通角z α =on α-off α,相电压的控制方式是脉宽调制(PWM)模式。通过控制这三个变量,对他们不同的组合都可以在达到() T ,ω平面上的同一电机特性,但这会导致不同的电流,效率和转矩脉动[4, 5, 9, 10]。所以选择开关磁阻电机驱动系统的必备参数来找到最佳的控制特性是至关重要的。 在此论文中,研究用一种准最优控制方式控制开关磁阻电动机驱动来找到控制特性的最大效率和最小转矩脉动。实现这个目标需要用精确的原始的数学模型,在众多重复估算中具有简单、有效的特点,必须在动态过程中需找这个最佳控制特性。此集中参数测量模式要考虑到磁路的饱和,功率变换元器件的损耗以及因此对电机效率的影响。

开关磁阻电机的基本了解

开关磁阻电机的基本学习内容 1 开关磁阻电机的基本原理以及结构 开关磁阻电动机(Switched Reluctance Motor ,简称SRM) 定转子为双凸极结构,铁心均由普通硅钢片叠压而成,其定子极上有集中绕组,径向相对的两个绕组串联构成一相,转子非永磁体,其上也无绕组[1,3]。SRM 的定转子极数必须满足如下约束关系: s r s N =2km N = N + 2k (1-1) 其中,Ns ,Nr 分别为电机定、转子数;m 为电机相数值减1;k 为一常数。以下图1-1所示一个典型四相8/6极SRM 为例,相数为4,因而m=3,取k=1,则Ns=6,Nr=8。m 及k 值越高,越利于高控制性能控制,但相应成本越高,结构越复杂。目前技术较为成熟,发展较为迅速的产品多为三、四相SRM [2]。

图1-1即为一典型四相8/6结构的SRM电机本体及其不对称功率变换器主电路的示意图(图1-1在末尾手画)。为表述清晰,图中仅画出不对称半桥电路的一相,其他各相均与该相相同,并省略了相应的驱动及检测电路。完整的开关磁阻电机调速系统(Switched Reluctance Motor Drive,简称SRD)则由SRM、功率变换器、控制器、位置检测器等四大部分组成,如下图1-2示。 SRM可以认为是同步电机的一个分支,它运行时遵循磁阻最小原理,同步进电机较为类似[2,30]。其具体运行原理如下:首先要保证励磁相的定子凸极和最近的转子凹极中心线不重合,也即初始位移不能位于磁阻最小位置。通以交流电后,经过一个整流桥变为直流电源,当开关S1和S2开通时,AA’相通电励磁,产生一个磁拉力。在该电磁力的轴向分量作用下,产生电磁转矩,凸极转子铁心趋向于旋转到定转子极轴线B-B’与A-A’重合的位置;而电磁力的径向力分量则造成定子的“变形”,这也是产生转矩脉动和电机噪声的根本原因之一。在该过程中电机吸收电能。关断S1和S2,开通BB’相,此时AA’相经续流二极管VD1、VD2将电能回馈给电源,同时BB’相趋向运行到定转子极轴线C-C’与B-B’重合的位置。以此类推,顺次给A→B→C→D相循环励磁,在惯性和轴向力的作用下,转子将一直逆着励磁顺序旋转,从而完成自同步运行。同理若改变励磁顺序为C→B→A→D,则转子沿顺时针方向转动。由此可以看出, SRM与直流电机不同,其运行方向与相电流方向无关,而仅与相绕组通电顺序有关。 图1-2开关磁阻电机调速系统构成

