文档库 最新最全的文档下载
当前位置:文档库 › 力学计算题专项训练

力学计算题专项训练

力学计算题专项训练
力学计算题专项训练

力学计算题专项训练

1. 如图所示,劲度系数为k=100 N/m的轻弹簧A左端固定,甲、乙两滑块(视为质点)之间通过绳子夹着一个压缩弹簧B,甲刚好与桌子边缘对齐,乙与弹簧A的右端相距s0=0.95m,且m甲=3 kg,m乙=1 kg,桌子离地面的高度为h=1.25m.烧断绳子后,甲、乙落在地面上同一点,落地点与桌子边缘的水平距离为s=0.5m.O点右侧光滑,乙与O点左侧水平面动摩擦因数μ=0.2,重力加速度取g=10 m/s2,求:

(1) 烧断绳子前弹簧B的弹性势能.

(2) 乙滑块在水平桌面上运动过程中的最大加速度.

2. 如图所示,固定在地面上的光滑轨道AB、CD均是半径为R的1/4圆弧.一质量为m、上表面长也为R的小车静止在光滑水平面EF上,小车上表面与轨道AB、CD的末端B、C相切.一质量为m的物体(大小不计)从轨道AB的A点由静止下滑,由末端B滑上小车,小车在摩擦力的作用下向右运动.当小车右端与壁CF接触前的瞬间,物体m恰好滑动到小车右端相对于小车静止,同时小车与CF相碰后立即停止运动但不粘连,物体则继续滑上轨道CD.求:

(1) 物体滑上轨道CD前的瞬间速率.

(2) 水平面EF的长度.

(3) 当物体再从轨道CD滑下并滑上小车后,如果小车与壁BE相碰后速度也立即变为零,最后物体m停在小车上的Q点,则Q点距小车右端多远?

3. 如图所示,在水平轨道右侧安放半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段铺设特殊材料,调节其初始长度为l.水平轨道左侧有一轻质弹簧左端固定,弹簧处于自然伸长状态.小物块A静止放置在弹簧右端,A与弹簧接触但不拴接;小物块B从轨道右侧以初速度v0冲上轨道,通过圆形轨道、水平轨道后与物块A发生对心碰撞且瞬间粘连,之后A、B一起压缩弹簧并被弹簧以原速率弹回,经水平轨道返回圆形轨道.物块A、B均可视为质点.已知R=0.2m,l=1.0m,v0=6 m/s,物块A、B质量均为m=1 kg,与PQ段间的动摩擦因数均为μ=0.2,轨道其他部分摩擦不计.取g=10 m/s2.求:

(1) 物块B与物块A碰撞前速度大小.

(2) 物块B与物块A碰后返回到圆形轨道的高度.

(3) 调节PQ段的长度l,B仍以v0从轨道右侧冲上轨道,当l满足什么条件时,A、B物块能返回圆形轨道且能沿轨道运动而不会脱离轨道?

4.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R=0.6m.平台上静止着两个滑块A、B,m A=0.1kg,m B=0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M=0.3kg,车面与平台的台面等高,车面左侧粗糙部分长度为L=0.8m,动摩擦因数为μ=0.2,右侧拴接一轻质弹簧,弹簧自然长度所在处车面光滑.点燃炸药后,A滑块到达圆轨道最高点时对轨道的压力大小恰好等于A滑块的重力,滑块B冲上小车.两滑块都可以看做质点,炸药的质量忽略不计,爆炸的时间

极短,爆炸后两个物块的速度方向在同一水平直线上,取g=10 m/s2.求:

(1) 滑块在半圆轨道最低点对轨道的压力.

(2) 炸药爆炸后滑块B的速度大小.

(3) 滑块B滑上小车后的运动过程中弹簧的最大弹性势能.

5.如图甲所示,平板小车A静止在水平地面上,平板板长L=6m,小物块B静止在平板左端,质量m B=0.3 kg,与A的动摩擦因数μ=0.8.在B正前方距离为s处有一小球C,质量m C =0.1 kg,球C通过长l=0.18m的细绳与固定点O相连,恰当调整O点的位置使得球C与物块B等高,且C始终不与平板A接触.在t=0时刻,平板车A开始运动,运动情况满足如图乙所示s A t关系.若BC发生碰撞,两者将粘在一起,绕O点在竖直平面内做圆周运动,并能通过O点正上方的最高点.BC可视为质点,取g=10 m/s2,求:

(1) BC碰撞瞬间,细绳拉力至少为多少?

(2) 刚开始时,B与C的距离s要满足什么关系?

6.如图所示,光滑绝缘水平面上方空间,竖直平面MN左侧有一水平向右的匀强电场,场强大小E1=mg/q,右侧空间有长为R=0.8m、一端固定于O点的轻绝缘细绳,另一端拴一个质量为m、不带电小球B.小球B可在竖直面内沿顺时针做圆周运动,运动到最低点时速度大小v B=8 m/s(B在最低点与水平面恰好无弹力).在MN左侧水平面上有一质量也为m、带正电荷量q的小球A,在距MN平面L位置由静止释放,恰能与运动到最低点的B球发生正碰(电荷量不变),并瞬间成为一个整体C,碰后瞬间在MN的右侧空间立即加一竖直向上的匀强电场,场强大小E2=3E1.(取g=10 m/s2)

(1) 如果L=0.2m,求整体C运动到最高点时的速率.

(2) C在最高点时受到的拉力是物体重力的多少倍?

(3) 当L满足什么条件时,整体C可在竖直面内做完整的圆周运动.

7. 如图所示,以A、B为端点的1/4光滑圆弧轨道固定于竖直平面,一足够长的滑板静止在光滑水平地面上,左端紧靠B点,上表面所在平面与圆弧轨道相切于B点,离滑板右端L0=R/2处有一竖直固定的挡板P.一物块从A点由静止开始沿轨道滑下,经B滑上滑板.已知物块可视为质点,质量为m,滑板质量M=2m,圆弧轨道半径为R,物块与滑板间的动摩擦因数为μ=0.5,重力加速度为g.滑板与挡板的碰撞没有机械能损失,滑板返回B点时即被锁定.

(1) 求物块滑到B点时的速度大小.

(2) 求滑板与挡板P碰撞前瞬间物块的速度大小.

(3) 站在地面的观察者看到在一段时间内物块正在做加速运动,求这

段时间内滑板的速度范围.

8.如图2所示,半径R=1.0 m的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B和圆心O的连线与水平方向间的夹角θ=37°,另一端点C为轨道的最低点.C点右侧的水平路面上紧挨C点放置一木板,木板质量M=1 kg,上表面与C点等高.质量m=1 kg的物块(可视为质点)从空中A点以v0=1.2 m/s的速度水平抛出,恰好从轨道的B端沿切线方向进入轨道.已知物块与木板间的动摩擦因数μ1=0.2,木板与路面间的动摩擦因数μ2=0.05.sin 37°=0.6,cos 37°=0.8,取g=10 m/s2.试求:

(1)物块经过轨道上的C点时对轨道的压力大小;

(2)设木板受到的最大静摩擦力跟滑动摩擦力相等,则木板至少多长才能使物块不从

木板上滑下?

9.如图所示,水平地面上静止放置着物块B 和C ,相距l =1.0 m .物块A 以速度v 0=10 m/s 沿水平方向与B 正碰,碰撞后A 和B 牢固地粘在一起向右运动,并再与C 发生正碰,碰后瞬间C 的速度v =2.0 m/s.已知A 和B 的质量均为m ,C 的质量为A 质量的k 倍,物块与地面的动摩擦因数μ=0.45(设碰撞时间很短,g 取10 m/s 2) (1)计算与C 碰撞前瞬间AB 的速度;

(2)根据AB 与C 的碰撞过程分析k 的取值范围,并讨论与C 碰撞后AB 的可能运动方向.

10.如图甲所示,一质量为M =2kg 的长木板B 静止于光滑水平面上,B 的右边放有竖直挡板.小物体A (可视为质点)和小球的质量均为m =1kg ,小球用长为H =1.8m 的轻绳悬挂在O 点.将轻绳拉直至水平位置后静止释放小球,与小物体A 发生完全弹性碰撞且速度互换.已知A 和B 间的动摩擦因数μ=0.2,B 与竖直挡板的碰撞时间极短,且碰撞时无机械能损失.重力加速度取g =10m/s 2.

(1)若A 、B 达到共同速度前并未碰到挡板,则B 的右端距挡板的距离s 至少多长?

(2)若B 的右端距挡板距离s =0.5m ,要使A 最终不脱离B ,则木板B 的长度至少多长? (保留三位有效数字)

(3)取B 的右端距挡板距离s =0.5m ,向右运动方向为正.A 在B 上开始运动时记为t =0时刻,请在图乙的坐标纸上画出B 运动3s 内的速度—时间图象.

A B H O s 甲 t /s v /(m .s –1)

O

11.一传送带装置如图所示,其中AB段是水平的,长度L AB=4m,BC段是倾斜的,长度L BC=5m,倾角为θ=37°,AB和BC在B点通过一段极短的圆弧连接(图中未画出圆弧),传送带以v=4m/s的恒定速率顺时针运转.已知工件与传送带间的动摩擦因数μ=0.5,重力加速度g取10m/s2.现将一个工件(可看作质点)无初速度地放在A点,求:

(1)工件第一次到达B点所用的时间;

(2)工件沿传送带上升的最大高度;

(3)工件运动23s时所在的位置.

12.如图所示,半径R=0.4m的圆盘水平放置,绕竖直轴OO¢匀速转动,在圆心O正上方h=0.8m高处固定一水平轨道PQ,转轴和水平轨道交于O¢点.一质量m=1kg的小车(可视为质点),在F=4N的水平恒力作用下,从O¢左侧x0=2m处由静止开始沿轨道向右运动,当小车运动到O¢点时,从小车上自由释放一小球,此时圆盘半径OA与x轴重合.规定经过O点水平向右为x轴正方向.小车与轨道间的动摩擦因数μ=0.2,g 取10m/s2.

