文档库 最新最全的文档下载
当前位置:文档库 › 人教版八年级下册数学专题19:动态几何之定值问题探讨

人教版八年级下册数学专题19:动态几何之定值问题探讨

人教版八年级下册数学专题19:动态几何之定值问题探讨
人教版八年级下册数学专题19:动态几何之定值问题探讨

【中考攻略】专题19:动态几何之定值问题探讨

动态题是近年来中考的的一个热点问题,动态包括点动、线动和面动三大类,解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。常见的题型包括最值问题、面积问题、和差问题、定值问题和存在性问题等。前面我们已经对最值问题、面积问题、和差问题进行了探讨,本专题对定值问题进行探讨。

结合全国各地中考的实例,我们从三方面进行动态几何之定值问题的探讨:(1)线段(和差)为定值问题;(2)面积(和差)为定值问题;(3)其它定值问题。

一、线段(和差)为定值问题:

典型例题: 例1:(黑龙江绥化8分)如图,点E 是矩形ABCD 的对角线BD 上的一点,且BE=BC ,AB=3,BC=4,点P 为直线EC 上的一点,且PQ ⊥BC 于点Q ,PR ⊥BD 于点R .

(1)如图1,当点P 为线段EC 中点时,易证:PR+PQ= 5

12(不需证明). (2)如图2,当点P 为线段EC 上的任意一点(不与点E 、点C 重合)时,其它条件不变,则(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由. (3)如图3,当点P 为线段EC 延长线上的任意一点时,其它条件不变,则PR 与PQ 之间又具有怎样的数量关系?请直接写出你的猜想.

【答案】解:(2)图2中结论PR +PQ=12

5

仍成立。证明如下: 连接BP ,过C 点作CK ⊥BD 于点K 。

∵四边形ABCD 为矩形,∴∠BCD=90°。

又∵CD=AB=3,BC=4,∴2 2 22BD CD BC 345=+=+=。

∵S △BCD =12BC?CD=12BD?CK ,∴3×4=5CK ,∴CK=125

∵S △BCE =

12BE?CK ,S △BEP =12PR?BE ,S △BCP =12

PQ?BC ,且S △BCE =S △BEP +S △BCP , ∴12BE?CK=12PR?BE +12

PQ?BC 。 又∵BE=BC ,∴12CK=12PR +12

PQ 。∴CK=PR +PQ 。 又∵CK=125,∴PR +PQ=125

。 (3)图3中的结论是PR -PQ=125. 【考点】矩形的性质,三角形的面积,勾股定理。

【分析】(2)连接BP ,过C 点作CK ⊥BD 于点K .根据矩形的性质及勾股定

理求出BD 的长,根据三角形面积相等可求出CK 的长,最后通过等量代换即可

证明。

(3)图3中的结论是PR -PQ=125 。

连接BP ,S △BPE -S △BCP =S △BEC ,S △BEC 是固定值,BE=BC 为两

个底,PR ,PQ 分别为高,从而PR -PQ=125

。 例2:(江西省10分)如图,已知二次函数L 1:y=x 2﹣4x+3与x 轴交于A .B 两点(点A 在点B 左边),

与y 轴交于点C .

(1)写出二次函数L 1的开口方向、对称轴和顶点坐标;

(2)研究二次函数L 2:y=kx 2

﹣4kx+3k (k≠0).

①写出二次函数L 2与二次函数L 1有关图象的两条相同的性质;

②是否存在实数k ,使△ABP 为等边三角形?如果存在,请求出k 的值;如不存在,请说明理由; ③若直线y=8k 与抛物线L 2交于E 、F 两点,问线段EF 的长度是否发生变化?如果不会,请求出EF 的长度;如果会,请说明理由.

【答案】解:(1)∵抛物线()2

2y x 4x 3x 21=-+=--,

∴二次函数L 1的开口向上,对称轴是直线x=2,顶点坐标(2,﹣1)。

(2)①二次函数L 2与L 1有关图象的两条相同的性质:

对称轴为x=2;都经过A (1,0),B (3,0)两点。

②存在实数k ,使△ABP 为等边三角形.

∵()22y kx 4kx 3k k x 2k =-+=--,∴顶点P (2,-k ).

∵A (1,0),B (3,0),∴AB=2

要使△ABP 为等边三角形,必满足|-k|=3,

∴k=±3。

③线段EF 的长度不会发生变化。

∵直线y=8k 与抛物线L 2交于E 、F 两点,

∴kx 2﹣4kx+3k=8k ,∵k≠0,∴x 2﹣4x+3=8。解得:x 1=﹣1,x 2=5。

∴EF=x 2﹣x 1=6。∴线段EF 的长度不会发生变化。

【考点】二次函数综合题,二次函数的性质,等边三角形的性质,解直角三角形。

【分析】(1)抛物线y=ax 2+bx+c 中:a 的值决定了抛物线的开口方向,a >0时,抛物线的开口向上;a <0时,抛物线的开口向下。抛物线的对称轴方程和顶点坐标,可化为顶点式或用公式求解。

(2)①新函数是由原函数的各项系数同时乘以k 所得,因此从二次函数的图象与解析式的系数的关系入手进行分析。

②当△ABP 为等边三角形时,P 点必为函数的顶点,首先表示出P 点纵坐标,它的绝对值正好是等边三角形边长的32

倍,由此确定k 的值。 ③联立直线和抛物线L 2的解析式,先求出点E 、F 的坐标,从而可表示出EF 的长,若该长度

为定值,则线段EF 的长不会发生变化。

例3:(山东德州12分)如图所示,现有一张边长为4的正方形纸片ABCD ,点P 为正方形AD 边上的一点(不与点A 、点D 重合)将正方形纸片折叠,使点B 落在P 处,点C 落在G 处,PG 交DC 于H ,折痕为EF ,连接BP 、BH .

(1)求证:∠APB=∠BPH ;

(2)当点P 在边AD 上移动时,△PDH 的周长是否发生变化?并证明你的结论;

(3)设AP 为x ,四边形EFGP 的面积为S ,求出S 与x 的函数关系式,试问S 是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.

【答案】解:(1)如图1,∵PE=BE ,∴∠EBP=∠EPB .

又∵∠EPH=∠EBC=90°,

∴∠EPH ﹣∠EPB=∠EBC ﹣∠EBP ,即∠PBC=∠BPH 。

又∵AD ∥BC ,∴∠APB=∠PBC 。∴∠APB=∠BPH 。

(2)△PHD 的周长不变为定值8。证明如下:

如图2,过B 作BQ ⊥PH ,垂足为Q 。

由(1)知∠APB=∠BPH ,

又∵∠A=∠BQP=90°,BP=BP ,

∴△ABP ≌△QBP (AAS )。∴AP=QP ,AB=BQ 。

又∵AB=BC ,∴BC=BQ 。

又∵∠C=∠BQH=90°,BH=BH ,

∴△BCH ≌△BQH (HL )。∴CH=QH 。

∴△PHD 的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8。

(3)如图3,过F 作FM ⊥AB ,垂足为M ,则FM=BC=AB 。

又∵EF 为折痕,∴EF ⊥BP 。

∴∠EFM+∠MEF=∠ABP+∠BEF=90°。∴∠EFM=∠ABP 。

又∵∠A=∠EMF=90°,AB=ME ,∴△EFM ≌△BPA (ASA )。

∴EM=AP=x .

