文档库 最新最全的文档下载
当前位置:文档库 › 中子资料

中子资料

中子资料
中子资料

?快中子能量高于1电子伏特、0.1兆电子伏特或者接近1兆电子伏特,有不同的定义。

?慢中子能量小于等于0.4电子伏特。

?超热中子能量在1电子伏特至10电子伏特之间。

?高热中子能量约0.2电子伏特。

?热中子能量约0.025电子伏特。

?冷中子能量约5x10?5电子伏特至0.025电子伏特。

?甚冷中子能量约3x10?7电子伏特至5x10?5电子伏特。

?极冷中子能量小于3x10?7电子伏特。

?连续区间中子能量从0.01兆电子伏特至25兆电子伏特。

?共振区间中子能量从1电子伏特至0.01兆电子伏特。

?低能区间中子能量低于1电子伏特。

[编辑]快中子

此处介绍的快中子的动能接近1兆电子伏特(100TJ/kg),速度接近14000千米/秒。将它们命名为快中子可以将其区别于于低能的热中子、以及通常在宇宙射线或者加速器中产生的高能中子。快中子通常有由核反应例如核裂变产生。

核聚变反应中产生的中子通常的能量都远大于1兆电子伏特,例如,氘氚核聚变的中子能量达到14.1兆电子伏特(1400 TJ/kg,速度约52000千米/秒,达到了光速的17.3%)。这样高能量的中子可以很容易使得铀-238与其他超铀元素发生裂变。

快中子可以通过中子慢化过程转变为热中子。中子慢化主要依靠减速剂。在核反应堆中,通常使用重水、轻水、或石墨来使中子减速。

热中子是动能约为0.025电子伏特(大约4.0×10?21焦,2.4MJ/kg,速度约2.2千米/秒)的自由中子。这个速度也是对应于290K(摄氏17度)时麦克斯韦-玻尔兹曼分布下的最可能速度。

最可能能量和最可能速度对应的能量、平均能量是不同的。最可能能量是最可能速度对应的能量的一般,而平均能量比最可能速度对应的能量大50%。

在中子与常温下减速介质的原子核发生若干次碰撞后,如果中子还没有被俘获,它们就会达到这个能量。热中子通常有比快中子大得多的有效中子俘获截面,也因此会更容易被原子核吸收,形成更重的、通常也不稳定的同位素。这个现象也被称为中子活化。

https://www.wendangku.net/doc/1311651582.html,/wiki/%E4%B8%AD%E5%AD%90%E6%B8%A9%E5%BA%A6

Moderated and other, non-thermal neutron energy distributions or ranges are listed in the table below:

?Fast neutrons have an energy greater than 1 eV, 0.1 MeV or approximately 1 MeV, depending on the definition.

?Slow neutrons have an energy less than or equal 0.4 eV.

?Epithermal neutrons have an energy from 1 eV to 10 keV.

?Hot neutrons have an energy of about 0.2 eV.

?Thermal neutrons have an energy of about 0.025 eV.[1]

?Cold neutrons have an energy from 5x10?5 eV to 0.025 eV.

?Very cold neutrons have an energy from 3x10?7 eV to 5x10?5 eV.

?Ultra cold neutrons have an energy less than 3x10?7 eV.

?Continuum region neutrons have an energy from 0.01 MeV to 25 MeV.

?Resonance region neutrons have an energy from 1 eV to 0.01 MeV.

?Low energy region neutrons have an energy less than 1 eV.

[edit]Fast neutrons

A fast neutron is a free neutron with a kinetic energy level close to 1 MeV (100 TJ/kg), hence a speed of 14,000 km/s. They are named fast neutrons to distinguish them from lower-energy thermal neutrons, and high-energy neutrons produced in cosmic showers or accelerators. Fast neutrons are produced by nuclear processes such as nuclear fission.

Neutrons from fusion reactions are usually considerably more energetic than 1 MeV; the extreme case is deuterium-tritium fusion which produces 14.1 MeV neutrons (1400 TJ/kg, moving at 52,000 km/s, 17.3% of the speed of light) that can easily fission uranium-238 and other non-fissile actinides.

Fast neutrons can be made into thermal neutrons via a process called moderation. This is done with a neutron moderator. In reactors, typically heavy water, light water, or graphite are used to moderate neutrons.

A thermal neutron is a free neutron with a kinetic energy of about 0.025 eV (approx.

4.0×10?21J; 2.4 MJ/kg, hence a speed of 2.2 km/s) which is the energy corresponding to the most probable velocity at a temperature of 290 K (17°C or 62°F), the mode of

the Maxwell–Boltzmann distribution for this temperature.

After a number of collisions with nuclei (scattering) in a medium (neutron moderator) at this temperature, neutrons arrive at about this energy level, provided that they are not absorbed.

Thermal neutrons have a different and often much larger effective neutron

absorption cross-section for a given nuclide than fast neutrons, and can therefore often be

absorbed more easily by an atomic nucleus, creating a heavier - and

often unstable - isotope of the chemical element as a result (neutron activation). https://www.wendangku.net/doc/1311651582.html,/wiki/Neutron_temperature

中子—核作用截面的实验测量

中子—核作用截面的实验测量 一、核数据库 1.1核数据库介绍 核数据是不可缺少的重要科学数据,在基础科研、国防建设、国民经济的很多方面发挥着越来越重要的作用。目前国际上许多核国家都十分重视核数据的测量和评价工作。经过几十年的艰苦努力,相继建立起并不断完善的核数据库。 核数据库可以分为两大类,一类是核与其他核或射线发生相互作用的数据,称作核反应数据;第二类是单个核的性质的数据,称作核结构和放射性衰变数据。对于中子核数据是核反应数据的一部分,此外光核反应数据、带电粒子反应数据都是核反应数据。 1.2核数据库应用领域 早期核数据的运用主要在核反应装置的应用方面。随着科技的发展,对核数据运用领域也在不断扩大,于此同时对核数据的全面以及精度要求越来越高。目前其运用的领域主要有: (1)裂变、聚变反应堆设计; (2)加速器设计; (3)辐射防护设计; (4)核医学; (5)地质探测; (6)环境监测; (7)核天体研究等等。 对于反应堆设计而言,可以通过中子评价核数据来对设计的反应堆的某些参数进行模拟计算,如有效增值系数、相对功率分布等量,通过最终的模拟计算结果来衡量设计的合适与否,在此基础上进行一定的优化,最终实现各方面综合最优化。