(1)若小球刚好落到A点,求小车运动到点O¢的速度;

(2)为使小球刚好落在A点,圆盘转动的角速度应为多大?(3)为使小球能落到圆盘上,求水平拉力F作用的距离范围.

13.如图所示,物体A 放在足够长的木板B 上,木板B 静置于水平面.t =0时,电动机通过水平细绳以恒力F 拉木板B ,使它做初速度为零、加速度a B =1.0m/s 2的匀加速直线运动.已知A 的m A 和B 的m B 均为2.0kg ,A 、B 之间的动摩擦因数μ1=0.05,B 与水平面之间的动摩擦因数μ2=0.1,最大静摩擦力与滑动摩擦力大小视为相等,重力加速度g 取10m/s 2.求: (1)物体A 刚运动时的加速度a A ; (2)t =1.0s 时,电动机的输出功率P ;

(3)若t =1.0s 时,将电动机的输出功率立即调整为P '=5W ,并在以后的运动过程中始终保持这一功率不变,t =3.8s 时物体A 的速度为1.2m/s .则在t =1.0s 到t =3.8s 这段时间内木板B 的位移为多少?

14.如图所示,光滑水平面上静止放着长L =2m ,质量M =3.0kg 的木板.一个质量m =1.0kg 的小物体放在离木板右端b =0.40m 处,m 和M 之间的动摩擦因数μ=0.1,今对木板施加向右的拉力F =10.0N ,为使木板能自物体下方分离出来,此拉力作用不得少于多长时间?

15.如图所示,滑块A 、C 质量均为m ,滑块B 质量为1.5m 。开始时A 、B 分别以12v v 、的速度沿光滑水平轨道向固定在右侧的挡板运动,现将C 无初速地放在A 上,并与A 粘合不再分开,此时A 与B 相距较近,B 与

挡板相距足够远。若B 与挡板碰撞将以原速率反弹,A 与B 碰撞将粘合在一起。为使B 能与挡板碰撞两次,12v v 、应满足什么关系?

m

M

b F

A B

电动机

16.如图所示为某种弹射装置的示意图,光滑的水平导轨MN右端N处与水平传送带理想连接,传送带长L =4.0m,皮带轮沿顺时针方向转动,带动皮带以速率v=3.0m/s匀速运动.三个质量均为m=1.0kg的滑块A、B、C置于水平导轨上,开始时滑块B、C之间用细绳相连,其间有一压缩的轻质弹簧处于静止状态.滑块A 以初速度v0=2.0m/s沿B、C连线方向向B运动,A与B碰撞后粘合在一起,碰撞时间极短,可认为A与B 碰撞过程中滑块C的速度仍为零.碰撞使连接B、C的细绳受扰动而突然断开,弹簧伸展,从而使C与A、B 分离,滑块C脱离弹簧后以速度v C=2.0m/s滑上传送带,并从右端滑出落至地面上的P点.已知滑块C与传送带之间的动摩擦因数0.20

=,g取10m/s2.求:

(1)滑块C从传送带右端滑出时的速度大小;

(2)滑块B、C用细绳相连时弹簧的弹性势能E P;

(3)若每次实验开始时弹簧的压缩情况相同,要使滑块C总能落至P点,则滑块A与滑块B碰撞前速度的最大值v m是多少?

17..如图甲所示,一竖直面内的轨道是由粗糙斜面AB和光滑圆轨道BCD组成,AB与BCD相切于B点,C 为圆轨道的最低点.将物块置于轨道ABC上离地面高为H处由静止下滑,可用力传感器测出其经过C点时对轨道的压力N.现将物块放在ABC上不同高度处,让H从零开始逐渐增大,传感器测得物块每次从不同高度处下滑到C点时对轨道的压力N,得到如图乙所示两段直线PQ和QI,且IQ反向延长线与纵轴交点坐标值为2.5N,重力加速度g取10m/s2.求:

(1)小物块的质量m及圆轨道的半径R;

(2)轨道BC所对圆心角;

(3)小物块与斜面AB间的动摩擦因数.

力学计算题专项训练答案1. 解析:(1) 烧断绳子过程中动量守恒,有

0=m甲v甲-m乙v乙.

烧断绳子后甲做平抛运动

h=1

2gt2,s=v

甲t.

解得v甲

=s

v乙=m v

m

甲甲

乙=

31

1

?

m/s=3 m/s.

由能量守恒得烧断绳子前弹簧B的弹性势能

E p=1

2m

2

v

甲+

1

2m

2

v

乙.

=1

2×3×12J+

1

2×1×32J

=6J.

(2) 烧断绳子后,乙向左运动压缩弹簧A至最大距离s',又向右运动到O点时速度'v

乙,依题意有

'v

乙=v甲=1 m/s.

在这过程中由动能定理得

-2 μm乙g(s'+s0)=1

2m

2'v

乙-

1

2m

2

v

乙.

解得

s'=

22

-'

4

v v

g

μ

乙乙

-s0=

22

3-1

40.210

??m-0.95m=0.05m.

乙滑块压缩弹簧A至最左端前加速度最大为a m. ks'+μm乙g=m乙a m.

a m=1000.050.2110

1

?+??

m/s2=7 m/s2.

2. 解析:(1) 设物体从A滑至B时速率为v0,根据机械能守恒定律有

mgR=1

2m20v,解得v

物体与小车相互作用过程中,系统动量守恒,设共同速度为v1,有mv0=2mv1.

解得物体滑上轨道CD前的瞬时速率v1

=.

(2) 设二者之间的摩擦力为f,根据动能定理有,

对物体有-fs EF=1

2m21v-

1

2m20v.

对小车有f(s EF-R)=1

2m21v.

解得f=1

2mg,s

EF

=

3

2R.

(3) 设物体从CD滑下后与小车达到相对静止,共同速度为v2,相对小车滑行的距离为s1,小车停后物体做匀减速运动,相对小车滑行距离为s2,根据动量守恒和能量守恒有

mv1=2mv2,

fs1=1

2m21v-

1

2×2m22v.

对物体根据动能定理有fs2=1

2m22v.

解得s1=1

4R,s

2

=

1

8R.

则Q点距小车右端距离s=s1+s2=3

8R.

3. 解析:(1) 物块B冲上圆形轨道后回到最低点速度为v0=6 m/s.

与A碰撞前,有-μmgl=1

2m21v-

1

2m20v.

解得物块B与A碰撞前速度大小v1

(2) A、B碰撞粘连,有mv1=2mv2.

得A、B碰后速度v2=1 2v

1

A、B整体向右经过PQ段,有

2

3

v

-

2

2

v

=-2μgl.

得A 、B 速度v 3=2 m/s.

A 、

B 整体滑上圆形轨道,有-2mgh=0-1

2×2m 23v

.

可得返回到右边轨道的高度为h=0.2m=R,符合实际. (3) 物块B 以v 0冲上轨道直到回到PQ 段右侧,有

21'v -20

v =-2μgl,mv'1=2mv'2,

2

3'v -22

'v =-2μgl.

联立可得,B 回到右侧速度

2

3'v =2

04v -52

μgl=(9-5l)(m/s)2.

要使A 、B 整体能返回右侧轨道且能沿轨道运动而不脱离轨道,则有: ① 若A 、B 整体沿轨道上滑至最大高度h 时,速度减为0,则h 满足0

又 1

2×2m 23

'v =2mgh.

联立解得1.0m≤l<1.8m.

② 若A 、B 整体能沿轨道上滑至最高点,则满足

12×2m 23'v =2mg×2R+1

2×2m 24'v ,

且2m 24

'v R ≥2mg.

联立得 l≤-0.2m,不符合实际,即不可能沿轨道上滑至最高点.

综上所述,要使A 、B 物块能返回圆形轨道并沿轨道运动而不脱离轨道,l 满足的条件是1.0m≤l<1.8m.

4. 解析:(1) 在最高点由牛顿第二定律m A g+F N =m A 2

v R .

已知最高点压力F N =m A g.

由机械能守恒定律12m A v 2+m A g·2R=1

2m A 2A v .

在半圆轨道最低点由牛顿第二定律F'N -m A g=m A 2

A

v R .

解得F'N =7N.

由牛顿第三定律知,滑块在半圆轨道最低点对轨道的压力大小为7N,方向竖直向下. (2) 由动量守恒定律m A v A =m B v B .

解得v B=3m/s.

(3) 由动量守恒定律m B v B=(m B+M)v共. 由能量守恒定律

E p=1

2m

B

2

B

v-

1

2(m

B

+M)

2

v

共-μm B gL.

E p=0.22J.

5. 解析:(1) 当BC在最高点处

(m B+m C)g=

2

H ()

B C

m m

v

l

+

当BC在最低点到最高点过程中1

2(m

B +m C)

2

L

v

=

1

2(m

B

+m C)

2

H

v

+(m B+m C)g·2l.

当BC在最低点处T-(m B+m C)g=

2

L ()

B C

m m v

l

+

.

解得T=24N.

(2) BC碰撞过程中动量守恒m B v B=(m B+m C)v L. 解得v B=4m/s.

碰撞时B速度必须满足v B>4m/s.

B的加速度为a B=

g

B

B

m

m

μ

=8m/s2.

由图可知车A的速度为v A=8m/s. 讨论:

情况1:B在加速阶段与C相碰s min=

2

2

B

B

v

a

=1m.

s要满足条件s≥1m.

情况2:B减速阶段与C相碰.

B加速阶段位移s B1=

2

2

A

B

v

a

=4m.

B加速阶段时间t1=

A

B

v

a

=1s.

B加速阶段A的位移s A1=v A t1=8m.

B 加速阶段AB 的相对位移Δs=s A1-s B1=4m. 由图可知B 匀速阶段时间t 2=0.5s. B 匀速阶段位移s B2=v A t 2=4m. 由图可知B 匀减速阶段A 速度为0.

