文档库 最新最全的文档下载
当前位置:文档库 › 自行车SolidWorks建模

自行车SolidWorks建模

自行车SolidWorks建模
自行车SolidWorks建模

中南大学交通运输工程学院

数字化设计技术课程论文

题目基于SolidWorks的山地自行车的三维建模与有限元分析

姓名

所在学院交通运输工程学院

专业班级

学号

授课教师杨岳

日期2014 年 7 月 15 日

基于SolidWorks的山地自行车的三维建模与有限元分析

摘要

在现代机械产品设计中,应用计算机软件结合三维CAD技术开发的的产品精度高、质感好、形象逼真、色彩丰富。SolidWorks自1993年问世以来,以其优异的性能,强大的功能,灵活的可靠作性和创新性,广泛应用于机械、建筑、电子、航天、化工等工程设计领域,在与同类软件的激烈竞争中确立了其三维CAD主流设计软件的地位。该软件简单实用,操作方便,是许多工程技术人员的首选,也是目前最为流行的三维CAD软件之一。

本设计以SolidWorks为平台,对山地自行车进行了产品结构设计及建模,主要进行了山地自行车的外型设计、元件的尺寸选择及计算、主要结构件的受力分析等。本设计根据山地自行车的原理完成了自行车的结构设计及产品造型,而且在Solidworks中进行了模拟仿真运动及受力试验分析,不仅提高了设计效率,也大大缩短了设计周期。

在本次山地车的三维建模中,我分别用到了拉伸、切除、扫描、放样、镜像、阵列等方法绘出了车架、把手、车轮、车链等重要部件。其中有许多部件由装配完成。比如在做链条式,需先画出内板、外板、轴等,再组装出一个单位,最后将各个单位组装成链条。

画出山地车三维图后,再做有限元分析。基于SolidWorks的有限元分析相当简易,为作图者带来了极大的方便。有限元分析时,用里面的simulation插件,将各个主要受力零件逐个分析,需每个零件都达到要求,自行车整体才算合格。关键字:三维建模山地自行车 SolidWorks 有限元分析Simulation

本次山地车建模参照如图1所示的山地车。尺寸完全按照实物量取。

图1 自行车实物图

目录

摘要 (1)

目录 (3)

1数字化设计 (3)

1.1.计算机辅助设计 (3)

1.2 SolidWorks软件简介 (4)

1.2.1 SolidWorks功能描述 (5)

1.2.5 COSMOwoks简介 (6)

2自行车简介 (7)

3山地自行车三维建模 (7)

3.1车架建模 (8)

3.2前叉建模 (9)

3.3链条建模 (9)

3.4车轮建模 (9)

3.5车轴建模 (9)

3.6轴脚蹬曲柄建模 (10)

3.7山地自行车装配图 (12)

4山地自行车仿真分析 (13)

4.1车架分析 (16)

4.2车把分析 (19)

4.3前叉分析 (21)

4.4车座分析 (22)

结论 (23)

参考文献 (23)

致谢 (23)

1.数字化设计

1.1 计算机辅助设计

计算机辅助设计(CAD)是指利用计算机及其图形设备帮助设计人员进行设

计工作。在设计中通常要用计算机对不同方案进行大量的计算、分析和比较,以决定最优方案;各种设计信息,不论是数字的、文字的或图形的,都能存放在计算机的内存或外存里,并能快速地检索;设计人员通常用草图开始设计,将草图变为工作图的繁重工作可以交给计算机完成;由计算机自动产生的设计结果,可以快速作出图形,使设计人员及时对设计作出判断和修改;利用计算机可以进行与图形的编辑、放大、缩小、平移和旋转等有关的图形数据加工工作。

CAD技术就是利用计算机的软硬件服务设计者对产品进行规划、分析计算、综合、模拟、评价、绘图和编写技术文件的设计活动,其特点是将设计人员的思维、综合分析和创造能力与计算机的高速运算、巨大数据存储和快速图形生成等能力很好的结合起来。这样在工程设计和机械产品设计中,许多繁重的工作,例如非常复杂的数学和力学计算,多种设计方案的提出,综合分析比较与可对计算、处理的中间结果做出判断、修改,以便更有效的完成设计工作。因而CAD技术能极大的提高工程机械和机械产品的设计质量,减轻设计人员的劳动,缩短设计周期,降低产品成本,为开发新产品和新工艺创造有利的条件。

现代CAD设计软件已经不再是替代于手工绘图的一种工具,而是传统设计手段的变革。随着计算机软硬件的技术日益完善,CAD技术得到迅猛的发展。CAD 技术由传统的简单二维绘图发展到今天基于特征的三维参数化造型和变量化造型设计技术,它深刻影响社会各个领域的设计技术。

一个完整的CAD系统由计算机硬件和软件两大部分所组成的。CAD系统功能的实现,是由硬件和软件协调作用的结果,硬件是实现CAD系统功能的物质基础,然而如果没有软件的支持,硬件也无法发挥作用的,二者缺一不可。

CAD技术作为20世纪杰出的工程技术成就之一,现已受到世界各个工业发达国家的普遍高度重视,已被广泛应用于航空、航天、汽车、航海、机械、电子、建筑、纺织以及艺术等各个工程和产品设计领域,并产生了巨大的社会效益和经济效益。目前,CAD技术的应用水平已经成为衡量一个国家工业生产技术的现代化水平的重要标志,也是衡量一个企业的技术水平的重要标志。

1.2 SolidWorks软件简介

SolidWorks软件是在总结和继承了大型机械 CAD 软件的基础上, 在Windows 环境下实现的全参数化三维实体造型软件,它具有强大的零件设计、钣金设计、管理设计、绘制二维工程图、支持异地协同工作等功能,能使零件设计、装配设计和工程图保持时刻的全相关和同步。同时SolidWorks具