1.3核数据获取方法 核数据获取方法主要有两种:实验测量法和理论计算法。实验法是目前核数据的主要来源,通过实验测量具有一定的客观性,但是实验测量方法存在各种问题:(1)核数据数据量大,实验工作量大;(2)实验费用过高;(3)有许多实验要求苛刻无法完成。因为实验方法存在一定的问题,所以主要的数据由实验来完成,次要的由理论计算完成。现如今计算机的发展已经可以满足一些模拟计算的需求,通过计算机可以省时、经济的完成一些数据的获取。 两种方法之间,实验为主,理论计算为辅。实验方法离不开理论计算,理论计算可以填补一些目前实验存在的空白,还可以指导实验数据的选取和评价。对模拟计算方法而言,其输入的数据必须是已经成熟的核数据,而这些数据来源于实验的测量,所以两者缺一不可。 1.4评价核数据库 1.4.1评价数据库介绍 实验测量与模拟计算都需要借助于已有的核数据,而这些已有的数据之间存在着一定的差别,如何更好的集中统一以及正确利用这些数据,则形成了评价核数据库。 核数据库就是由核物理专家通过大量的编纂(收集、整理、鉴定、理论处理等)和评价(分析、比较、鉴定和理论处理等)工作,甚至还需要通过一系列的积分实验与理论计算得到的结果进行比较来检验这些数据的可靠性、自洽性与精确性,最后得到全套的数据存入库中以方便用户使用。 1.4.2国际几大核数据中心 自上世纪60年代以来,国际上先处理的4个核数据中心,并建立和发展了各自的评价评价数据库,这四个分别是:国际原子能机构的核数据科(IAEA-NDS)、美国国家核数据中心(NNDC)、欧共体核能数据中心(OECD)、俄罗斯核数据中心(CJD)。继而,日、德、中国等国相继建立了自己的评价数据库。

x射线衍射电子衍射中子衍射

物质结构的解析,准确说是晶体的结构解析,不可避免需要使用X 射线衍射(XRD),中子衍射或电子衍射三种技术当中的一种。三者各有优缺点,面对具体问题,一般只有一种技术是最有说服力的最佳选择,但是具体什么样的问题使用哪一种技术最有说服力?很多结构分析的朋友认识的不透彻,我经常看见有些人使用不是很有说服力的技术去尝试解决实际问题而闹出笑话而自己不自知:比如声称使用XRD 精确确定氧、炭或氢的原子位置;比如认为中子衍射得到的晶格常数最可信;又比如以为选区电子衍射(TEM-SAD)的标定能精确得到晶格常数信息,等等。所以这里笔者在这里抛砖引玉式的尝试探讨:哪一种衍射技术对于什么样的解结构问题最有说服力?为什么?在对这些问题展开讨论之后,小结在最后将会被给出。希望大家在我的话题后面踊跃发表不同观点,如果我有什么疏漏、错误之处,还望不吝指教,笔者这里先多谢了! 首先来谈谈X-射线、中子、和电子衍射的源-- X-ray,中子和电子的同和异。最为突出的相同点,搞晶体结构分析的人都非常清楚,即他们都具有波动性,满足基本的波动规律--布拉格公式(Bragg Law):2d*sinθ=nλ(n 是自然数)。前面已经明确本文的动机,所以这里着重分析它们的差异。 i)表观上的差异,X-ray 是光子(电磁波)、不带电没有磁性,电子带负电,中子不带电、质量较大而且具有磁性,这些是显而易见的常识,不多说。 ii)本质上的差异,参考图1所示:X 射线是电磁波,没有静止质量,均匀介质中速度不变,波动行为在时空上的dispersion 呈现简单的线性关系;而电子、中子是物质波,具有质量,均匀介质中运动速度可以变化,时空上的dispersion 呈现平方项。正是这样的本质差别导致波长(动量)与频率(能量)之间的关系在电磁波(这里是X-ray)和物质波(这里是电子、中子)之间的截然不同。当然,物质波在运动速度接近光速的时候其dispersion 会发生本质的转变,转变点如图1所示,不过这样的情况在实际的结构分析中碰不到,所以不用担心电子/中子在和光子的dispersion 完全一致时的异常,反正迄今还没有见过这样的实验。 图1 电子、X-ray 和中子的时空dispersion 对照图(本人制作

核反应堆

核反应堆物理分析 第一章核反应堆的核物理基础 1、反应堆:能够实现可控、自续链式核反应的装置。 2、反应堆物理:研究反应堆内中子行为的科学。有时称neutronics。或:研究、设计反应堆使得裂变反 应所产生的中子与俘获反应及泄露所损失的中子相平衡。 3、在反应堆物理中,除非对于能量非常低的中子,都将中子视为粒子,不考虑其波动性及中子的不稳定性。 4、反应堆内,按中子与原子核的相互作用方式可分为三大类:势散射、直接相互作用和复合核的形成; 按中子与原子核的相互作用可分为两大类:散射和吸收。 5、σ :微观截面表示平均一个入射中子与一个靶核发生相互作用的几率大小的一种量度, 6、宏观截面:表征一个中子与单位体积内所有原子核发生核反应的平均概率;表征一个中子在介质中穿行 单位距离与核发生反应的概率。单位:1/m 7、平均自由程λ: 中子在介质中运动时,与原子核连续两次相互作用之间穿行的平均距离。或:平均每 飞行λ距离发生一次碰撞。λ= 1/ 8、核反应率:单位时间、单位体积内的中子与介质原子核发生作用的总次数(统计平均值)。

9、中子通量密度:表示1立方米内所有的中子在1秒钟内穿行距离的总和。 10、中子能谱分布:在核反应堆内,中子并不具有同一速度v或能量E,中子数关于能量E的分布称为中子 能谱分布。 11、平均截面(等效截面): 12、截面随中子能量的变化: 一、微观吸收截面: ①低能区(E<1eV)::中、重核在低能区有共振吸收现象 ②高能区(1eV

中子平均自由程与宏观截面的关系

宏观截面和平均自由程 宏观截面和平均自由程以一定速度在大块媒质中运动的中子,不断地同周围的原子核(称为靶核)发生碰撞,发生散射或吸收两类中子核反应。散射时,中子本身并不消失,只是能量发生变化,以新的速度继续在媒质中运动。吸收时,中子被原子核俘获,从而在媒质中消失。原子吸收中子以后将发出γ射线、发出次级粒子或发生原子核裂变,核裂变将产生新的中子。这些核反应的发生几率用各种反应截面(微观截面,见核反应截面)描述,截面大,表示产生核反应的几率大。不同能量的中子,与原子核产生各种反应的截面也不同。为了便于表述中子同宏观物质的作用,引入宏观反应截面这一物理量,用符号表示。它是靶核的微观截面和单位体积内的靶核数的乘积=。与微观截面不同,宏观截面的量纲是【L】。宏观截面是一个中子同单位体积内的原子核发生核反应的平均几率大小的量度,它等于中子在媒质内飞行单位距离时发生某种核反应的几率。宏观总截面用表示,中子在连续两次碰撞之间的平均飞行距离称为平均自由程,用符号表示。显然,在一个平均自由程之内发生某种碰撞的平均数为1。参照宏观截面的定义,容易得出=1,即平均自由程等于宏观截面的倒数。 相应的有散射平均自由程 ,吸收平均自由程