B 匀减速阶段时间t 3=

--B A B v v a =12s.

B 匀减速阶段位移s B3=

22--2B A

B v v a =3m<Δs=4m,物块未滑出.

B 总位移s B1+s B2+s B3=11m. 综上所述1m≤s≤11m.

6. 解析:(1) 对A 球,从静止到碰B 的过程由动能定理有

E 1qL=1

2m 2A v .

解得v A

A 、

B 碰撞由动量守恒,有mv B -mv A =2mv

C . 解得共同速度v C =3m/s,方向向左.

碰后在加上竖直向上的电场E 2后,整体C 仍做圆周运动,到最高点的过程由动能定理有

(E 2q-2mg)·2R=12·2m·v 2-1

2·2m·2C v .

解得在最高点速率 v=5m/s. (2) C 在最高点,由牛顿第二定律有

T+2mg-E 2q=2m 2

v R .

解得受到的拉力T=7.25mg.

(3) 整体做完整圆周运动的条件是:在B 点绳的拉力满足F≥0.

即E 2q-2mg≤2m 20

v R ,得v 0≥2m/s.

A 、

B 碰撞由动量守恒有mv B -mv A =2mv 0. 若碰后整体方向向左,取最小v 0=2 m/s,得

1

A v ≤4m/s.

1

A v

得L≤0.8m.

若碰后整体方向向右,取最小v 0=-2 m/s. 得

2

A v ≥12m/s.由

2

A v

得L≥7.2m.

所以,L 满足的条件是L≤0.8m 或L≥7.2m.

7. 解析:(1) 物块由A 到B 的运动过程,只有重力做功,机械能守恒.设物块滑到B 点的速度大小为v 0,有

mgR=1

2m 20v .

解得v 0

(2) 假设滑板与P 碰撞前,物块与滑板具有共同速度v 1,取向右为正,由动量守恒定律,有 mv 0=(m+M)v 1.

设此过程滑板运动的位移为s,由动能定理,得

μmgs=12M 21v -0.

联立解得v 1

=,s=21v g μ=49R

.

所以假设成立,滑板与挡板P 碰撞前瞬间物块的速度大小为v 1

=.

(3) 由于滑板与挡板的碰撞没有机械能损失,所以滑板与挡板P 碰撞后速度v 1大小不变,只是方向向左. 此后滑板做匀减速运动,物块先向右减速,再向左加速运动. 设两者第二次具有共同速度为v 2,取向左为正,有 Mv 1-mv 1=(m+M)v 2.

设此时滑板离P 的距离为s',由动能定理

-μmgs'=12M 22v -1

2M 21v

. 解得v 2=1

3v

=.

s'=2212-v v g μ=3281R

,说明滑板与物块具有共同速度时还没有返回到B 点,两者能够第二次达到共同速度.

设当物块的速度减为零时,滑板速度为v 3,取向左为正,有Mv 1-mv 1=Mv 3.

解得v 3=1

2v

=.

所以,

物块加速运动时滑板的速度范围为≥v M

≥.

8.(1)46 N (2)6 m 9.(1)4 m/s (2)见解析

解析 (1)设A 、B 碰撞后的速度为v 1,A 、B 碰撞过程由动量守恒定律得 mv 0=2mv 1

设与C 碰撞前瞬间AB 的速度为v 2,由动能定理得

-μmgl =12mv 22-12mv 2

1

联立以上各式解得v 2=4 m/s

(2)若A 、B 与C 发生完全非弹性碰撞,由动量守恒定律得 2mv 2=(2+k )mv 代入数据解得k =2

此时AB 的运动方向与C 相同

若AB 与C 发生弹性碰撞,由动量守恒定律和能量守恒定律得 2mv 2=2mv 3+kmv 12·2mv 22=12·2mv 23+12·kmv 2 联立以上两式解得

v 3=2-k 2+k v 2

v =42+k v 2 代入数据解得k =6

此时AB 的运动方向与C 相反

若AB 与C 发生碰撞后AB 的速度为0,由动量守恒定律得 2mv 2=kmv 代入数据解得k =4 综上所述得

当2≤k <4,AB 的运动方向与C 相同 当k =4时,AB 的速度为0

当4

10.解析:(1)设小球与A 碰撞前速度为v 0,由机械能守恒定律有

201

2

mgH mv =

得:06v =m/s 由于小球与A 的质量相同,发生弹性碰撞后速度互换.设A 、B 达到共同速度u 前并未碰到挡板,则根据动量守恒定律得

0()mv M m u =+ 得:2u =m/s

在这一过程中,B 的位移为:22B B u s a =,B 的加速度大小为:B mg

a M =μ

解得:22

222220.2110

B Mu s mg ′=

==创?μm (2)因B 离竖直挡板的距离s =0.5m <2m ,所以碰到挡板时,A 、B 未达到相对静止,设此时B 的速度为v B ,由运动学知识有

222B B mgs

v a s M

==

μ 解得:1B v =m/s 设此时A 的速度为v A ,根据动量守恒定律有

0B A mv Mv mv =+ 解得:4A v =m/s

设在这一过程中,A 、B 发生的相对位移为1s ¢,由功能关系有

22210111

222

A B mgs mv mv Mv ¢=

--μ 解得:1 4.5s ¢=m B 碰撞挡板后,A 、B 最终达到向右的相同速度v ,根据动量守恒定律有

()A B mv Mv M m v -=+ 解得:2

3

v =m/s

在这一过程中,A 、B 发生的相对位移为2s ¢,由功能关系有

2222111()222A B mgs mv Mv m M v ¢=

+-+μ 解得:225

6

s ¢=

m B 再次碰到挡板后,A 、B 最终以相同的速度v '向左共同运动,根据动量守恒定律有

()Mv mv M m v ¢-=+ 解得:2

9

v ¢=m/s

在这一过程中,A 、B 发生的相对位移为3s ¢,由功能关系有

22311()()22mgs M m v M m v μⅱ=

+-+ 解得:38

27

s ¢=

m 因此,为使A 不从B 上脱落,B 的最小长度为:

1238.96L s s s ⅱ?=++=m

(3)设B 第一次到达挡板的时间为t 1,由运动学公式有 1B B v a t = 得:11t =s

B 第一次碰板后以v B =1m/s 向左运动,加速度大小仍为a B ,由对称性可知,t =2s 时,B 的速度为0,又回到出发点.

B 向右从零加速到23m/s 需要时间:323B v t a =

=s

B 向右从零加速到2

3

m/s 运动位移:21229B v s a =

=m B 向右匀速运动13s 运动位移:232

(1)9

s v t =-=m 因为12s s +<0.5 m ,所以上述过程成立.

则图像如右图所示.

11.解析:(1)设工件刚放在水平传送带上的加速度为a 1,由牛顿第二定律有 1mg ma μ= 解得:10.5a g μ==m/s 2

设经t 1时间与传送带的速度相同,则:11

0.8v

t a ==s 则前进的位移x 1为:21111

1.62

x a t =

=m 此后工件将与传送带一起匀速运动至B 点,设用时为t 2,则

1

20.6AB L x t v

-==s

所以,工件第一次到达B 点所用的时间t 为 12 1.4t t t =+=s

(2)设工件上升的最大高度为h ,由动能定理有 21

(sin cos )

0sin 2

h mg mg mv θμθθ-+=- 解得: 2.4h =m

(3)设工件沿皮带向上运动的时间为t 3,则有

3/sin 22sin h h

t v v θθ

=

==s 此后由于工件在传送带的倾斜段运动时的加速度相同,在传送带的水平段运动时的加速度也相同,故工件将在传送带上做往复运动,其周期T 为 1222 5.6T t t =+=s

设工件从开始运动到第一次返回传送带的水平部分,且速度变为零所需时间为t 0,则 012322 6.2t t t t =++=s

而:03(6.2 5.63)

23t t T =+=+?s

说明经23s 工件恰好运动到传送带的水平部分,且速度为零.故工件在A 点右侧到A 点的距离x 为 1 2.4AB x L x =-=m

12.解析:(1)小球离开小车后,由于惯性,将以离开小车时的速度作平抛运动,则有

2

12

h gt =

0R v t = 小车运动到O ¢点的速度:01R

v t

=

=m/s (2)为使小球刚好落在A 点,则小球下落的时间为圆盘转动周期的整数倍,有

2k t kT π

ω

==,其中1,2,3k =…

即:25k k ωπ

π=rad/s ,其中1,2,3k =… (3)小球若能落到圆盘上,则在O ¢点的速度范围是:0<v 0≤1 m/s

设水平拉力作用的最小距离与最大距离分别为x 1、x 2,对应到达点的速度分别为0和1m/s ,则 100Fx mgx μ-=

22001

02

Fx mgx mv μ-=

- 代入数据得:11x =m ,2 1.125x =m

则水平拉力F 作用的距离范围为:1 m <x ≤1.125 m .