机电控制作业开关磁阻电机及matlab仿真

开关磁阻电机 一、概述 开关磁阻电动机结构简单、可靠性高、恒转矩、恒功率而且调速性能好(覆盖功率范围10W~5MW的各种高、低速驱动调速系统)、价格便宜、鲁棒性好等优点引起了各国电气传动界的广泛重视,由其构成的调速系统兼有直流传动和普通交流传动的优点,是继变频调速系统、无刷直流电动机调速系统的最新一代无级调速系统。这种新型调速系统使开关磁阻电机存在许多潜在的领域,在各种需要调速和高效率的场合均能得到广泛使用。 开关磁组电机调速系统之所以能在现代调速系统中异军突起,主要是因为它卓越的系统性能,主要表现在: (1) 电动机结构简单、成本低、可用于高速运转。 (2)功率电路简单可靠。 (3)系统可靠性高。 (4)起动转矩大,起动电流低。典型产品的数据是:起动电流为额定电流的15%时, 获得起动转矩为100%的额定转矩;起动电流为额定电流的30%时,起动转矩叮 达其额定转矩的250%。 (5)适用于频繁起停及正反向转换运行。 (6)可控参数多,调速性能好。控制开关磁阻电动机的主要运行参数和常用方法至少 有四种:相导通角、相关断角、相电流幅值、相绕组电压。 (7)效率高,损耗小。以3kw SRD为例,其系统效率在很宽范围内都是在87% 以上,这是其它一些调速系统不容易达到的。 (8)可通过机和电的统一协调设计满足各种特殊使用要求。 二、开关磁阻电动机的结构 图1-1开关磁阻电机结构图

典型的三相开关磁阻电动机的结构如图1-1所示。其定子和转子均为凸极结构,图示电机的定子有8个极,转子有6个极。定子极上套有集中线圈,两个空间位置相对的极 上的线圈顺向串联构成一相绕组,图2-1中只画出了A相绕组;转子由硅钢片叠压而成,转子上无绕组。该电机则称三相8/6极开关磁阻电动机。在结构形式及工作原理上,开关磁阻电动机与大步距反应式步进电机并无差别;但在控制方式上步进电机应归属于他控式变频,而开关磁阻电动机则归属于自控式变频;在应用上步进电机都用作“控制电机”而开关磁阻电机则是拖动用电机,因此电机设计时所追求的目标不同而使电机的设计参数不同。 与反应式步进电动机相似,开关磁阻电动机是双凸极可变磁阻电动机。图1-1给出了以8/6极开关磁阻电机为例的结构原理图,图中仅给出了一相的绕组及外围功率开关电路,从这个结构原理图中可以清晰的看到,开关磁阻电动机是双凸极结构,其转子上没有任何形式的绕组,也无永磁体,而定子上只有简单的集中绕组,其中径向相对的两个绕组构成一相。电动机每一相中流过的电流是由外围功率开关电路中的开关根据转子位置的变化,进行相应的通断而获得的。 图1-1中给出的开关磁阻电动机是四相的,通常情况下开关磁阻电动机可以设计成多种不同相数的结构,如两相、三相、四相或更多相,当相数增加时其结构将变得更复杂,相应的外围电路所使用的器件也相应增加。开关磁阻电动机极数的设计也有多种形式,但是定、转子极数和相数要遵循一定的关系。即定子极数应为相数的2倍或2的整数倍; 而转子极数应不等于定子极数且一般转子极数少于定子极数但都是偶数极[2]。由于开关磁阻电动机相数与极数的设计,低于三相的电动机没有自起动能力,对于有自启动、四象限运行要求的驱动场合,应选用表1-1所对应的定、转子极数组合方案。 表2-1 开关磁阻电动机各种方案

开关磁阻电机的电磁设计方法

2010 年5 月 摘要 开关型磁阻电动机驱动系统(Switched Reluctance Drive,简称SRD电动机)。是20世纪80年代迅猛发展起来的一种新型调速电机驱动系统。它是由功率变换电路、双凸极磁阻电机、控制器及位置检测器构成。它的结构极其简单,调速范围宽,调速性能优异,而且在整个调速范围内都具有较高的效率,系统可靠性高,是各国研究和开发的热点之一。 本文介绍了开关磁阻电机的发展历史,应用领域以及它的优点;对三相6/4结构的开关磁阻电机与四相8/6结构的开关磁阻电机进行了比较;对开关磁阻电机的电磁设计与参数优化进行了分析与研究,简单介绍了ANSYS软件在开关磁阻电机电磁分析中的应用;提出8/6结构开关磁阻电机的一种设计方案;并对开关磁阻电机的磁通波形和电机损耗进行了分析。 关键词: 开关磁阻电机,磁场,电磁设计,参数优化