有良好的开放性和兼容性。它不仅可以向下兼容二维AUTOCAD,使得以前采用AUTOCAD软件进行的设计得以继续使用和转化,同时还可以与许多其它专业软件(如有限元分析软件Ansys、数据加工软件Camworks、数据管理系统SmarTeams、三维实体设计软件UG、PRO/E等)无缝集成为功能十分强大的CAD/CAE/PDM系统,完全能胜任大型工程与产品的设计、分析、制造和数据管理。目前,各类用户不仅在SolidWorks的强大功能进行各类专业设计,同时也在不断探索SolidWorks的二次开发技术,从而力求扩展SolidWorks的功能并使其用户化、专业化。

1.2.1SolidWorks功能描述

草图:SolidWorks草图可以插入参考图片,图线可以自由拖动,自动解算,自动标注,自我修复。

配置:SolidWorks独特的配置功能迅速展示不同设计方案,以及零件不同状态,比如:能够迅速获得零件毛坯形态和尺寸,不仅仅为设计,更延伸到对工艺过程的支持。

阵列:除了常见的规则阵列,更含有草图驱动、特征驱动、曲线驱动、数据文件驱动等多种阵列能力,比如:仅仅用一个曲线驱动阵列,就能模拟电缆拖链的动态占位效果。

多实体建模:多实体建模为复杂模型建造带来更多的实用手段,甚至能像装配那样移动、重组实体,完美地实现零件插入零件的复合造型。

特型造型:SolidWorks独特的特型造型功能极大提高了艺术造型的能力与效率,比如:仅仅使用平直线条的简单造型,迅速就能转化为曲面模型。

钣金:强大的钣金功能含有多种造型模式,能完成复杂钣金件的快速建模,比如:放样钣金造型能够展平含有复杂曲面的钣金件,为相关工艺准备提供迅捷支持。

曲面造型:全面而富于特色的曲面工具,丰富的选项,甚至能完成动物、运动鞋那样的复杂模型,仅仅一个填补曲面的功能,令许多费力费时的曲面修补变得如此轻松。

焊件功能:仅仅选择路径即可快速完成型材组构焊件,自动生成下料清单,并统计材料类型与长度等等。

材质纹理:快速获得重量、重心等数据,甚至不用渲染,仅仅使用表面纹理即可获得满意的真实视觉效果。

尺寸关联:通过建模过程中设定的关键数据关联。比如:当改变轴承的型号时,相关的轴径、轴承座等零件自动变化,无须单独修改。

自定义资源:含有多种项目的自定义资源极大地提高设计效率,比如:在轴上开一个圆头建槽,或是在管端生成一个法兰,仅仅通过拖放、选参数、确定等三到五次鼠标点击即可完成。

装配:仅仅是拖放即可自动建立合适的配合关系,智能零部件与扣件还能自动调整参数以适应装配需要,天生就具备动态模拟的能力,甚至能模仿真实碰撞致动的效果。多达四十万件的大型装配也通过了测试。使用图块,在装配中更方便地进行自顶而下的设计工作,使得总体布局草图兼备简洁灵活而详细

的能力。

工程图:零件与装配体的工程图都是自动投影生成,自动填写标题栏,可控地自动投影尺寸,还能根据不同的配置,给出零件不同状态的工程图,为工艺准备带来极大便利。并且完全支持图层、线型等二维CAD能力,并能生成二维CAD可读的文件。

数据转换:SolidWorks配有丰富的数据接口,含有自动修复模型能力,它所能够打开以及转出的数据格式也许是最多的,比如:它能直接打开PRO/E文件,并读取特征使之成为可编辑的SolidWorks模型。

另外除了这些基础的功能,专业版或者高级版还有许多的辅助高级功能,比如:专业版中包含PDMWorks(工作组级数据管理工具)、SolidWorks Toolbox (支持自定义的零件库)、eDrawings Professional(完全版设计交流工具)、Photoworks(具有专业水准的渲染工具)、Featureworks(独特的,把别的CAD 模型转化为自有参数模型的工具)、SolidWorks Animator(动画制作工具)、3D Instant Website(在网页上发布三维模型)等等;高级版中包含COSMOSWorks Designer(专业级有限元分析工具)、COSMOSMotion(运动分析工具)、SolidWorks Routing(管路线缆辅助设计工具)等功能。

1.2.2 COSMOSworks简介

COSMOS是一套强大的有限元分析软件。早期的有限元技术高高在上,只有一些国家的部门如宇航,军事部门可以使用,而此后的一些有限元分析软件也都存在界面不友好、难学难用的缺点,且要求的设备昂贵。虽然用的范围大了一些,但也都是集中在大学和一些研究机构,只有少数专业人员才能有机会接触,普通的工程师可望而不可及。然而自COSMOS出现后,有限元分析的大门终于向普通工程师敞开了,把高高在上的有限元技术平民化,它易学易用,简洁直观,能够在普通的PC机上运行,不需要专业的有限元经验。普通的工程师都可以进行工程分析,迅速得到分析结果,从而最大限度地缩短设计周期,降低测试成本,提高产品质量,加大利润空间。

做为世界上最快的有限元分析软件,COSMOS采用FFE技术使得复杂耗时的工程分析时间大大缩短。COSMOS提供了多场/多组件的复杂装配分析,从而大大简化工程师的劳动,使得分析能够更好地模拟真实情况,结果也就更精确。

COSMOS主要功能模块(产品): COSMOSWorks , COSMOSDesignSTAR ,COSMOSMotion ,COSMOSFloworks ,COSMOSM GeoStar 。其中COSMOSWorks 、COSMOSMotion、 COSMOSFloworks做为标准插件集成在SolidWorks中,整个的使用界面完全是Solidworks的风格,只须简单的操作,便可进行分析。

