文档库 最新最全的文档下载
当前位置:文档库 › CAN总线概述和MVB总线

CAN总线概述和MVB总线

CAN总线概述和MVB总线
CAN总线概述和MVB总线

CAN总线概述

1. CAN总线的产生与发展

控制器局部网(CAN-CONTROLLER AREA NETWORK)是BOSCH公司为现代汽车应用领先推出的一种多主机局部网,由于其卓越性能现已广泛应用于工业自动化、多种控制设备、交通工具、医疗仪器以及建筑、环境控制等众多部门。控制器局部网将在我国迅速普及推广。

随着计算机硬件、软件技术及集成电路技术的迅速发展,工业控制系统已成为计算机技术应用领域中最具活力的一个分支,并取得了巨大进步。由于对系统可靠性和灵活性的高要求,工业控制系统的发展主要表现为:控制面向多元化,系统面向分散化,即负载分散、功能分散、危险分散和地域分散。

分散式工业控制系统就是为适应这种需要而发展起来的。这类系统是以微型机为核心,将5C技术--COMPUTER(计算机技术)、CONTROL(自动控制技术)、COMMUNICATION(通信技术)、CRT(显示技术)和 CHANGE(转换技术)紧密结合的产物。它在适应范围、可扩展性、可维护性以及抗故障能力等方面,较之分散型仪表控制系统和集中型计算机控制系统都具有明显的优越性。

典型的分散式控制系统由现场设备、接口与计算设备以及通信设备组成。现场总线(FIELDBUS)能同时满足过程控制和制造业自动化的需要,因而现场总线已成为工业数据总线领域中最为活跃的一个领域。现场总线的研究与应用已成为工业数据总线领域的热点。尽管目前对现场总线的研究尚未能提出一个完善的标准,但现场总线的高性能价格比将吸引众多工业控制系统采用。同时,正由于现场总线的标准尚未统一,也使得现场总线的应用得以不拘一格地发挥,并将为现场总线的完善提供更加丰富的依据。控制器局部网 CAN(CONTROLLER AERANETWORK)正是在这种背景下应运而生的。

由于CAN为愈来愈多不同领域采用和推广,导致要求各种应用领域通信报文的标准化。为此,1991年 9月 PHILIPS SEMICONDUCTORS制订并发布了 CAN技术规范(VERSION )。该技术规范包括A和B两部分。给出了曾在CAN技术规范版本中定义的CAN报文格式,而给出了标准的和扩展的两种报文格式。此后,1993年11月ISO正式颁布了道路交通运载工具--数字信息交换

--高速通信控制器局部网(CAN)国际标准(ISO11898),为控制器局部网标准化、规范化推广铺平了道路。

2. CAN总线特点

CAN总线是德国BOSCH公司从80年代初为解决现代汽车中众多的控制与测试仪器之间的数据交换而开发的一种串行数据通信协议,它是一种多主总线,通信介质可以是双绞线、同轴电缆或光导纤维。通信速率可达1MBPS。CAN总线通信接口中集成了CAN协议的物理层和数据链路层功能,可完成对通信数据的成帧处理,包括位填充、数据块编码、循环冗余检验、优先级判别等项工作。

CAN协议的一个最大特点是废除了传统的站地址编码,而代之以对通信数据块进行编码。采用这种方法的优点可使网络内的节点个数在理论上不受限制,数据块的标识码可由11位或29

位二进制数组成,因此可以定义211或229个不同的数据块,这种按数据块编码的方式,还可使不同的节点同时接收到相同的数据,这一点在分布式控制系统中非常有用。数据段长度最多为8个字节,可满足通常工业领域中控制命令、工作状态及测试数据的一般要求。同时,8个字节不会占用总线时间过长,从而保证了通信的实时性。CAN协议采用CRC检验并可提供相应的错误处理功能,保证了数据通信的可靠性。CAN卓越的特性、极高的可靠性和独特的设计,特别适合工业过程监控设备的互连,因此,越来越受到工业界的重视,并已公认为最有前途的现场总线之一。

另外,CAN总线采用了多主竞争式总线结构,具有多主站运行和分散仲裁的串行总线以及广播通信的特点。CAN总线上任意节点可在任意时刻主动地向网络上其它节点发送信息而不分主次,因此可在各节点之间实现自由通信。CAN总线协议已被国际标准化组织认证,技术比较成熟,控制的芯片已经商品化,性价比高,特别适用于分布式测控系统之间的数通讯。CAN总线插卡可以任意插在PC AT XT兼容机上,方便地构成分布式监控系统。

3. CAN总线技术介绍

位仲裁

要对数据进行实时处理,就必须将数据快速传送,这就要求数据的物理传输通路有较高的速度。在几个站同时需要发送数据时,要求快速地进行总线分配。实时处理通过网络交换的紧急数据有较大的不同。一个快速变化的物理量,如汽车引擎负载,将比类似汽车引擎温度这样相对变化较慢的物理量更频繁地传送数据并要求更短的延时。

CAN总线以报文为单位进行数据传送,报文的优先级结合在11位标识符中,具有最低二进制数的标识符有最高的优先级。这种优先级一旦在系统设计时被确立后就不能再被更改。总线读取中的冲突可通过位仲裁解决。如图2所示,当几个站同时发送报文时,站1的报文标识符为011111;站2的报文标识符为0100110;站3的报文标识符为0100111。所有标识符都有相同的两位01,直到第3位进行比较时,站1的报文被丢掉,因为它的第3位为高,而其它两个站的报文第3位为低。站2和站3报文的4、5、6位相同,直到第7位时,站3的报文才被丢失。注意,总线中的信号持续跟踪最后获得总线读取权的站的报文。在此例中,站2的报文被跟踪。这种非破坏性位仲裁方法的优点在于,在网络最终确定哪一个站的报文被传送以前,报文的起始部分已经在网络上传送了。所有未获得总线读取权的站都成为具有最高优先权报文的接收站,并且不会在总线再次空闲前发送报文。