ABSTRACT The switched reluctance drive (SRD) is a new-type drived-electromotor system which develops rapidly since 1980, and consists of power converter circuits、the doubly-salient reluctance motor、the controller and the examination of position. The structure of the SRD is simple. It has a wide range and excellent performance in speed. It also has a high efficiency and high reliability. So the SRD is one of the hot spots which is studied and designed all over the world. This thesie introduced the SRD development history, the application domain as well as its merit; comparison to the three-phase 6/4 structure SRD with four-phase 8/6 structure SRD overall performance. also analysis and research SRD electromagnetism design and parameter optimization, and introduced ANSYS software in SRD electromagnetism analysis application; Proposes 8/6 structure SRD one kind of design proposal; And analysis to the switched reluctance drive magnetic flux profile and the loss of machine. Keywords:switched reluctance motor, magnetic field, electromagn- etism design, parameter optimization

开关磁阻电机原理动画演示_说明

开关磁阻电动机原理 资料来源:https://www.wendangku.net/doc/163185990.html,/zindex01.html 开关磁阻电动机(SR)是近些年发展的新型调速电机,结构简单结实、调速范围宽且性能好,现已广泛用在仪器仪表、家电、电动汽车等领域。 下面通过一个开关磁阻电动机原理模型来介绍工作原理。 双凸极结构 磁阻电机的定子铁芯有六个齿极,由导磁良好的硅钢片冲制后叠成,见下图。 磁阻电机定子铁芯 磁阻电机的转子铁芯有四个齿极,由导磁良好的硅钢片冲制后叠成,见下图。 磁阻电机转子铁芯

与普通电机一样,转子与定子直接有很小缝隙,转子可在定子内自由转动,见下图。 双凸极结构的定子铁芯与转子铁芯 由于定子与转子都有凸起的齿极,这种形式也称为双凸极结构。在定子齿极上绕有线圈(定子绕组),是向电机提供工作磁场的励磁绕组。 定子铁芯上有励磁绕组 在转子上没有线圈,这是磁阻电机的主要特点。在讲电动机工作原理时常用通电导线在磁场中受力来解释电动机旋转的道理,但磁阻电机转子上没有线圈,也无“鼠笼”,那是靠什么力推动转子转动呢?磁阻电动机则是利用磁阻最小原理,也就是磁通总是沿磁阻最小的路径闭合,利用齿极间的吸引力拉动转子旋转。

三相6/4结构工作原理 下面通过图示来说明转子的工作原理,下面是磁阻电动机的正视图,定子六个齿极上绕有线圈,径向相对的两个线圈连接在一起(标有紫色圆点的线端连接在一起),组成一“相”,该电机有3相,结合定子与转子的极数就称该电机为三相6/4结构。在下图标注的A相、B相、C相线圈仅为后面分析磁路带来方便,并不是连接普通的三相交流电。 磁阻电机励磁绕组分布图 在下面有一组磁阻电动机运转原理动画的截图,从中我们将看到磁阻电动机是如何转动起来的。A相、B相、C相线圈由开关控制电流通断,图中红色的线圈是通电线圈,黄色的线圈没有电流通过;通过定子与转子的深蓝色线是磁力线;约定转子启动前的转角为0度。 从左面图起,A相线圈接通电源产生磁通,磁力线从最近的转子齿极通过转子铁芯,磁力线可看成极有弹力的线,在磁力的牵引下转子开始异时针转动;中间图是转子转了10度的图,右面图是转到20度的图,磁力一直牵引转子转到30度为止,到了30度转子不再转动,此时磁路最短。 磁阻电机工作原理示意图-1 为了使转子继续转动,在转子转到30度前已切断A相电源在30度时接通B相电源,磁通从最近的转子齿极通过转子铁芯,见下左图,于是转子继续转动。中间图是转子转到40度的图,右面图是转到50度的图,磁力一直牵引转子转到60度为止。 磁阻电机工作原理示意图-2