13.解析:(1)物体A 在水平方向上受到向右的摩擦力,由牛顿第二定律有 1A A A m g m a μ= ……① 代入数据解得:0.5A a =m/s 2 ……②

(2)t =1.0s 时,木板B 的速度大小为:11B v a t ==m/s ……③ 木板B 所受拉力F ,由牛顿第二定律有

12()A A B B B F m g m m g m a μμ--+= ……④ 电动机输出功率:1P Fv = ……⑤

由③④⑤并代入数据解得:7P =W ……⑥

(3)电动机的输出功率调整为5W 时,设细绳对木板B 的拉力为F ',则

1P F v ⅱ

= ……⑦ 代入数据解得:5F ¢=N ……⑧

木板B 受力满足:12()0A A B F m g m m g μμ¢--+= ……⑨

所以木板B 将做匀速直线运动,而物体A 则继续在B 上做匀加速直线运动直到A 、B 速度相等.设这一过程时间为t ',有

1()A v a t t ¢=+ ……⑩ (1t ¢=s )

这段时间内B 的位移:11s v t ¢= ……⑾ (11s =m )

A 、

B 速度相同后,由于F '>2()A B m m g μ+且电动机输出功率恒定,A 、B 将一起做加速度逐渐减小的变加速运动.由动能定理有

222122111

()()()()22

A B A B A A B P t t t m m gs m m v m m v μⅱ---+=

+-+ ……⑿ 联立②③⑩⑾⑿并代入数据解得在t =1.0s 到t =3.8s 这段时间的位移: 12 3.03s s s =+=m (2 2.03s =m )

14.解析:设拉力最小作用时间为t ,据牛顿第二定律有

1.0m a g μ==m/s 2 3.0M F mg

a M

μ-=

=m/s 2 从拉力作用到撤去拉力的瞬时,

m m v a t = ……①

M M v a t = ……② 22111

22

M m a t a t s ?-= ……③ 由①②③解得:21s t ?= ……④

撤去拉力后,物体m 仍做匀加速运动,木板M 做匀减速运动,经时间t 1,物体m 滑到木板的左端,两者的速度等于v 共,有

M mg Ma μ¢= 解得:1

3

M a ¢=

m/s 2 ……⑤ 11m m M M v v a t v a t ¢=+=-共 ……⑥

⑤代入⑥解得:132

t t = 再利用位移关系 221111211

()()22

M M m m v t a t v t a t s ?¢-

-+= 将各量代入解得:223

2

s t ?= ……⑦

从图中不难看出:12s s L b ??+=- ……⑧

由④⑦⑧得到:0.8t =s .

15.解析:将C 无初速地放在A 上后,112'mv mv =,1

1'2

v v =

, A 与B 的碰撞一定要发生在B 与墙发生碰撞之后,所以有: A 与B 碰撞后粘合在一起,使B 能与挡板碰撞两次,123

2'()2

mv mv +-

>0 得:

16. 解析:(1)滑块C 滑上传送带后做匀加速直线运动.设滑块C 从滑上传送带到速度达到传送带的速度v 所用的时间为t ,加速度大小为a ,在时间t 内滑块C 的位移为x ,据牛顿第二定律和运动学公式有 mg ma μ= C v v at =+ 212

C x v t at =+

v 共

2

'1v v ≤2

12223v v v ≤<

解得: 1.25x =m <L

即滑块C 在此传送带上先加速,达到传送带的速度v 后随传送带匀速运动,并从右端滑出,则滑块C 从传送带右端滑出时的速度为 3.0v =m/s .

(2)设A 、B 碰撞后的速度为v 1,A 、B 与C 分离时的速度为v 2,根据动量定恒定律有 012mv mv = 1222C mv mv mv =+

由机械能守恒定律有:222121

1

1

22222

P C E mv mv mv +?? 联立解得: 1.0P E =J

(3)在题设条件下,若滑块A 在碰撞前速度有最大值,则碰撞后滑块C 的速度有最大值.它减速运动到传送带右端时,速度应当恰好等于传送带的速度v .

设A 与B 碰撞后的速度为1v ¢,分离后A 与B 的速度为2v ¢,滑块C 的速度为C v ¢,由动量守恒定律有

12m mv mv ¢= 1222C mv mv mv ⅱ?=+

由机械能守恒定律有:2

2

212111

2222

2

P C E mv mv mv ⅱ?+

?? 由运动学公式有:222C v v aL ¢-= 联立解得:7.1m v =m/s

17.解析:(1)物块从圆轨道BC 滑下,据机械能守恒定律有:21

2

C mgH mv =

在C 点由牛顿第二定律有:2

C v N mg m R

-=

联立可得:2mg

N H mg R

=+

结合PQ 段图象有:2mg =N ,242

0.5

mg R -=

可得:0.2m =kg ,1R =m .

(2)从图乙中可以看出B 、C 点的高度差为0.5m .

由题可知:10.51

cos 12

θ-== 解得:60θ=?

(3)物块从斜面开始下滑到C 点,由动能定理有

20.51

cos 0sin 2

C H mgH mg mv μθθ--?-

在C 点由牛顿第二定律有:2

C v N mg m R

-=

联立可得:2(1)(1)tan60tan60

mg N H mg R R μμ

=-++鞍

结合图象可得:

24 2.5

(1)tan600.5

mg R μ--=

°,解得:μ=.

材料力学考试题库

材料力考试题 姓名学号 一、填空题:(每空1分,共计38分) 1、变形固体的变形可分为:弹性变形和塑性变形。 2、构件安全工作的基本要求是:构件必须具有足够的强度、足够刚度 和足够稳定性。 3、杆件变形的基本形式有拉(压)变形、剪切变形、扭转变形 和弯曲变形。 4、吊车起吊重物时,钢丝绳的变形是拉伸变形;汽车行驶时,传动轴的变 形是扭转变形;教室中大梁的变形是弯曲变形;螺旋千斤顶中的螺杆受压杆受压变形。 5、图中σ——ε曲线上,对应p点的应力为比例极限,符号__σp__、对应y 点的应力称为屈服极限,符号_σs__、对应b点的应力称为强化极限符号_σb ___ __。 k 6、内力是外力作用引起的,不同的外力引起不同的内力,轴向拉、压变形时 的内力称为轴力。剪切变形时的内力称为剪力,扭转变形时内力称为扭矩,弯曲变形时的内力称为弯矩。 7、下图所示各杆件中受拉伸的杆件有 AB、BC、CD、AD ;受力压缩杆件有 BE 。

8、胡克定律的两种表达式为EA L N l ?=?和εσE =。E 称为材料的 弹性模量 。它是衡量材料抵抗 变形 能力的一个指标。E 的单位为MPa ,1 MPa=_106_______Pa 。 9、衡量材料强度的两个重要指标是 屈服极限 和 强化极限 。 10、通常工程材料丧失工作能力的情况是:塑性材料发生 屈服 现象, 脆性材料发生 强化 现象。 11、挤压面为平面时,计算挤压面积按 实际面积 计算;挤压面为半圆柱面的 投影 面积计算。 12、在园轴的抬肩或切槽等部位,常增设 圆弧过渡 结构,以减小应力集中。 13、扭转变形时,各纵向线同时倾斜了相同的角度;各横截面绕轴线转动了不同 的角度,相邻截面产生了 转动 ,并相互错动,发生了剪切变形,所以横截面上有 剪 应力。 14、因半径长度不变,故切应力方向必与半径 垂直 由于相邻截面的间距不 变,即园轴没有 伸长或缩短 发生,所以横截面上无 正 应力。 15、长度为l 、直径为d 的圆截面压杆,两端铰支,则柔度λ为 ,若压 杆属大柔度杆,材料弹性模量为E ,则临界应力σ cr 为______________。 二、 判断题:(每空1分,共计8分) 1、正应力是指垂直于杆件横截面的应力。正应力又可分为正值正应力和负值正 应力。 ( √) 2、构件的工作应力可以和其极限应力相等。 ( × ) 3、设计构件时,须在满足安全工作的前提下尽量节省材料的要求。 ( √ ) 4、挤压面的计算面积一定是实际积压的面积。 ( × )

2019高考物理真题汇编——计算题

目录 牛顿第二定律 (2) 功能 (3) 动量 (3) 力学综合 (3) 动量能量综合 (4) 带电粒子在电场中的运动 (6) 带电粒子在磁场中的运动 (7) 电磁感应 (8) 法拉第电磁感应定律(动生与感生电动势) (8) 杆切割 (8) 线框切割 (9) 感生电动势 (9) 电磁感应中的功能问题 (10) 电磁科技应用 (11) 热学 (12) 光学 (14) 近代物理 (15) 思想方法原理类 (16)

牛顿第二定律 1.【2019天津卷】完全由我国自行设计、建造的国产新型航空母舰已完成多次海试,并 取得成功。航母上的舰载机采用滑跃式起飞,故甲板是由水平甲板和上翘甲板两部分构成,如图1所示。为了便于研究舰载机的起飞过程,假设上翘甲板BC是与水平甲板AB相切的一段圆弧,示意如图2,AB长L1=150m,BC水平投影L2=63m,图中C点切线方向与水平方向的夹角θ=12°(sin12°≈0.21)。若舰载机从A点由静止开始做匀加速直线运动,经t=6s到达B点进入BC.已知飞行员的质量m=60kg,g=10m/s2,求 (1)舰载机水平运动的过程中,飞行员受到的水平力所做功W; (2)舰载机刚进入BC时,飞行员受到竖直向上的压力F N多大。 2.【2019江苏卷】如图所示,质量相等的物块A和B叠放在水平地面上,左边缘对齐。 A与B、B与地面间的动摩擦因数均为μ.先敲击A,A立即获得水平向右的初速度,在B上滑动距离L后停下。接着敲击B,B立即获得水平向右的初速度,A、B都向右运动,左边缘再次对齐时恰好相对静止,此后两者一起运动至停下。最大静摩擦力等于滑动摩擦力,重力加速度为g。求: (1)A被敲击后获得的初速度大小v A; (2)在左边缘再次对齐的前、后,B运动加速度的大小a B、a B′; (3)B被敲击后获得的初速度大小v B。