CAN具有较高的效率是因为总线仅仅被那些请求总线悬而未决的站利用,这些请求是根据报文在整个系统中的重要性按顺序处理的。这种方法在网络负载较重时有很多优点,因为总线读取的优先级已被按顺序放在每个报文中了,这可以保证在实时系统中较低的个体隐伏时间。

对于主站的可靠性,由于CAN协议执行非集中化总线控制,所有主要通信,包括总线读取 (许可)控制,在系统中分几次完成。这是实现有较高可靠性的通信系统的唯一方法。

CAN与其它通信方案的比较

在实践中,有两种重要的总线分配方法:按时间表分配和按需要分配。在第一种方法中 ,不管每个节点是否申请总线,都对每个节点按最大期间分配。由此,总线可被分配给每个站并且是唯一的站,而不论其是立即进行总线存取或在一特定时间进行总线存取。这将保证在总线存取时有明确的总线分配。在第二种方法中,总线按传送数据的基本要求分配给一个站 ,总线系统按站希望的传送分配(如:Ethernet CSMA/CD)。因此,当多个站同时请求总线存取时,总线将终止所有站的请求,这时将不会有任何一个站获得总线分配。为了分配总线,多于一个总线存取是必要的。

CAN实现总线分配的方法,可保证当不同的站申请总线存取时,明确地进行总线分配。这种位仲裁的方法可以解决当两个站同时发送数据时产生的碰撞问题。不同于Ethernet网络的消息仲裁,CAN的非破坏性解决总线存取冲突的方法,确保在不传送有用消息时总线不被占用。甚至当总线在重负载情况下,以消息内容为优先的总线存取也被证明是一种有效的系统。虽然总线的传输

能力不足,所有未解决的传输请求都按重要性顺序来处理。在CSMA/CD这样的网络中,如Ethernet,系统往往由于过载而崩溃,而这种情况在CAN中不会发生。

CAN的报文格式

在总线中传送的报文,每帧由7部分组成,见图3。CAN协议支持两种报文格式,其唯一的不同是标识符(ID)长度不同,标准格式为11位,扩展格式为29位。

在标准格式中,报文的起始位称为帧起始(SOF),然后是由11位标识符和远程发送请求位(RTR)组成的仲裁场。RTR位标明是数据帧还是请求帧,在请求帧中没有数据字节。

控制场包括标识符扩展位(IDE),指出是标准格式还是扩展格式。它还包括一个保留位 (ro),为将来扩展使用。它的最后四个字节用来指明数据场中数据的长度(DLC)。数据场范围为0~8

个字节,其后有一个检测数据错误的循环冗余检查(CRC)。

应答场(ACK)包括应答位和应答分隔符。发送站发送的这两位均为隐性电平(逻辑1),这时正确接收报文的接收站发送主控电平(逻辑0)覆盖它。用这种方法,发送站可以保证网络中至少有一个站能正确接收到报文。

报文的尾部由帧结束标出。在相邻的两条报文间有一很短的间隔位,如果这时没有站进行总线存取,总线将处于空闲状态。

数据错误检测

不同于其它总线,CAN协议不能使用应答信息。事实上,它可以将发生的任何错误用信号发出。CAN协议可使用五种检查错误的方法,其中前三种为基于报文内容检查。

3.4.1 循环冗余检查(CRC)

在一帧报文中加入冗余检查位可保证报文正确。接收站通过CRC可判断报文是否有错。

3.4.2 帧检查

这种方法通过位场检查帧的格式和大小来确定报文的正确性,用于检查格式上的错误。

3.4.3.应答错误

如前所述,被接收到的帧由接收站通过明确的应答来确认。如果发送站未收到应答,那么表明接收站发现帧中有错误,也就是说,ACK场已损坏或网络中的报文无站接收。CAN协议也可通过位检查的方法探测错误。

3.4.4 总线检测

有时,CAN中的一个节点可监测自己发出的信号。因此,发送报文的站可以观测总线电平并探测发送位和接收位的差异。

3.4.5 位填充

一帧报文中的每一位都由不归零码表示,可保证位编码的最大效率。然而,如果在一帧报文中有太多相同电平的位,就有可能失去同步。为保证同步,同步沿用位填充产生。在五个生。在五个连续相等位后,发送站自动插入一个与之互补的补码位;接收时,这个填充位被自动丢掉。例如,五个连续的低电平位后,CAN自动插入一个高电平位。CAN通过这种编码规则检查错误,如果在一帧报文中有6个相同位,CAN就知道发生了错误。

如果至少有一个站通过以上方法探测到一个或多个错误,它将发送出错标志终止当前的发送。这可以阻止其它站接收错误的报文,并保证网络上报文的一致性。当大量发送数据被终止后,发送站会自动地重新发送数据。作为规则,在探测到错误后23个位周期内重新开始发送。在特殊场合,系统的恢复时间为31个位周期。

但这种方法存在一个问题,即一个发生错误的站将导致所有数据被终止,其中也包括正确的数据。因此,如果不采取自监测措施,总线系统应采用模块化设计。为此,CAN协议提供一种将偶然错误从永久错误和局部站失败中区别出来的办法。这种方法可以通过对出错站统计评估来确定一个站本身的错误并进入一种不会对其它站产生不良影响的运行方法来实现,即站可以通过关闭自己来阻止正常数据因被错误地当成不正确的数据而被终止。

3.4.6 CAN可靠性

为防止汽车在使用寿命期内由于数据交换错误而对司机造成危险,汽车的安全系统要求数据传输具有较高的安全性。如果数据传输的可靠性足够高,或者残留下来的数据错误足够低的话,这一目标不难实现。从总线系统数据的角度看,可靠性可以理解为,对传输过程产生的数据错误的识别能力。