∴在Rt △APE 中,(4﹣BE )2+x 2=BE 2,即2

x BE 2+8

=。 ∴2

x CF BE EM 2+x 8=-=-。 又∵四边形PEFG 与四边形BEFC 全等, ∴()()22211x 11S BE CF BC=4+x 4=x 2x+8=x 2+622422??=?+??-?-- ? ???

1

04

2

<<,∴当x=2时,S有最小值6。

【考点】翻折变换(折叠问题),正方形的性质,折叠的性质,全等三角形的判定和性质,勾股定理,二次函数的最值。

【分析】(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案。

(2)先由AAS证明△ABP≌△QBP,从而由HL得出△BCH≌△BQH,即可得CH=QH。因此,△PDH的周长=PD+DH+PH=AP+PD+DH+HC=AD+CD=8为定值。

(3)利用已知得出△EFM≌△BPA,从而利用在Rt△APE中,(4﹣BE)2+x2=BE2,利用二次函数的最值求出即可。

例4:(福建泉州12分)已知:A、B、C不在同一直线上.

(1)若点A、B、C均在半径为R的⊙O上,

i)如图一,当∠A=45°时,R=1,求∠BOC的度数和BC的长度;

ii)如图二,当∠A为锐角时,求证sin∠A= BC

2R

(2).若定长线段

....BC的两个端点分别在∠MAN的两边AM、AN(B、C均与点A不重合)滑动,如图三,当∠MAN=60°,BC=2时,分别作BP⊥AM,CP⊥AN,交点为点P ,试探索:在整个滑动过程中,P、A 两点的距离是否保持不变?请说明理由.

【答案】解:(1)i)∵∠A=45°,

∴∠BOC=90°(同弧所对的圆周角等于其所对的圆心角的一半)。

又∵R=1,∴由勾股定理可知BC=11=2

ii)证明:连接BO并延长,交圆于点E,连接EC。

可知EC⊥BC(直径所对的圆周角为90°),

且∠E=∠A(同弧所对的圆周角相等)。

故sin∠A=sin∠A=BC BC BE2R

=。

(2)保持不变。理由如下:

如图,连接AP,取AP的中点K,连接BK、CK,

在Rt△APC中,CK=1

2

AP=AK=PK。

同理得:BK=AK=PK。

∴CK=BK=AK=PK。∴点A、B、P、C都在⊙K上。

∴由(1)ii)sin∠A=BC

2R

可知sin60°=

BC

AP

∴AP=

BC43

sin603

=

?

(为定值)。

【考点】三角形的外接圆与外心,圆周角定理,勾股定理,锐角三角函数定义,特殊角的三角函数值,直角三角形中线性质。

【分析】(1)i)根据圆周角定理得出∠BOC=2∠A=90°,再利用勾股定理得出BC的长;

ii)作直径CE,则∠E=∠A,CE=2R,利用sin∠A=sin∠E=BC BC

BE2R

=,得出即可。

(2)首先证明点A、B、P、C都在⊙K上,再利用sin∠A=BC

2R

,得出AP=

BC43

sin603

=

?

(定

值)即可。

例5:(山东潍坊11分)如图,已知抛物线与坐标轴分别交于A(-2,O)、B(2,0)、C(0,-l)三点,过坐标原点O的直线y=kx与抛物线交于M、N两点.分别过点C、D(0,-2)作平行于x轴的直线1l、2l.

(1)求抛物线对应二次函数的解析式;

(2)求证以ON为直径的圆与直线1l相切;

(3)求线段MN的长(用k表示),并证明M、N两点到直线2l的距离之和等于线段MN的长.

【答案】解:(1)设抛物线对应二次函数的解析式为y=ax 2+bx +c ,

则4a 2b+c=04a+2b+c=0c=1-????-? 解得1a=4b=0c=1?????-??

∴抛物线对应二次函数的解析式 所以21y=x 14-。

(2)设M(x 1,y 1),N(x 2,y 2),因为点M 、N 在抛物线上,

∴22112211y =x 1y =x 144--,,∴x 22=4(y 2+1)。

又∵()()2222222222ON x y 4y 1y y 2=+=++=+,∴2ON y 2=+。

又∵y 2≥-l ,∴ON=2+y 2。

设ON 的中点E ,分别过点N 、E 向直线1l 作垂线,垂足

为P 、F , 则 22y OC NP EF 22

++==, ∴ON=2EF ,

即ON 的中点到直线1l 的距离等于ON 长度的一半,

∴以ON 为直径的圆与1l 相切。

(3)过点M 作MH ⊥NP 交NP 于点H ,则()()222222121MN MH NH x x y y =+=-+-,

又∵y 1=kx 1,y 2=kx 2,∴(y 2-y 1)2=k 2(x 2-x 1)2。∴MN 2=(1+k 2)(x 2一x l )2。

又∵点M 、N 既在y=kx 的图象上又在抛物线上, ∴21kx=x 14

-,即x 2-4kx -4=0,∴x 2+x 1=4k ,x 2·x 1=-4。

∴MN 2=(1+k 2)(x 2一x l )2=(1+k 2)[ (x 2+x l )2-4x 2·x l ] =16(1+k 2)2。∴MN=4(1+k 2)。

延长NP 交2l 于点Q ,过点M 作MS ⊥2l 交2l 于点S ,

则MS +NQ=y 1+2+y 2+2=22121

1x 1+x 1+444

-- ()()()()

222222*********=x +x +2=x +x 2x x +2=16k +8+2=4k +4=41+k 444??-??? ∴MS+NQ=MN ,即M 、N 两点到2l 距离之和等于线段MN 的长。

【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,中点坐标的求法,直线与圆相切的条件,一元二次方程根与系数的关系,勾股定理。

【分析】(1)根据点在曲线上,点的坐标满足方程的关系,用待定系数法即可求出抛物线对应二次函数的解析式。

(2)要证以ON 为直径的圆与直线1l 相切,只要证ON 的中点到直线1l 的距离等于ON 长的一半即可。

(3)运用一元二次方程根与系数的关系,求出MN 和M 、N 两点到直线2l 的距离之和,相比较即可。

例6:(湖北咸宁10分)如图1,矩形MNPQ 中,点E ,F ,G ,H 分别在NP ,PQ ,QM ,MN 上,若4321∠=∠=∠=∠,则称四边形EFGH 为矩形MNPQ 的反射四边形.图2,图3,图4中,四边形ABCD 为矩形,且AB=4,BC=8.

