文档库 最新最全的文档下载
当前位置:文档库 › 时间分辨荧光技术原理及应用

时间分辨荧光技术原理及应用

荧光分析法检测原理及应用举例

1 荧光定义 某些化学物质从外界吸收并储存能量而进入激发态,当其从激发态回到基态时,过剩的能量以电磁辐射的形式放射出去即发光,称之为荧光。可产生荧光的分子或原子在接受能量后引起发光,供能一旦停止,荧光现象随之消失。 2 荧光分类 由化学反应引起的荧光称为化学荧光,由光激发引起的荧光称为光致荧光,课题主要研究光致荧光。按产生荧光的基本微粒不同,荧光可分为原子荧光、X 射线荧光和分子荧光,课题主要研究分子荧光。 3 光致荧光机理 某一波长的光照射在分子上,分子对此光有吸收作用,光能量被分子所吸收,分子具有的能量使分子的能级由最低的基态能级上升至较高的各个激发态的不同振动能级,称为跃迁。分子在各个激发态处于不稳定的状态,并随时在激发态的不同振动能级下降至基态,在下降过程中,分子产生发光现象,此过程为释放能量的过程,即为光致荧光的机理。光致荧光的过程按照时间顺序可分为以下几部分。 分子受激发过程 在波长为10~400nm的紫外区或390~780nm的可见光区,光具有较高的能量,当某一特征波长的光照射分子时,是的分子会吸收此特征波长的光能量,能量由光传递到分子上,此过程为分子受激发过程。分子中的电子会出现跃迁过程,在稳定的基态向不稳定的激发态跃迁。跃迁所需要的能量为跃迁前后两个能级的能量差,即为吸收光的能量。分子跃迁至不稳定的激发态中即为电子激发态分子。 在电子激发态中,存在多重态。多重态表示为2S+1。S为0或1,它表示电子在自转过程中,具有的角动量的代数和。S=0表示所有电子自旋的角动量代数和为0,即所有电子都是自旋配对的,那么2S+1=1,电子所处的激发态为单重态, 用S i 表示,由此可推出,S 即为基态的单重态,S 1 为第一跃迁能级激发态的单重 态,S 2 为第二跃迁能级激发态的单重态。S=1表示电子的自旋方向不能配对,说明电子在跃迁过程中自旋方向有变化,存在不配对的电子为2个,2S+1=3,电子 在激发态中位于第三振动能级,称为三重态,用T i 来表示,T 1 即为第一激发态中 的三重态,T 2 即为第二激发态中的三重态,以此类推。

时间分辨荧光免疫分析仪特点及性能

时间分辨荧光免疫分析仪特点及性能 时间分辨荧光免疫分析仪采用现代光学、机械、计算机等先进技术,通过标记离子螯合物产生的特异性荧光寿命长、强度高,消除本底干扰荧光;利用激发光波谱宽、荧光发射波谱窄,增强荧光强度,提高分辨率的原理,对临床免疫血样进行定量分析,为临床血样提供灵敏、准确、可靠的数据。 概述 时间分辨荧光免疫法所用的标记物是镧系元素螯合物,利用这类荧光物质荧光寿命长等特点,通过波长和时间两种分辨技术,有效排除了非特异本底荧光的干扰。 特点 1、灵敏度高; 2、标记物制备简单; 3、稳定性好; 4、标准曲线线性范围宽; 5、操作方便。 技术性能 电源:210~240V,50~60Hz;外型尺寸:550mm×600mm×270mm;重量:25 kg;灵敏度:10-13 mol/L;线性度:10-12~10-8 mol/L;快速测试:1秒/样;高稳定性:< ±1 %;工作制:连续运行;安全分类:I类;防电击程度:B型;熔断器:Φ5×20 5A。 应用领域 主要用于对人的血液和其它体液中的各种免疫检测项目进行定量分析,它可以适用与传染病检查、内分泌科检查、细胞学检查、肿瘤科检查等。随着检验医学的发展,对微量、超微量的测定会越来越多,同时RIA的污染问题会越来越被重视,因此,时间分辨荧光分析法具有越来越大的应用空间。 产品特性产品参数 产品特点: 1) 采用进口光源、光学镜片及光电倍增管,保证检测结果的稳定性及可靠性; 2) 测试速度快,1秒/样本; 3) 标本灵活,适合任意份标本量; 4) 全中文软件,操作界面简便; 5) 是国内首家研发出成功,填补国内空白,并获得国家科技进步二等奖。 技术参数: 1) 测定原理:时间分辨 2) 激发光源:进口氙灯 3) 灵敏度: 10 -17 mol/孔(Eu 3+) 4) 线性范围:10 -13 mol/孔~10 -17 mol/孔 5) 高稳定性:<5 % 6) 电源:AC 198~242V 50~60Hz 7) 外型尺寸:710mm×520mm×320mm

HTRF技术原理和应用介绍

Cisbio-HTRF?技术原理和应用简介 HTRF?(均相时间分辨荧光,Homogeneous Time-Resolved Fluorescence )是一种用来检测纯液相体系中待测物的技术。该技术基于荧光共振能量转移(FRET,Fluorescence Resonance Energy Transfer)和时间分辨荧光(TRF, Time-Resolved Fluorescence))两大技术,开通的一款高通量药物筛选利器。 荧光共振能量转移(FRET) 利用两种荧光基团的能量转移,这两种荧光基团分别称为能量供体(Donor)和能量受体(Acceptor)。Donor被外来光源激发(例如氙灯或激光),如果它与Acceptor比较接近,可以将能量共振转移到在Acceptor上,使其受到激发,发出特定波长的发射光。 将Donor和Acceptor分别与相互作用的两个生物分子结合,生物分子的结合可以将Donor和Acceptor拉到足够近的距离,产生能量转移,由于Acceptor的发射光来自能量转移,所以实验中不需要将未结合与已结合的分子分开,即不需要洗涤步骤。 时间分辨荧光(TRF) TRF利用稀土元素中镧系元素的独特性质,它们与普通荧光的主要区别是荧光的持续时间不同。普通荧光的半衰期为纳秒级。镧系元素的半衰期为毫秒级,有6个数量级的差别。所以,在检测室,TRF有一个时间延迟---50us,经过这个时间延迟,普通荧光的信号几乎为零,所以,TRF 的背景非常低,反映样品实际情况。 HTRF?的能量受体(技术创新点) HTRF?的能量供体是铕(Eu)和钛(Tb)的穴状化合物。在这个穴状化合物里,Eu和Tb被永久地嵌合在一个笼子里,结构非常稳定,这个结构由教授发明的,并由此在1987年获得了诺贝尔奖。 HTRF?的能量受体 HTRF?的能量受体也有二种,XL665和d2.它们的光学性质相同,分子量不同,前者分子量为10KD,实际上就是别藻蓝蛋白(APC)。我们将APC的亚基偶联在一起,使其不能解离,提高了稳定性,后者分子量为1KD,在某些实验中有独特的优势。 HTRF?的操作步骤 HTRF?操作步骤非常简单,只需要将实验所需试剂加进去,然后孵育,检测即可。