残余数据错误的概率可以通过对数据传输可靠性的统计测量获得。它描述了传送数据被破坏和这种破坏不能被探测出来的概率。残余数据错误概率必须非常小,使其在系统整个寿命周期内,按平均统计时几乎检测不到。计算残余错误概率要求能够对数据错误进行分类 ,并且数据传输路径可由一模型描述。如果要确定CAN的残余错误概率,我们可将残留错误的概率作为具有80~90位的报文传送时位错误概率的函数,并假定这个系统中有5~10个站,并且错误率为

1/1000,那么最大位错误概率为10—13数量级。例如,CAN网络的数据传输率最大为1Mbps,如果数据传输能力仅使用50%,那么对于一个工作寿命4000小时、平均报文长度为 80位的系统,所传送的数据总量为9×1010。在系统运行寿命期内,不可检测的传输错误的统计平均小于10—2量级。换句话说,一个系统按每年365天,每天工作8小时,每秒错误率为0. 7计算,那么按统计平均,每1000年才会发生一个不可检测的错误。

4.应用举例

某医院现有5台16T/H德国菲斯曼燃气锅炉,向洗衣房、制剂室、供应室、生活用水、暖气等设施提供5kg/cm2的蒸汽,全年耗用天然气1200万m3,耗用20万吨自来水。医院采用接力式方式供热,对热网进行地域性管理,分四大供热区。其中冬季暖气的用气量很大,据此设计了基于CAN现场总线的分布式锅炉蒸汽热网智能监控系统。现场应用表明:该楼宇自动化系统具有抗干扰能力强,现场组态容易,网络化程度高,人机界面友好等特点。

摘要:介绍了 MVB 总线的物理层、帧和

报文的格式与时序, 以及其在广州地铁 2

号线、深圳地铁 1 号

线、上海地铁1 号线延长线等车辆控制系统中的成功应用。

关键词:地铁列车; 多功能车辆总线( MVB) ; 帧; 报文; 自动控制

地铁 2 号线、深圳地铁 1 号线、上海地铁 1 号线延长线的列车均采用了符合 IEC61375 TCN 标准的德国总线控制系统。该系统由列车总线( WTB) 和多功能车辆总线( MVB) 两部分组成, 单元( 整个列车 6 辆车为一个编组, 3 辆车为 1 个单元) 内用 MVB 总线连接, 两个单元间用 WTB 总线连接, MVB 总线实现车辆控制, WTB 总线实现列车控制。

1 MVB 总线的物理层和链路层

MVB 总线模型是在开放系统互联 OSI 模型的基础上进行了简化。OSI 具有 7 层参考模型, 而 MVB 只有其中的物理层和链路层。

物理层

MVB 总线的物理层有 3 种:

1) ESD( 电的短距离传输介质) , 使用双绞屏蔽线, 按RS- 485 标准, 最多支持 32 个设备, 最大总线长度 20 m 。

2) EMD( 电的中距离传输介质) , 使用双绞屏蔽线, 最多支持 32 个设备, 最大总线长度200 m 。允许使用变压器连接。

3) OGF( 光纤媒介) , 使用总线连接器, 传输距离可达2 km。

MVB 总线系统是分级控制系统。系统设备共分 5 个级别, 6 种能力:

1) 1 级设备具有的能力有设备状态和过程数据。设备端口地址一般与设备地址一致。

2) 2 级设备具有的能力有设备状态, 过程数据, 信息数据, 是智能设备可以通过总线配置, 但不能编程。

3) 3 级设备具有的能力有设备状态, 过程数据, 信息数据和用户编程。

4) 4 级设备具有的能力有设备状态、过程数据、信息数据和总线管理器。用户编程具有可选性。

5) 5 级设备具有的能力有设备状态、过程数据、信息数据、网关和总线管理器。具有总线管理器的网关能与各种总线同步。

链路层数据

1.2.1 帧和报文格式

有效的帧格式见图 1

1) 主帧格式: 以主起动定界符开始, 接着是 16 位报文数据, 然后是 8 位校验序列。4 位F_code 码限制下面的12 位并指示从帧大小, 如图 2 所示。

2) 从帧格式: 以从起动定界符开始, 接着是 16, 32,64, 128 或 256 位帧数据, 8 位校验序列在 64 位数据的每个字后或在 16, 32 位数据后。帧文每 64 位后就有一个校验序列, 如图 3 所示。

3) 报文时序: 主帧和响应它的从帧称为一个报文。

4) 报文类型: 过程数据、信息数据和监管数据报文。

1.2.2 数据分布

媒介访问是通过总线管理器实现的, 周期循环。基本周期分为 4 个阶段: 周期阶段, 监管阶段, 事件阶段, 警惕阶段, 见图 4。其中事件阶段、监管阶段和警惕阶段构成临时阶段。MVB 总线的数据分为过程数据、信息数据和监管数据。其数据分布为: 过程数据为周期发布, 信息数据和监管数据发布周期不固定。过程数据都是一些非常重要的数据, 如牵引速度, 加速度的值等。

2 硬件及软件简介

硬件

系统硬件主要包括车辆控制器 VTCU、总线连接器、输入输出单元、通讯连接器 ComC、人机显示器 MMI 及相关子系统。

车辆控制器 VTCU 即总线控制器, 每个 3 节车单元各一个, 共由 7 块板组成, 自带插槽

和电源, 是标准的模块化系统。车辆控制单元由网关( VTCU- GW) , VCUT,VCUA 及 VTCU 的电源组成。网关控制列车总线( WTB)和车辆总线( MVB) , 并在两个总线系统间转换过程和信息数据。列车诊断板 VCUT 上有板载数据库( ODBS) , 可通过 RS422 接口控制人机界面。列车应用程序板 VCUA里包含着列车和车辆的控制程序。VTCU的电源提供 110V 直流电源, 并与供电系统的电势隔离。

总线连接器具有连接不同车辆总线的作用, 同时也能起到信号放大的作用。

输入输出单元由数字输入输出单元 DX 和模拟输入输出单元 AX 组成。数字输入输出单元DX 的数字数据I/O 接口一般直接连到继电器触点上。每辆车都有很多DX, 每个 DX 都可以设置地址。电源电压 DC48~120 V,10 位输入, 6 位输出。1 位报警器输出模拟输入输出单元AX 有模拟数据 I/O 接口, 每个 AX 也有自己的地址; 4 位模拟输入( ±10 V, ±20 mA) ;