高中物理经典题库_力学计算题49个

四、力学计算题集粹(49个) 1.在光滑的水平面,一质量m=1kg的质点以速度v0=10m/s沿x轴正方向运动,经过原点后受一沿y轴正方向的恒力F=5N作用,直线OA与x轴成37°角,如图1-70所示,求: 图1-70 (1)如果质点的运动轨迹与直线OA相交于P点,则质点从O点到P点所经历的时间以及P的坐标;(2)质点经过P点时的速度. 2.如图1-71甲所示,质量为1kg的物体置于固定斜面上,对物体施以平行于斜面向上的拉力F,1s末后将拉力撤去.物体运动的v-t图象如图1-71乙,试求拉力F. 图1-71 3.一平直的传送带以速率v=2m/s匀速运行,在A处把物体轻轻地放到传送带上,经过时间t=6s,物体到达B处.A、B相距L=10m.则物体在传送带上匀加速运动的时间是多少?如果提高传送带的运行速率,物体能较快地传送到B处.要让物体以最短的时间从A处传送到B处,说明并计算传送带的运行速率至少应为多大?若使传送带的运行速率在此基础上再增大1倍,则物体从A传送到B的时间又是多少? 4.如图1-72所示,火箭平台上放有测试仪器,火箭从地面起动后,以加速度g/2竖直向上匀加速运动,升到某一高度时,测试仪器对平台的压力为起动前压力的17/18,已知地球半径为R,求火箭此时离地面的高度.(g为地面附近的重力加速度) 图1-72 5.如图1-73所示,质量M=10kg的木楔ABC静止置于粗糙水平地面上,摩擦因素μ=0.02.在木楔的倾角θ为30°的斜面上,有一质量m=1.0kg的物块由静止开始沿斜面下滑.当滑行路程s=1.4m时,其速度v=1.4m/s.在这过程中木楔没有动.求地面对木楔的摩擦力的大小和方向.(重力加速度取g=10/m·s2) 图1-73 6.某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s高度下降1700m造成众多乘客和机组人员的伤害事故,如果只研究飞机在竖直方向上的运动,且假定这一运动是匀变速直线运动.试计算: (1)飞机在竖直方向上产生的加速度多大?方向怎样? (2)乘客所系安全带必须提供相当于乘客体重多少倍的竖直拉力,才能使乘客不脱离座椅?(g取10m/s2) (3)未系安全带的乘客,相对于机舱将向什么方向运动?最可能受到伤害的是人体的什么部位? (注:飞机上乘客所系的安全带是固定连结在飞机座椅和乘客腰部的较宽的带子,它使乘客与飞机座椅

中考物理计算题专题训练(含答案)

2018年中考物理计算题专题训练 力学计算题 一、密度 1.每节油罐车的容积为50 m3,从油罐中取出20 cm3的油,质量为17 g,则一满罐的油的质量是多少吨? 二、速度 2.从遵义到重庆江北机场的路程为296 km,一辆小车以74 km/h的平均速度行驶了一半路程后,又以100 km/h的平均速度行驶完后一半路程.求: (1)这辆小车从遵义到重庆江北机场所需的时间是多少? (2)这辆小车从遵义到重庆江北机场的平均速度是多少? 三、压强 3.如图X5-1-1所示,水平桌面的正中央放着一个圆形鱼缸,重为30 N,其底面积为1 200 cm2 .鱼缸内装有0.2 m深的水,水的质量是27 kg,g取10 N/kg,计算: (1)鱼缸内所装水的重力; (2)鱼缸底部受到的水的压强; (3)鱼缸对桌面产生的压强. 图X5-1-1 4.我国从20世纪70年代开始大规模研制潜水器,现已达到国际领先水平.2010年7月下水的“蛟

龙号”深海潜水器,是我国自主研制的,其设计的下潜深度达7 000 m .2011年7月已完成5 000 m 级深海潜海和科学探测.若“蛟龙号”潜水器下潜至5 000 m ,求: (1)它受到海水的压强大约是多少?(ρ海水=1.03×103 kg/m 3,取g =10 N/kg) (2)若观察窗的面积为300 c m 2,则海水对观察窗的压力大约是多少? 四、浮力 5.有一木板漂浮在水面上,已知木板重1 800 N ,体积为0.3 m 3.g 取10 N/kg ,求: (1)木板的密度; (2)木板所受的浮力; (3)有一个人重700 N ,通过计算说明他能否安全地躺在木板上? 6.在水中放入质量为3 kg 的木块,木块静止时有3 5 的体积浸入水中.求: (1)木块静止时所受的浮力. (2)木块的体积. 五、机械效率 7.如图X5-1-2所示,工人用滑轮组提升重240 N 的物体,所用的拉力为150 N ,物体在5 s 内匀速上升1 m .求: (1)有用功; (2)滑轮组的机械效率; (3)拉力的功率. 8.如图X5-1-3所示,小王站在高3 m 、长6 m 的斜面上,将重200 N 的木箱A 沿斜面从底端

材料力学_考试题集(含答案)

《材料力学》考试题集 一、单选题 1.构件的强度、刚度和稳定性________。 (A)只与材料的力学性质有关(B)只与构件的形状尺寸有关(C)与二者都有关(D)与二者都无关 2.一直拉杆如图所示,在P 力作用下 。 (A) 横截面a上的轴力最大(B) 横截面b上的轴力最大 (C) 横截面c上的轴力最大(D) 三个截面上的轴力一样大 3.在杆件的某一截面上,各点的剪应力。 (A)大小一定相等(B)方向一定平行 (C)均作用在同一平面内(D)—定为零 4.在下列杆件中,图所示杆是轴向拉伸杆。 (A) (B) (C) (D) 5.图示拉杆承受轴向拉力P的作用,斜截面m-m的面积为A,则σ=P/A为。 (A)横截面上的正应力(B)斜截面上的剪应力 (C)斜截面上的正应力(D)斜截面上的应力 P

6. 解除外力后,消失的变形和遗留的变形 。 (A)分别称为弹性变形、塑性变形(B)通称为塑性变形 (C)分别称为塑性变形、弹性变形(D)通称为弹性变形 7.一圆截面轴向拉、压杆若其直径增加—倍,则抗拉。 (A)强度和刚度分别是原来的2倍、4倍(B)强度和刚度分别是原来的4倍、2倍 (C)强度和刚度均是原来的2倍(D)强度和刚度均是原来的4倍 8.图中接头处的挤压面积等于。 (A)ab (B)cb (C)lb (D)lc 9.微单元体的受力状态如下图所示,已知上下两面的剪应力为τ则左右侧面上的剪应力为。 (A)τ/2(B)τ(C)2τ(D)0 10.下图是矩形截面,则m—m线以上部分和以下部分对形心轴的两个静矩的。 (A)绝对值相等,正负号相同(B)绝对值相等,正负号不同 (C)绝对值不等,正负号相同(D)绝对值不等,正负号不同 11.平面弯曲变形的特征是。 (A)弯曲时横截面仍保持为平面(B)弯曲载荷均作用在同—平面内; (C)弯曲变形后的轴线是一条平面曲线 (D)弯曲变形后的轴线与载荷作用面同在—个平面内 12.图示悬臂梁的AC段上,各个截面上的。 P

力学综合计算题

24.(20分) 雨滴落到地面的速度通常仅为几米每秒,这与雨滴下落过程中受到空气阻力有关。雨滴间无相互作用且雨滴质量不变,重力加速度为g 。 (1)质量为m 的雨滴由静止开始,下落高度h 时速度为u ,求这一过程中克服空气阻力 所做的功W 。 (2)将雨滴看作半径为r 的球体,设其竖直落向地面的过程中所受空气阻力 f = kr 2v 2, 其中v 是雨滴的速度,k 是比例系数。 a .设雨滴的密度为ρ,推导雨滴下落趋近的最大速度v m 与半径r 的关系式; b .示意图中画出了半径为r 1、r 2(r 1> r 2)的雨滴在空气中无初速下落的v -t 图线,其中______对应半径为r 1的雨滴(选填①、②);若不计空气阻力,请在图中画出雨滴无初速下落的v -t 图线。 (3)由于大量气体分子在各方向运动的几率相等,其对静止雨滴的作用力为零。将雨滴 简化为垂直于运动方向面积为S 的圆盘,证明:圆盘以速度v 下落时受到的空气阻力f ∝2v (提示:设单位体积内空气分子数为n ,空气分子质量为m 0)。 22.(16分) 2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一。某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h = 10 m ,C 是半径R = 20 m 圆弧的最低点。质量m = 60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a = 4.5 m/s 2,到达B 点时速度v B = 30 m/s 。取重力加速度210m/s g =。 (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量I 的大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力 图,并求其所受支持力N F 的大小。 B h C A

工程流体力学练习题计算题答案

四、计算题: 1、【解】 s m V D D V s m A Q V A V A V Q /02.13.25.11/3.2114.38.142 22 212 222211=???? ??=??? ? ??==??== ==(3分) 对1-1、2-2列伯努利方程: Pa g V V p p g V p g V p 3898558.923.219800108.9422222422 2 1 122 22211 =??? ? ???-?+??=-+=+=+γγγ(3分) 由动量方程: ()122211V V Q R A p A p -=--ρ () ()() ←=-??-??-???=---=N V V Q A p A p R 825.38399313.28.110004 114.338985545.114.39800042 2122211ρ(4分) 支座所承受的轴向力为384KN ,方向向右。 (2分) 2、【解】(0-0为水池液面;1-1为泵前;2-2为泵后) (2分) (2分) (1) (2分) (2)吸入段沿程水头损失: (2分) (1分) 局部水头损失:

(1分) (2分) (3)列0-0、1-1两断面伯努利方程: 即泵前真空表读数为 (2分) (4)列1-1、2-2两断面伯努利方程: (2分) 3、【解】由已知条件,s m A Q v /66.515 .01 .0*4/2 =?==π(1分) 雷诺数:5 6 105.810 115.066.5Re ?=??= = -υ vd (1分) 相对粗糙度001.015.0/1015.0/3 =?=?-d (1分) 从莫迪图上可查出,沿程损失系数023.0=λ (2分) 1)在1km 管道中的沿程阻力损失为:m g v d L h f 6.2508.9266.515.01000023.022 2=?? ?=??=λ 压降损失Mpa gh p f 456.26.2508.91000=??==?ρ (3分) 2)10km 管道上的损失为:m g v d L h f 25068.9266.515.010000023.022 2=?? ?=??=λ (1分) 进出口两截面建立伯努利方程: m h g p Z g p f 253625068.9100098000 2021=+?+=++?=ρρ (1分)