时间分辨荧光分析技术

1.1 时间分辨荧光分析技术 时间分辨荧光生化分析技术是基于稀土荧光配合物特殊的荧光性质而建立起来的,自1978年提出以来[1],已广泛的应用于免疫分析、核酸测定、荧光显微镜成像、细胞识别、单细胞原位测定、生物芯片等生化领域,并发展出了相应的时间分辨荧光免疫测定法、时间分辨荧光DNA 杂交测定法、时间分辨荧光显微镜成像测定法、时间分辨荧光细胞活性测定法及时间分辨荧光生物芯片测定法等分支。 本节主要对稀土荧光配合物的发光机理、荧光性质,时间分辨荧光测定的原理,时间分辨荧光免疫分析技术,时间分辨荧光显微镜成像技术的研究进展等加以介绍。 1.1.1 稀土荧光配合物的发光机理及荧光性质 稀土元素指的是元素周期表中IIIB 族的镧系元素以及钪和钇,共17种元素。其中镧系元素的外层电子结构为4f 0-145d 0-106s 1-2,由于5s 和5p 电子对4f 电子的屏蔽作用,导致这些金属及其离子的性质十分相似。图1.1给出了四种三价稀土离子的基态及激发态电子能级图[2]。 1020 152530355 E N E R G Y ,103c m -1 6 H 5/2 G 5/2 6 H 15/2 7 F 0 F 2D 0 5D 1 7F 6 F 5 4 5D 3 13/2 4 9/2 Sm 3+ Eu 3+ Tb 3+ Dy 3+ H 9/2 图1.1 部分三价稀土离子的电子能级图 Fig. 1.1 Electronic energy levels of certain lanthanide(III) ions 大部分稀土离子本身是不具有荧光性质的,只有Sm 3+、Eu 3+、Tb 3+和Dy 3+的水溶液在紫外光或可见光的激发下能够发出微弱的荧光。当Sm 3+、Eu 3+、Tb 3+和Dy 3+与某些有机配位体形成配合物时其荧光强度会显著增强,这种发光是基于配合物内由配位体到中心稀土离子的能量转移所产生的[3-8]。以铕(III)配合物为

时间分辨荧光免疫分析法(Time-resolved fluoroimmunoassay)操作

时间分辨荧光免疫分析法(Time-resolved fluoroimmunoassay)是在荧光分析的基础上发展起来的一种特殊的荧光分析。它利用具有长效荧光的稀土金属(Eu、Tb、Sm、Dy)作标记物,充分利用激发光与发射光之间的降移与发射光较长的半寿期,在激发光后延时测量发射光的强度。从而所测的荧光不受激发光和被检物中的非特异荧光干扰,提高了检测的特异性与灵敏度。在激发光后延时400微秒,测量400微秒,间歇200微秒后进入下一个测量周期,每一个周期为1000微秒。对每一个样品实施1秒钟的测量,意味着完成了1000个周期的测量,测量精确度极高。 (一)Auto DELFIA自动时间分辨荧光免疫分析仪开/关程序 1 开机 1.1 依次打开样品处理器电源,微孔板处理器电源,打印机电源。 1.2 打开计算机显示器。 1.3 启动计算机。 1.4 运行系统软件:Auto DELFIA与Multicalc系统软件在Windows启动后自动运行。Auto DELFIA workstation软件用于控制Auto DELFIA的运行,MultiCalc的主要功能是与主机通讯,对测试结果进行评估和对质控及其他数据处理(可通过双击屏幕上图标不运行)。在MultiCalc Auto DELFIA环境下,只有键盘有效,鼠标无效。 2 开机后准备 1.1 清洗液准备 1.1.1 微孔板处理器洗液(250ml浓缩液+600ml去离子水混合),每做一块板至少1升用量,洗液在密闭条件可保存2周时间。 1.1.2 准备样品处理器洗液(50ml浓缩液+5000ml去离子水混合),每做一块板至少需要800ml洗液,洗液在密闭条件下可保存1周时间。 1.2 样品处理器准备 1.2.1 在Wash bottle(清洗液瓶)、Rinse bottle (冲洗液瓶)分别注入足够用量的清洗液和去离子水,倒空废液瓶。拧紧各瓶盖,确保废液瓶管路向下。 1.2.2 如样品需要稀释,放入稀释杯和稀释液。系统安装时已调好有71ml和190ml两种规格的稀释杯,若使用71ml的稀释杯,从最右端开始放置,如有预处理样品,则不能使用190ml 的稀释杯。不能使用多个稀释杯。 1.3 微孔板处理器准备。