开关磁阻电机原理和应用

开关磁阻电机 开关磁阻电机是一种新型调速电机,调速系统兼具直流、交流两类调速系统的优点,是继变频调速系统、无刷直流电动机调速系统的最新一代无极调速系统。它的结构简单坚固,调速范围宽,调速性能优异,且在整个调速范围内都具有较高效率,系统可靠性高。主要由开关磁阻电机、功率变换器、控制器与位置检测器四部分组成。控制器内包含控制电路与功率变换器,而转子位置检测器则安装在电机的一端。 其电机部分由于是运用了磁阻最小原理,故称为磁阻电动机,又由于线圈电流通断、磁通状态直接受开关控制,故称为开关磁阻电动机。 特征 开关磁阻电机结构简单,性能优越,可靠性高,覆盖功率范围10W~5MW的各种高低速驱动调速系统。使的开关磁阻电机存在许多潜在的领域,在各种需要调速和高效率的场合均能得到广泛使用(电动车驱动、通用工业、家用电器、纺织机械、电力传动系统等各个领域)。 优点 ◆其结构简单,价格便宜,电机的转子没有绕组和磁铁。 ◆电机转子无永磁体,允许较高的温升。由于绕组均在定子上,电机容易冷却。效率高,损耗小。 ◆转矩方向与电流方向无关,只需单方相绕组电流,每相一个功率开关,功率电路简单可靠。 ◆转子上没有电刷结构坚固,适用于高速驱动。 ◆转子的转动惯量小,有较高转矩惯量比。 ◆调速范围宽,控制灵活,易于实现各种再生制动能力。 ◆并具频繁启动(1000次/小时),正向反向运转的特殊场合使用。 ◆且启动电流小,启动转矩大,低速时更为突出。 ◆电机的绕组电流方向为单方向,电力控制电路简单,具有较高的经济性和可靠性。 ◆可通过机和电的统一协调设计满足各种特殊使用要求。 缺点 其工作原理决定了,如果需要开关磁阻电机运行稳定可靠,必须使电机与控制配合的很好。 因其要使用位置传感器,增加了结构复杂性,降低了可靠性。 对于电机本身而言,转矩脉动大是其固有的缺点;在电机远离设计点的时候,转矩脉动大会体现的更加明显。 如果单纯使用电流斩波或最优导通角控制方法,对其转矩脉动的改善不是很大,需要加入更加复杂的算法。 另外,运行时噪音和振动较大、非线形性强也是开关磁阻电机需要解决的问题。 目前国内实用的磁阻电机属于初级阶段,部分产品控制相对粗放,电机的响应速度慢、低速下的脉动大,难以实现较高的控制精度。 结构原理 双凸极结构

开关磁阻电机控制策略分析

开关磁阻电机控制策略研究 摘要:开关磁阻电机驱动系统(SRD)是近20年得到迅速发展的一种交流调速系统。其结构简单、工作可靠、效率高和成本较低等优点而具有相当的竞争力。本文首先介绍了开关磁阻电机控制策略的研究现状和趋势,推导了开关磁阻电机的数学模型,然后详细介绍了两步换相控制、基于转矩分配函数的转矩控制、智能控制、直接瞬时转矩控制等控制策略。又基于Matlab/Simulink仿真验证了开通角、关断角对电机电流转矩的影响,最后得出以转矩为控制对象的新型控制策略仍将进一步发展。 关键词:开关磁阻电机;转矩分配函数;直接瞬时转矩控制; Control Method of Switch Reluctant Motor ‘ Abstract: Switched reluctance motor drive system (SRD) is a kind of ac speed regulating system with nearly 20 years rapid development .Its simple structure, reliable operation, high efficiency and low cost advantages are quite competitive.This dissertation first introduces the research status and the control strategy of the switched reluctance motor trend, the mathematical model of the switch magneto is deduced, and then introduced the two-step commutation control, based on the torque distribution function of torque control, intelligent control, direct instantaneous torque control and so on.And based on the Matlab/Simulink , the influence of the opening Angle, shut off the Angle to the motor torque were verified, finally concluded that the new control strategy will continue to develop further with the torque as the object. Key words: switched reluctant motor; torque share function ; direct instantaneous torque control(DITC)