。中子在媒质中的各种运动规律(无论空间时间变量的,还是能量变量的)都同宏观截面或平均自由程有关,宏观截面或平均自由程是描述物质中子物理特性的最基本的物理量。 宏观参量及其实验研究无论是核裂变,还是其他核反应产生的中子,一般能量都在兆电子伏量级,这些快中子在大块媒质中不断通过散射损失能量,直到和媒质中靶核的能量交换处于平衡状态为止。散射可分为弹性散射和非弹性散射两种。发生弹性散射时,中子和靶核间只有动能交换,是一种弹性球式碰撞,靶核内能不发生变化。发生非弹性散射时,靶核内能发生变化。非弹性散射是一种阈反应,只有入射中子的能量超过某一数值时才能发生。一般说,轻核非弹性散射阈值高,重核的阈值低。研究中子在大块媒质中损失能量的规律对核反应堆的物理设计十分重要。在快中子反应堆内,中子的平均能量为100keV左右,裂变中子(平均能量约为2MeV)主要通过非弹性散射损失能量。热中子反应堆内中子的平均能量只有0.01eV左右,裂变中子主要通过弹性散射损失能量。中子这种损失能量而不断减速的过程称为慢化过程。中子从某一能量慢化到热能,在媒质中穿行的平行距离用中子年龄来描述。对一个在无限大无吸收的媒质内的单能点中子源,定义中子年龄为中子在被慢化前穿行的直线距离的均方值的1/6,即

中子资料

?快中子能量高于1电子伏特、0.1兆电子伏特或者接近1兆电子伏特,有不同的定义。 ?慢中子能量小于等于0.4电子伏特。 ?超热中子能量在1电子伏特至10电子伏特之间。 ?高热中子能量约0.2电子伏特。 ?热中子能量约0.025电子伏特。 ?冷中子能量约5x10?5电子伏特至0.025电子伏特。 ?甚冷中子能量约3x10?7电子伏特至5x10?5电子伏特。 ?极冷中子能量小于3x10?7电子伏特。 ?连续区间中子能量从0.01兆电子伏特至25兆电子伏特。 ?共振区间中子能量从1电子伏特至0.01兆电子伏特。 ?低能区间中子能量低于1电子伏特。 [编辑]快中子 此处介绍的快中子的动能接近1兆电子伏特(100TJ/kg),速度接近14000千米/秒。将它们命名为快中子可以将其区别于于低能的热中子、以及通常在宇宙射线或者加速器中产生的高能中子。快中子通常有由核反应例如核裂变产生。 核聚变反应中产生的中子通常的能量都远大于1兆电子伏特,例如,氘氚核聚变的中子能量达到14.1兆电子伏特(1400 TJ/kg,速度约52000千米/秒,达到了光速的17.3%)。这样高能量的中子可以很容易使得铀-238与其他超铀元素发生裂变。 快中子可以通过中子慢化过程转变为热中子。中子慢化主要依靠减速剂。在核反应堆中,通常使用重水、轻水、或石墨来使中子减速。 热中子是动能约为0.025电子伏特(大约4.0×10?21焦,2.4MJ/kg,速度约2.2千米/秒)的自由中子。这个速度也是对应于290K(摄氏17度)时麦克斯韦-玻尔兹曼分布下的最可能速度。 最可能能量和最可能速度对应的能量、平均能量是不同的。最可能能量是最可能速度对应的能量的一般,而平均能量比最可能速度对应的能量大50%。 在中子与常温下减速介质的原子核发生若干次碰撞后,如果中子还没有被俘获,它们就会达到这个能量。热中子通常有比快中子大得多的有效中子俘获截面,也因此会更容易被原子核吸收,形成更重的、通常也不稳定的同位素。这个现象也被称为中子活化。 https://www.wendangku.net/doc/1311651582.html,/wiki/%E4%B8%AD%E5%AD%90%E6%B8%A9%E5%BA%A6