力学计算题专项训练

力学计算题专项训练 1. 如图所示,劲度系数为k=100 N/m的轻弹簧A左端固定,甲、乙两滑块(视为质点)之间通过绳子夹着一个压缩弹簧B,甲刚好与桌子边缘对齐,乙与弹簧A的右端相距s0=0.95m,且m甲=3 kg,m乙=1 kg,桌子离地面的高度为h=1.25m.烧断绳子后,甲、乙落在地面上同一点,落地点与桌子边缘的水平距离为s=0.5m.O点右侧光滑,乙与O点左侧水平面动摩擦因数μ=0.2,重力加速度取g=10 m/s2,求: (1) 烧断绳子前弹簧B的弹性势能. (2) 乙滑块在水平桌面上运动过程中的最大加速度. 2. 如图所示,固定在地面上的光滑轨道AB、CD均是半径为R的1/4圆弧.一质量为m、上表面长也为R的小车静止在光滑水平面EF上,小车上表面与轨道AB、CD的末端B、C相切.一质量为m的物体(大小不计)从轨道AB的A点由静止下滑,由末端B滑上小车,小车在摩擦力的作用下向右运动.当小车右端与壁CF接触前的瞬间,物体m恰好滑动到小车右端相对于小车静止,同时小车与CF相碰后立即停止运动但不粘连,物体则继续滑上轨道CD.求: (1) 物体滑上轨道CD前的瞬间速率. (2) 水平面EF的长度. (3) 当物体再从轨道CD滑下并滑上小车后,如果小车与壁BE相碰后速度也立即变为零,最后物体m停在小车上的Q点,则Q点距小车右端多远?

3. 如图所示,在水平轨道右侧安放半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段铺设特殊材料,调节其初始长度为l.水平轨道左侧有一轻质弹簧左端固定,弹簧处于自然伸长状态.小物块A静止放置在弹簧右端,A与弹簧接触但不拴接;小物块B从轨道右侧以初速度v0冲上轨道,通过圆形轨道、水平轨道后与物块A发生对心碰撞且瞬间粘连,之后A、B一起压缩弹簧并被弹簧以原速率弹回,经水平轨道返回圆形轨道.物块A、B均可视为质点.已知R=0.2m,l=1.0m,v0=6 m/s,物块A、B质量均为m=1 kg,与PQ段间的动摩擦因数均为μ=0.2,轨道其他部分摩擦不计.取g=10 m/s2.求: (1) 物块B与物块A碰撞前速度大小. (2) 物块B与物块A碰后返回到圆形轨道的高度. (3) 调节PQ段的长度l,B仍以v0从轨道右侧冲上轨道,当l满足什么条件时,A、B物块能返回圆形轨道且能沿轨道运动而不会脱离轨道? 4.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R=0.6m.平台上静止着两个滑块A、B,m A=0.1kg,m B=0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M=0.3kg,车面与平台的台面等高,车面左侧粗糙部分长度为L=0.8m,动摩擦因数为μ=0.2,右侧拴接一轻质弹簧,弹簧自然长度所在处车面光滑.点燃炸药后,A滑块到达圆轨道最高点时对轨道的压力大小恰好等于A滑块的重力,滑块B冲上小车.两滑块都可以看做质点,炸药的质量忽略不计,爆炸的时间 极短,爆炸后两个物块的速度方向在同一水平直线上,取g=10 m/s2.求: (1) 滑块在半圆轨道最低点对轨道的压力. (2) 炸药爆炸后滑块B的速度大小. (3) 滑块B滑上小车后的运动过程中弹簧的最大弹性势能.

2019年材料力学考试题库及答案

材料力考试题及答案 一、填空题:(每空1分,共计38分) 1、变形固体的变形可分为:弹性变形和塑性变形。 2、构件安全工作的基本要求是:构件必须具有足够的强度、足够刚度 和足够稳定性。 3、杆件变形的基本形式有拉(压)变形、剪切变形、扭转变形 和弯曲变形。 4、吊车起吊重物时,钢丝绳的变形是拉伸变形;汽车行驶时,传动轴的变 形是扭转变形;教室中大梁的变形是弯曲变形;螺旋千斤顶中的螺杆受压杆受压变形。 5、图中σ——ε曲线上,对应p点的应力为比例极限,符号__σp__、对应y 点的应力称为屈服极限,符号_σs__、对应b点的应力称为强化极限符号_σb ___ __。 k 6、内力是外力作用引起的,不同的外力引起不同的内力,轴向拉、压变形时 的内力称为轴力。剪切变形时的内力称为剪力,扭转变形时内力称为扭矩,弯曲变形时的内力称为弯矩。 7、下图所示各杆件中受拉伸的杆件有 AB、BC、CD、AD ;受力压缩杆件有 BE 。

8、胡克定律的两种表达式为EA L N l ?=?和εσE =。E 称为材料的 弹性模量 。它是衡量材料抵抗 变形 能力的一个指标。E 的单位为MPa ,1 MPa=_106_______Pa 。 9、衡量材料强度的两个重要指标是 屈服极限 和 强化极限 。 10、通常工程材料丧失工作能力的情况是:塑性材料发生 屈服 现象, 脆性材料发生 强化 现象。 11、挤压面为平面时,计算挤压面积按 实际面积 计算;挤压面为半圆柱面的 投影 面积计算。 12、在园轴的抬肩或切槽等部位,常增设 圆弧过渡 结构,以减小应力集中。 13、扭转变形时,各纵向线同时倾斜了相同的角度;各横截面绕轴线转动了不同 的角度,相邻截面产生了 转动 ,并相互错动,发生了剪切变形,所以横截面上有 剪 应力。 14、因半径长度不变,故切应力方向必与半径 垂直 由于相邻截面的间距不 变,即园轴没有 伸长或缩短 发生,所以横截面上无 正 应力。 15、长度为l 、直径为d 的圆截面压杆,两端铰支,则柔度λ为 ,若压 杆属大柔度杆,材料弹性模量为E ,则临界应力σ cr 为______________。 二、 判断题:(每空1分,共计8分) 1、正应力是指垂直于杆件横截面的应力。正应力又可分为正值正应力和负值正 应力。 ( √) 2、构件的工作应力可以和其极限应力相等。 ( × ) 3、设计构件时,须在满足安全工作的前提下尽量节省材料的要求。 ( √ ) 4、挤压面的计算面积一定是实际积压的面积。 ( × )

2019年高考真题+高考模拟题 专项版解析汇编 物理——专题20 力学计算题(原卷版)

t 专题20力学计算题 1.(2019·新课标全国Ⅰ卷)竖直面内一倾斜轨道与一足够长的水平轨道通过一小段光滑圆弧平滑连接,小物块B静止于水平轨道的最左端,如图(a)所示。t=0时刻,小物块A在倾斜轨道上从静止开始下滑,一段时间后与B发生弹性碰撞(碰撞时间极短);当A返回到倾斜轨道上的P点(图中未标出)时,速度减为0,此时对其施加一外力,使其在倾斜 轨道上保持静止。物块A运动的v–图像如图(b)所示,图中的v 1 和t 1 均为未知量。已知A 的质量为m,初始时A与B的高度差为H,重力加速度大小为g,不计空气阻力。 (1)求物块B的质量; (2)在图(b)所描述的整个运动过程中,求物块A克服摩擦力所做的功; (3)已知两物块与轨道间的动摩擦因数均相等,在物块B停止运动后,改变物块与轨道间的动摩擦因数,然后将A从P点释放,一段时间后A刚好能与B再次碰上。 求改变前后动摩擦因数的比值。 2.(2019·新课标全国Ⅱ卷)一质量为m=2000kg的汽车以某一速度在平直公路上匀速行驶。 行驶过程中,司机突然发现前方100m处有一警示牌。立即刹车。刹车过程中,汽车所 受阻力大小随时间变化可简化为图(a)中的图线。图(a)中,0~t 1 时间段为从司机发现警示牌到采取措施的反应时间(这段时间内汽车所受阻力已忽略,汽车仍保持匀速行 驶),t 1 =0.8s;t 1 ~t 2 时间段为刹车系统的启动时间,t 2 =1.3s;从t 2 时刻开始汽车的刹车 系统稳定工作,直至汽车停止,已知从t 2 时刻开始,汽车第1s内的位移为24m,第4s 内的位移为1m。 (1)在图(b)中定性画出从司机发现警示牌到刹车系统稳定工作后汽车运动的v-t图线; (2)求t 2 时刻汽车的速度大小及此后的加速度大小; (3)求刹车前汽车匀速行驶时的速度大小及t 1 ~t 2 时间内汽车克服阻力做的功;从司机 发现警示牌到汽车停止,汽车行驶的距离约为多少(以t 1 ~t 2 时间段始末速度的算

初中物理力学计算题专项训练.doc

计算题专项练习 一. 压强浮力 1.人民公园绿化带内有一个喷水管,其管口与为其供水的水塔内的水面高度差h=20m ,管 口的内截面的面积 S=4× 10-4㎡.开关打开时管口喷水速度V=20m/s,水从管口喷出到落地 所用的时间 t=.求: (1)开关关闭不喷水时,管口处受到水产生的压强; (2)开关打开喷水时,空中水柱的质量. 2.如图所示,在水平桌面上静止放着一杯水,已知杯和水的 总质量为,水面距杯底高度为6× 10-2m,杯底与桌面的接触 面积为× 10-3m2, g=10N/kg ,求: (1)杯和水的总重力; (2)杯对桌面的压强; (3)水对杯底的压强. 3.随着电热水器的不断改进,右图所示的电热水壶深受人们的喜爱.它 的容积为 2L,壶身和底座的总质量是,底座与水平桌面的接触面积为 250cm2,装满水后水深16cm.(ρ水 =× 103kg/m 3)求: (1)装满水后水的质量; (2)装满水后水对电热水壶底部的压强; (3)装满水后桌面受到的压强. 4.在打捞海底沉船时,常用水下机器人潜入水下打捞船上物品, 已知ρ海水 =× 103kg/m 3. (1)机器人在水下 70m 处受到海水产生的压强是多大 ( 2)某时刻机器人在水下用竖直向上的力举着体积为、密度为 ×103kg/m 3的物体静止不动,求该力的大小. (3)若机器人在水下运动时,所受海水阻力与速度的关系如图所示,求机器人在水下以s 的水平速度匀速运动时,机器人水平推进力的功率. 5.如图所示,水平桌面的正中央放着一个圆形鱼缸,重为30N,其底面积为 1200cm 2.鱼缸内装有深的水,水的质量是27kg.请计算: (1)鱼缸内所装水的重力; (2)鱼缸底部受到的水的压强; (3)鱼缸对桌面产生的压强.