2 位模拟输出。只有非常少的几处, 如牵引力大小等使用模拟量。

通讯连接器 ComC 主要用于没有 MVB 总线的第三方供货的通讯设备 MC68360 处理器, 具有 2 MB 闪存和1 MB( 静态存储器) , 2 通道 RS232 , 2 通道 RS485, 1 通道RS- 485, 1 通道 RS- 232 , 标准 MVB ESD+, 以及 DC 24~120 V 标称电压 MVB 终端插( 每个 MVB 总线段必须带有一个终端插) 。

软件

系统通讯和控制拓扑图如图 5 所示, 其软件结构见图 6。

2.2.1 基本软件 CSS( 包括基本系统软件和适时系统软件)

1) 控制系统中的操作系统基于 VxWorks 内核程序;

2) 用于应用程序的接口提供标准的功能实时操作系统 RTOS;

3) ANSI- C 的子集任务管理故障处理;

4) 数据记录;

5) 事件记录;

6) 时间同步;

7) 监控器;

8) 硬件相关功能;

9) 设备启动控制;

10) 内存测试;

11) MVB 支持和配置: 信息数据、过程数据和总线管理。

应用软件

应用软件使用的是功能块语言, 它实际上是一种开放式的 PLC, 代替传统继电器的逻辑关系。不用使用许多硬线就实现了自动控制。另外, 这种功能块语言不需要编程基础就能看懂, 省去了编程语言的培训。

在车辆控制上实现的功能, 主要是牵引和制动控制。但其他一些功能, 如门、空调、信息显示等也挂在总线下,只是在牵引安全和制动方面, 来判断牵引和制动能否进行, 如门没有关到位, 不能开车等。

牵引、制动、门、空调、信息显示等是 MVB 总线下的子系统, 这些子系统不需要有共同的语言, 每个系统都可以有自己的语言系统, 但它们都必须遵循 MVB 总线协议。

虽然总线系统只有物理层和链路层, 同开放式互联系统 OSI 的 7 层参考模型相比是一种低级控制, 但对实现自动控制已足够了。

3 结束语

列车自动控制是发展趋势, 而总线技术是实现自动控制的手段。目前已经在广州地铁 2 号线、深圳地铁 1 号线、上海地铁 1 号线延长线等地铁车辆上成功实践了地铁车辆自动控制, 相信总线技术必将得到进一步的推广和应用。

LIN和CAN车载网络介绍

浅谈车载网络 为了在提高性能与控制线束数量之间寻求一种有效的解决途径,在20世纪80年代初,出现了一种基于数据网络的车内信息交互方式——车载网络。 车载网络采取基于串行数据总线体系的结构,最早的车载网络是在UART(Universal Asynchronous Receiver/Transmitter)的基础上建立,如通用汽车的E&C、克莱斯勒的CCD等车载网络都是UART在汽车上的应用实例。由于汽车具有强大的产业背景,随后车载网络由借助通用微处理器/微控制器集成的通用串行数据总线,逐渐过渡到根据汽车具体情况,在微处理器/微控制器中定制专用串行数据总线。 20世纪90年代中期,为了规范车载网络的研究设计与生产应用,美国汽车工程师协会(SAE)下属的汽车网络委员会按照数据传输速率划分把车载网络分为Class A、Class B、Class C三个级别:Class A的数据速率通常低于20Kbps,如LIN,主要用于车门控制、空调、仪表板;Class B的数据速率为10Kbps~125Kbps,如低速CAN(ISO 11898),主要是事件驱动和周期性的传输;Class C的数据速率为125Kbps~1Mbps,如高速CAN(ISO898),主要用于引擎定时、燃料输送、ABS等需要实时传输的周期性参数。拥有更高传输速率的MOST和FlexRay主要适用于音视频数据流的传输。 目前与汽车动力、底盘和车身密切相关的车载网络主要有CAN、LIN和FlexRay。从全球车载网络的应用现状来看,通过20多年的发展,CAN已成为目前全球产业化汽车应用车载网络的主流。 CAN,全称为“Controller Area Network”,即控制器局域网,CAN 数据总线又称为CAN—BUS总线,20世纪80年代初由德国Bosch 公司开发,作为一种由ISO定义的串行通讯总线,其通信介质可以是双绞线、同轴电缆或光导纤维。同年,Bosch公司正式颁布了CAN 技术规范,版本2.0。该技术规范包括A和B两部分。CAN被设计作为汽车环境中的微控制器通信,采用单片机作为直接控制单元,用于对传感器和执行部件的直接控制,在车载各电子控制装置ECU之间交换信息,形成汽车电子控制网络,通信速率可达1Mbps。 CAN-BUS系统主要包括以下部件:CAN控制器——用来接收微处理器传来的信息,对这些信息进行处理并传给CAN收发器,同时CAN控制器也接收来自CAN收发器传来的数据,对这些数据进行处理,并传给控制单元的微处理器;CAN收发器——接收CAN控制器