理解与作图:

(1)在图2,图3中,点E ,F 分别在BC ,CD 边上,试利用正方形网格在图上作出矩形ABCD 的 反射四边形EFGH .

计算与猜想:

(2)求图2,图3中反射四边形EFGH 的周长,并猜想矩形ABCD 的反射四边形的周长是否为定值? 启发与证明:

(3)如图4,为了证明上述猜想,小华同学尝试延长GF 交BC 的延长线于M ,试利用小华同学给我 们的启发证明(2)中的猜想.

【答案】解:(1)作图如下:

(2)在图2中, 22EF FG GH HE 242025====+==,

∴四边形EFGH 的周长为85。

在图3中,22EF GH 215==+=,22FG HE 364535==+==,

∴四边形EFGH 的周长为2523585?+?=。

猜想:矩形ABCD 的反射四边形的周长为定值。

(3)延长GH 交CB 的延长线于点N ,

∵12∠=∠,15∠=∠,

∴25∠=∠。

又∵FC=FC ,

∴Rt △FCE ≌Rt △FCM (ASA )。

∴EF=MF ,EC=MC 。

同理:NH=EH ,NB=EB 。∴MN=2BC=16。

∵M 905901∠=?-∠=?-∠,N 903∠=?-∠,13∠=∠,∴M N ∠=∠。

∴GM=GN 。

过点G 作GK ⊥BC 于K ,则1KM MN 82

==。 ∴2222GM GK KM 4845=+=+=。

∴四边形EFGH 的周长为2GM 85=。∴矩形ABCD 的反射四边形的周长为定值。

【考点】新定义,网格问题,作图(应用与设计作图),勾股定理,全等三角形的判定和性质,矩形的性质,等腰三角形的判定和性质。

【分析】(1)根据网格结构,作出相等的角即可得到反射四边形。

(2)图2中,利用勾股定理求出EF=FG=GH=HE的长度,然后即可得到周长,图3中利用勾股定理求出EF=GH,FG=HE的长度,然后求出周长,从而得到四边形EFGH的周长是定值。

(3)延长GH交CB的延长线于点N,再利用“ASA”证明Rt△FCE和Rt△FCM全等,根据全等三角形对应边相等可得EF=MF,EC=MC,同理求出NH=EH,NB=EB,从而得到MN=2BC,再证明GM=GN,

过点G作GK⊥BC于K,根据等腰三角形三线合一的性质求出

1

KM MN8

2

==,再利用勾股定理求出GM

的长度,然后即可求出四边形EFGH的周长。

例7:(广西崇左10分)如图所示,在正方形ABCD中,点E、F分别在BC、CD上移动,但点A 到EF的距离AH始终保持与AB的长度相等,问在点E、F移动过程中;

(1)∠EAF的大小是否发生变化?请说明理由.

(2)△ECF的周长是否发生变化?请说明理由.

练习题:

1. (湖南岳阳8分)如图①,将菱形纸片AB(E)CD(F)沿对角线BD(EF)剪开,得到△ABD和△ECF,固定△ABD,并把△ABD与△ECF叠放在一起.

(1)操作:如图②,将△ECF的顶点F固定在△ABD的BD边上的中点处,△ECF绕点F在BD边上方左右旋转,设旋转时FC交BA于点H(H点不与B点重合),FE交DA于点G(G点不与D点重合).求证:BH?GD=BF2

(2)操作:如图③,△ECF的顶点F在△ABD的BD边上滑动(F点不与B、D点重合),且CF始终经过点A,过点A作AG∥CE,交FE于点G,连接DG.

探究:FD+DG=.请予证明.

2. (四川眉山11分)如图,在直角坐标系中,已知点A(0,1),B(-4,4),将点B绕点A顺时针方向旋转90°得到点C;顶点在坐标原点的拋物线经过点B.

(1)求抛物线的解析式和点C的坐标;

(2)抛物线上一动点P,设点P到x轴的距离为d1,点P到点A的距离为d2,试说明d2=d1+1;

(3)在(2)的条件下,请探究当点P位于何处时,△PAC的周长有最小值,并求出△PAC的周长的最小值.

3. (湖南郴州10分)如图,Rt△ABC中,∠A=30°,BC=10cm,点Q在线段BC上从B向C运动,点P 在线段BA上从B向A运动.Q、P两点同时出发,运动的速度相同,当点Q到达点C时,两点都停止运

动.作PM⊥PQ交CA于点M,过点P分别作BC、CA的垂线,垂足分别为E、F.

(1)求证:△PQE∽△PMF;

(2)当点P、Q运动时,请猜想线段PM与MA的大小有怎样的关系?并证明你的猜想;

(3)设BP=x,△PEM的面积为y,求y关于x的函数关系式,当x为何值时,y有最大值,并将这个值求出来.

4. (辽宁营口14分)已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边所在直线上,且随着点P的运动而运动,PE=PD总成立.

(1)如图(1),当点P在对角线AC上时,请你通过测量、观察,猜想PE与PB有怎样的关系?(直接写出结论不必证明);

(2)如图(2),当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;

(3)如图(3),当点P运动到CA的反向延长线上时,请你利用图(3)画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)

(1)(2)

5. (贵州遵义12分)如图,梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,现有两个动点P、Q

分别从B、D两点同时

..出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每秒1cm的速度沿DA 向终点A移动,线段PQ与BD相交于点E,过E作EF∥BC交CD于点F,射线QF交BC的延长线于点H,设动点P、Q移动的时间为t(单位:秒,0

(1)当t为何值时,四边形PCDQ为平行四边形?

(2)在P、Q移动的过程中,线段PH的长是否发生改变?如果不变,求出线段PH的长;如果改变,请说明理由.