化学发光免疫技术与时间分辨技术的异同点

化学发光免疫技术与时间分辨技术的异同点 概念 化学发光免疫分析(chemiluminescenceimmunoassay,CLIA),是将具有高灵敏度的化学发光测定技术与高特异性的免疫反应相结合,用于各种抗原、半抗原、抗体、激素、酶、脂肪酸、维生素和药物等的检测分析技术。是继放免分析、酶免分析、荧光免疫分析和时间分辨荧光免疫分析之后发展起来的一项最新免疫测定技术。 时间分辨荧光免疫测定(TRFIA)是以镧系元素标记抗原或抗体,并与时间分辨测定技术结合而建立起来的一种新型非放射性微量免疫分析技术,它根据镧系元素螯合物的发光特点,用时间分辨技术测量荧光,同时检测波长和时间两个参数进行信号分辨,可有效地排除非特异荧光的干扰,极大地提高了分析灵敏度。 原理 化学发光免疫分析包含两个部分, 即免疫反应系统和化学发光分析系统。化学发光分析系统是利用化学发光物质经催化剂的催化和氧化剂的氧化, 形成一个激发态的中间体, 当这种激发态中间体回到稳定的基态时, 同时发射出光子(hM) , 利用发光信号测量仪器测 量光量子产额。免疫反应系统是将发光物质(在反应剂激发下生成激发态中间体) 直接标记在抗原(化学发光免疫分析) 或抗体(免疫化学发光分析) 上, 或酶作用于发光底物。鲁米诺(1umino1)、异鲁米诺(isolumino1)及其衍生物、吖啶酯(acIidinim ester)衍生物、辣根过氧化物酶(horseradishperoxidase,HRP)和碱性磷酸酶(alkaline phosphatase,ALP)是目前CLIA中使用最多的四类标记物。 时间分辨荧光免疫测定(TRFIA)基本原理 用三价稀土离子及其鳌合剂作为示踪物,代替荧光物质、同位素或酶,标 记蛋白质、激素、抗原、抗体、核酸探针等物质,当免疫反应体系发生后,根据稀土离子螯合物的荧光光谱的特点,用时间分辨荧光分析仪测定免疫反应最后产物中荧光强度。根据荧光强度或相对荧光强度比值,来判断反应体系中分析物的浓度,达到定量分析之目的。 应用 化学发光免疫分析技术(CLIA) 各种激素、病毒抗原抗体、肿瘤标志物、感染性疾病、心脏标志物、治疗药物检测等各种抗原、抗体和半抗原 时间分辨荧光免疫测定(TRFIA)应用广泛 1.多肽类:蛋白质、激素(甲状腺激素、甾体类激素)。 2.病原体抗原/抗体 3.病毒性肝炎标志物 4.肿瘤相关抗原 5.药物 6.核酸 优缺点

时间分辨荧光免疫分析的原理

一、前言 近百年来,“特效试剂”一直是分析化学家追求的目标。所谓“特效试剂”,就是指的是只与一种待测物质反应的试剂。事实上,目前使用的所谓的“铜试剂”、“铁试剂”、“硝酸试剂”等等,都是“盛名之下,其实难副”的。20世纪40-50年代追求合成特效试剂的狂热,早已降温。正在分析化学家心灰意冷之际,人们从免疫学与生物化学的成就看到了这一理想的曙光:免疫系统简直就是天然存在的一部特异性试剂的合成机器。抗原与抗体之间的免疫反应具有高度的特异性,这种识别的专一性超过酶对底物的识别水平,抗原-抗体复合物的稳定常数一般为109,有些高达1010-1015,具有很高的稳定性。免疫反应的特点使得免疫分析已成为一个跨学科的新型分析技术,广泛应用于临床体液分析、药物分析、环境分析、食品分析和生物化学研究,尤其在毒品的鉴定、吸毒人员的认定和疾病的诊断方面,发挥了重要作用。 时间分辨荧光免疫分析技术(TRFIA)是自80年代以来新发展起来的一种新型分析技术,与其它免疫分析技术相比,有其独特的优点。它克服了放射性免疫分析法(RIA)中放射性同位素带来的污染问题;克服了酶免疫分析法(EIA)中酶不稳定的缺点;而且,由于TRFIA法能够很好的消除背景荧光的干扰,使其灵敏度比普通荧光法(FIA)高出几个数量级。正是由于TRFIA的独特优点,使得它成为免疫分析中最有发展潜力的一种分析方法。 二、时间分辨荧光免疫分析的原理 时间分辨荧光免疫分析的原理就是使用三价稀土离子(如Eu3+、Tb3+、Sm3+、Dy3+)作为示踪物,通过这些稀土离子与具有双功能结构的螯合剂以及抗原形成稀土离子-螯合剂-抗原螯合物。当标记抗原、待测抗原共同竞争抗体,形成免疫复合物,由于免疫复合物中抗原抗体结合部分就含有稀土离子,当采取一些办法将结合部分与游离部分分开后,利用时间分辨荧光分析仪,即可测定复合物中的稀土离子发射的荧光强度,从而确定待测抗原的量。 正常情况下,免疫复合物中的稀土离子自身荧光信号很微弱,若加入一种酸性增强液,稀土离子从免疫复合物中解离出来,和增强液中的β-二酮体、三正辛基氧化膦、Triton X-100等成分形成一种微囊。后者被激发光激发后,则稀土离子可以发出长寿命的极强的荧光信号,使原来微弱的荧光信号增强将近100万倍。 采用时间分辨技术测量荧光,采用了门控技术,它是使背景荧光信号降低到零以后,再测定长寿命标记物的荧光。 三、时间分辨荧光分析的测量方法 (1)解离增强测量法 解离增强测量法是解离增强稀土离子荧光方法,简称DELFIA法。通过双功能基团把Eu3+或Sm3+螯合到抗原、抗体或SA上,免疫反应后,部分标记物结合到固相载体上,未结合的标记物被洗掉。最后用低pH值的增强液,把Eu3+或Sm3+