汽车CAN_LIN总线测试流程和测试工具解析

汽车CAN/LIN总线测试流程和测试工具解析 汽车CAN/LIN总线系统测试的关键是测试流程、测试标准和测试工具,掌握专业的总线分析和测试工具的使用技术,开发测试软件并将它们应用到测试过程是对中国汽车厂家和汽车工程师的重大挑战,本文介绍CAN/LIN总线设计、仿真、分析和测试工具。 恒润提供CAN/LIN总线测试方案和在这些工具平台之上的测试软件开发咨询服务,帮助客户进行CAN/LIN总线方面的测试。这些工具包括用于CAN/LIN网络系统和电控单元仿真和测试的工具CANoe;记录、评价CAN总线信号电平的工具CANscope;CAN总线干扰生成工具CANstress;CAN总线数据记录器CANlog。 汽车总线测试流程 概括的讲,汽车总线的测试流程主要包括四个阶段: 1. 制订测试计划。制订测试计划是测试开始前必须的工作,包括了测试需要达到的目标,使用的资源、遵从的标准以及工具等方方面面,是测试顺利实施的指导性文件。主要内容有:目标;总体测试策略;测试的完整性需求;具体规则(如何时停止测试);资源需求;职责(如测试用例设计,执行,检查);测试用例库;测试标准;工具(CANoe, CANscope, CANstress, CANlog);测试软/硬件配置;系统集成计划。 2. 测试用例。测试用例的设计是一项复杂的工作,既需要直觉又需要专门技术。 3. 测试向量。包括测试向量和分解每一个测试用例。 4. 测试过程。经过授权的专业人员系统地执行测试。 测试步骤如下:1).单元测试(White Box, Glass Box, check code correctness;2).集成测试(Bottom Up, Top Down, Big Bang, Sandwich;3).功能测(Black Box,perspecification,component。 测试工具主要包括软件测试环境和和辅助的硬件测试工具两部分。 软件测试环境 在汽车总线网络开发和测试过程中,主要应用的软件测试环境是CANoe。CANoe (CAN Open Environment)是德国VECTOR公司开发的功能强大的开发工具。它能支持总线开发的整个过程-从最初的设计、仿真到最终的分析测试和产品的售后服务。CANoe实现了网络设计、仿真和测试的无缝集成,其开发、测试流程如图1所示。

LIN总线

LIN简介 LIN协会创建于1998年末,最初的发起人为为宝马、Volvo、奥迪、VW、戴姆勒-克莱斯勒、摩托罗拉和 VCT等,五家汽车制造商,一家半导体厂商以及一家软件工具制造商。该协会将主要目的集中在定义一套开放的标准,该标准主要针对车辆中低成本的内部互联网络(LIN, local interconnect networks),这些地方无论是带宽还是复杂性都不必要用到CAN网络。LIN标准包括了传输协议的定义、传输媒质、开发工具间的接口、以及和软件应用程序间的接口。LIN提升了系统结构的灵活性,并且无论从硬件还是软件角度而言,都为网络中的节点提供了相互操作性,并可预见获得更好的EMC(电磁兼容)特性。 LIN补充了当前的车辆内部多重网络,并且为实现车内网络的分级提供了条件,这可以有助于车辆获得更好的性能并降低成本。LIN协议致力于满足分布式系统中快速增长的对软件的复杂性、可实现性、可维护性所提出的要求,它将通过提供一系列高度自动化的工具链来满足这一要求。 LIN(Local Interconnect Network) Bus是一种串行通讯总线,它有效地支持汽车应用中分布式机械电子节点的控制。它的使用范围是带单主机节点和一组从机节点的多点总线,其系统结构如图 1-1所示。 图 1-1 LIN Bus系统结构 LIN Bus系统主要特性有: ■单主机多从机组织(即没有总线仲裁),配置灵活; ■基于普通UART/SCI 接口的低成本硬件实现低成本软件协议; ■带时间同步的多点广播接收,从机节点无需石英或陶瓷谐振器,可以实

现自同步; ■保证信号传输的延迟时间。可选的报文帧长度:2、4 和8 字节; ■数据校验和的安全性和错误检测,自动检测网络中的故障节点; ■使用最小成本的半导体组件(小型贴片,单芯片系统)。 ■速度高达20kbit/s; LIN网络由一个主节点以及一个或多个从节点组成,媒体访问由主节点控制--从节点中不必有仲裁或冲突管理。可以保证最差状态下的信号传输延迟时间。 LIN相对于CAN的成本节省主要是由于采用单线传输、硅片中硬件或软件的低实现成本和无需在从节点中使用石英或陶瓷谐振器。 LIN物理层 总线驱动/接收器的定义遵循ISO 9141单线标准,并带有一些增强性能。总线为单线传输,"与"总线通过终端电阻由电池正极节点(VBAT)提供。总线收发器采用增强型的ISO 9141实现标准。总线可以取两个互补的逻辑值:主控值其电压接近于接地端,代表逻辑值"0",退让值其电压与电池电压接近,代表逻辑值"1"。 总线采用上拉电阻作为终端,主节点的上拉电阻为1kOhm,从节点的上拉电阻为30kOhm。电阻需串联一个二极管以防止由于本地电源泄漏对总线产生的干扰。从节点的终端电容通常值为 CSlave= 220pF,主节点的电容要更高以使整个总线的电容小于从节点的值。 由于采用单线媒质传输,最大的传输波特率被限定在20kbit/s以内。该值为从满足信号同步而不产生冲突的最高值,到为满足电磁兼容性要求而要达到的传输最低值之间的实验中间值。最小的传输波特率为1kbit/s--这有助于避免在实际中产生超时冲突。 LIN协议 通过LIN总线传输的实体为帧。一个报文帧由帧头以及回应(数据)部分组成。在一个激活的LIN 网络中,通讯通常由主节点启动,主节点任务发送包含有同步间隙的报文头,同步字节以及报文标志符(ID)。一个从节点的任务通过接收并过滤标志符被激活,并启动回应报文的传送。回应中包含了1到8个字节的数据以及一个字节的校验码。 传输一帧所花费的总的时间是发送每个字节所用的时间,加上从节点的回应间隙,再加上传输每个字节的间隙时间(inter-byte space)。字节间隙是指发送完前一个字节的停止位后到发送下一个字节的启动位之间的时间。 LIN协议的核心特性是使用进度表(schedule table)。进度表有助于保证总线不出现过载的情况,他们同样是保证信号定期传输的核心组件。在一组LIN节点中只有主节点任务才可以启动通讯保证了行为的确定性。主节点有责任保证与操作模式相关的所有帧都必须分配了足够长的传输时间。 LIN信息是以报文的形式传送的。报文传输是由报文帧的格式形成和控制的。报文帧由主机任务向从机任务传送同步和标识符信息,并将一个从机任务的信息传送到所有其它从机任务。主机任务位于主机节点内部,它负责报文的进度表、发送报文头(HEADER)。从机任务位于所有的(即主机和从机)节点中,其中一个(主机节点或从机节点)发送报文的响应(RESPONSE)。 帧内部间隔(inter-frame space)是从上一帧发送完毕后到下一帧启动发送间的时间间隔。帧由帧间间隔以及接下来的4到11个字节域组成。 一个报文帧如图 1-2所示,是由一个主机节点发送的报文头和一个主机或从机节点发送的响应组成。报文帧的报文头包括一个同步间隔场(SYNCH BREAK