6. (黑龙江龙东五市8分)如图,点E 是矩形ABCD 的对角线BD 上的一点,且BE=BC ,AB=3,BC=4,点P 为直线EC 上的一点,且PQ ⊥BC 于点Q ,PR ⊥BD 于点R 。

(1)如图1,当点P 为线段EC 中点时,易证:PR+PQ=5

12(不需证明)。 (2)如图2,当点P 为线段EC 上的任意一点(不与点E 、点C 重合)时,其它条件不变,则(1)中 的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由。

(3)如图3,当点P 为线段EC 延长线上的任意一点时,其它条件不变,则PR 与PQ 之间又具有怎样 的数量关系?请直接写出你的猜想。

二、面积(和差)为定值问题:

典型例题:

例1:(湖北十堰3分)如图,O 是正△ABC 内一点,OA=3,OB=4,OC=5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O′的距离为4;③∠AOB=150°;④AOBO S =6+33四形边;⑤AOC AOB 93S S 6+

4

+= .其中正确的结论是【 】

A .①②③⑤

B .①②③④

C .①②③④⑤

D .①②③

【答案】A 。

【考点】旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,勾股定理的逆定理。

【分析】∵正△ABC ,∴AB=CB ,∠ABC=600。

∵线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO′,∴BO=BO′,∠O′AO=600。

∴∠O′BA=600-∠ABO=∠OBA 。∴△BO′A ≌△BOC 。 ∴△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到。故结论①正确。

连接OO′,

∵BO=BO′,∠O′AO=600,∴△OBO′是等边三角形。∴OO′=OB=4。故结论②正确。

∵在△AOO′中,三边长为O′A=OC=5,OO′=OB=4,OA=3,是一组勾

股数,

∴△AOO′是直角三角形。

∴∠AOB=∠AOO′+∠O′OB =900+600=150°。故结论③正确。

AOO OBO AOBO 11S S S 34+4236+4322

?'?''=+=????=四形边。故结论④错误。 如图所示,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,

点O 旋转至O″点.

易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的

直角三角形。 则AOC AOB AOCO COO AOO 113393S S S S S 34+3=6+2224

??"?"?"+==+=????。 故结论⑤正确。

综上所述,正确的结论为:①②③⑤。故选A 。

例2:(广西玉林、防城港12分)如图,在平面直角坐标系x O y 中,矩形AOCD 的顶点A 的坐标是(0,4),现有两动点P 、Q ,点P 从点O 出发沿线段OC (不包括端点O ,C )以每秒2个单位长度的速度,匀速向点C 运动,点Q 从点C 出发沿线段CD (不包括端点C ,D )以每秒1个单位长度的速度匀速向点D 运动.点P ,Q 同时出发,同时停止,设运动时间为t 秒,当t=2秒时PQ=52.

(1)求点D 的坐标,并直接写出t 的取值范围;

(2)连接AQ 并延长交x 轴于点E,把AE 沿AD 翻折交CD 延长线于点F,连接EF ,则△A EF 的面积S 是否随t 的变化而变化?若变化,求出S 与t 的函数关系式;若不变化,求出S 的值.

(3)在(2)的条件下,t 为何值时,四边形APQF 是梯形?

【答案】解:(1)由题意可知,当t=2(秒)时,OP=4,CQ=2, 在Rt △PCQ 中,由勾股定理得:PC=()2222PQ CQ 252-=

-=4, ∴OC=OP+P C=4+4=8。

又∵矩形AOCD ,A (0,4),∴D (8,4)。

t 的取值范围为:0<t <4。

(2)结论:△AEF 的面积S 不变化。

∵AOCD 是矩形,∴AD ∥OE ,∴△AQD ∽△EQC 。

∴CE CQ AD DQ =,即CE t 84t =-,解得CE=8t 4t

-。 由翻折变换的性质可知:DF=DQ=4-t ,则CF=CD+DF=8-t 。 S=S 梯形AOCF +S △FCE -S △AOE =12(OA+CF )?OC+12CF?CE -12

OA?OE =12 [4+(8-t )]×8+12(8-t )?8t 4t --12×4×(8+8t 4t

-)。 化简得:S=32为定值。

所以△AEF 的面积S 不变化,S=32。

(3)若四边形APQF 是梯形,因为AP 与CF 不平行,所以只有PQ ∥AF 。

由PQ ∥AF 可得:△CPQ ∽△DAF 。 ∴CP :AD=CQ :DF ,即8-2t :8= t :4-t ,化简得t 2-12t +16=0,

解得:t 1=6+25,t 2=625-。

由(1)可知,0<t <4,∴t 1=6+25不符合题意,舍去。

∴当t=625-秒时,四边形APQF 是梯形。

【考点】动点和翻折问题,矩形的性质,勾股定理,翻折对称的性质,相似三角形的判定和性质,梯形的性质,解一元二次方程。

【分析】(1)由勾股定理可求PC 而得点C 的坐标,根据矩形的性质可得点D 的坐标。点P 到达终点所需时间为8÷2=4秒,点Q 到达终点所需时间为4÷1=4秒,由题意可知,t 的取值范围为:0<t <4。

(2)根据相似三角形和翻折对称的性质,求出S 关于t 的函数关系式,由于关系式为常数,所以△AEF 的面积S 不变化,S=32。

(3)根据梯形的性质,应用相似三角形即可求解。

例3:(江苏苏州9分)如图,正方形ABCD 的边AD 与矩形EFGH 的边FG 重合,将正方形ABCD

以1cm/s 的速度沿FG 方向移动,移动开始前点A 与点F 重合.在移动过程中,边AD 始终与边FG 重合, 连接CG ,过点A 作CG 的平行线交线段GH 于点P ,连接PD.已知正方形ABCD 的边长为1cm ,矩形EFGH 的边FG 、GH 的长分别为4cm 、3cm.设正方形移动时间为x (s ),线段GP 的长为y (cm ),其中 0≤x≤2.5.

⑴试求出y 关于x 的函数关系式,并求出y =3时相应x 的值;

⑵记△DGP 的面积为S 1,△CDG 的面积为S 2.试说明S 1-S 2是常数;

⑶当线段PD 所在直线与正方形ABCD 的对角线AC 垂直时,求线段PD 的长.

【答案】解:(1)∵CG ∥AP ,∴∠CGD=∠PAG ,则tan CGD=tan PAG ∠∠。∴

CD PG =GD AG

。 ∵GF=4,CD=DA=1,AF=x ,∴GD=3-x ,AG=4-x 。 ∴

1y =3x 4x

--,即4x y=3x --。∴y 关于x 的函数关系式为4x y=3x --。 当y =3时,4x 3=3x --,解得:x=2.5。 (2)∵()()121

14x 11113S =GP GD=3x x+2S =GD CD=3x 1x+223x 22222

-????-=-???-?=--,, ∴

121131S S =x+2x+2222

????----= ? ?????为常数。

(3)延长PD 交AC 于点Q.

∵正方形ABCD 中,AC 为对角线,∴∠CAD=45°。

∵PQ ⊥AC ,∴∠ADQ=45°。

∴∠GDP=∠ADQ=45°。

∴△DGP 是等腰直角三角形,则GD=GP 。 ∴4x 3x=

3x

---,化简得:2x 5x+5=0-,解得:55x=2±。 ∵0≤x≤2.5,∴55x=2-。 在Rt △DGP 中,()0GD

552+10PD==23x =23=22cos45??--- ? ???。 【考点】正方形的性质,一元二次方程的应用,等腰直角三角形的性质,矩形的性质,解直角三角形,锐角三角函数定义,特殊角的三角函数值。

【分析】(1)根据题意表示出AG 、GD 的长度,再由tan CGD=tan PAG ∠∠可解出x 的值。

(2)利用(1)得出的y 与x 的关系式表示出S 1、S 2,然后作差即可。

(3)延长PD 交AC 于点Q ,然后判断△DGP 是等腰直角三角形,从而结合x 的范围得出x 的值,在Rt △DGP 中,解直角三角形可得出PD 的长度。

例4:(四川自贡12分)如图所示,在菱形ABCD 中,AB=4,∠BAD=120°,△AEF 为正三角形,点E 、F 分别在菱形的边BC .CD 上滑动,且E 、F 不与B .C .D 重合.