(SOP)时间分辨荧光免疫分析实验操作指南

时间分辨荧光免疫分析实验操作指南以及注意事项

第一节时间分辨反应过程图 TRFIA的操作要点 优质的试剂,良好的仪器和正确的操作是保证TRFIA检测结果准确可靠的必要条件。 下面列出TRFIA各个操作步骤的注意要点,严格遵照规定操作. 1、样本的采取和保存 TRFIA测定的样本一般为血清。不能使用含抗凝剂EDTA和柠檬酸的样本,因为二者可以螯合铕,使测定值降低。血清样本可按常规方法采集,溶血和脂血样本可能会影响测值。 样品在2℃-8℃可以保存3-5天,如果需要长期保存,请-20℃保存,避免反复冻融。冻结血清融解后,蛋白质局部浓缩,分布不均,宜轻缓充分混匀,避免气泡,可上下颠倒混和。不要把样本保存在室温,室温放置48小时可能会导致结果不稳定。 2、试剂的准备 整个实验过程应尽量在干净无尘的环境下进行 实验前应检查试剂盒的出厂日期以确定试剂盒是否过期,一般自产品检验合格出厂日期起有效期为一年。 按试剂盒说明书的要求准备实验中需用的试剂。TRFIA中用的去离子水,包括用于洗涤的,应为新鲜的和高质量的去离子水。从冰箱中取出的试验用试剂应待其温度与室温平衡后使用。试剂盒中本次试验不需用的部分应及时放回冰箱保存。 试剂盒中的标准品或铕标试剂若是冻干的状态,第一次开盒做实验在加去

离子水溶解标准品或铕标后,请不要立刻开始使用,静置10分钟左右待其溶解完全后再开始。 板条若未能一次用完,剩余板条用塑料袋(内有干燥剂)封口后密封保存。 TRFIA受反应温度的不恒定、操作误差以及铕标记物的稳定性等因素的影响,不同日期的荧光值会有所波动,因此在定量测定中,每批测试均须用一系列不同浓度的参考标准品在相同的条件下制作标准曲线。 3、加样 在TRFIA中一般有3次加样步骤,即加样本,加铕标记物,加增强液。加样时应将所加物加在微孔板的底部,避免加在孔壁上部,不可溅出,不可产生气泡。 加样本一般用微量加样器,按规定的量加入板孔中。加不同的样本应更换吸嘴,以免发生交叉污染。加铕标记和增强液时可用定量多道加液器,使加液过程迅速完成。 连续加样器使用时要连续流畅,并不是加样越慢越好! 加样时检测吸嘴是否堵塞,加量是否足够,注意吸头之间是有差异的。 加样品时把样品按12个一排排好,做时每加样一个,就把它前移一排,这样不容易出错。 注意按操作步骤计算试剂的量是否充足,特别是使用全自动仪器时! 使用干净的一次性容器配制铕标记物。铕标记物的污染是造成实验本底增高的首要原因。注意铕标记物的瓶盖不要与标准品瓶盖混用;所有接触过铕标记物的用品使用完毕应该丢弃,不能重复使用。注意铕标记物原液和工作不要污染实验台面、加样枪及试剂盒中的其他组份。 4、孵育 在TRFIA中一般有一次或两次抗原抗体反应,即加样本和铕标记物后。抗原抗体反应的完成需要有一定的温度和时间,这一保温过程称为孵育,或者温育。 目前TRFIA常用模式在微孔板中进行,属固相免疫测定,抗原、抗体的结合只在固相表面上发生。以抗体包被的夹心法为例,加入板孔中的样本,其中的抗原并不是都有均等的和固相抗体结合的机会,只有最贴近孔壁的一层溶液中的抗原直接与抗体接触。这是一个逐步平衡的过程,因此需经扩散才能达到反应的

X荧光光谱仪的原理结构及应用

X荧光光谱仪的原理结构及应用 【摘要】X荧光分析是一种快速、无损、多元素同时测定的分析技术,已广泛应用于材料、冶金、地质、生物医学、环境监测、天体物理、文物考古、刑事侦察、工业生产等诸多领域,可为相关生产企业提供一种可行的、低成本的、及时的检测、筛选和控制有害元素含量的有效途径。本文就X荧光光谱仪的工作原理及其应用做简单阐述。 【关键词】X荧光;光谱仪;原理;应用 一、X荧光的基本原理: 当一束高能粒子与原子相互作用时,如果其能量大于或等于原子某一轨道电子的结合能,将该轨道电子逐出,对应的形成一个空穴,使原子处于激发状态。此后在很短时间内,由于激发态不稳定,外层电子向空穴跃迁使原子恢复到平衡态,以降低原子能级。当较外层的电子跃迁(符合量子力学理论)至内层空穴所释放的能量以辐射的形式放出,便产生了X荧光。X荧光的能量与入射的能量无关,它只等于原子两能级之间的能量差。由于能量差完全由该元素原子的壳层电子能级决定,故称之为该元素的特征X射线,也称荧光X射线或X荧光。 X荧光光谱法就是由X射线光管发生的一次X射线激发样品,试样可以被激发出各种波长的特征X射线荧光,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析的方法。该方法是一种非破坏性的仪器分析方法,常用的有能量色散型和波长色散型两种类型。广泛应用于钢铁、铁矿石、炉渣、石灰石、萤石、耐火材料、地质等行业的多种元素的测定。下面我以波长色散型X射线光谱仪为例讲一下它的原理及构造。 二、X荧光光谱仪的原理与仪器构造: 使用X荧光光谱法的仪器叫X射线荧光光谱仪。X荧光光谱仪是一种相对测量仪器,它是通过测量一定数量已知结果的标准样品,建立相应的正确的数学模型后,才能得到准确分析结果的测量。建立正确的数学模型必须依靠一组好的标样,代表性好,有一定的跨度范围,有准确的结果。 1、激发光源—X射线管 X光管可以分成端窗和侧窗二种,但是近代X光荧光光谱仪几乎都只采用端窗一种类型,因为它能接近试样安放,有利于提高测定灵敏度。 如图:管体内为高度真空。管内有阳极,阴极,灯丝,冷却水管,X射线出射窗(铍窗);尾部有高压电缆接头,冷却水接口和灯丝电缆;头部为X射线出射窗口。