基于CAN_LIN总线的汽车通信网络设计

收稿日期:2004-11-17 作者简介:刘晓明(1963—),男,重庆人,教授,博士,主要从事计算机测控和信号处理方面的研究。 基于C AN /LIN 总线的汽车通信网络设计 刘晓明1,高青春1,熊 东2 (1.重庆大学通信工程学院,重庆400044; 2.重庆大学电气工程学院,重庆400044) 摘 要:随着人们对汽车各方面要求的不断提高,汽车上的电控系统数量越来越多,随之产生诸如电路复杂性增加、可靠性下降、生产成本增加等问题。为解决上述问题文中提出了一种基于CAN 总线和LIN 总线技术的现代汽车通信网络的低成本设计方案。设计中将CAN 总线技术用于高速的驱动系统中,将LIN 总线技术(其节点成本是CAN 的1/3~1/2)用于低速的车身系统中,在器件选型上采用了PHILIPS 和FREESCA LE 的典型汽车电子芯片,既实现了应有的网络控制功能,同时也降低了车辆电子系统的开发、生产和服务成本,具有较高的实用性。关键词:CAN 总线;L IN 总线;J1939;汽车通信网络 中图分类号:T P399 文献标识码:A 文章编号:1005-3751(2005)08-0078-03 Design of Communication Vehicle Network Based on CAN /LIN -bus LIU Xiao -ming 1,GAO Qing -chun 1,XIONG Dong 2 (https://www.wendangku.net/doc/131153855.html,munication Engineering College of Chong qing U niversity ,Chongqing 400044,China ; 2.Electrical Engineering Colleg e of Cho ngqing University ,Chongqing 400044,China ) Abstract :Now adays ,ECUs used in the autom obile are greatly increased because of the people 's increas ing demands for a higher quality automobile .Therefore it brings many problems ,s uch as the raising complexity of the electron circuit ,the decreasing dependability and the increasing cost of the product .Solving the problems mentioned above ,a new modern and low cost communication vehicle netw ork is de -signed based on CAN -bus and LIN -bus in this essay .In the des ign the CAN -bus is used in the high speed driving system ,w hile the LIN -bus (the cost is 1/3~1/2of the CAN -buses ')is used in the lower speed body con trol ling system of the automobil e ,and the chips used in the design choose the typical chips of PHILIPS and FREESCALE .The design not only can perform the control function ,but also can reduce the cost of the developmen t and p roduction of the product and the services as w el l .It is a practical des ign .Key words :CAN -bus ;LIN -bus ;J1939;communication vehicl e netw ork 0 引 言 20世纪90年代以来,随着人们对汽车动力性、舒适性、经济性要求的提高,汽车上的电控系统的数量越来越多,增加的ECU 及其通信设备使汽车电路复杂程度增加,相应地降低了汽车的可靠性。这就要求必须采用能够满足高速、多路的复用通信网络,以共享的方式传送多种控制信息。 目前汽车上普遍采用的汽车网络有:局部互联网络LIN (Local interconnect netw ork )、控制器局域网CAN (Controller area netw ork 或称现场控制总线)。正在发展中的汽车网络技术还有高速容错网络协议FlexRa y ,用于汽车多媒体和导航的MOS T ,以及与计算机网络兼容的蓝牙、无线局域网等无线网络技术。文中主要侧重于已得到 众多汽车制造商推崇的网络技术———CAN 总线和LIN 总线技术。 1 C AN 总线、LIN 总线简介及各自通信协议 1.1 C AN 总线及LIN 总线简介 CAN 网络属于总线式串行通信网络。其最高速率可达1M bps (40m ),以多种方式工作。与一般的通信总线相比,CAN 总线的数据通信具有突出的可靠性、实时性和灵活性,是目前使用最广泛的一种汽车网络[1]。 LIN 网络是一种低成本的串行通讯网络,用于实现汽车中的分布式电子系统控制。LIN 的目标是为现有汽车网络(例如CAN 总线)提供辅助功能。因此,LIN 总线是一种辅助的总线网络。在不需要CAN 总线的带宽和多功能的场合,比如智能传感器和制动装置之间的通讯使用LIN 总线可大大节省成本(为CAN 总线所需成本的1/3~1/2)。目前LIN 已经成为国际标准,被多数整车厂商和配件厂商所接受。 第15卷 第8期2005年8月 微 机 发 展Microcomputer Development V ol .15 N o .8Aug .2005

LIN总线协议

编辑词条 LIN总线 什么是LIN? LIN(Local Interconnect Network)是一种低成本的串行通讯网络用于实现汽车中的分 布式电子系统控制LIN 的目标是为现有汽车网络(例如CAN 总线)提供辅助功能因此LIN 总线是一种辅助的总线网络在不需要CAN 总线的带宽和多功能的场合比如智能传感器和 制动装置之间的通讯使用LIN 总线可大大节省成本LIN 技术规范中除定义了基本协议和物理层外还定义了开发工具和应用软件接口 LIN 通讯是基于SCI(UART)数据格式采用单主控制器/多从设备的模式仅使用一根12V 信 号总线和一个无固定时间基准的节点同步时钟线 这种低成本的串行通讯模式和相应的开发环境已经由LIN 协会制定成标准LIN 的标准 化将为汽车制造商以及供应商在研发应用操作系统降低成本。 LIN 的主要特性是什么 低成本基于通用UART 接口几乎所有微控制器都具备LIN 必需的硬件