反应堆原理

核反应堆是核电站的心脏,它的工作原理是这样的: 原子由原子核与核外电子组成。原子核由质子与中子组成。当铀235的原子核受到外来中子轰击时,一个原子核会吸收一个中子分裂成两个质量较小的原子核,同时放出2—3个中子。这裂变产生的中子又去轰击另外的铀235原子核,引起新的裂变。如此持续进行就是裂变的链式反应。链式反应产生大量热能。用循环水(或其他物质)带走热量才能避免反应堆因过热烧毁。导出的热量可以使水变成水蒸气,推动气轮机发电。由此可知,核反应堆最基本的组成是裂变原子核+热载体。但是只有这两项是不能工作的。因为,高速中子会大量飞散,这就需要使中子减速增加与原子核碰撞的机会;核反应堆要依人的意愿决定工作状态,这就要有控制设施;铀及裂变产物都有强放射性,会对人造成伤害,因此必须有可靠的防护措施。综上所述,核反应堆的合理结构应该是:核燃料+慢化剂+热载体+控制设施+防护装置。 还需要说明的是,铀矿石不能直接做核燃料。铀矿石要经过精选、碾碎、酸浸、浓缩等程序,制成有一定铀含量、一定几何形状的铀棒才能参与反应堆工作。 热堆的概念:中子打入铀-235的原于核以后,原子核就变得不稳定,会分裂成两个较小质量的新原子核,这是核的裂变反应,放出的能量叫裂变能;产生巨大能量的同时,还会放出2~3个中子和其它射线。这些中子再打入别的铀-235核,引起新的核裂变,新的裂变又产生新的中子和裂变能,如此不断持续下去,就形成了链式反应利用原子核反应原理建造的反应堆需将裂变时释放出的中子减速后,再引起新的核裂变,由于中子的运动速度与分子的热运动达到平衡状态,这种中子被称为热中子。堆内主要由热中子引起裂变的反应堆叫做热中子反应堆(简称热堆)。热中子反应堆,它是用慢化剂把快中子速度降低,使之成为热中子(或称慢中子),再利用热中子来进行链式反应的一种装置。由于热中子更容易引起铀-235等裂变,这样,用少量裂变物质就可获得链式裂变反应。慢化剂是一些含轻元素而又吸收中子少的物质,如重水、铍、石墨、水等。热中子堆一般都是把燃料元件有规则地排列在慢化剂中,组成堆芯。链式反应就是在堆芯中进行的。反应堆必须用冷却剂把裂变能带出堆芯。冷却剂也是吸收中子很少的物质。热中子堆最常用的冷却剂是轻水(普通水)、重水、二氧化碳和氦气。核电站的内部它通常由一回路系统和二回路系统组成。反应堆是核电站的核心。反应堆工作时放出的热能,由一回路系统的冷却剂带出,用以产生蒸汽。因此,整个一回路系统被称为“核供汽系统”,它相当于火电厂的锅炉系统。为了确保安全,整个一回路系统装在一个被称为安全壳的密闭厂房内,这样,无论在正常运行或发生事故时都不会影响安全。由蒸汽驱动汽轮发电机组进行发电的二回路系统,与火电厂的汽轮发电机系统基本相同。 轻水堆――压水堆电站自从核电站问世以来,在工业上成熟的发电堆主要有以下三种:轻水堆、重水堆和石墨汽冷堆。它们相应地被用到三种不同的核电站中,形成了现代核发电的主体。目前,热中子堆中的大多数是用轻水慢化和冷却的所谓轻水堆。轻水堆又分为压水堆和沸水堆。压水堆核电站压水堆核电站的一回路系统与二回路系统完全隔开,它是一个密闭的循环系统。该核电站的原理流程为:主泵将高压冷却剂送入反应堆,一般冷却剂保持在120~160个大气压。在高压情况下,冷却剂的温度即使300℃多也不会汽化。冷却剂把核燃料放出的热能带出反应堆,并进入蒸汽发生器,通过数以千计的传热管,把热量传给管外的二回路水,使水沸腾产生蒸汽;冷却剂流经蒸汽发生器后,再由主泵送入反应堆,这样来回循环,不断地把反应堆中的热量带出并转换产生蒸汽。从蒸汽发生器出来的高温高压蒸汽,推动汽轮发电机组发电。做过功的废汽在冷凝器中凝结成水,再由凝结给水泵送入加热器,重新加热后送回蒸汽发生器。这就是二回路循环系统。压水堆由压力容器和堆芯两部分组成。压力容器是一个密 封的、又厚又重的、高达数十米的圆筒形大钢壳,所用的钢材耐高温高压、耐腐蚀,用来推

《核反应堆物理分析》名词解释及重要概念整理

第一章—核反应堆的核物理基础 直接相互作用:入射中子直接与靶核内的某个核子碰撞,使其从核里发射出来,而中子却留在了靶核内的核反应。 中子的散射:散射是使中于慢化(即使中子的动能减小)的主要核反应过程。 非弹性散射:中子首先被靶核吸收而形成处于激发态的复合核,然后靶核通过放出中子并发射γ射线而返回基态。 弹性散射:分为共振弹性散射和势散射。 111001 100[]A A A Z Z Z A A Z Z X n X X n X n X n +*+→→++→+ 微观截面:一个粒子入射到单位面积内只含一个靶核的靶子上所发生的反应概率,或表示一个入射粒子同单位面积靶上一个靶核发生反应的概率。 宏观截面:表征一个中子与单位体积内原子核发生核反应的平均概率大小的一种度量。也是一个中子穿行单位距离与核发生相互作用的概率大小的一种度量。 平均自由程:中子在介质中运动时,与原子核连续两次相互作用之间穿行的平均距离叫作平均自由程。 核反应率:每秒每单位体积内的中子与介质原子核发生作用的总次数(统计平均值)。 中子通量密度:某点处中子密度与相应的中子速度的乘积,表示单位体积内所有中子在单位时间内穿行距离的总和。 多普勒效应:由于靶核的热运动随温度的增加而增加,所以这时共振峰的宽度将随着温度的上升而增加,同时峰值也逐渐减小,这种现象称为多普勒效应或多普勒展宽。 瞬发中子和缓发中子:裂变中,99%以上的中子是在裂变的瞬间(约10-14s)发射出来的,把这些中子叫瞬发中子;裂变中子中,还有小于1%的中子是在裂变碎片衰变过程中发射出来的,把这些中子叫缓发中子。 第二章—中子慢化和慢化能谱 慢化时间:裂变中子能量由裂变能慢化到热能所需要的平均时间。 扩散时间:无限介质内热中子在自产生至被俘获以前所经过的平均时间。 平均寿命:在反应堆动力学计算中往往需要用到快中子自裂变产生到慢化成为热中子,直至最后被俘获的平均时间,称为中子的平均寿命。 慢化密度:在r 处每秒每单位体积内慢化到能量E 以下的中子数。 分界能或缝合能:通常把某个分界能量E c 以下的中子称为热中子,E c 称为分界能或缝合能。 第三章—中子扩散理论 中子角密度:在r 处单位体积内和能量为E 的单位能量间隔内,运动方向为Ω的单位立体角内的中子数目。 慢化长度:中子从慢化成为热中子处到被吸收为止在介质中运动所穿行的直线距离。 徙动长度:快中子从源点产生到变为热中子而被吸收时所穿行的直线距离为r M 。 第四章—均匀反应堆的临界理论 反射层的作用: 1. 减少芯部中子泄漏,从而使得芯部的临界尺寸要比无反射层时的小,节省一部分燃料;

中子衍射,X射线衍射和电子衍射

https://www.wendangku.net/doc/1311651582.html,/f?kz=253882462 哪一种衍射技术对于什么样的解结构问题最有说服力?为什么?在对这些问题展开讨论之后,小结在最后将会被给出。 首先来谈谈X-射线、中子、和电子衍射的源-- X-ray,中子和电子的同和异。最为突出的相同点,搞晶体结构分析的人都非常清楚,即他们都具有波动性,满足基本的波动规律--布拉格公式(Bragg Law):2d*sinθ=nλ(n是自然数)。前面已经明确本文的动机,所以这里着重分析它们的差异。 i)表观上的差异,X-ray是光子(电磁波)、不带电没有磁性,电子带负电,中子不带电、质量较大而且具有磁性,这些是显而易见的常识,不多说。 ii)本质上的差异,参考图1所示:X射线是电磁波,没有静止质量,均匀介质中速度不变,波动行为在时空上的dispersion呈现简单的线性关系;而电子、中子是物质波,具有质量,均匀介质中运动速度可以变化,时空上的dispersion呈现平方项。正是这样的本质差别导致波长(动量)与频率(能量)之间的关系在电磁波(这里是X-ray)和物质波(这里是电子、中子)之间的截然不同。当然,物质波在运动速度接近光速的时候其dispersion会发生本质的转变,转变点如图1所示,不过这样的情况在实际的结构分析中碰不到,所以不用担心电子/中子在和光子的dispersion完全一致时的异常,反正迄今还没有见过这样的实验。 图1 电子、X-ray 和中子的时空dispersion对照图 下面进入正题,分别讨论X射线衍射、中子衍射和电子衍射具有哪些其他技术所不能匹敌的优势,在最后综合比较时兼谈相应的不足。 1、XRD具有其他两种技术所不能比拟的地方是它能最准确的测定晶胞参数。如图2所示,在精确确定晶胞参数这点上,中子衍射最不可取,一方面因为中子衍射波长practically相对较长,另一方面中子衍射波长的校准很难做的很理想,所以中子衍射的结果容易偏离真实值