材料力学考试习题

材料力学习题 第2章 2-1 试求出图示各杆Ⅰ—Ⅰ截面上的内力。 2-2图示矩形截面杆,横截面上正应力沿截面高度线性分布,截面顶边各点 处的正应力均为 MPa 100 max = σ ,底边各点处的正应力均为零。杆件横截面 上存在何种内力分量,并确定其大小(C点为截面形心)。 2-3 试指出图示各单元体表示哪种应力状态。 2-4 已知应力状态如图所示(应力单位为MPa),试用解析法计算图中指定截面的应力。

2-5 试作应力圆来确定习题2-4图中指定截面的应力。 2-6已知应力状态如图所示(应力单位为MPa ),试用解析法求:(1)主应力及主方向;(2)主切应力及主切平面;(3)最大切应力。 2-7 已知应力状态如习题2-6图所示,试作应力圆来确定:(1)主应力及主方向; (2)主切应力及主切平面;(3)最大切应力。 2-8已知构件内某点处的应力状态为两种应力状态的叠加结果,试求叠加后所得 应力状态的主应力、主切应力。 2-9图示双向拉应力状态, σ σσ==y x 。试证明任一斜截面上的正应力均等 于σ,而切应力为零。 2-10 已知K 点处为二向应力状态,过K 点两个截面上的应力如图所示(应力单位为MPa )。试分别用解析法与图解法确定该点的主应力。 2-11 一点处的应力状态在两种坐标系中的表示方法分别如图 a)和b)所示。 试确定未知的应力分量 y y x xy ' ''σττ、、的大小与方向。

2-12 图示受力板件,试证明尖角A 处各截面的正应力与切应力均为零。 2-13 已知应力状态如图所示(单位为MPa ),试求其主应力及第一、第二、第三不变量321I I I 、、。 2-14 已知应力状态如图所示(单位为MPa ),试画三向应力圆,并求主应力、最大正应力与最大切应力。 第3章 3-1 已知某点的位移分量u = A , v = Bx +Cy +Dz , w = Ex 2+Fy 2+Gz 2+Ixy +Jyz +Kzx 。A 、B 、C 、D 、E 、F 、G 、I 、J 、K 均为常数,求该点处的应变分量。 3-2 已知某点处于平面应变状态,试证明2 222,,Bxy y Ax y Bx Axy xy y x +===γεε(其中, B A 、为任意常数)可作为该点的三个应变分量。 3-3 平面应力状态的点O 处x ε=6×10-4 mm/m ,y ε=4×10 -4 mm/m , xy γ=0;求:1)平面内以y x ' '、方向的线应变;2)以x '与 y '为两垂直线元的切应变;3)该平面内的最大切应变及其与x 轴 的夹角。 3-4 平面应力状态一点处的 x ε= 0,y ε= 0,xy γ=-1×10 -8 rad 。 试求:1)平面内以y x ' ' 、方向的线应 变;2)以x '与 y '为两垂直线元的切应 变;3)该平面内的最大切应变及其与 x 轴的夹角。 3-5 用图解法解习题3-3。 3-6 用图解法解习题3-4。 m/m , y ε=2×10-8 m/m , xy γ=1×10-8 3-7 某点处的 x ε=8×10-8 rad ;分别用图解法和解析法求该点xy 面内的:1)与x 轴夹角为45°方向的线应变和以45°方向为始边的直角的切应变;2)最大线应变的方向和线应变的值。 3-8 设在平面内一点周围任何方向上的线应变都相同,证明以此点为顶点的任意直角的切应变均为零。 3-9 试导出在xy 平面上的正方形微元面,在纯剪状态下切应变 xy γ与对角线方向

2004年至2013年天津高考物理试题分类——力学综合计算题 (1)

2004年至2013年天津高考物理试题分类——力学综合计算 (2004年)24.(18分)质量kg m 5.1=的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行s t 0.2=停在B 点,已知A 、B 两点间的距离m s 0.5=,物块与水平面间的动摩擦因数20.0=μ,求恒力F 多大。(2 /10s m g =) 解:设撤去力F 前物块的位移为1s ,撤去力F 时物块速度为v ,物块受到的滑动摩擦力 mg F μ=1 对撤去力F 后物块滑动过程应用动量定理得mv t F -=-01 由运动学公式得t v s s 2 1= - 对物块运动的全过程应用动能定理011=-s F Fs 由以上各式得2 22gt s mgs F μμ-= 代入数据解得F=15N (2005年)24.(18分)如图所示,质量m A 为4.0kg 的木板A 放在水平面C 上,木板与水平面间的动摩擦因数μ为 0.24,木板右端放着质量m B 为1.0kg 的小物块B (视为质点),它们均处于静止状态。木板突然受到水平向右的12N ·s 的瞬时冲量I 作用开始运动,当小物块滑离木板时,木板的动能E M 为8.0J ,小物块的动能E kB 为0.50J ,重力加速度取10m/s 2 ,求: (1)瞬时冲量作用结束时木板的速度v 0; (2)木板的长度L 。 解:(1)设水平向右为正方向0v m I A = ① 代入数据解得s m v /0.30= ② (2)设A 对B 、B 对A 、C 对A 的滑动摩擦力的大小分别为F AB 、F BA 和F CA ,B 在A 上滑行的时间为t ,B 离开A 时A 和B 的初速分别为v A 和v B ,有 0)(v m v m t F F A A A CA BA -=+- ③ B B AB v m t F = ④ 其中F AB =F EA g m m F B A CA )(+=μ ⑤ 设A 、B 相对于C 的位移大小分别为s A 和s B ,有 2022 121)(v m v m s F F A A A A CA BA -= +- ⑥ AB B AB E s F = ⑦ 动量与动能之间的关系为 kA A A A E m v m 2= ⑧

2020初中物理力学计算题专项训练

计算题专项练习 一.压强浮力 1.人民公园绿化带内有一个喷水管,其管口与为其供水的水塔内的水面高度差h=20m,管口的内截面的面积S=4×10-4㎡.开关打开时管口喷水速度V=20m/s,水从管口喷出到落地所用的时间t=0.5s.求: (1)开关关闭不喷水时,管口处受到水产生的压强; (2)开关打开喷水时,空中水柱的质量. 2.如图所示,在水平桌面上静止放着一杯水,已知杯和水的 总质量为0.4kg,水面距杯底高度为6×10-2m,杯底与桌面的 接触面积为3.2×10-3m2,g=10N/kg,求: (1)杯和水的总重力; (2)杯对桌面的压强; (3)水对杯底的压强. 3.随着电热水器的不断改进,右图所示的电热水壶深受人们的喜爱.它 的容积为2L,壶身和底座的总质量是1.2kg,底座与水平桌面的接触面积 为250cm2,装满水后水深16cm.(ρ水=1.0×103kg/m3)求: (1)装满水后水的质量; (2)装满水后水对电热水壶底部的压强; (3)装满水后桌面受到的压强. 4.在打捞海底沉船时,常用水下机器人潜入水下打捞船上物品, 已知ρ海水=1.03×103kg/m3. (1)机器人在水下70m处受到海水产生的压强是多大? (2)某时刻机器人在水下用竖直向上的力举着体积为0.02m3、 密度为2.7×103kg/m3的物体静止不动,求该力的大小. (3)若机器人在水下运动时,所受海水阻力与速度的关系如图所示,求机器人在水下以0.5m/s的水平速度匀速运动时,机器人水平推进力的功率. 5.如图所示,水平桌面的正中央放着一个圆形鱼缸,重为30N,其底面积为1200cm2.鱼缸内装有0.2m深的水,水的质量是27kg.请计算: (1)鱼缸内所装水的重力; (2)鱼缸底部受到的水的压强; (3)鱼缸对桌面产生的压强.