极少的信号线即可实现国际标准ISO9141 规定 传输速率最高可达20Kbit/s 单主控器/多从设备模式无需仲裁机制 从节点不需晶振或陶瓷震荡器就能实现自同步节省了从设备的硬件成本 保证信号传输的延迟时间 不需要改变LIN 从节点的硬件和软件就可以在网络上增加节点 通常一个LIN 网络上节点数目小于12 个共有6 4 个标志符 LIN 的通讯规则是什么 一个LIN 网络由一个主节点一个或多个从节点组成所有节点都有一个从通讯任务 该通讯任务分为发送任务和接收任务主节点还有一个主发送任务 一个LIN 网络上的通讯总是由主发送任务所发起的主控制器发送一个起始报文该起 始报文由同步断点同步字节消息标志符所组成相应的在接受并且滤除消息标志符后, 一个从任务被激活并且开始本消息的应答传输该应答由2/4/8 个数据字节和一个校验码所 组成起始报文和应答部分构成一个完整的报文帧

3分钟了解汽车三大总线CAN,LIN,Flexray

3分钟了解汽车三大总线CAN,LIN,Flexray 摘要:随着新能源汽车列入国家加快培育和发展的七大战略性新兴产业,汽车的智能化、数字网络化、节能化成了汽车发展的大方向。汽车总线是实现数字网络化的基础,本文将和大家聊聊当今汽车三大总线,CAN、LIN、Flexray。 今天,社会进入了信息网络时代,人们希望汽车不仅仅是一种代步工具,更希望在汽车是生活及工作范围的一种延伸,在汽车上就像呆在自己的办公室和家里一样,可以打电话、上网、娱乐、工作。 功能的增多也使得汽车上的电子装置数量急剧增加,各种汽车总线也应运而生。我们最熟悉的汽车总线是CAN,对于LIN和Flexray大家或许还有点陌生。那么接下来,就为大家介绍一下这三种汽车总线。 一、汽车总线的诞生 汽车总线的诞生离不开汽车电子的发展。汽车电子化的程度也被看作是衡量现代汽车水平的重要标志。传统的汽车电子大多采用点对点的单一通信方式,相互之间少有联系,这样必然会形成庞大的布线系统。据统计,一辆采用传统布线方法的高档汽车中,其导线长度可达2000米,电气节点可达1500个,而且该数字大约每10年就将增加1倍。 这进一步加剧了粗大的线束与汽车上有限的可用空间之间的矛盾。无论从材料成本还是工作效率看,传统布线方法都不能适应现代汽车的发展。另外,为了满足各电子系统的实时性要求,须对汽车公共数据(如发动机转速、车轮转速、节气门踏板位置等信息)实行共享,而每个控制单元对实时性的要求又各不相同。因此,传统的电气网络已无法适应现代汽车电子系统的发展,于是新型汽车总线技术便应运而生。

二、CAN总线 CAN总线又称作汽车总线,全称为“控制器局域网(Controller Area Network)”,是一种能有效支持分布式控制和实时控制的串行通讯网络。它将各个单一的控制单元以某种形式(多为星形)连接起来,形成一个完整的系统。 CAN总线最早是德国Bosch公司为解决现代汽车中众多的电控模块(ECU)之间的数据交换而开发的一种串行通讯协议。现今在汽车电子系统中已得到广泛应用,成为欧洲汽车制造业的主体行业标准,代表着汽车电子控制网络的主流发展趋势。 世界上很多著名的汽车制造厂商,如Volkswagen(大众)、Benz(奔驰)、BMW(宝马)、Porsche(保时捷)、Rolls.Royce(劳斯莱斯)等公司都已经采用CAN总线来实现汽车内部控制系统的数据通信。 三、LIN总线 LIN是由摩托罗拉(Motorola)与奥迪(Audi)等知名企业联手推出的一种新型低成本的开放式串行通讯协议,主要用于车内分布式电控系统,尤其是面向智能传感器或执行器的数字化通讯场合。主要应用于电动门窗、座椅调节、灯光照明等控制。 典型的LIN网络的节点数可以达到12个。以门窗控制为例,在车门上有门锁、车窗玻璃开关、车窗升降电机、操作按钮等,只需要1个LIN网络就可以把它们连为一体。而通过CAN网关,LIN网络还可以和汽车其他系统进行信息交换,实现更丰富的功能。目前LIN已经成为国际标准,被大多数汽车制造商和零部件生产商所接受。