中子诱发核反应国内外研究进展列举

中子诱发核反应国内外研究进展列举 2.1 中子诱发核反应截面研究进展 土耳其的Durusoy, Ayse利用中子活化法测量了65Cu(n,α)62mCo反应截面。使用了SAMES T-400中子发生器上(3H(d, n)4He反应)产生了快中子,选择了中子能量为13.6到14.9MeV范围内的六个不同的能量。实验中使用高纯锗(HPGe)γ探测器,以γ射线能谱测量技术来作为放射性技术方法。实验数据在γ射线衰减,脉冲堆积影响,死时间,中子注量率波动,散乱的低能区中子影响等方面进行了修正[3]。 Georgios Giorginis和Vitali Khryachkov测量了10B(n,a)7Li的截面。10B(n,α)7Li 反应的激发函数在中子能量为1.5和5.6MeV处进行了测量,电离室和信号数字化被用于裂变产物的光谱测定,使用在IRMM Van de Graaff 加速器上产生的中子轰击硼靶。通过测量238U与硼靶紧贴在一起的样品发出的裂变碎片来确定中子通量,研究的重点是发现了粒子泄露的运动效应[4]。 M. Jandel, T. A. Bredeweg等人精准的测量了235U(n,γ)截面值。使用的中子能量是4eV到1MeV的范围,在洛斯阿拉莫斯国家实验室的中子科学中心的DANCE仪器上产生,中子能量达到了前所未有的2~3%/keV的准确度。新的测量方法包含了三个独立的测量,在主实验,厚厚的锕系元素样本用于确定中子俘获和中子导致裂变的概率。在第二个测量,一个裂变标记检测器是用于探测薄锕系元素瞬发裂变的伽马射线。第三个测量是使用208Pb样本为中子散射背景[5]。 印度的H. Naik ,S. V. Surayanarayana ,S. Bishnoi 等人对232Th 和238U的(n,γ),(n,2n)反应进行了研究。实验中(n,γ)反应使用的活化中子的能量为2.45(D-D) 和14.8(D-T) MeV,(n,2n)反应使用的活化中子的能量为14.8MeV,以γ射线能谱测量技术来作为放射性技术方法[6]。 土耳其F. A. Ug?ur等研究了氟的中子诱发核反应截面,计算了19F(n,α),19F(n,xα)的激发函数。在计算中,考虑了平衡与预平衡效应,预平衡效应计算包括Full Exciton Model和Cascade Exciton Model;平衡效应根据Weisskopf–Ewing 模型计算。氟(F) 和它的熔化盐化合物(LiF)在聚变堆中可以作为增值和冷却材料,可在高温下没有达到很高的蒸气压力使用,熔盐化合物也是一种好的中子慢化剂[7]。 宋月丽,周丰群等运用中子活化法测量了182W(n,p)182(m+g)Ta 和184W(n,p)184Ta的反应截面,中子的能量范围为13.5-14.7MeV。实验是在ZF-300-II

五种反应堆

吴锴:请您先介绍一下世界上已出现的几种潜艇反应堆的工作原理? 张金麟:美国从1948年开始对三种热交换型式的反应堆,即压水堆、气冷堆和液态金属冷却反应堆进行研究。最初美国考虑将反应堆装在Φ5.5×92米的潜艇壳内,其排水量在2 000吨左右,对反应堆的技术要求是:高浓缩铀的堆芯,用热中子或接近热能的中子;在铀燃料一定时,反应堆结构材料吸收中子要少,堆芯功率密度高、结构要紧凑。 根据此技术要求,美国首先发展了压水堆和液态金属冷却堆。接着苏联也发展了这两种反应堆。这两种堆都经过陆上模式堆的考核试验后才将同型堆安装在它们的早期核潜艇上。 作为舰船核动力,曾经产生过五种反应堆的方案设想,构成五种不同的舰船推进装置型式,它们分别是: 压水反应堆由压水堆、一回路系统和设备、二回路系统和设备及推进轴系组成。反应堆和一回路均在高压下运行。所以作为反应堆的载热剂和慢化剂的水在约300℃时亦不会沸腾,故此类型反应堆称为压水堆。 载热剂在反应堆中被加热送到蒸汽发生器,将其热经传热管传给蒸汽发生器二次侧水(二回路一侧的水)并使其变成饱和蒸汽,从蒸汽发生器流出的载热剂经由主泵又被回送到反应堆再加热,形成一回路循环。饱和蒸汽送至主推进蒸汽轮机作功,从汽轮机排出的乏汽在冷凝器中冷凝后经给水泵再送至蒸汽发生器,形成二回路。主推进蒸汽轮机经减速齿轮带动螺旋桨推进艇航行。 反应堆和一回路因具有放射性,所以需要布置在屏蔽内。蒸汽发生器产生的蒸汽由于被传热管壁与一回路隔开,因此二回路系统和设备同常规蒸汽动力装置一样没有放射性,所以不需屏蔽。 液态金属反应堆由反应堆、一回路、中间回路、二回路和推进轴系所组成。 液态金属堆用石墨和铍作慢化剂,用中能中子维持链式反应,其优点是燃料的消耗比热中子反应堆低。早期的载热剂采用熔融的金属如钠、钾、铋、铅及其合金。 在一回路中用熔融金属钠循环载热,运行压力只有5~7大气压,就可获得较高的温度,装置效率较高。一回路主泵采用电磁泵,由于没有转动部件,故可靠性高。 中间回路采用钠、钾作载热剂。一回路向中间回路传热是通过中间热交换器,中间回路将反应堆的热量再通过蒸汽发生器传给二回路,在蒸汽发生器中产生过热蒸汽(由饱和蒸汽进一步加热而得)。 液态金属堆的缺点是核燃料的初装量相对较多。金属钠吸收中子蜕变为钠-21,半衰期约为15小时,并生成发射高能γ的钠同位素,所以一回路的设备和管道都要屏蔽。为防止液态的金属钠在管道和设备内凝结,反应堆停堆后还需保温和加热。此外,金属钠具有强烈的腐蚀性,与水会发生剧烈反应,可能会引起爆炸和火灾。 气冷反应堆气冷堆是用气体作为载热剂的反应堆,一般使用的载热剂有He、N2、CO2。因为这几种气体制取很容易,且化学性质稳定。其中He的载热效率较高,它不吸收中子,无感生放射性,不与结构材料发生化学反应,传热性能良好。此外,它还有较高的转换比和较深的燃耗。 气冷堆推进装置的循环系统有两种形式:单回路循环系统和双回路循环系统。在单回路循环系统中,封闭的He回路作为一回路,蒸汽回路作为二回路。 比如,一个功率为24.3MW的船用单回路He冷却反应堆燃气轮机推进装置,它是由一个He冷却高温反应堆和一台双轴燃气轮机组成。高压燃气轮机作为压气机的