COSMOS/Works是完全整合在SOLIDWORKS 中设计分析系统的,提供压力、频率、约束、热量,和优化分析。为设计工程师在SolidWorks的环境下,提供比较完整的分析手段。凭借先进的快速有限元技术,工程师能非常迅速地实现对大规模的复杂设计的分析和验证,并且获得修正和优化设计所需的必要信息。分析的模型和结果和Soli -dWorks共享一个数据库,这意味着设计与分析数据将没有繁琐的双向转换操作,分析也因而与计量单位无关。在几何模型上,可以直接定义载荷和边界条件,如同生成几何特征,设计的数据库也会相应地自动更新。计算结果也可以直观地显示在SolidWorks精确的设计模型上。这样的环境操作简单、节省时间,且硬盘空间资源要求很小。

COSMOS/WORKS是SolidWorks家族最热销的分析解决方案,尤其适合于那些有分析需求但是缺乏相关有限元专业知识的工程师们的需要。COSMOS/WORKS集功能强大、计算精确和简单好用三大特点为一身,能够让工程师们在一天之内开始设计分析,并且迅速得到分析结果。COSMOS/WORKS能够提供广泛的分析工具去检验和分析复杂零件和装配,它能够进行应力分析、应变分析、变形分析、热分析、设计优化、线性和非线性分析。使用COSMOS/WORKS,工程师可以最大限度地缩短设计周期,降低测试成本,提高产品质量,加大利润空间。

COSMOS/WORKS提供的功能强大而又快速、精确的设计分析工具,确保工程师的设计分析更加轻松。

2.自行车简介

自行车的车架、轮胎、脚踏等部件,基本是缺一不可的。其中车架是自行车的骨架,它所承受的人或货物的重量最大。按照各部件的工作特点,大致可将其分为导向系统、驱动系统、制动系统。

1).导向系统:有车把、前轮、前叉、等部件组成。骑车者可以通过操作车把来改变行驶方向并保持车身平衡。

2).驱动系统:有脚蹬曲柄链条飞轮后轮等部件组成。人脚的脚蹬力是靠脚蹬通过曲柄,链轮链条分论等部件传动的,从而使自行车不断前进。

3).制动系统:由车闸部件组成,乘者可以随时操作车闸,是行驶的减速始停,以确保行车安全。

此外,为了安全和美观,以及实用出发,还装配了车灯,支架等部件。

3.山地自行车的三维建模

山地车的三维建模包括车架、车链、前叉、车把和车轮等的建模。在画每个零件时一定要注意各个零件之间相互制约的尺寸与空间关系,如果在尺寸等方面出错很有可能造成最后装配时出现问题而导致不能成功装配,这样就必须修改或重新作图,带来不必要的麻烦。

下面将对没个零件的三维建模做逐个详细介绍。

3.1车架建模

自行车车架作为整个自行车的骨架,最大程度地决定、影响了骑行姿势的正确性和舒适性。构架的主干是两根空心轴,分别是处于前面与前叉配合的轴和处于下面与曲柄轴配合的轴。在这两根轴的基础上画出一根横梁和一根斜梁,然后画出与前轴平行的中间轴。注意这两根周是平行的,尺寸按自行车实体量取。最后画出两对关于前视面对称的曲杆,在两对曲杆相交处画出与后轮相配合的面。在这两个面上拉伸切除楚两个孔,孔的大小与后轮轴大小相配合。且两面间距要严格按照后轮宽度作图。孔中心与下面空轴中心间距为链条大齿轮

与小齿轮的中心距。按照尺寸并通过拉伸、放样等方法做出车架三维图如图2

所示。

图2 车架三维图

3.2前叉建模

前叉是连接车架与前轮的必要部件,在山地车上起着极其重要的作用。前叉由一根中轴和两根边轴组成。三根轴都采用空心处理,这样在能够保证足够强度的同时减小车体重量,大大提高了山地车的性能。绘图时主要采用拉伸与放样的方法,尤其注意两根边轴之间的距离,因为中间要装前轮,必须要考虑前轮的宽度。同时前面与前轮轴配合的孔也必须按照前轮轴尺寸绘图。作图如

图3所示

图3 前叉三维图

3.3链条建模

链条式山地车运行的动力元件,它连接着前齿轮与后齿轮。其上传递着动

力,将前齿轮的转矩传动到后轮上,带动整个车运动。

链条建模时,需先画出链条的装配零件,即:内板、外板、轴和轴套。将这四个零件组装出一个车链装配体单元。然后在新建一个装配体,将装配体单元逐个装配到事先画好的车链运动轨迹带上,以完成整个链条装配体。在链条装配时一定要注意在左右两个半圆处将链条装配体单元设为柔性,否则链条将

不会歪曲自然,链条装配也会失败。经过耐心装配后得到链条装配体如图4所

示。

图4 车链装配体

.3.4车把建模

车把把握着车体行走的路线,是行车的导航元件。车把建模时先画出把手轴,再画出把手套。把手套上有两个空心立方体轴,轴孔的大小由车把和前叉

上轴外径确定。将两元件画好装配好如图5所示。

图5 车把

3.5车轮建模

车轮是山地车的运动元件,通过车轮的转动带动车体前进,滚动元件大大

减小了运动的阻力。车轮由内圈、外胎、中轴和辐条等零件组成,其为一装配体。作图时先按照尺寸给定车轮大致轮廓,然后在前视基准面上画出内圈横截面,然后在右视基准面上画出一圆作为引导线,采用扫描得到内圈。采用同样的方法得到外胎。再画出轮中间的轮盘,在其上按照辐条数阵列出辐条孔。最后用扫描的方法画出辐条,这样就完成了轮胎的各个零部件。