时间分辨荧光免疫分析方法的光谱研究

第24卷,第5期 光谱学与光谱分析Vol 124,No 15,pp5962599 2004年5月 Spectroscopy and S pectral Analysis May ,2004  时间分辨荧光免疫分析方法的光谱研究 郭周义,田 振,贾雅丽 华南师范大学激光生命科学研究所,广东广州 510631 摘 要 时间分辨荧光免疫分析法是用三价稀土离子及其螯合剂作为示踪物,标记蛋白质、激素、抗体、核 酸探针或生物活性细胞,待反应体系(如:抗原抗体免疫反应、生物素亲合反应、核酸探针杂交反应、靶细胞与效应细胞的杀伤反应等)发生后,用时间分辨荧光技术测定反应体系中分析物的浓度,达到定量分析的目的。它之所以能够继放射性同位素标记、酶标记、化学发光、电化学发光后成为一种更新、更灵敏的检测方法,主要取决于它所用标记物三价稀土离子螯合物独一无二的物理及化学性质。主要报导了对使用的长寿 命荧光团Eu 3+ 螯合物的光谱研究结果,时间分辨技术及荧光增强技术的原理。实验表明:选择336~337nm 的激发波长,有利于Eu 3+ 的配位二酮体的激发及能量转移。 主题词 免疫分析;荧光增强技术;时间分辨光谱技术;Eu 3+螯合物中图分类号:O657132 文献标识码:A 文章编号:100020593(2004)0520596204  收稿日期:2003203226,修订日期:2003206228  基金项目:广东省科技攻关重点项目(2002C60113);广州市天河区科技计划项目(2002XGP06);广东省自然科学基金项目(No 1015012, No.031518);教育部科学技术研究重点项目(No 102113)资助  作者简介:郭周义,1965年生,华南师范大学激光生命科学研究所教授,博士生导师 引 言 最近几年发展起来的时间分辨荧光免疫分析方法(TR 2 FIA )是超微量免疫检定法的一大突破。由于使用了时间分辨光谱技术和荧光增强技术,使荧光免疫分析的灵敏度得到了极大提高。1983年Petterson [1]和Eskola [2]首先将时间分辨荧光光谱技术应用于免疫分析的研究中。目前,TRFIA 的最低检出值已达10-19mol ?well -1,远远超过酶标记免疫分析法(EIA )的10-9mol ?well -1,放射免疫分析法(RIA )的10-15mol ?well -1和发光免疫分析法(L IA )的10-15mol ?L -1。 稀土离子是金属离子,若用来直接标记抗原、抗体,标记率很低,一般使用含有双功能基团的螯合剂,形成稀土离子2螯合剂2抗原(或抗体)的螯合物。稀土离子的荧光,不仅与自身的能级结构有关,而且与螯合剂的性质有关。螯合物不同,稀土离子的激发光和发射光也会有所不同。 1 稀土离子的吸收光谱 镧系离子的电子排布为 1s 2 2s 22p 63s 23p 63d 104s 24p 64d 104f n 5s 25p 6(n =0~14),其主要价态有二价、三价和四价。三价态是特征氧化态,其 基组态是4f n (n =0~14),下一个激发态是4f n -15d [3]。 稀土离子吸收光谱[4]的产生可归因于三种情况。111 f —f 跃迁光谱 指f n 组态内,不同J 能级间跃迁所产生的光谱。它的特点是: (1)发光弱。这主要是因为f —f 跃迁是宇称选择规则禁 阻的。虽然在溶液和固态化合物中,由于配体场微扰,也能 观察到相应的光谱,但相对于d —d 跃迁来说,也是相当弱的。 (2)类线性的光谱。谱带的尖锐原因是处于内层的4f 电子受到5s 2,5p 6电子的屏蔽,受环境的影响较小。 (3)谱带的范围较广。在近紫外,可见区和近红外区内 都能得到稀土离子(Ⅲ )的光谱。112 f —d 跃迁光谱 4f n 向4f n -15d 的跃迁是组态间的跃迁。这种跃迁是宇称选择规则允许的,因而4f —5d 的跃迁是较强的;三价离子的吸收带一般在紫外区出现;由于5d 能级易受周围离子的配体场影响,相对于f —f 跃迁来说,谱带变宽。113 电荷跃迁光谱 稀土离子的电荷跃迁光谱,是指配体向金属发生电荷跃迁而产生的光谱,是电荷密度从配体的分子轨道向金属离子轨道进行重新分配的结果。镧系络合物能否出现电荷跃迁带取决于配体和金属离子的氧化还原性。一般在易氧化的配体 和易还原为低价离子(Sm 3+,Eu 3+ ,Te 3+,Yb 3+和Ce 4+)的络合物光谱中易见到电荷跃迁带。谱带的特点是有较强的强度和较宽的宽度。

荧光分析法检测原理及应用举例

1荧光定义 某些化学物质从外界吸收并储存能量而进入激发态,当其从激发态回到基态时,过剩的能量以电磁辐射的形式放射出去即发光,称之为荧光。可产生荧光的分子或原子在接受能量后引起发光,供能一旦停止,荧光现象随之消失。 2荧光分类 由化学反应引起的荧光称为化学荧光,由光激发引起的荧光称为光致荧光,课题主要研究光致荧光。按产生荧光的基本微粒不同,荧光可分为原子荧光、X 射线荧光和分子荧光,课题主要研究分子荧光。 3光致荧光机理 某一波长的光照射在分子上,分子对此光有吸收作用,光能量被分子所吸收,分子具有的能量使分子的能级由最低的基态能级上升至较高的各个激发态的不同振动能级,称为跃迁。分子在各个激发态处于不稳定的状态,并随时在激发态的不同振动能级下降至基态,在下降过程中,分子产生发光现象,此过程为释放能量的过程,即为光致荧光的机理。光致荧光的过程按照时间顺序可分为以下几部分。 3.1 分子受激发过程 在波长为10~400nm的紫外区或390~780nm的可见光区,光具有较高的能量,当某一特征波长的光照射分子时,是的分子会吸收此特征波长的光能量,能量由光传递到分子上,此过程为分子受激发过程。分子中的电子会出现跃迁过程,在稳定的基态向不稳定的激发态跃迁。跃迁所需要的能量为跃迁前后两个能级的能量差,即为吸收光的能量。分子跃迁至不稳定的激发态中即为电子激发态分子。 在电子激发态中,存在多重态。多重态表示为2S+1 o S为0或1,它表示电子在自转过程中,具有的角动量的代数和。S=0 表示所有电子自旋的角动量代数和为0,即所有电子都是自旋配对的,那么2S+仁1,电子所处的激发态为单重态,用S i 表示,由此可推出,S0 即为基态的单重态,S1 为第一跃迁能级激发态的单重态,S2为第二跃迁能级激发态的单重态。S=1表示电子的自旋方向不能配对,说明电子在跃迁过程中自旋方向有变化,存在不配对的电子为2个,2S+仁3,电子在激发态中位于第三振动能级,称为三重态,用T i 来表示,T1 即为第一激发 态中的三重态,T2即为第二激发态中的三重态,以此类推。 分子跃迁至各个激发态中,状态不稳定,随时会释放出能量,释放能量的类型有两种:一种是辐射跃迁,另一种是非辐射跃迁,释放能量会回到稳定的基态。