气体探测器与中子探测

气体探测器与中子探测 1.1 气体探测器概述 气体探测器是人类历史上应用最悠久的核辐射探测器,在早期核物理发展中起了很大作用,例如宇宙线和中子是在电离室中发现的,迄今已有一百多年的历史。气体探测器是以气体作为探测介质,利用电极收集入射粒子在气体中产生的电荷来探测粒子,获取入射粒子的能量、时间及位置等相关信息。 1.2 气体探测器测量原理 气体探测器是以工作气体(既可以是混合气体,也可以是单一气体)作为探测物质,利用电极收集入射粒子在气体中产生的电离电荷来探测粒子,获取入射粒子的能量、时间及位置等相关信息。尽管气体探测器的形式和结构各种各样,但几乎都是利用电极来收集电离电荷的,它们通常都是由高压电极和收集电极组成。入射粒子进入灵敏区后,通过使电极间气体电离,生成的电子和正离子在电场的作用下分别向相反方向漂移,最后被电极收集。在漂移过程中,由于静电感应,电极上将感生电荷,并且随他们的漂移而变化,于是在输出回路中形成感应电流,收集的电子-离子对数目决定了输出电流的大小。气体探测器正是利用此特性实现了探测粒子的功能。 1.2.1带电粒子在工作气体中的能量损失与统计规律 入射带电粒子通过气体时,由于与气体分子的电离碰撞而逐次损失能量,最后被阻止下来。碰撞的结果使气体分子电离或激发,并在粒子通过的径迹上生成大量的离子对(电子和正离子)。上述电离过程包括入射粒子直接与气体分子碰撞引起的电离,以及由碰撞打出的高速电子(δ电子)所引起的电离。前一过程产生的离子对数称为初电离,后一过程产生的离子对数称为次电离,初电离和次电离的总和称为总电离。此外,粒子在单位路程上产生的离子对数称为比电离。带电粒子在气体中产生一对电子-离子所需的平均能量w称为平均电离能,公式2.1所示。

01 概述——中子截面及其应用

22.54 中子与物质的相互作用及应用(2004年春季) 第一讲 (2004年2月3日) 概述:与物质的相互作用,分类,截面及应用 在大量关于核物理的文献中,有许多参考资料,从中我们可以找到关于中子反应的介绍或详细的论述,下面列出的是我本人多年来使用过的文献,但这还远非全部,你们在学习时还可以参考其它文献。 B. T. Feld, “The Neutron”, in Experimental Nuclear Physics , E. Segre, ed. (Wiley, 1953), vol. II, p. 208; A. M. Weinberg and E. Wigner, The Physical Theory of Neutron Chain Reactors (Univ.Chicago Press, 1958), Chap 2. J. E.Lynn, The Theory of Neutron Resonance Reactions (Clarendon, Oxford, 1968), Chap 1. A. Foderaro, The Elements of Neutron Interaction Theory (MIT Press, 1971), Chaps 1, 3. C. G. Shull, "Neutron Interactions with Atoms", Trans. Am. Cryst. Assoc. 3, 1 (1967). 中子的特色 学习“中子的相互作用”是我们核工程系的特有专业课程,其它系没有开这门课。 中子在核工系的三个学科领域中扮演着核心角色: 裂变——裂变反应链的“传递者”,维持反应堆燃烧的“点火器”; 聚变——聚变反应的产物,如(D,T),会导致辐射损伤或活化; 辐射科学与技术——加速器技术,治疗,成像,材料研究等。 中子的特性(请回忆22.101),中子由查德威克(J. Chadwick)* 于1932年发现;中子不带电(能够容易地穿过原子核);质量略大于质子(在碰撞反应中动量改变明显);热中子波长与X射线相当,但能量更低;我们所感兴趣中子的能量范围分布很宽(包含多种反应类型);中子的自旋为1/2(与核子发生的相互作用是自旋相关的);中子具有磁矩(在磁散射中与原子磁矩发生耦合);中子具有半衰期(自由中子是不稳定的); *有关中子的其它重大事件:1938年发现裂变反应;1942年第一次发现链式反应。这些事情对我们今天的社会产生了很大的影响,是中子使得这些事情成为可能。 中子的波粒二相性: 粒子性:能量-动量关系式: (1.1) 22/2,,/2E mv p mv E p m ===波动性:频率-波长关系式:22 /2,,2/E k m p k k ωπλ==== (1.2) 将中子的参数与光子(X射线或γ射线)以及质子和电子的进行比较。 中子是相对论粒子吗?(一般来说不是的) 本课程中,我们感兴趣的中子能量范围跨越了9个数量级:

第1章_核反应堆的核物理基础(2)

把铀238转化为易裂变的钚239 23812399209223923923992 93 94 23min 2.3U n U U Np Pu d γ ββ??+→+→→ . 99%-238 , . 235

散射前后,中子-靶核系统动能(弹性与非弹性散、动量皆守恒(靶核的内能未发生变化)任何能量的中子与任何原子核都可以发生弹性散在反应堆里,通过弹性散射,可以把能量较高的裂变中子慢化为能量很低的热中子。 1 0A Z n X →+非弹性散射:英文介绍和示意图