轮胎的装配是将内圈、外胎、轮盘和辐条装配起来,主要的事将辐条能正

确安装起来,这样才能确保车轮装配的成功。完成的车轮装配体如图6所示。

图6 车轮装配体

3.6车座三维建模

车座是车体的主要承载部件。在满足一定的结构强度的同时,其必须按照人类臀部形状设计以满足必要的舒适度。在画图时采用曲线与曲面构图,先画出一半曲线,用曲面放样画出整个模型来,然后再采用镜像、曲线缝合、填充等方法画出完整的车座。最后在车座底部画一个圆,采用拉伸并设定薄壁特征画出一根轴,轴的外径大小须与车架空心轴相配合,尺寸由车架空心轴内径确

定。画出车座如图7。

图7 车座

3.7脚蹬、曲柄建模

人在骑车时脚上的作用力作用在脚踏上,通过脚踏转动曲柄以使车运动,曲柄脚踏是车体动力的输入元件。作图时注意脚踏与曲柄轴的尺寸配合,最后得到如图8所示。

a曲柄b脚踏

图8

3.8齿轮的三维建模

齿轮是与链条相配合的,所以在作图时要注意要以链条的尺寸为准。且要遵从齿轮模数、齿数等的规定。做出如图9的齿轮。其为大齿轮,小齿轮和大齿轮只是尺寸上的区别。

图9 齿轮

3.7山地自行车装配图

山地车在装配装配时由于零件过多,必须注意各零部件之间的尺寸配合。在定义配合约束时一定要注意别过定义。可以进行几个零件之间先配合,最后

在组装。组装后的山地车如图10所示

图10 山地车装配图

4.山地自行车的有限元仿真分析

山地车的有限元分析必须考虑到所有主要承载外力的零部件。只有所有部件仿真后为安全,山地车才算合格。在此,我们考虑到以下几个主要零件的仿真。

4.1车架的simulation分析

车架作为自行车的主架,起着主要的承载作用。在此我们取车架材料为铝合金6061,固定约束设在前叉安放处和后轮安放处,外部载荷为800N。在此,我们考虑两种工况。

工况一:假设骑者坐在车座上,外部载荷作用在车座。

工况二:假设骑者站在脚踏上,外部载荷作用在脚踏上。

材料铝合金6061的基本参数如表一。

表一铝合金6061参数表

属性数值单位

弹性模量 6.9*1010N/m2

泊松比0.33

抗剪模量 2.6*1010N/m2

张力强调124084000 N/m2

屈服强度55148500 N/m2

定义材料后,添加外部载荷。按照两种工况要求下,添加载荷如图11与图14所示。

载荷添加完成后,生成网格,网格化如图12与图15所示

网格成功后,点击运行,得到两种工况下运行图如图13和图16所示。

图11工况一下车架加载图

图12工况一下网格化

图13 工况一下运行结果

图14 工况二下车架加载图

图15工况二下网格化

图16 工况二下运行结果

两种工况下的结果分析如表二

表二两种工况下运行结果

最大应力(N/m2)最小应力

(N/m2)

最大应变最大位移(mm)

工况一 1.1*107 9.7*105 1.05*10-4 0.0129

工况二 1.2*107 2.7*103 1.07*10-4 0.0127

在以上两种工况下的分析中,任何一种的最大应力都没有超过材料的屈服力,结构强度满足要求。而且最大位移均很小,不会给骑车造成伤害。比较两种工况,可以看出工况二下最大应力、最大应变和最大位移都略比工况一下的大。但均能满足要求。

4.2 车把分析

先新建一个车把分析算例。应用材料采用铝合金6061,该材料各项参数见

表二。添加外部载荷为在两边把手处加80N的外力。点击生成网购,得到网格化图如图17。网格化成功后,点击运行,得到把手的simulation分析结果图如图18。

图17 把手网格化

图18把手分析结果图

表三车把simulation分析结果

最大应力(pa)最大应变最大位移(mm)屈服应力(pa)

4.1*106 4.5*10-5 0.08

5.05*107

得到如表三所示结果。有该表可以看出,最大应力比屈服力要小一个数量级,可知结构安全。最大位移只有0.08mm,肉眼根本看不出来。由此车把符合要求。

4.3前叉的有限元分析

新建一个前叉simulation算例,定义材料为铝合金6061,定义约束未固定几何体,约束加在前叉前轮安放孔处,在与车架相配合的柱面上也作用固定约束。添加载荷在顶部作用100N的作用力。