时间分辨荧光免疫分析技术及临床应用

时间分辨荧光免疫分析技术及临床应用 武学成1,2(综述),何 林1,周克元2(审校) (1.深圳人民医院检验医学部,广东深圳518001;2.广东医学院,广东湛江524001) 中图分类号:R44616 文献标识码:A 文章编号:100622084(2006)0720434203 摘要:标记免疫分析技术的出现使临床生化分析由常量分析向微量分析转变。20世纪80年代出现的时间分辨荧光免疫分析技术,以其独特的优势成为最有发展前途的非放射免疫标记技术。本文主要介绍时间分辨荧光免疫技术基本原理、基础试剂、基本技术以及近年来临床应用。 关键词:时间分辨荧光免疫分析技术;铕;标记技术 The R esearch and C linical Application of Time2resolved F luoroimmunoassay WU Xue2cheng1,2,HE Lin1, ZHOU K e2yuan2.(1.The Medical Laboratory Department o f Shenzhen People′s Hospital,Shenzhen518001,China; 2.Guangdong Medical College,Zhanjiang524001,China) Abstract:The marked immunoassay technique gives the changes from macroanalysis to microanalysis.T ime2 res olved fluoroimmunoassay technology is a non2radio2immunity labeling technique having m ost perspective future because of its unique advantage since1980s.This article reviewed s ome aspects about it including fundamental principle,basic reagent,basic technique and the its clinical application in recent years. K ey w ords:T ime2res olved fluoroimmunoassay;Europium;Labeling technique 随着生物标记技术的不断进步,免疫分析技术得到了长 足的发展。免疫分析技术逐步由放射免疫分析技术向非放射 免疫技术转变。在此期间,涌现了一大批非放射免疫技术,例 如酶免分析技术、化学发光免疫分析技术、时间分辨荧光免疫 分析技术(time2res olved fluoreimmuoassay,TRFI A)等。但是从灵 敏度来说只有时间分辨荧光免疫分析技术可与放射免疫媲 美。TRFI A是20世纪80年代迅速发展起来的的一种公认的 最有发展前途的非放射免疫标记技术。 1 时间分辨荧光免疫分析技术的基本原理 TRFI A是用镧系金属离子作为示踪物标记蛋白质、多肽、 激素、抗体、核酸探针或生物活性细胞,与其螯合剂、增强液 (有一部分不需要)在待反应体系(如:抗原抗体免疫反应、生 物素亲和素反应、核酸探针杂交反应、靶细胞与效应细胞的杀 伤反应等)发生反应后,用时间分辨荧光仪测定最后产物中的 荧光强度,根据荧光强度和相对荧光强度比值,推测反应体系 中分析物的浓度,达到定量分析的目的。 2 时间分辨荧光分析技术简介 TRFI A的基础试剂包括示踪剂、稀有元素双功能螯合剂、 分析缓冲液、增强溶液。基本技术包括包被技术、标记技术、 反应模式。 2.1 基础试剂 2.1.1 示踪剂的选择和使用 所使用的稀土元素主要位于 元素周期表中的ⅢB族,包括钪(scandium,SC)、钇(yttrium,Y) 和镧系元素。到目前为止,只有铕(europium,Eu)、铽(terbium, Tb)、钐(samarium,Sm)、钕(neodymium,Nd)、镝(dysprosium,Dy) 等5种被用作TRFI A示踪剂,尤以Eu3+常用。一般用Eu2O3 制备成EuCl 3 ,再经纯化和常温真空抽干,然后干燥保存。用 Eu3+等镧系元素作为示踪剂有以下特点:①荧光物质激发光 谱曲线的最大吸收波长和发射光谱的最大发射波长之间的 差,称为S tokes位移。普通荧光物质荧光光谱的S tokes位移 只有几十纳米,激发光谱和发射光谱通常有部分重叠,互相干 扰严重。游离铕的荧光信号虽然相当微弱,但当Eu3+与螯合剂形成螯合物时,产生分子内和分子间能量传递,使Eu3+的荧光强度显著增强,S tokes位移达200nm,很容易分辨激发光和发射光,从而排除激发光干扰;②镧系元素与普通的荧光团比较,镧系元素离子螯合物荧光的衰变时间(decay time)长,为传统荧光的103~106倍。稀土离子及一些常见荧光物质的荧光寿命(见表1)。镧系元素的荧光不仅强度高,而 且半衰期也很长,介于10~1000μs之间。这样,用时间分辨荧光仪测量Eu3+螯合物的荧光时,在脉冲光源激发之后,可以适当的延迟一段时间,待血清、容器、样品管和其他成分的短半衰期荧光衰变后再测量,这时就只存Eu3+标记物的特异性荧光,即通过时间分辨,极大地降低了本底荧光,实现了高信噪比,这是TRFI A高灵敏度和低干扰的原因之一。如果在使用链霉亲合素2生物素系统,可更好地降低非特异性荧光的干扰[1];③镧系螯合物激发光光谱较宽,最大激发波长在300~500nm,可通过增加激发光能量来提高灵敏度。而它的发射光谱带很窄,甚至不到10nm,可采用只允许发射荧光通过的滤光片,进一步降低本底荧光;④Eu3+等镧系标记物与放射性同位素相比不受半衰期的影响。如125I标记试剂最长可用3个月,酶标记物常因其纯度、显色底物不稳定等问题,使其应用受到限制。Eu3+与双功能螯合剂螯合,可形成稳定的螯合物,稳定性很高,2年内能保证质量。再者,Eu3+标记物体积很小(为原子标记),标记后不会影响被标记物的空间立体结构,这既保证了被检测物质的稳定性(尤其对蛋白质影响更小),又可实现多位点标记[2]。标记物稳定就可以对标记物进行多次激发,通过对每次激发的荧光信号累加后取平均值的办法,可大大减少偶然误差,提高准确度。同时多位点标记技术,不仅使检测更灵敏,也使一个试剂盒能够同时检测出两种或两种以上的项目。 2.1.2 稀有元素双功能螯合剂 稀土元素作为金属离子,很难直接与抗原抗体结合,因此在标记时需要有一种双功能基团的螯合物,它们分子内或带氨基和羧基或带有异硫氰酸基和羧酸基,一端与稀土离子连接,一端与抗原或抗体的自由氨基(组氨酸、酪氨酸)连接。目前常用镧系元素标记的双功能螯合剂有异硫氰酸2苯基2二乙胺四乙酸(IC B2E DT A)、β2萘甲酰三氟丙酮(β2NT A)、二乙基三胺五乙酸环酐(DTPAA)、4,72二氯磺基苯21,102菲罗啉22,9二羧酸(BCPDA)及对2异硫氰酸2苄基2二乙三胺四乙酸(P2IC B2DTT A)等5种。Y uan等[3]合成出一种稳定的能发出强烈荧光的Eu3+络合剂4,4′2二(1,1′,2,2′,