LIN总线常识

.LIN总线常识 LIN(Local Interconnect Network)是一种低成本的串行通讯网络用于实现汽车中的分布式电子系统控制LIN 的目标是为现有汽车网络(例如CAN 总线)提供辅助功能因此LIN总线是一种辅助的总线网络在不需要CAN 总线的带宽和多功能的场合比如智能传感器和制动装置之间的通讯使用LIN 总线可大大节省成本LIN 技术规范中除定义了基本协议和物理层外还定义了开发工具和应用软件接口LIN 通讯是基于SCI(UART)数据格式采用单主控制器/多从设备的模式仅使用一根12V 信号总线和一个无固定时间基准的节点同步时钟线这种低成本的串行通讯模式和相应的开发环境已经由LIN 协会制定成标准LIN 的标准化将为汽车制造商以及供应商在研发应用操作系统降低成本。LIN 的主要特性是什么 1) 低成本基于通用UART 接口几乎所有微控制器都具备LIN 必需的硬件 2) 极少的信号线即可实现国际标准ISO9141 规定 3) 传输速率最高可达20Kbit/s 4) 单主控器/多从设备模式无需仲裁机制 5) 从节点不需晶振或陶瓷震荡器就能实现自同步节省了从设备的硬件成本 6) 保证信号传输的延迟时间 7) 不需要改变LIN 从节点的硬件和软件就可以在网络上增加节点 8) 通常一个LIN 网络上节点数目小于12 个共有64 个标志符 LIN 的通讯规则是什么 一个LIN 网络由一个主节点一个或多个从节点组成所有节点都有一个从通讯任务该通讯任务分为发送任务和接收任务主节点还有一个主发送任务 一个LIN 网络上的通讯总是由主发送任务所发起的主控制器发送一个起始报文该起始报文由同步断点同步字节消息标志符所组成相应的在接受并且滤除消息标志符后,一个从任务被激活并且开始本消息的应答传输该应答由2/4/8 个数据字节和一个校验码所组成起始报文和应答部分构成一个完整的报文帧怎样正确组成LIN 报文帧由报文标志符指示该报文的组成这种通讯规则可以用多种方式来交换数据由主节点到一个或多个从节点由一个从节点到主节点或其他的从节点通讯信号可以在从节点之间传播而不经过主节点或者主节点广播消息到网络中的所有节点报文帧的时序由主控制器控制 LIN 可用来实现什么样的应用 典型的LIN 总线应用是汽车中的联合装配单元如门方向盘座椅空调照明灯湿度传感器交流发电机等对于这些成本比较敏感的单元LIN 可以使那些机械元件如智能传感器制动器或光敏器件得到较广泛的使用这些元件可以很容易的连接到汽车网络中并得到十分方便的维护和服务在LIN 实现的系统中通常将模拟信号量用数字信号量所替换这将使总线性能优化 尽管LIN 最初的设计目的是用于汽车电子控制系统但LIN 也可广泛应用于工业自动化传感器总线大众消费电子产品中

高速CAN、容错CAN、LIN总线的区别

在这里你可能要问“不都有CAN总线了吗?这个LIN总线又是从哪里来的?”其实理由很简单,就是CAN总线太贵啦!处处都用CAN总线的话,那整车的总线架构成本将会变得很高!在一些比如车身电子配件的地方(如车窗、后视镜、大灯、车锁等),我们不需要报文像CAN总线上传输的那样“高速”!各大厂商一拍脑门就研究了这个LIN总线! 有了CAN为什么还会有LIN,CAN和LIN的区别,LIN的优势在哪?1. 什么是LIN总线? LIN(Local Interconnect Network)总线是基于UART/SCI(通用异步收发器/串行接口)的低成本串行通讯协议。其目标定位于车身网络模块节点间的低端通信,主要用于智能传感器和执行器的串行通信,而这正是CAN总线的带宽和功能所不要求的部分。 2. CAN/LIN总线区别 由于LIN网络在汽车中一般不独立存在,通常会与上层CAN网络相连,形成CAN-LIN网关节点。

2.1.LIN总线的主从关系 LIN总线采用的是单线传输形式,应用了单主机多从机(有无主动上报的支持?)的概念,总线电平一般为12V,传输速率最高限制为20kbps。由于物理层的限制,一个LIN网络最多可以连接16个节点。 总线任务负责: 1.调度总线上帧的传输次序 2.监测数据,处理错误 3.作为标准时钟参考(不是异步通信?) 4.接收从机节点发出的总线唤醒命令 从机任务不能直接向总线发送数据,需要接受到主节点发送的帧头后,根据帧头所包含的信息来判断: 1.发送应答 2.接收应答 3.既不接收也不应答 LIN的特点 1.网络由一个主节点与若干个从节点构成 2.使用LIN总线可以大幅度削减成本(CAN和Lin都需要收发器,但是Lin属于 单线制在线束上节省) 3.传输具有确定性,传播时间可以提前计算

LIN总线和CAN总线

局域互联网络(LIN)标准是针对汽车分布式电子系统而定义的一种低成本的串行通讯网络,是对控制器区域网络(CAN)等其它汽车多路网络的一种补充,适用于对网络的带宽、性能或容错功能没有过高要求的应用。 解决方案1: CAN线是汽车数据总线是控制器局域网线用于控制单元和控制饭预案之间数据传输双线模式有高位线和低位线之分特点传输速率高抗干扰能力强根据用途分为有舒适性CAN线驱动CAN线诊断CAN线和仪表CAN线 LIN线是一种低成本串行通信网络线单线模式应用于不需要高速传输的汽车网络比如汽车门窗天窗雨刮等是为了减少成本代替CAN线用的属于辅助的数据传输线查看更多答案>> 解决方案2: 是上止线和下止线的意思。加注液体时在两线之间就可以了。是起点和终点。 是上止线和下止线的意思。加注液体时在两线之间就可以了。是起点和终点。 区别: 1.信号线及信号 CAN总线以CAN一High和CAN一历w两条信号线 (双绞线)工作,舒适CAN总线两条线的电平分别约为OV和5V(隐性时)。 LIN总线只以一条相当于CAN一忱如的信号线工作,隐性时电平接近电瓶电压,并随之浮动;显性时电平接近地电平。使用0·35mmz导线,颜色为紫底白线。 2·组件 CAN总线工作时,电子单元中除了需要相对复杂的收发器外,"通常还需要用专门的协议控制器。LIN总线单元中的收发器较简单,而且由于协议简单,通常不需要专门的协议控制器。 3·传输速率 CAN总线的位速率较高,在汽车中使用时通常为5OOkb/s,最低的也达到1OOkb/s。 LIN总线的最高位速率为2Okb/s,通常使用1920Ob/s或9600b/s的速率。 4·系统结构 CAN总线为多主机系统,即接人总线的任一电子单元都可通过总线仲裁来获取总线控制权,并向总线系统中发送信息,单元在发出完整的ID时即为主机。CAN总线使用11位 ID(甚至更多),在一个子系统中可有较多的单元。 LIN总线为单主机多从机系统,每一子系统中有且只有一个主机,所有的信息传送都由主机控制,从机必须等待主机发出了与它对应的ID后才能发送信息。LIN总线使用6位 ID,在一个子系统中只能有较少的单元。

相关文档