点击网格化生成网格如图19所示。点击运行,得到运行结果图如图20所示。

从图20可以看出,在与前轮配合的孔处应力最大,但依然远远小于屈服力。且分析结果如下,有图知,图中没有出现红色区域,结构安全。

SolidWorks 减速器建模实例

12.2减速器建模实例 12.2.1齿轮绘制 在下面的练习中,将详细讲述齿轮的绘制过程,这里先给出齿轮的各项参数:模数m=2、齿数z=55。通过这些参数,可以计算出:分度圆直径=110mm、齿顶圆直径=114mm、齿根圆直径=105mm。齿轮建模的操作步骤如下: (1)单击标准工具栏中的“新建”图标,新建一个零件文件。 (2)在特征管理器设计树中选择“前视基准面”,单击“草图绘制”工具,进行草图1的绘制。单击草图工具栏中的“圆”工具,以草图原点为圆心分别绘制出分度圆、齿顶圆、齿根圆。选择分度圆,单击草图工具栏中的“构造几何关系”工具,使分度圆变为点划线。 (3)单击“中心线”工具,过草图原点绘制一条垂直的对称中心线。单击“点”工 具,移动鼠标指针到分度圆与中心线相交的位置,当推理指针捕捉到交点时,按下鼠标左键确定点的位置。 (4)保持点的选择,单击草图工具栏中的“圆周阵列”工具,在“排列”选项栏的“数 量”文本框中输入55×4=220,单击“确定”按钮,结束圆周阵列的操作,此时,您将看到分度圆上出现一系列的点。需要指出的是:点的绘制对后面的实体造型没有本质的作用,但是它为后面的操作提供了参照。 (5)单击草图工具栏中的“样条曲线”工具,在点的引导下绘制如图12-27 所示的曲 线,注意曲线的端点分别在齿顶圆和齿根圆上。这里我们把齿形渐开线的绘制简化为简单曲线的绘制,如果读者有兴趣的话,可以参考机械工程手册中的齿轮渐开线绘制方法完成这一部分的操作。 (6)按住键,选择曲线与垂直中心线,单击草图工具栏中的“镜像实体”工具完成曲线的镜像复制操作,如图12-27所示。接着,单击“裁剪实体”工具,选择“裁剪 到最近端”选项,剪裁齿顶圆,如图12-28所示: 图12-27绘制及镜像样条曲线 图12-28 裁剪齿顶圆 (7)单击草图工具栏中的“分割实体”工具,选择齿根圆进行分割,如图12-29(a)所示。 (8)单击特征工具栏中的“拉伸凸台/基体”工具,设置拉伸深度为26mm,单击“所选轮廓”选项框,并在图形区域中选取齿根圆的轮廓。单击“确定”,完成拉伸1特征

solidworks实例-100多个实例

图1 图2 图1提示:①拉伸圆柱→倒内外角→拉伸切槽;。 ②拉伸带槽柱体→倒内外角;。 ③旋转带倒角圆套→切伸切槽。 图2提示:①拉伸带孔的六边形→倒内角→倒外角;。 ②拉伸圆柱套→倒内角→倒外角→拉伸切六边;。 ③旋转带倒角圆柱套→拉伸切六边。 图3 图4 图3提示:①拉伸带孔的六边形→倒内角→倒外角→拉伸切顶槽; ②拉伸圆柱套→倒内角→倒外角→拉伸切六边形→拉伸切顶槽; ③旋转带倒角的圆柱套→拉伸切六边→拉伸切顶槽。 图4提示:①拉伸圆锥套→拉伸侧耳→切除多余部分→圆角; ②旋转圆锥套→拉伸侧耳→切除多余部分→圆角。 图5 图6 图5提示:旋转生成主体→拉伸切横槽→阵列横槽。 1

图6提示:①拉伸圆柱→倒角→拉伸切除圆柱孔; ②旋转带倒角圆柱→拉伸切除圆柱孔。 图7 图8 图7提示:旋转法。 图8示:①旋转阶梯轴(带大端孔)→拉伸切内六角→拉伸切外六角→切小端圆孔; ②拉伸阶梯轴→拉伸切圆柱孔→拉伸切内六角→拉伸切外六角→切小端圆孔。 图9 图10 图9提示:①旋转带球阶梯轴→拉伸切中孔→拉伸切横孔→拉伸切球部槽。 图10提示:①旋转法。 图11 图12 图11示:旋转生成轮主体→拉伸切轮幅→拉伸切键槽。 图12提示:旋转主体→切除拉伸孔→切除拉伸槽。 2

图13 图14 图13提示:①旋转。 图14提示:①旋转生成带皮带槽的轮主体→拉伸切轮幅→拉伸切键槽。 图15 图16 图15提示:①画一个方块→切除拉伸内侧面→拉伸两个柱→切除拉伸外侧面→切除拉伸孔。 图16提示:①旋转生成齿轮主体→切除拉伸键槽→画一个齿的曲线→扫描生成一个齿→阵列其它齿。 ②从库中提取→保存零件。 图17 图18 图17提示:旋转主体→切除拉伸孔。 3

solidworks建模制作帆船要点

基于Solidworks软件的工艺品建模实验 1.实验目的:了解Solidworks软件的功能,掌握工艺产品建模的基本技巧。2.实验设备:计算机一台,Solidworks 软件一套。 3.实验要求:利用Solidworks 软件进行模型设计; 进行特征分析,并填写特征分析参数表; 提交实验报告一份。 4.实验报告:

1.模型特征分析表: 2.工艺产品建模过程:(过程简介) 1)在右视基准面插入草图,如下; 并凸台拉伸200mm 在一面建立如下草图; 拉伸切除:完全贯穿;命名特征:右侧。

2)对刚才的两特征做镜像特征,以前视基准面作镜像面 对两边线做圆角特征,半径15mm 3)前视基准面建立草图如下: 拉伸切除,到两外表面的距离为2mm;特征命名为:甲板1

4)在最上层表面建立草图,利用等距实体将外轮廓向内等距2mm,并裁减如下;向下拉伸切除3mm;命名特征:船头船尾甲板 5)@船尾位置。在前视基准面建立草图,如下;凸台拉伸,两侧对称,50mm

6)@船头位置。在前视基准面建立草图如下。拉伸切除,两侧对称,12mm 7)在船的内表面建立草图,如下; 凸台拉伸 在楼梯板侧面建立草图(利用线性草图阵列),如下。 在同一草图,对其余两个楼梯画出类似草图; 凸台拉伸0.7mm

在楼梯板侧面建立草图(利用线性草图阵列),如下。 在同一草图,对其余两个楼梯画出类似草图;凸台拉伸0.7mm 8)镜像特征。 以前视基准面作镜像面 所镜像特征:刚做的三个楼梯面及其扶手。 9)在楼梯扶手面建立草图,如下;同一草图里,对其他三个楼梯画出该形状的草图; 凸台拉伸,选择成形到一面,(选择对面的楼梯扶手);

solidworks汽车壳体曲面建模实例教程

本节详细讲了solidworks曲面建模实例汽车壳体的绘制过程以及注意事项等内容。 在SolidWorks中利用三视图进行汽车建模的一般方法是:首先将汽车视图分别导入到相应基准面作为草绘的参考,然后找到各视图中对应的轮廓线,进行投影形成空间曲线,最后进行放样等操作。限于篇幅,本文将以audi R8为例介绍汽车壳体建模的大致过程。 一、建模前的图片准备 首先利用图片处理软件(如PhotoShop)对图片进行必要的裁剪,将图片以主视图、左视图及俯视图的形式进行裁剪,并分别保存为单独的图片文件,以便后续的操作。 二、汽车壳体建模 1.打开SolidWorks软件 单击“开始”→“所有程序”→“SolidWorks 2009”→“SolidWorks 2009 x64 Edition SP3.0”→“SolidWorks 2009 x64 Edition SP3.0”,打开软件或双击桌面快捷图标打开软件。 1)单击“新建”按钮,如下图所示:

2)在弹出的“新建Solidworks文件”对话框中单击“零件”按钮,然后单击“确定”按钮,如下图所示:

2.导入汽车图片 1)在上视基准面新建草图,然后单击“工具”→“草图工具”→“草图图片”,在弹出的对话框中选中“俯视图”图片,单击“打开”按钮,如下图所示,图片将显示在上视基准面中。

2)拖动鼠标,将图片移动到中心位置,并调整合适的大小,单击“确定”按钮完成图片调整.为了定位准确,可以在上视基准面参考图片大小,绘制一个矩形,标注合适的尺寸,完成汽车图片的导入。可能需要反复调整图片的大小及矩形的大小,最终达到类似于图4的效果,单击右方角的按钮退出草图。(在调整过程中,可随时双击图片,激活它以调整大小和位置。) 同理,分别在前视基准面和右视基准面插入主视图和左视图,调整到合适的大小及位置。插入图片的效果如下图所示。

solidworks 入门实例建模教程

来自于https://www.wendangku.net/doc/1f3420814.html, 图1 图2 图1提示:①拉伸圆柱→倒内外角→拉伸切槽;。 ②拉伸带槽柱体→倒内外角;。 ③旋转带倒角圆套→切伸切槽。 图2提示:①拉伸带孔的六边形→倒内角→倒外角;。 ②拉伸圆柱套→倒内角→倒外角→拉伸切六边;。 ③旋转带倒角圆柱套→拉伸切六边。 图3 图4 图3提示:①拉伸带孔的六边形→倒内角→倒外角→拉伸切顶槽; ②拉伸圆柱套→倒内角→倒外角→拉伸切六边形→拉伸切顶槽; ③旋转带倒角的圆柱套→拉伸切六边→拉伸切顶槽。

图4提示:①拉伸圆锥套→拉伸侧耳→切除多余部分→圆角; ②旋转圆锥套→拉伸侧耳→切除多余部分→圆角。 图5 图6 图5提示:旋转生成主体→拉伸切横槽→阵列横槽。 图6提示:①拉伸圆柱→倒角→拉伸切除圆柱孔; ②旋转带倒角圆柱→拉伸切除圆柱孔。 图7 图8 图7提示:旋转法。 图8示:①旋转阶梯轴(带大端孔)→拉伸切内六角→拉伸切外六角→切小端圆孔; ②拉伸阶梯轴→拉伸切圆柱孔→拉伸切内六角→拉伸切外六角→切小端圆孔。

图9 图10 图9提示:①旋转带球阶梯轴→拉伸切中孔→拉伸切横孔→拉伸切球部槽。图10提示:①旋转法。 图11 图12 图11示:旋转生成轮主体→拉伸切轮幅→拉伸切键槽。 图12提示:旋转主体→切除拉伸孔→切除拉伸槽。

图13 图14 图13提示:①旋转。 图14提示:①旋转生成带皮带槽的轮主体→拉伸切轮幅→拉伸切键槽。 图15 图16 图15提示:①画一个方块→切除拉伸内侧面→拉伸两个柱→切除拉伸外侧面→切除拉伸孔。 图16提示:

图17 图18 图17提示:旋转主体→切除拉伸孔。 图18提示:旋转主体→切除拉伸孔。 图19 图20 图19提示:旋转主体→拉伸切除六边形。图20提示:旋转主体→拉伸切除六边形。 图21 图22

solidworks学习资料

第1章SolidWorks基础与建模技术 本章要点 SolidWorks是一个在Windows环境下进行机械设计的软件,是一个以设计功能为主的CAD/CAE/CAM软件,其界面操作完全使用Windows风格,具有人性化的操作界面,从而具备使用简单、操作方便的特点。 SolidWorks是一个基于特征、参数化的实体造型系统,具有强大的实体建模功能;同时也提供了二次开发的环境和开放的数据结构。本章介绍SolidWorks的环境和简单的造型过程,让读者快速了解这个软件的使用。 本章内容 ?SolidWorks环境简介 ?SolidWorks建模技术 ?简单演练

SolidWorks 2006三维建模实例教程 2 1.1SolidWorks环境简介 SolidWorks是美国SolidWorks公司开发的三维CAD产品,是实行数字化设计的造型软件,在国际上得到广泛的应用。同时具有开放的系统,添加各种插件后,可实现产品的三维建模、装配校验、运动仿真、有限元分析、加工仿真、数控加工及加工工艺的制定,以保证产品从设计、工程分析、工艺分析、加工模拟、产品制造过程中的数据的一致性,从而真正实现产品的数字化设计和制造,并大幅度提高产品的设计效率和质量。 通过本节的学习,读者应熟悉SolidWorks的界面,以及常用工具条的使用。 1.1.1工作环境和模块简介 1.启动SolidWorks和界面简介 安装SolidWorks后,在Windows的操作环境下,选择【开始】→【程序】→【SolidWorks 2006】→【SolidWorks 2006】命令,或者在桌面双击SolidWorks 2006的快捷方式图标,就可以启动SolidWorks 2006,也可以直接双击打开已经做好的SolidWorks文件,启动SolidWorks 2006。 图1-1是SolidWorks 2006启动后的界面。 图1-1SolidWorks界面 这个界面只是显示几个下拉菜单和标准工具栏,选择下拉菜单【文件】→【新建】命令,或单击标准工具栏中按钮,出现“新建SolidWorks文件”对话框,如图1-2所示。