材料力学题库及答案

材料力学题库及答案

材料力学题库及答案 【篇一:很经典的几套材料力学试题及答案】 若真不及格,努力下次过。 命题负责人:教研室主任: 【篇二:大学期末考试材料力学试题及答案】 1、拉杆伸长后,横向会缩短,这是因为杆有横向应力的存在。() 2、圆截面杆件受扭时,横截面上的最大切应力发生在横截面离圆心最远处。() 3、两梁的跨度、承受载荷及支承相同,但材料和横截面面积不同,因而两梁的剪力图和弯矩图不一定相同。() 4、交变应力是指构件内的应力,它随时间作周期性变化,而作用在构件上的载荷可能是动载荷,也可能是静载荷。() 5、弹性体的应变能与加载次序无关,只与载荷的最终值有关。() 6、单元体上最大切应力作用面上必无正应力。() 7、平行移轴公式表示图形对任意两个相互平行轴的惯性矩和惯性积之间的关系。()8、动载荷作用下,构件内的动应力与材料的弹性模量有关。() 9、构件由突加载荷所引起的应力,是由相应的静载荷所引起应力的两倍。() 10、包围一个点一定有一个单元体,该单元体各个面上只有正应力而无切应力。() 二、选择题(每个2分,本题满分16分) f 1.应用拉压正应力公式??n的条件是()。

aa、应力小于比例极限;b、外力的合力沿杆轴线;c、应力小于弹性极限;d、应力小于屈服极限。 (a)(b) 2.梁拟用图示两种方式搁置,则两种情况下的最大弯曲正应力之比?m()。axmax 为 a、1/4; b、1/16; c、1/64;d (a) (b) 3、关于弹性体受力后某一方向的应力与应变关系有如下论述:正确的是 a、有应力一定有应变,有应变不一定有应力; b、有应力不一定有应变,有应变不一定有应力; c、有应力不一定有应变,有应变一定有应力; d、有应力一定有应变,有应变一定有应力。 4、火车运动时,其轮轴横截面边缘上危险点的应力有四种说法,正确的是。a:脉动循环应力:b:非对称的循环应力;c:不变的弯曲应力;d:对称循环应力 5、如图所示的铸铁制悬臂梁受集中力f作用,其合理的截面形状应为图(b) 6、对钢制圆轴作扭转校核时,发现强度和刚度均比规定的要求低了20%,若安全因数不变,改用屈服极限提高了30%的钢材,则圆轴的(c )a、强度、刚度均足够;b、强度不够,刚度足够;c、强度足够,刚度不够;d、强度、刚度均不够。 7、图示拉杆的外表面上有一斜线,当拉杆变形时,斜线将d。a:平动;b:转动c:不动;d:平动加转动 8、按照第三强度理论,比较图中两个应力状态的相的是(a )。(图中应力单位为mpa)a、两者相同;b、(a)大;b、c、(b)大; d、无法判断一、判断:

二零一七中考物理计算题专题训练.doc

2017中考物理计算题专题训练 第1课时力学计算题 —、密度 1.每节油罐车的容积为50n?,从油罐中取出20 cn?的油,质量为17g,则一满罐的油的质量是多少吨? 二、速度 2.从遵义到重庆江北机场的路程为296 km, 一辆小车以74 km/h的平均速度行驶了一半路程后, 又以100 km/h的平均速度行驶完后一半路程.求: (1)这辆小车从遵义到重庆江北机场所需的时间是多少? (2)这辆小车从遵义到重庆江北机场的平均速度是多少? 三、压强 3.如图X5-1-1所示,水平桌面的正中央放着一个圆形鱼缸,重为30N,其底面积为1 200cn?. 鱼缸内装有0.2 m深的水,水的质量是27 kg, g取10N/kg,计算: (1)鱼缸内所装水的重力; (2)鱼缸底部受到的水的压强; (3)鱼缸对桌面产生的压强. 图X5-1-1 4.我国从20世纪70年代开始大规模研制潜水器,现已达到国际领先水平.2010年7月下水的“蛟 龙号”深海潜水器,是我国自主研制的,其设计的下潜深度达7 000 m. 2011年7月己完成5 000 m级深海潜海和科学探测.若“蛟龙号”潜水器下潜至5 000 m,求: ⑴它受到海水的压强大约是多少?。海水=1.03Xl()3 kg/n?,取g=10N/kg) (2)若观察窗的面积为300 cm2,则海水对观察窗的压力大约是多少? 四、浮力 5.有一木板漂浮在水面上,己知木板重1 800 N,体积为0.3m3.g取10N/kg,求: (1)木板的密度; (2)木板所受的浮力; (3)有一个人重700 N,通过计算说明他能否安全地躺在木板上?

3 6.在水中放入质量为3 kg的木块,木块静止时有寻的体积浸入水中.求: (1)木块静止时所受的浮力. (2)木块的体积. 五、机械效率 7.如图X5-1-2所示,工人用滑轮组提升重240 N的物体,所用的拉力为150N,物体在5 s内匀速上升1 m.求: (1)有用功;峨斜 (2)滑轮组的机械效率;《为 (3)拉力的功率. Y\ 8.如图X5-1-3所示,小王站在高3 m、长6 m的斜面上,将重200 N的木箱A沿斜面从底端匀速拉上顶端,拉力大小恒为120N,所花的时间是10 s.求: (1)木箱力沿斜面方向的运动速度. (2)小王对木箱A做功的功率. (3)斜面的机械效率. 图X5 六、功、功率 9.图X5-1-4所示的是某品牌小汽车,下表列出了有关它的部分数据: 小汽车质量700 kg 小汽车额定功率60 kW 每个轮胎与地面的接触面积500 cm100 km耗油量10L 汽油的密度0.71 X伸kg/n? 汽油价格5.0元/L 求:(1)该小汽车静止在水平地面上时,对地面的压强是多大.? (2)若该小汽车行驶100 km,则需耗油多少千克? (3)假若该小汽车在水平路面上以额定功率匀速直线行驶,速度为20m/s.请计算该车10 min内牵引力所做的功和小汽车受到的阻力.(g取10N/kg, lL=10~3m3)

材料力学期末考试复习题及答案

材料力学 一、填空题: 1.受力后几何形状和尺寸均保持不变的物体称为。 2.构件抵抗的能力称为强度。 3.圆轴扭转时,横截面上各点的切应力与其到圆心的距离成比。 4.梁上作用着均布载荷,该段梁上的弯矩图为。 5.偏心压缩为的组合变形。 6.柔索的约束反力沿离开物体。 7.构件保持的能力称为稳定性。 8.力对轴之矩在情况下为零。 9.梁的中性层与横截面的交线称为。 10.图所示点的应力状态,其最大切应力是。 11.物体在外力作用下产生两种效应分别是。 12.外力解除后可消失的变形,称为。 13.力偶对任意点之矩都。 14.阶梯杆受力如图所示,设AB和BC段的横截面面积分别为2A和A,弹性模量为E,则杆中最大正应力 为。 15.梁上作用集中力处,其剪力图在该位置有。 16.光滑接触面约束的约束力沿指向物体。 17.外力解除后不能消失的变形,称为。 18.平面任意力系平衡方程的三矩式,只有满足三个矩心的条件时,才能成为力系平衡的 充要条件。 19.图所示,梁最大拉应力的位置在点处。 20.图所示点的应力状态,已知材料的许用正应力[σ],其第三强度理论的强度条件是。

21.物体相对于地球处于静止或匀速直线运动状态,称为。 22.在截面突变的位置存在集中现象。 23.梁上作用集中力偶位置处,其弯矩图在该位置有。 24.图所示点的应力状态,已知材料的许用正应力[σ],其第三强度理论的强度条件是。 25.临界应力的欧拉公式只适用于杆。 26.只受两个力作用而处于平衡状态的构件,称为。 27.作用力与反作用力的关系是。 28.平面任意力系向一点简化的结果的三种情形是。 29.阶梯杆受力如图所示,设AB和BC段的横截面面积分别为2A和A,弹性模量为E,则截面C的位移为 。 30.若一段梁上作用着均布载荷,则这段梁上的剪力图为。 二、计算题: 1.梁结构尺寸、受力如图所示,不计梁重,已知q=10kN/m,M=10kN·m,求A、B、C处的约束力。 2.铸铁T梁的载荷及横截面尺寸如图所示,C为截面形心。已知I z=60125000mm4,y C=157.5mm,材料许用压应力[σc]=160MPa,许用拉应力[σt]=40MPa。试求:①画梁的剪力图、弯矩图。②按正应力强度条件校核梁的强度。 3.传动轴如图所示。已知F r=2KN,F t=5KN,M=1KN·m,l=600mm,齿轮直径D=400mm,轴的[σ]=100MPa。 试求:①力偶M的大小;②作AB轴各基本变形的力图。③用第三强度理论设计轴AB的直径d。

材料力学复习题(答案)

工程力学B 第二部分:材料力学 扭转 1、钢制圆轴材料的剪切弹性模量G=80Gpa,[]=50Mpa,m o 1 ] [= '?,圆轴直径d=100mm;求(1) 做出扭矩图;(2)校核强度;(3)校核刚度;(4)计算A,B两截面的相对扭转角. 解: 3 max max 3 610 30.57[]50 (0.1) 16 t T MPa MPa W ττ π ? ===<= ? ] 030 max00 max 94 180610180 0.44[]1 8010(0.1) 32 m m p T GI ?? π ππ ? '' =?=?=<= ??? 30 94 (364)210180 0.0130.73 8010(0.1) 32 AB p Tl rad GI φ ππ +-?? ===?= ??? ∑ 2、图示阶梯状实心圆轴,AB段直径d1=120mm,BC段直径d2=100mm 。扭转力偶矩M A=22 kN?m,M B=36 kN?m,M C=14 kN?m。材料的许用切应力[ = 80MPa ,(1)做出轴的扭矩图;(2)校核该轴的强度是否满足要求。 解:(1)求内力,作出轴的扭矩图

(2)计算轴横截面上的最大切应力并校核强度 AB段: 1 1,max 1t T W τ= ( ) 3 3 3 2210 64.8MPa π 12010 16 - ? == ?? []80MPa τ <= BC段: () 3 2 2,max3 3 2 1410 71.3MPa π 10010 16 t T W τ - ? === ?? []80MPa τ <= 综上,该轴满足强度条件。 ; 3、传动轴的转速为n=500r/min,主动轮A输入功率P1=400kW,从动轮B,C分别输出功率P2=160kW,P3=240kW。已知材料的许用切应力[]=70MP a,单位长度的许可扭转角[,]=1o/m,剪切弹性模量G=80GP a。(1)画出扭矩图。(2)试确定AB段的直径d1和BC段的直径d2;(3)主动轮和从动轮应如何安排才比较合理为什么 解:(1) m N n P M. 7639 500 400 9549 95491 e1 = ? = =,m N n P M. 3056 500 160 9549 95492 e2 = ? = = m N n P M. 4583 500 240 9549 95493 e3 = ? = =,扭矩图如下 (2)AB段, 按强度条件:] [ 16 3 max τ π τ≤ = = d T W T t ,3 ] [ 16 τ π T d≥,mm d2. 82 10 70 7639 16 3 6 1 = ? ? ? ≥ π

相关文档
相关文档 最新文档