(1)证明不论E 、F 在BC .CD 上如何滑动,总有BE=CF ;

(2)当点E 、F 在BC .CD 上滑动时,分别探讨四边形AECF 和△CEF 的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.

【答案】解:(1)证明:如图,连接AC

∵四边形ABCD 为菱形,∠BAD=120°,

∠BAE+∠EAC=60°,∠FAC+∠EAC=60°,

∴∠BAE=∠FAC 。

∵∠BAD=120°,∴∠ABF=60°。

∴△ABC 和△ACD 为等边三角形。

∴∠ACF=60°,AC=AB 。∴∠ABE=∠AFC 。

∴在△ABE 和△ACF 中,∵∠BAE=∠FAC ,AB=AC ,∠ABE=∠AFC ,

∴△ABE ≌△ACF (ASA )。∴BE=CF 。

(2)四边形AECF 的面积不变,△CEF 的面积发生变化。理由如下:

由(1)得△ABE ≌△ACF ,则S △ABE =S △ACF 。

∴S 四边形AECF =S △AEC +S △ACF =S △AEC +S △ABE =S △ABC ,是定值。

作AH ⊥BC 于H 点,则BH=2,

22AECF ABC 11S S BC AH BC AB BH 4322

?==??=?-=四形边。 由“垂线段最短”可知:当正三角形AEF 的边AE 与BC 垂直时,边AE 最短.

故△AEF 的面积会随着AE 的变化而变化,且当AE 最短时,正三角形AEF 的面积会最小,

又S △CEF =S 四边形AECF ﹣S △AEF ,则此时△CEF 的面积就会最大.

∴S △CEF =S 四边形AECF ﹣S △AEF ()()221432323332

=-??-=。

∴△CEF 的面积的最大值是3。 【考点】菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,勾股定理,垂直线段的性质。

【分析】(1)先求证AB=AC ,进而求证△ABC 、△ACD 为等边三角形,得∠ACF =60°,AC=AB ,从而求证△ABE ≌△ACF ,即可求得BE=CF 。

(2)由△ABE ≌△ACF 可得S △ABE =S △ACF ,故根据S 四边形AEC F=S △AEC +S △ACF =S △AEC +S △AB E=S △ABC 即可得四边形AECF 的面积是定值。当正三角形AEF 的边AE 与BC 垂直时,边AE 最短.△AEF 的面积会随着AE 的变化而变化,且当AE 最短时,正三角形AEF 的面积会最小,根据S △CEF =S 四边形AECF -S △AEF ,则△CEF 的面积就会最大。

例5:(湖南益阳12分)已知:如图1,在面积为3的正方形ABCD 中,E 、F 分别是BC 和CD 边上的两点,AE ⊥BF 于点G ,且BE=1.

(1)求证:△ABE ≌△BCF ;

(2)求出△ABE 和△BCF 重叠部分(即△BEG )的面积;

(3)现将△ABE 绕点A 逆时针方向旋转到△AB′E′(如图2),使点E 落在CD 边上的点E′处,问△ABE 在旋转前后与△BCF 重叠部分的面积是否发生了变化?请说明理由.

【答案】(1)证明:∵四边形ABCD 是正方形,∴∠ABE=∠BCF=90°,AB=BC 。∴∠ABF+∠CBF=90°。

∵AE ⊥BF ,∴∠ABF+∠BAE=90°。∴∠BAE=∠CBF 。

在△ABE 和△BCF 中,∵∠ABE=∠BCF ,AB=BC ,∠BAE=∠CBF ,

∴△ABE ≌△BCF (ASA )。

(2)解:∵正方形面积为3,∴AB=3。

在△BGE 与△ABE 中,∵∠GBE=∠BAE ,∠EGB=∠EBA=90°,∴△BGE ∽△ABE 。 ∴2BGE ABE S BE =()S AE

??。 又∵BE=1,∴AE 2=AB 2+BE 2=3+1=4。

∴2

BGE ABE 2BE 133S =S 428

AE ???=?=。

练习题:

1. (山东东营12分)如图所示,四边形OABC 是矩形.点A 、C 的坐标分别为(30-,

),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重含),过点D 作直线12y x b =

+交折线OAB 于点E 。 (1) 记△ODE 的面积为S .求S 与b 的函数关系式:

(2) 当点E 在线段OA 上时,且tan ∠DEO=12

。若矩形OABC 关于直线DE 的对称图形为四边形1111O A B C .试探究四边形1111O A B C 与矩形OABC 的重叠部分的面积是否发生变化,若不交,求出该重