开关磁阻电机是一种新型调速电机上课讲义

开关磁阻电机是一种新型调速电机

开关磁阻电机是一种新型调速电机,调速系统兼具直流、交流两类调速系统的优点,是继变频调速系统、无刷直流电动机调速系统的最新一代无极调速系统。它的结构简单坚固,调速范围宽,调速性能优异,且在整个调速范围内都具有较高效率,系统可靠性高。主要有开关磁阻电机、功率变换器、控制器与位置检测器四部分组成。控制器内包含控制电路与功率变换器,而转子位置检测器则安装在电机的一端。 详细介绍开关磁阻电机结构简单,性能优越,可靠性高,覆盖功率范围10W~5MW的各种高低速驱动调速系统。使的开关磁阻电机存在许多潜在的领域,在各种需要调速和高效率的场合均能得到广泛使用(电动车驱动、通用工业、家用电器、纺织机械、电力传动系统等各个领域)。 ◆其结构简单,价格便宜,电机的转子没有绕组和磁铁。 ◆电机转子无永磁体,允许较高的温升。由于绕组均在定子上,电机容易冷却。效率高,损耗小。 ◆转矩方向与电流方向无关,只需单方相绕组电流,每相一个功率开关,功率电路简单可靠。 ◆转子上没有电刷结构坚固,适用于高速驱动。 ◆转子的转动惯量小,有较高转矩惯量比。 ◆调速范围宽,控制灵活,易于实现各种再生制动能力。 ◆并具频繁启动(1000次/小时),正向反向运转的特殊场合使用。 ◆且启动电流小,启动转矩大,低速时更为突出。 ◆电机的绕组电流方向为单方向,电力控制电路简单,具有较高的经济性和可靠性。

◆可通过机和电的统一协调设计满足各种特殊使用要求。 开关磁阻电机的应用 近年来,开关磁阻电机的应用和发展取得了明显的进步,已成功地应用于电动车驱动、通用工业、家用电器和纺织机械等各个领域,功率范围从10W 到5MW,最大速度高达100000 r/min。 开关磁阻电机电动车应用 开关磁阻电机最初的应用领域就是电动车。目前电动摩托车和电动自行车的驱动电机主要有永磁无刷及永磁有刷两种,然而采用开关磁阻电机驱动有其独特的优势。当高能量密度和系统效率为关键指标时,开关磁阻电机变为首选对象。 SRD开关磁阻电机驱动系统的电机结构紧凑牢固,适合于高速运行,并且驱动电路简单成本低、性能可靠,在宽广的转速范围内效率都比较高,而且可以方便地实现四象限控制。这些特点使SRD开关磁阻电机驱动系统很适合电动车辆的各种工况下运行,是电动车辆中极具有潜力的机种。SRD的最大特点是转矩脉动大,噪声大;此外,相对永磁电机而言,功率密度和效率偏低;另一个缺点是要使用位置传感器,增加了结构复杂性,降低了可靠性。因此无传感器的SRD也是未来的发展趋势之一。其优点主要表现在以下几个方面:(1)开关磁阻电机不仅效率高,而且在很宽的功率和转速范围内都能保持高效率,这是其它类型驱动系统难以达到的。这种特性对电动车的运行情况尤为适合,有利于提高电动车的续驶里程。

相关文档
相关文档 最新文档