非弹性散射:对中子慢化的作用 发生非弹性散射时(由于伴随有伽玛射线的 发射中子)中子的能量损失较大。(一般将 中子能量降到多少?) 在反应堆中,重核的非弹性散射对能量较高 的中子有显著的慢化作用。 但是依靠非弹性散射不可能将中子能量降到 很低的水平。 Why? 快中子反应堆中无慢化剂,但是裂变中子 也得到一定程度的慢化。Why? 非弹性散射:小结 24 非弹性散射的机理比较复杂:有形成复合核 的非弹性散射,也有不形成复合核的低能非 极好的英文,好好读一遍

为哑铃形、最终断裂所需的能量,也称临界能),此种铀核就是易裂中子进入铀核时放出的结合能如果小于分离能,光依靠结合能尚不能使得铀核裂变。必须要求入射中子有足够的动能(动能加结合能大于分离能)才能使得铀核裂变。此时此种铀核就是可裂变的。裂变反应:fissile or fissionable ? ü?易裂变(fissile )核: 是指那些任何能量的中子都可使其发生裂变的核素,主要有: U-235,U -233,Pu-239, Pu-241 ü?可裂变(fissionable )核:指那些只有较高能量中子才能使其发生裂变的核。例如: U -238,Th-232,…… 看复合核! 欲知临界能如何计算,拉马什书上有。 29 对四种核反应的机理和特点已经介绍完毕,下面介绍这四种核反应的反应截面大小的一般特点。 核反应截面的变化规律

中子探测技术在安全检查中分析与探讨(通用版)

Enhance the initiative and predictability of work safety, take precautions, and comprehensively solve the problems of work safety. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 中子探测技术在安全检查中分析 与探讨(通用版)

中子探测技术在安全检查中分析与探讨(通 用版) 导语:根据时代发展的要求,转变观念,开拓创新,统筹规划,增强对安全生产工作的主动性和预见性,做到未雨绸缪,综合解决安全生产问题。文档可用作电子存档或实体印刷,使用时请详细阅读条款。 摘要:本文简要介绍了爆炸物检测领域的技术手段,并针对目前常规技术手段的缺点和不足,重点介绍了中子无损探测技术在爆炸物检测中的应用情况,从技术原理到系统构成对中子探测设备进行了剖析,指出其相对于其他技术手段的独特优势。同时,本文也对爆炸物检测领域的技术发展趋势进行了探讨和展望。 一、常见爆炸物探测技术简介 在当前恐怖活动日趋严重的形势下,对公共安全领域爆炸物(常规炸药、液体炸药、塑料炸药)的现场快速检测是一项非常重要的工作。目前,应用于爆炸物现场检测的技术手段主要有:金属探测仪、X 射线成像(透射成像、背散射成像、CT)技术、双能X射线成像技术、化学蒸汽\颗粒分析法等[1]。 就金属探测仪而言,是较早采用的一种查缉爆炸物的技术手段,主要采用交变电磁场来探测爆炸物中的金属部件及雷管等发火装置上

中子散射的研究发展

中子散射的研究发展 由于热中子的波长、能量与凝聚态物质的分子、原子间距离和热运动能量相近,利用中子弹性和非弹性散射技术,可以了解物质的微观结构与性能。并且中子对氢原子的散射截面远大于其他元素,使得在利用中子散射研究包含大量氢元素的大分子结构以及动力学特征方面有显著优势。文章对中子散射产生的原理、特点进行总结,并利用中子散射技术在确定物质晶体结构、磁结构、缺陷分析等方面进行探讨,最后对中子散射技术在未来各个研究方向的应用进行了探讨和展望。 在进行用α粒子轰击铍的实验时,人们第一次发现了中子。若想用一种辐射来分析物质结构,那么其波长的量级要与被测物质原子间的距离量级相等。如果是分析分子、原子的运动状态,那么它的能量要与被测分子、原子的能量相差无几。中子在这两个方面都满足条件,适合被用于探究物质结构和其运动状态。 利用中子散射来研究物质微观结构的目的,是了解物质的原子排布。其实验方法包括中子衍射、中子小角散射和中子反射技术。物质微观动力学性质研究是为了解物质中粒子的运动方式。其实验方法包括中子非弹性散射技术和中子准弹性散射技术。 随着科技进步,中子散射技术日益完善。其应用已广泛涉及于航天、生物、地矿和材料等领域。中子散射弥补了X射线在物质微观结构研究的不足之处,并且在磁结构、动力学特性研究方面。它的作用是唯一、不可替代的。 2 中子散射技术的原理及特点 晶体中有序排列的原子对中子波而言相当一个三维光栅,中子波通过时会产生衍射现象。散射波会在某些特定的散射角干涉加强形成衍射峰。峰的位置、强度与晶体中的原子位置、排列方式以及各个位置上原子的种类有关。对于磁性物质衍射峰的位置还与原子的取向、排列方式和磁矩大小有关。 液体和非晶态物质的结构无长程有序,它们的散射曲线不会出现明显的衍射峰。但由于结构中存在短程有序,所以还会在散射曲线中出现少数表征短程有序的矮而宽的小峰。它们仍然可以从统计的意义上为我们提供液体和非晶物质最近邻配位原子的信息。 综上所述,我们可以利用中子衍射研究物质结构和磁结构。

反应堆物理

1.认定的第四代核反应堆包括哪些? 钠冷快堆、气冷快堆、铅冷快堆、熔盐堆、高温气冷堆、超临界水堆 2.核素:具有相同原子序数、质量数和核能态,而且其平均寿命长到足以被观察的一类原子。 3.同位素:具有相同质子数,不同质量数(中子数)原子核的元素。 4.丰度:某一同位素在其所属天然元素中所占的原子数百分比。 5.富集度:一般指经铀浓缩以后核燃料中铀235的质量分数 6.放射性活度:放射性同位素样品在单位时间内衰变的次数。 7.衰变常数λ的意义:一个核单位时间衰变的几率 8.什么叫质量亏损?什么叫结合能? 所有原子的质量都比组成它的单个质子与中子质量的总和略小,即核子结合构成原子后质量减少了,我们称此差值为

质量亏损。根据质能方程E=ΔmC2,减少的质量必然以能量的形式释放出来,这种能量称为结合能。这就是核能的来源。 9.中子与原子核的反应主要包括哪些? 散射、辐射俘获、裂变反应、(n,α)、(n,p)、(n,2n)、(n,3n)等直接轰击多个中子的反应 10.辐射俘获:原子核俘获中子放出γ射线的反应。 11.热中子反应堆内中子的慢化主要靠弹性散射。发生非弹性散射有阈能要求。 12. 中子与原子核的散射反应包括:弹性散射和非弹性散射,前者动量和动能均守恒,后者动量守恒动能不守恒。 13.微观截面:中子与单个靶核发生反应的容易程度的一种度量,量纲是面积;它相当于原子核对于入射中子具有多大的阻挡面积,常用单位是靶 14.宏观截面的定义:中子在某种材料中穿行单位距离与原子核发生反应的次数。