solidworks实例教程

Solidworks 2010 三维建模及工程图实验指导书 (机械制图习题集机类、近机类5-3-2) 一、实验目的 1.了解现代设计工具的应用现状,体会基于特征的参数化建模技术的应用。 2.通过本次实验使学生掌握Solidworks 2010软件的草绘、建模、工程图三个模 块基本操作及常用命令,并运用该软件创建零件的三维模型及二维工程图。 3.通过实验使理论和实践相结合。使学生在掌握一种绘图技能的同时,提高自 身的空间思维能力、读图和绘图能力,有助于学生深入理解工程制图课程的理论知识,激发学生们的学习兴趣。 二、实验要求 根据图1所示泵体零件图,运用Solidworks 2010创建三维模型(图2所示)及二维工程图(图3所示)。提交此模型的三维模型(图2所示)及二维工程图(图3所示)文件。

图1 几何作图 图 2 三维模型

图 3 二维工程图 三、实验内容 (一) 启动Solidworks2010 选择“开始”—“所有程序”—“Solidworks 2010”—“Solidworks 2010”,如图4所示,启动Solidworks2010 软件(或直接双击桌面快捷键启动软件,如图5所示)。软件启动后,如图6所示。 图4 图5

图6 (二) 新建文件 在最上方标准工具栏中点击“新建”命令(如图7所示),出现“单位和尺寸标准”对话框,如图8所示,“单位”处选择“MMGS(毫米、克、秒),“尺寸标准”选择“GB”,“确定”后,出现“新建Solidworks文件”对话框 (如图9所示),选择“零件”文件,“确定”后,系统自动进入三维建模环境,如图10所示。 图7

solidworks建模过程

摘要: SolidWorks是一款三维机械CAD软件,具有强大的功能、易用性和创新性。本文以箱体零件的绘制过程介绍了运用Solidworks绘制零件图的方法及拉伸、切除、镜像等操作。 英文摘要: SolidWorks is a 3D mechanical CAD software,it has a powerful functionality and innovation. Also it is easy to use. This paper describes the process of drawing of box parts using Solidworks drawing of the part drawing methods and drawing, excision, mirror and other operations. 关键词:箱体、拉伸、切除、草图、模型 正文 一、软件介绍 Solidworks是由美国SolidWorks公司开发的三维机械CAD软件,问世于1995年。因其强大的功能、易用性和创新性,在于同类软件的竞争中逐步确立了市场地位。 SolidWorks提供了强大的基于特征的实体建模功能,用户可以通过拉伸特征、旋转特征、薄壁特征、抽壳、特征阵列以及打孔等操作实现产品的设计,方便地添加特征、更改特征以及将特征重新排列,对特征和草图进行动态修改,并通过拖拽等方式实现实时设计修改。 在进行装配设计时,可以直接参考其他零件并保持这种参考关系生成新零件可以动态装配体的所有运动,并对运动零部件进行动态的干涉检查和间隙检查,还可以应用智能零件技术自动完成重复设计,运用智能化装配技术完成自动捕捉并定义装配关系。 在进行工程图设计时,可以自动生成详细,准确的工程图样,且这种工程图样是全相关的,即在修改图样时,三维模型,各个视图,装配体都会自动进行更新。 SolidWorks还提供了功能强大的全相关的钣金设计和模具设计能力,以及开放的二次开发工具。 二、学习心得 经过一个学期的课程,我基本掌握了运用SolidWorks绘制零件图的方法。学会了基准面的创建方法,拉伸和旋转特征建模方法,创建圆角、倒角等附加特征的方法,并了解了运用扫描和放样特征建模。 学习中,我体验到了SolidWorks这款软件功能的强大以及许多方便用户使用的设计。SolidWorks绝对是机械3D建模的利器。

solidworks实例操作

实例操作 在简单介绍了界面和工具栏后,这里给读者演示做一个小零件,如图1-21 所示,让读者了解造型的过程。

2 SolidWorks 2006三维建模实例教程 图1-21零件的造型 (1) 打开SolidWorks 界面后,单击【文件】宀 【新建】命令或者单击按钮 口,出现 “新建SolidWorks 文件”对话框,选择【零件】命令后单击【确定】按钮,出现一个新建 文件的界面,首先单击【保存】按钮,将这个文件保存为“ 底座”。 (2) 在控制区单击【前视基准面】,然后在草图绘制工具栏单击按钮 胃,出现如 图 1-22所示的草图绘制界面; 在图形区单击鼠标右键, 取消选中快捷菜单的 【显示网格线】 复选框,在图形区就没有网格线了。在作图的过程中,由于实行参数化,对于网格一般不 应用,所以在以后的作图中,都去掉网格。 图1-22 草图绘制界面 (3 )单击绘制【中心线】按钮 ■,在图形区过原点绘制一条中心线,然后单击【直 线】按钮—I ,在图形区绘制如图1-23所示的图形,需要注意各条图线之间的几何关系。不 ▼ I □国 MB :4曲:¥為? A 9 目- ifilh 釦| 站存盪仪Q 湮&申 fil nn 9.J tA 3 鹉 tf Al 曙驱 肚kl 曲 -◎ stains 1= MI 辰 -阖也与卿i 孕 7rE?l EiliT 0上丧It 潯面 0右我 ■龙而 [蘇 U g^C-UBl 口距*购 0峋 勺tW*也 e 三卓EW 嚼 ]中碎t 仙 Q 样来曲池 葺宙■再M 妣 $ W6尺她I H 养尺叶;瓯 JIMlJtJE k 3U.nj^*5. 堂昌询?甌「用主JF …回 qjl#.¥jWSi&7 CH 丄亍Flfii 建1皿 J* ^nlbiWnrk^ OfYirr Pmof^vsiafMJ 7r>fW\ - [7BII v *] WB Wi- MQJ t 豐哑昌〒號鼻库酩 -E ◎、口 000-5> 中尙6? 旧内 + 血门 F1