荧光免疫技术

第八章荧光免疫技术 FluoreSCenCe ImmunoaSsay 第一部分目的要求和教学内容 一、目的要求 掌握:荧光免疫技术原理、类型及临床应用,常用的荧光物质;熟悉:荧光免疫技术 的技术要点;了解:荧光标记物的制备与保存,镧系稀土元素标记物的制备,荧光免疫技术主要类型的技术要点。 二、教学内容 1.荧光标记物的制备:荧光和荧光物质,荧光标记物的制备。 2.荧光免疫显微技术:基本原理,技术类型,技术要点,方法评价,临床应用。 3.荧光免疫测定技术:时间分辨荧光免疫测定(基本原理,技术类型,技术要点,方法评价和临床应用);荧光偏振免疫测定(基本原理,技术类型,技术要点,方法评价和临床应用)。 第二部分测试题 一、选择题 (一)单项选择题(A型题) 1.如下有关荧光免疫技术正确的提法 A.直观性检测抗原和抗体 B.直观性检测抗原 C.直观性检测抗体 D.间接检测抗原或抗体 E.间接检测抗原和抗体 2.荧光素易受温度影响,操作时通常选择较佳的温度 A.10~15℃ B.15~20℃ C.20~25℃ D.25~30℃ E.30~35℃ 3.荧光抗体保存3~4年,应选择 A.小量分装、4℃ B.瓶分装、4℃ C.瓶分装、-10℃ D.瓶分装,-20℃ E.小量分装、-20℃ 4.下列组成荧光显微镜的结构中,与普通光学显微镜相同的是 A.光源 B.聚光器 C.目镜 D.物镜 E.滤光片

5.下列哪项方法不属于荧光免疫显微技术类型 A.直接法 B.夹心法 C.间接法 D.补体法 E.双标记法 6.荧光抗体染色标本的观察时间 A.当天 B.第二天 C.第三天 D.1周内 E.5天 7.荧光抗体闭接法应标记 A.抗原 B.抗体 C.补体 D.抗抗体 E.抗体及补体 8.荧光显微技术常用于检验血清中各种自身抗体和多种病原体抗体的方法是 A.直接法 B.间接法 C.双抗体夹心法 D.补体法 E.双标记法 9.荧光抗体间接法可检测 A.抗原 B.抗体 C.补体 D.蛋白质 E.抗原和抗体 lO.在荧光显微镜检查中直接影响检测结果的是 A.抗原荧光染色 B.抗体荧光染色 C.补体荧光染色 D.特异性荧光染色 E.非特异性荧光染色 11.主要用于测定各种激素、蛋白质、酶、药物及病毒抗原的技术 A.荧光偏振免疫测定 B.荧光免疫显微技术 C.时间分辨荧光免疫测定 D.底物标记荧光免疫测定 E.流式荧光免疫技术 12.临床药物浓度检测的首选方法

时间分辨荧光免疫分析法产前筛查原理与操作规程

时间分辨荧光免疫分析法产前筛查原理与操作规程 一、产前筛查定义及其原理 产前筛查(Prenatal Screening)是指通过经济、简便和较少创伤的检测方法,从孕妇群体中发现怀有某些先天缺陷胎儿的高危孕妇,以便进而进行诊断,以最大限度地减少异常儿的出生。血清学标志物产前筛查已成为非侵入性产前诊断的重要方法。目前产前筛查的两种主要疾病是唐氏综合征(Down’s Sydrome,DS;又称21三体综合征)和胎儿神经管缺陷(Neural Tube Defects,NTDs),也包括一部分18三体综合征。产前筛查可以在妊娠早期(7~13周)或中期(14~21周)进行。目前用于产前筛查的血清学标志物有:甲胎蛋白(AFP)、游离β- )、妊娠相关血浆蛋白(PAPP-A)、绒毛膜促性腺激素(F-β-hCG)、游离雌三醇(uE 3 抑制素A(inhibin A)等。产前筛查实验测量通用评价指标为中位值倍数(MOM),正常妊娠特定的MOM=标本检测浓度/相应孕周中位值浓度。产前筛查系统由体外诊断试剂、检测仪器和筛查分析软件组成。检测仪器配合体外诊断试剂检测出孕妇血清中标记物(AFP、F-β-hCG、PAPP-A等)的浓度,将检测数据及孕妇相关因素输入筛查分析软件中,即可得出唐氏综合征(DS)和神经管缺陷(NTD)筛查的结果。由于目前的技术水平的限制,产前筛查技术都不能做到筛查100%正确。假阴性病例因此会误诊,假阳性病例一般在产前诊断实验时被纠正。 二、唐氏综合征的产前筛查 唐氏综合征是人类最常见的一种染色体病,发病率约1/800~1/600,男性多于女性。1866年英国医生Langdom Down 首次对此病进行临床描述,因此命名称为Down,s Syndrome,简称DS。1959年Lejeune首先发现本病的病因是多了一条21号染色体,故又将其命名为21三体综合征。唐氏综合征的主要临床表现:严重智力低下、愚型面容,约50%伴有先天性心脏病、小头畸形等发育异常。目前对DS尚未有治疗方法,因此通过产前筛查找出高危孕妇,对其进行产前诊断是防止患儿出生的重要手段。 1.以孕妇年龄作为筛查指标 最早用于DS的筛查指标为孕妇年龄。早期研究发现,DS的发病率随孕妇年龄增高而增高,1977年Hook和Chambers报道了孕妇年龄在20~30岁之间,发病率呈线性增加,而在33岁左右呈对数增加,孕妇年龄为35岁时,发病率约1/384,40岁时约1/110,比30岁时增加了8倍,如图1。一般认为35岁以上