人教版八年级数学几何专题

八年级数学下册期末专题复习和训练:几何计算题、证明题 一、题型特点:四边形(五种常见的)、三角形的中位线、矩形的推论穿插其中,…… 二、常见新型题型:动点、折纸、开放(条件、结论开放)、探索性(数量关系、位置关系),…… 三、图形搭建:三角形中搭建四边形、四边形中搭建三角形、组合图形,…… 下面我根据图形搭建结构特征进行分类,列举一部分和本期几何部分(主要是平行四边形)的计算题、证明题,让我们共同来探究、解析. 一、以平行四边形搭建起来的图形 例1.ABCD Y 中,AB=4cm ,AD=7cm, ∠ABC 的平分线交AD 于E,交CO 的延长线于F,求DF 的长? 分析: 本题要求的DF 长的途径有两条:其一.DF CF CD =-;其二. DF DE AD AE ==-. 采取第一途径可以少一些环节,根据平行四边形的性质和角的平分线的定义可以 比较容易得出BCF V 是等腰三角形,即CF CB =;由于平行四边形 的对边相等可以得出:,CD AB 4cm CB AD 7cm ====.故DF 743cm =-= 例2.△ABC 、△ADE 都是正三角形,CD=BF. (1)、求证:△ACD ≌△CBF (2)、当D 运动至BC 边上的何处时,四边形CDEF 为平行四边形,且∠DEF=30°, 并证明你的结论 . 分析: ⑴.证明△ACD ≌△CBF 已经有了CD=BF ,而△ABC 、△ADE 都是正三角形又可以给我们提供 ,CA CB ACD CBF 60=∠=∠=o 条件,根据“SAS ”判定方法可 以证得△ACD ≌△CBF. ⑵.根据⑴问的△ACD ≌△CBF 得出AD CF =,又△ADE 是正三角形的DE CF =,所以CF DE =;要使四边形CDEF 为平行四边形可以证CF DE P . 若四边形CDEF 为平行四边形,则FCD DEF 30∠=∠=o ;当EDB 30∠=o 时,就有FCD EDB ∠=∠,此时就能证得CF DE P .由正△ADE 可以得出ADE 60∠=o ,则 ADB 603090∠=+=o o o ,AD BC ⊥;由于等腰三角形具有“三线合一”的特征,所以当D 运动至BC 边上中点时,四边形CDEF 为平行四边形. 练习: 1.如图,在□ABCD 中,AE ⊥BC,AF ⊥CD,∠EAF=60°,则∠B=( ); 2.□ABCD 的周长为60cm,对角线AC 、BD 交于点O,△AOB 的周 长比△BOC 的周长多10cm,则AD=( ),DC=( ); 3.□ABCD 中,∠ABC 的平分线BE 交AD 于E 点,若∠ABE=25°CD=5cm,BC=7cm,那么∠ABE=( ),∠BED=( ),AE=( ). 4. 已知□ABCD ,BE=AB,BF =BD. 求证:CD=CM 5. △ABC 是正三角形,AE=BD,DF ∥CE,EF ∥CD. 求证: △AGF ≌△EAC 6.以△ABC 的三边在BC 的同侧做等边△EBC 、等边△FBA 、等边△DAC. ⑴.判断四边形FADE 的形状? ⑵.当∠BAC 为多少度时,四边形FADE 为矩形? ⑶.当∠BAC 为多少度时,四边形FADE 不存在? 7. 有一块如图的玻璃,不小心把DEF 部分打碎,现在只测得AB=60cm,BC=80cm ,∠ A=120°,∠B=60°,∠C=150°,你能根据测得的数据计算AD 的长? 二、以矩形搭建起来的图形 例1.D 为□ABCD 外一点,∠APC=∠BPD=90°.求证: □ABCD 为矩形 分析:判定矩形的方法主要有三种.但在已知了四边形ABCD 是平行 四边形的情况下,要判定ABCD Y 是矩形的途径有两条:其一、找 一内角是直角;其二、找出对角线相等,即找出AC BD =. 由于本题的另一主要条件是∠APC=∠BPD=90°,要根据题中条件和图形位置转换成四边形的内角为90°比较困难,所以本题我们先想办法找出对角线相等,即找出AC BD =. 我们发现本题在APC Rt V 和BPD Rt V 的两斜边的交点O 恰好是平行四边形对角线的交点,根据平行四边形对角线互相平分可知:O 同时是AC BD 、的中点;所以自然联想到连结PO 这条两直角三角形公共的中线(见图).根据以上条件,在APC Rt V 和BPD Rt V 中就有:AC 2PO = BD 2PO =,故AC BD =,由对角线相等的平行四边形是矩形,可判定ABCD Y 是矩形. 例2. 矩形ABCD 中,AB=3,AD=4,PE ⊥AC ,PF ⊥BD , ⑴.求PE+PF 的值? ⑵.若点P 是AD 上的一动点(不与A D 、重合),还是作PE ⊥AC ,PF ⊥BD ,则PE+PF 的值是否会发生变化?为什么? 分析:求线段的和或差我们会联想到证明中的“截长补短”法,但本题不具备这方面的条件. 本题从面积入手可以破题:如图连结PO ,只要我们能求出APO V 和DPO V 的面积之和问题便可以获得解决. 略解:⑴.∵四边形ABCD 是矩形 M C D F B A E F D B C A D F E B C A A B C D P E F O F A B F E D A C

人教版八年级数学几何专题

人教版八年级数学几何 专题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2 八年级数学下册期末专题复习和训练:几何计算题、证明题 一、题型特点:四边形(五种常见的)、三角形的中位线、矩形的推论穿插其中,…… 二、常见新型题型:动点、折纸、开放(条件、结论开放)、探索性(数量关系、位置关系),…… 三、图形搭建:三角形中搭建四边形、四边形中搭建三角形、组合图形,…… 下面我根据图形搭建结构特征进行分类,列举一部分和本期几何部分(主要是平行四边形)的计算题、证明题,让我们共同来探究、解析. 一、以平行四边形搭建起来的图形 例1. ABCD 中,AB=4cm ,AD=7cm, ∠ABC 的平分线交AD 于E,交CO 的延长线于F, 求DF 的长? 分析: 本题要求的DF 长的途径有两条:其一.DF CF CD =-;其二. DF DE AD AE ==-. 比较容易得出BCF 是等腰三角形,即CF CB =的对边相等可以得出:,CD AB 4cm CB AD 7cm ====.故DF 743cm =-= 例2.△ABC 、△ADE 都是正三角形,CD=BF. (1)、求证:△ACD ≌△CBF (边上的何处时,四边形CDEF 为平行四边形,且∠DEF=30°, 分析: ⑴.证明△ACD ≌△CBF 已经有了CD=BF ,而△ABC 、△ADE 都是正三角形又可以给我们提供 ,CA CB ACD CBF 60=∠=∠=条件,根据“SAS ”判定方法可以证得△ACD ≌△CBF. ⑵.根据⑴问的△ACD ≌△CBF 得出AD CF =,又△ADE 是正三角形的DE CF =,所以CF DE =;要使四边形CDEF 为平行四边形可以证CF DE . 若四边形CDEF 为平行四边形,则FCD DEF 30∠=∠=;当EDB 30∠=时,就有FCD EDB ∠=∠,此时就能证得CF DE .由正△ADE 可以得出ADE 60∠=,则 ADB 603090∠=+=,AD BC ⊥;由于等腰三角形具有“三线合一”的特征,所以当D 运动至BC 边上中点时,四边形CDEF 为平行四边形. 练习: 1.如图,在□ABCD 中,AE ⊥BC,AF ⊥CD,∠EAF=60°,则∠B=( 2.□ABCD 的周长为60cm,对角线AC 、BD 交于点O,△AOB 的周 长比△BOC 的周长多10cm,则AD=( ),DC=( ); 3.□ABCD 中,∠ABC 的平分线BE 交AD 于E 点,若∠ABE=25°CD=5cm,BC=7cm,那么 ∠ABE=( ),∠BED=( ),AE=( )4. 已知□ABCD ,BE=AB,BF =BD. 求证:5. △ABC 是正三角形,AE=BD,DF ∥CE,EF ∥CD. 求证: △AGF ≌△EAC 6.以△ABC 的三边在BC 的同侧做等边△EBC 、等边△FBA