15.热中子:与它们所在介质的原子处于热平衡状态。 16.核反应率密度:单位时间内在单位体积中发生核反应的次数。 17.常见的易裂变核有哪些,可裂变核有哪些? 易裂变核素:U 235 Pu 239 U 233 Pu 241 可裂变核素:U 238 Th 232 18.铀235每次裂变释放出的能量大约为 200MeV 。 19.中子在以铀为燃料的压水堆内主要经历哪些数量变化过程? 1.铀238的快中子增殖; 2.慢化过程中的共振吸收; 3.中子的泄露(快中子慢化过程中的泄露;热中子扩散过程中的泄露); 4.燃料吸收热中子引起的裂变 20.关于有效增殖系数的物理意义,有两个公式: 21.反应堆内产生的中子都是 快中子 ,平均能量约为 2MeV 最大通量能达到 10MeV 。 22.什么叫反应堆功率分布的不均匀系数? 全堆空间内功率最大值与功率平均值之比。

南开大学材料学院结构分析课后题答案(XRD、中子衍射、电子衍射)

结构分析唐老师部分作业汇总 第一次作业 1、请写出晶体的定义。试说明什么是单晶体?什么是多晶体? 定义:质点(原子、离子或分子)在空间按一定规律周期性重复排列构成的固体物质。基本为一个空间点阵所贯穿的整块固体称单晶体,简称单晶;由许多小单晶按不同取向聚集形成的固体称多晶。 2、晶格与点阵是何关系?晶体结构与点阵、结构基元是何关系?原子参数与阵点坐标是何关系? 晶体是由原子、离子或分子在空间按一定规律周期性重复地排列所构成的固体物质,将其中周期性排列的重复单元抽象成在空间以同样周期性排列的相同几何点,这些点所构成的阵列称为点阵(lattice),或空间点阵、空间格子。沿三个不同的方向,通过点阵中的点阵点可以作许多平行的直线族和平行的晶面族,使点阵形成三维网格。这些将点阵点全部包括在其中的网格称为晶格。带有原子、离子、分子或其集团的点阵就是晶格。 晶体结构= 点阵+ 结构基元 对于点阵点坐标和原子参数,它们对于3个坐标轴的方向是相同的,但是点阵点坐标的度量单位是点阵周期,而原子参数的度量单位是晶胞参数。 3、晶体的晶胞类型共分为哪几种?空间格子(点阵)可分为几类?每一类晶系各有多少种空间点阵格子形式?请分别写出。 晶胞是描述晶体微观结构的基本单元,有素晶胞和复晶胞之分。 如果点阵点都处于平行六面体的顶点,每个平行六面体只有一个点阵点,此空间格子称为素格子,以P表示;如果体心还有点阵点,则此空间格子称为体心格子,以I表示;如果所有平面格子中心有点阵点,则称为面心格子,以F表示;如果仅一对相对的平面格子中心有点阵点,则此空间格子称为底心格子,视相对面位置分别以A, B或C表示。 晶体分为7个晶系(立方、六方、四方、三方、正交、单斜和三斜),依据特征对称元素和正当点阵单位的划分规则,晶体的点阵分为14种空间点阵型式:简立

同步辐射光源和中子衍射在材料研究中的应用

学术干货|同步辐射光源和中子衍射在材料研究中的应用 一、什么是同步辐射光源 同步辐射(Synchrotron Radiation)是速度接近光速的带电粒子在磁场中沿 弧形轨道运动时放出的电磁辐射,由于它最初是在同步加速器上观察到的,便又被称为“同步辐射”或“同步加速器辐射”。长期以来,同步辐射是不受高能物理学家欢迎的东西,因为它消耗了加速器的能量,阻碍粒子能量的提高。但是,人们很快便了解到同步辐射是具有从远红同步辐射外到X光范围内的连续光谱、高强度、高度准直、高度极化、特性可精确控制等优异性能的脉冲光源,可以用以开展其它光源无法实现的许多前沿科学技术研究。于是在几乎所有的高能电子加速器上,都建造了“寄生运行”的同步辐 射光束线及各种应用同步光的实验装置。

图1 同步辐射装置示意图 二、同步辐射光源特点 与XRD相比,同步辐射的光强强很多,可以做很精细的扫描,高温或高压条件下同步辐射的优势比常规X光机衍射明显很多。尤其在超高压下,百万大气压,同步辐射的光斑可以聚焦到亚微米级别,直接测量高压下的衍射,如果同时再加高温,那就可以研究高压高温下的融化,这是常规衍射不可企及的。其特点总结如下: 1、高亮度:第三代同步辐射光源的X射线亮度是X光机的上亿倍。 2、宽波段:同步辐射光的波长覆盖面大,具有从远红外、可见光、紫外直到X射线范围内的连续光谱。

3、窄脉冲:同步辐射光是脉冲光,有优良的脉冲时间结构,其宽度在10-11~10-8秒之间可调,脉冲之间的间隔为几十纳秒至微秒量级,如化学反应过程、生命过程、材料结构变化过程和环境污染微观过程等。 4、高准直:同步辐射光的发射集中在以电子运动方向为中心的一个很窄的圆锥内,张角非常小,几乎是平行光束,堪与激光媲美。 5、高纯净:同步辐射光是在超高真空(储存环中的真空度为10-7~10-9帕)或高真空(10-4~10-6帕)的条件中产生的,不存在任何由杂质带来的污染,是非常纯净的光。可精确预知:同步辐射光的光子通量、角分布和能谱等均可精确计算,因此它可以作为辐射计量,特别是真空紫外到X射线波段计量的标准光源。 6、其他特性:高度稳定性、高通量、微束径、准相干等。 三、同步辐射光源在材料研究领域的应用 以下以纳米材料为例,介绍同步辐射在材料研究中的应用 纳米材料由于尺寸小、结构复杂,其单体产生的测量信号往往不足,此外纳米材料往往不像块体材料那样具有良好的长程有序性,所以某些常规实验室用于表征块体材料的手段在表征纳米体系时可能失效。因而同步辐射技术可以在纳米体系的结构和性能表征方面发挥重要作用。 (1) 快速X射线精细谱 同步辐射快速X射线吸收精细结构(QXAFS)谱学方法具有高时间分辨的特征,不仅具备XAFS在纳米结构研究中的优势,而且由于高时间分辨的特征,极大地扩展了XAFS在纳米结构研究中的应用。利用QXAFS的时

相关文档