激发光谱与发射光谱原理及应用-学生讲义

@ 激发光谱与发射光谱原理及应用 (一)实验目的与要求 目的:1、了解激发光谱与发射光谱在物质定性及定量分析中的原理和方法 2、学习荧光光度计的使用方法 要求:1、掌握激发光谱与发射光谱测定的原理; 2、理解激发光谱与发射光谱在物质定性及定量分析中的基本应用; 3、了解荧光光光度计的基本组成,各部件的作用; 4、学习利用Origin软件处理实验数据。 、 (二)实验原理 利用某些物质受光照射时所发生的荧光的特性和强度,进行物质的定性分析或定量分析的方法,称为荧光光谱分析。当物质吸收了特征频率的光子,就由原来的基态能级跃迁至电子激发态的各个不同振动能级。激发态分子经与周围分子撞击而消耗了部分能量,迅速下降至第一电子激发态的最低振动能级,并停留约10-9秒之后,直接以光的形式释放出多余的能量,下降至电子基态的各个不同振动能级,此时所发射的光即是荧光。产生荧光的第一个必要条件是该物质的分子必须具有能吸收激发光的结构,通常是共轭双键结构;第二个条件是该分子必须具有一定程度的荧光效率,即荧光物质吸光后所发射的荧光量子数与吸收的激发光的量子数的比值。使激发光的波长和强度保持不变,而让荧光物质所发生的荧光通过发射单色器照射于检测器上,调节发射单色器至各种不同波长处,由检测器测出相应的荧光强度,然后以荧光波长为横坐标,以荧光强度为纵坐标作图,即为荧光光谱,又称荧光发射光谱。荧光发射光谱反映物质下能级的信息。让不同波长的激发光激发荧光物质使之发生荧光,而让荧光以固定的发射波长照射到检测器上,然后以激发光波长为横坐标,以荧光强度为纵坐标,所绘制的图即为荧光激发光谱,又称激发光谱。荧光激发光谱反映物质上能级的信息。 紫外-可见光区荧光的产生,是由第一电子激发态的最低振动能级跃迁至电子基态的各个不同振动能级所致,而与荧光物质分子被激发至哪一个能级无关。因此,荧光光谱的形状与激发光的波长无关。

全自动时间分辨荧光免疫分析系统

PerkinElmer Wallac 1235 AutoDELFIA?全自动时间分辨荧光 免疫分析系统 1235 AutoDELFIA?全自动时间分辨荧光免疫分析系统是一个全自动系统,它无需人工操作,十分便利,甚至对整夜运行的测试也是如此。只需装载样品、微孔板以及运行所需的相应试剂,启动仪器并令其执行测试即可。处理器在可控的条件下,会完成DELFIA测试的所有步骤,并为每一个分析物分批提供结果。 AutoDELFIA可连接实验室主机,接受工作列表并返回取得的结果。或者可以在MultiCalc中或使用工作站软件创建工作列表。系统内全部使用条形码,从而最大程度地降低发生错误的可能性。该系统具有极高的承载量,使用同一样品管可进行若干种测试,非常灵活。 AutoDELFIA主要包括三个部分,它们分别是1235-501 AutoDELFIA?全自动微孔板处理器、1297-014AutoDELFIA?样品处理器和1224-8010 AutoDELFIA?

工作站。它们具有强大的功能,简述如下: 一、样品处理系统 ●允许各种原试管上机(2ml-10ml) ●样品及标准品条形码自动输入 ●可装载12个试管架,一次上机432个样品 ●4个加样探针,每一探针具有液面检测功能,凝血自动识别功能。 ●连续操作,样品检测项目自动组合 ●样品自动稀释功能,自动对样品进行5-100倍稀释 ●独特探测系统,可避免样品中的血块和气泡 ●自动清洗装置,样品交叉污染<0.005% ●标准品自动冷藏,标准架可容纳56个标准。 二、实验运行系统 ●24小时待机 ●对同一样品1秒钟检测1000次,确保结果准确 ●可同时装载12块微孔板,容纳8种不同的试剂,一个样品最多同时可检测 8个项目 ●每批可进行1152个检测 ●条形码自动识别,确保操作准确 ●24针洗板机,测量后自动清洗,吸液和冲洗压力自动控制。 ●加样管路自动冲洗,精确度超过1%CV。 ●双试剂加样器,试剂加样器容量0-1000ul,容量为50ul时精确度大于 1%CV。 ●时间分辨荧光计采用氙光源,1us光脉冲,脉冲频率1000/S;双激发光 滤光片转换器,发射光滤光片自动转换,滤光片包括Europium(613nm)、Samarium(645nm)、Terbium(545nm)。 ●可进行多标记项目检测 ●除进行临床常规免疫项目检测外,还广泛应用于新生儿筛查和产前筛查 领域 ●每个血样可同时进行多个项目检测 三、中央控制系统 ●Windows界面,简单,易于操作 ●预装AutoDELFIA?系统软件,Windows NT4.0,及功能强大的 AutoDELFIA?MultiCalc数据处理软件。

相关文档
相关文档 最新文档