(完整word版)人教版八年级下册数学几何题训练含答案

八年级习题练习 四、证明题:(每个5分,共10分) 1、在平行四边形ABCD 中,AE ⊥BC 于E ,CF ⊥AD 于F ,求证:BE = DF 。 2、在平行四边形DECF 中,B 是CE 延长线上一点,A 是CF 延长线上一点,连结AB 恰过点D ,求证:AD ·BE =DB ·EC 五、综合题(本题10分) 3.如图,直线y=x+b (b ≠0)交坐标轴于A 、B 两点,交双曲线y=x 2 于点D , 过D 作两坐标轴的垂线DC 、DE ,连接OD . (1)求证:AD 平分∠CDE ; (2)对任意的实数b (b ≠0),求证AD ·BD 为定值; (3)是否存在直线AB ,使得四边形OBCD 为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由. F E D C B A F E D C B A

4. 如图,四边形ABCD 中,AB=2,CD=1 ,∠A=60度,∠D=∠B=90度,求四边形ABCD 的面积S 5.如图,梯形ABCD 中,AD//BC,AB=DC. 如果P 是BC 上任意一点(中点除外),PE//AB ,PF//DC ,那么AB=PE+PF 成立吗?如果成立,请证明,如果不成立,说明理由。 参考答案 证明题 1、证△ABE ≌△CDF ; 2、 ??? ?∠=∠?∠=∠?A BDE AC DE B ADF BC DF △ADF ∽△DBE BE DF DB AD =? 综合题 1.(1)证:由y=x +b 得 A (b ,0),B (0,-b ). ∴∠DAC=∠OAB=45 o 又DC ⊥x 轴,DE ⊥y 轴 ∴∠ACD=∠CDE=90o ∴∠ADC=45o 即AD 平分∠CDE.

八年级数学几何图形练习题

八年级数学几何图形练 习题 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

第 2 题 F E D C B A 八年级下册数学——几何图形 1.已知一个菱形的周长是20cm ,两条对角线的比是4∶3,则这个菱形的 面积是( ) A .12cm 2 B . 24cm 2 C . 48cm 2 D . 96cm 2 2.如图,矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重 合,点B 落在点F 处,折痕为AE ,且EF=3,则AB 的长为( )A .3 B .4 C .5 D .6 3.如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC=3,则折痕CE 的长为( ) A. 23 B. 332 C. 3 4.如图,矩形ABCD 的对角线相交于点O ,DE ∥AC ,CE ∥BD .(1)求证: 四边形OCED 是菱形;(2)若∠ACB =30,菱形OCED 的面积为,求AC 的 长。 5.矩形ABCD 中,AE 平分∠BAD 交BC 于E,∠CAE=15°,求证:①△ODC 是等 边三角形;②BC=2AB 6.如图,在平行四边形ABCD 中,∠ABC=75°,AF ⊥BC 于点F BD 于点 E ,若DE=2AB ,求证∠AED 的度数。 A F B E B O 第3题

D C 7.如图,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm.将△ABC沿射线BC 方向平移10 cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形。

八年级数学下册几何知识总结及试题

八年级数学下册几何知 识总结及试题 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

§图形的旋转 概念:将图形绕一个顶点转动一定的角度,这样的图形运动称为图形的旋转,这个定点称为旋转中心,旋转的角度称为旋转角。图形的旋转不改变图形的形状、大小,只改变图形上点的位置 性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心距离相等,两组对应点分别与旋转中心连线所成的角相等。 基本画法:将图形上的一些特殊点与旋转中心连接,以旋转中心为圆心,连线段长为半径画图,按照旋转的角度来找出对应点,再画出所有的对应线段。 典型题:确定图形的旋转角度、确定图形的旋转中心、生活中的数学问题、作图题、 §中心对称与中心对称图形 1、中心对称的概念一个图形绕某点旋转180°,如果它能够与另一个图形重合,那么称这两个图 形关于这点对称,也称这两个图形成中心对称。这个点叫做对称中心,两个图形中的对应点叫做对称点。 2、中心对称的性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平 分。 3、中心对称图形的定义及其性质 把一个图形绕某点旋转180°,如果旋转后的图形能够与原来的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做对称中心。中心对称图形上的每一对对应点所连成的线段都被对称中心平分。 角线互相平分。 3、判定平行四边形的条件 (1)两组对边分别平行的四边形叫做平行四边形(概念) (2)一组对边平行且相等的四边形叫做平行四边形 (3)对角线互相平分的四边形叫做平行四边形 (4)两组对边分别相等的四边形叫做平行四边形 5、反证法 反证法是一种间接证明的方法,不是从已知条件出发直接证明命题的结论成立,而是先提出与结论相反的假设,然后由这个“假设”出发推导出矛盾,说明假设是不成立的,因而命题的结论是成立的。 常见题型:运用性质求值、添加条件题、实际问题相结合、体现数学思想的题型、 例6:如图,在四边形ABCD中,AD∥BC,AD>BC,BC=6cm,点P、Q分别以A、C点同时出发,P以1cm/ s 的速度由点A向点D运动,Q以2cm/s的速度由C出发向B运动,设运动时间为x秒.则当x=时,四边形ABQP是平行四边形. §矩形、菱形、正方形 1、矩形的概念和性质 有一角是直角的平行四边形叫做矩形,矩形也叫做长方形。矩形是特殊的平时行不行,它除了具有平行四边形的一切性质外,还具有的性质:矩形的对角线相等,四个角都是直角 2、判定矩形的条件 (1)有一个角是直角的平行四边形是矩形 (2)三个角是直角的四边形是矩形 (3)对角线相等的平行四边形是矩形 3、菱形的概念与性质

初二数学几何图形题

几何图形题 常见辅助线的作法有以下几种: 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”. 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”. 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理. 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 一、以等边三角形为基础 1.已知:如图1,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC于点E,BM交CN于点F.(1)求证:AN=BM; (2)求证:△CEF为等边三角形; (3)将△ACM绕点C按逆时针方向旋转90 O,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明). 2.如图,△ABC为等边三角形,AB=6cm,O为AB上的任意一点(与B点不重合),OD⊥BC于D;DE⊥AC于E;EP⊥AB于P。问:当OB的长等于多少时,点P与点O重合?

二、以等腰直角三角形为基础 3.如图1图2图3,△AOB,△COD均是等腰直角三角形,∠AOB=∠COD=90o, (1)在图1中,AC与BD相等吗,有怎样的位置关系?请说明理由。 (2)若△COD绕点O顺时针旋转一定角度后,到达图2的位置,请问AC与BD还相等吗,还具有那种位置关系吗?为什么? (3)若△COD绕点O顺时针旋转一定角度后,到达图3的位置,请问AC与BD还相等吗?还具有上问中的位置关系吗?为什么? 4.如图,两个全等的含30°、60°角的三角板ADE和三角板ABC放置在一起,∠DEA=∠ACB=90°,∠DAE=∠ABC=30°,E、A、C三点在一条直线上,连接BD,取BD中点M,连接ME、MC,试判断△EMC的形状,并说明理由.