SolidWorks2010详细教程和资料

SolidWorks2010详细教程和资料 SolidWorks公司成立于1993年,由PTC公司的技术副总裁与CV公司的副总裁发起,总部位于马萨诸塞州的康克尔郡(Concord,Massachusetts)内,当初所赋予的任务是希望在每一个工程师的桌面上提供一套具有生产力的实体模型设计系统。从1 995年推出第一套SolidWorks三维机械设计软件至今,它已经拥有位于全球的办事处,并经由300家经销商在全球140个国家进行销售与分销该产品。SolidWorks软件是世界上第一个基于Windows开发的三维CAD系统,由于技术创新符合CAD技术的发展潮流和趋势,SolidWorks公司于两年间成为CAD/CAM产业中获利最高的公司。良好的财务状况和用户支持使得SolidWorks每年都有数十乃至数百项的技术创新,公司也获得了很多荣誉。该系统在1995-1999年获得全球微机平台CAD系统评比第一名;从1995年至今,已经累计获得十七项国际大奖,其中仅从1999年起,美国权威的CAD 专业杂志CADENCE连续4年授予SolidWorks最佳编辑奖,以表彰SolidWorks的创新、活力和简明。至此,SolidWorks所遵循的易用、稳定和创新三大原则得到了全面的落实和证明,使用它,设计师大大缩短了设计时间,产品快速、高效地投向了市场。 由于SolidWorks出色的技术和市场表现,不仅成为CAD行业的一颗耀眼的明星,也成为华尔街青睐的对象。终于在1997年由法国达索公司以三亿一千万美元的高额市值将SolidWorks全资并购。公司原来的风险投资商和股东,以一千三百万美元的风险投资,获得了高额的回报,创造了CAD行业的世界纪录。并购后的SolidWork s以原来的品牌和管理技术队伍继续独立运作,成为CAD行业一家高素质的专业化公司,SolidWorks三维机械设计软件也成为达索企业中最具竞争力的CAD产品。 由于使用了Windows OLE技术、直观式设计技术、先进的parasolid内核(由剑桥提供)以及良好的与第三方软件的集成技术,SolidWorks成为全球装机量最大、最好用的软件。资料显示,目前全球发放的SolidWorks软件使用许可约28万,涉及航空航天、机车、食品、机械、国防、交通、模具、电子通讯、医疗器械、娱乐工业、日用品/消费品、离散制造等分布于全球100多个国家的约3万1千家企业。在教育市场上,每年来自全球4,300所教育机构的近145,000名学生通过SolidWorks的培训课程。 据世界上著名的人才网站检索,与其它3D CAD系统相比,与SolidWorks相关的招聘广告比其它软件的总合还要多,这比较客观地说明了越来越多的工程师使用S

solidworks三维建模

3.2 草图的绘制 草图是由直线、圆弧等基本几何元素构成的封闭或不封闭的几何实体。草图分为二维草图和三维草图。二维草图绘制在平面上,该平面可以是基准面也可以是模型上的任意平面。三维草图存在于三维空间,且不和特定的草图基准面相关。 草图是与特征紧密相关的,它用于构成特征的“截面轮廓”或“路径”。离开了特征,孤立的草图毫无意义。 大部分Solidworks 的特征都是由二维草图开始的。所以能够熟练地使用草图绘制工具草图非常重要。(转自《Solidworks 机械设计实用教程》P15) 绘制草图主要包括四大过程:第一是用草图绘制实体工具,比如直线、圆、样条曲线、矩形等工具来绘制草图;第二是用草图编辑工具,比如剪裁实体、延伸实体、等距实体、镜像实体等工具来修改草图;第三是添加几何关系;第四是标注尺寸。 图3-1 绘制草图的四大过程 下面通过绘制一个类似于回旋飞镖形状的草图来演示绘制草图的这四大过程。 图3-2绘制草图实体 通过草图绘制实体工具中的【圆】 和【直线】来绘制草图实体。一般通 过绘制草图实体的工具只能粗略的画 出草图。 图3-3添加几何关系 给两条直线分别和两个圆添加【相切】的几何关系。几何关系可以很容易的控制图形相互间的关系,同时也能表达设计者的设计意图。 Tips :本章节【 】中的内容就是Solidworks 中的工具,【 】后面的★数量多少代表该工具的使用频率。仅此而已。

图3-4编辑草图实体 通过【镜向实体】工具来编辑草图。编辑草图的工具主要是为了更快捷、更方便地绘制草图。 图3-5编辑草图实体 通过【剪裁实体】工具来编辑草图。(为了避免由于草图的几何关系过多影响观看,隐藏几何关系的显示。) 图3-6标注尺寸 Solidworks中的尺寸可以驱动图形,这是与非参数化CAD软件AutoCAD明显的不同之处。 3.1.1 绘制草图实体 这里我们讲的是二维草图的绘制。要绘制草图,首先就得在某个平面上来绘制。在你最初无中生有的那个阶段,这个平面一般是Front Plane、Right Plane 和Top Plane这三个面。随着你物体三维形状逐渐建立起来,这个平面就多半是在物体的某个平面上或者说是与Front Plane、Right Plane、Top Plane和物体平面平行或成某一角度的基准面上。 在你所选平面上点击【草图绘制】按钮,即可进入草图绘制的环境。

相关文档
相关文档 最新文档