新课标人教版八年级数学上册几何期末综合复习题1

八年级期末几何综合复习(一) 1如图,设△ ABC 和厶CDE 都是等边三角形,且/ EBD=65 °则/ AEB 的度数是( A . 115° B . 120° C . 125° D . 130° 2. 如图,在四边形 ABCD 中,AB=AC , / ABD=60 ° / ADB=78 ° / BDC=24 ° 则/ DBC= ( ) A . 18° B . 20° C . 25 ° D . 15°新课 标 第一网 3. 如图,等腰 Rt △ ABC 中,/ BAC=90 ° AD 丄BC 于点D ,/ ABC 的平分线分别交 AC 、 AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:① 9 DF=DN ; ②厶DMN 为等腰三角形;③ DM 平分/ BMN :④AE==EC ; 3 ⑤AE=NC ,其中正确结论的个数是( ) V A . 2个 B . 3个 C . 4个 D . 5个 4. 如图,等腰 Rt △ ABC 中,/ ABC=90 ° AB=BC .点A 、B 分别在坐标轴上,且 x 轴恰 好平分/ BAC , BC 交x 轴于点M ,过C 点作CD 丄x 轴于点D ,则.的值为 M --------------------- 5. 已知Rt △ ABC 中,/ C=90° AC=6 , BC=8,将它的一个锐角翻折,使该锐角顶点落在 其对边的中点D 处,折痕交另一直角边于 E,交斜边于F ,则厶CDE 的周长为 __________________ 6. 如图,/ AOB=30 °点P 为/ AOB 内一点,0P=8 .点M 、N 分别在 OA 、OB 上,则△ PMN 周长的最小值为 ______________ . ABCD 中,对角线 BD 平分/ ABC, / BAC=64° / BCD+Z DCA=180° , 那么/ BDC 为 ______ 度. 7 .如图,已知四边形

八年级数学几何板块专题复习

八年级数学 几何板块专题复习 一、考点、热点回顾 一、三角形 1. 三角形基本概念 1. 定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形,用符号“?” 表示,顶点是C B A ,,的三角形记作“ABC ?” ,读作“三角形ABC ”。 2. 三角形分类: ①三角形按边的关系分类 ②三角形按角的关系分类 3. 三角形三边关系定理:三角形的两边之和大于第三边.(根据两点之间线段最短可得) 推论:三角形两边之差小于第三边. 4. 三角形内角和定理:三角形三个内角和等于ο180。 推论:直角三角形的两个锐角互余。 5. 三角形的外角及其性质:1、三角形的一个外角等于和它不相邻的两个内角的和。 2、三角形的一个外角大于任何一个和它不相邻的内角。 6. 三角形的三条重要线段 (1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。注意:①是一个三角形有三条角平分线,并且相交于三角形内部一点,我们把这一点叫做三角形的内心;②是三角形的角平分线是一条线段,而角的平分线是一条射线。 (2)在三角形中,连结一个顶点和它对边的中点的线段叫做三角形的中线。注意:①一个三角形有三条中线,并且相交于三角形内部一点,我们把这个点叫做三角形的重心;②三角形的重心把中线的长度按2:1的比例分开。 (3)从三角形一个顶点向它对边画垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。注意:①三角形的高是线段,而垂线是直线。②锐角三角形的三条高都在三角形内部;直角三角形的两条高与直角边重合,另一条高在三角形内部;钝角三角形的两条高在外部,一条高在内部。 2.全等三角形 1. 定义:能够完全重合的两个三角形叫做全等三角形。 2. 表示方法:△ABC 全等于△DEF,或△ABC≌△DEF。 3. 全等三角形的性质:全等三角形的对应边相等 全等三角形的对应角相等 4.三角形全等的判定 三边对应相等的两个三角形全等。 两角和它们的夹边对应相等的两个三角形全等。 (5) 斜边、直角边 .):斜边和直角边对应相等的两个直角三角形全等。 注:角角角、边边角不能判定两三角形全等。 【经典例题】 1.下列命题正确的是( )

八年级下数学几何题(有答案)

八年级下期末复习5 如图1,四边形ABCD为正方形,E在CD上,∠DAE的平分线交CD于F,BG⊥AF于G,交AE 于H. (1)如图1,∠DEA=60°,求证:AH=DF; (2)如图2,E是线段CD上(不与C、D重合)任一点,请问:AH与DF有何数量关系并证明你的结论; (3)如图3,E是线段DC延长线上一点,若F是△ADE中与∠DAE相邻的外角平分线与CD的交点,其它条件不变,请判断AH与DF的数量关系(画图,直接写出结论,不需证明).

证明:(1)延长BG交AD于点S ∵AF是HAS的角的平分线,BS⊥AF ∴∠HAG=∠SAG,∠HGA=SGA=90°又∵AG=AG ∴△AGH≌△AGS ∴AH=AS, ∵AB∥CD ∴∠AFD=∠BAG, ∵∠BAG+∠ABS=∠ABS+∠ASB=90°∴∠BAG=∠ASB ∴∠ASB=∠AFD 又∵∠BAS=∠D=90°,AB=AD ∴△ABS≌△DAF ∴DF=AS ∴DF=AH. (2)DF=AH.

同理可证DF=AH. (3)DF=AH 如图,在△ABC中,点O是AC边上的一个动点(点O不与A、C两点重合),过点O作直线MN ∥BC,直线MN与∠BCA的平分线相交于点E,与∠DCA(△ABC的外角)的平分线相交于点F.(1)OE与OF相等吗?为什么? (2)探究:当点O运动到何处时,四边形AECF是矩形?并证明你的结论. (3)在(2)中,当∠ACB等于多少时,四边形AECF为正方形.(不要求说理由) 解:(1)如图所示:作EG⊥BC,EJ⊥AC,FK⊥AC,FH⊥BF, 因为直线EC,CF分别平分∠ACB与∠ACD,所以EG=EJ,FK=FH, 在△EJO与△FKO中,

初二数学下册几何题

初二数学下册几何练习题 一、填空题(每小题3分,共30分) 1、等腰梯形的周长为22cm,中位线长是7cm,两条对角线中点连线长为3cm,则梯形各边的长分别为______________________________. 2、梯形的一条对角线将中位线分成两部分的比是3:7,则中位线将梯形分成两部分的面积比为________________________________________。 3、菱形的周长20cm,一边上的高是4.8cm,较短的对角线长6cm,较长对角线长是___________________________ 4、如图,在矩形ABCD中,AB=3,AD=4,P为AD上一动点, PE⊥AC于E,PF⊥BD于F,则PE+PF的值为____________ 5、分别连结矩形、平行四边形、菱形、正方形、梯形、等腰梯形各边的中点,所得四边形为____________、______________、_____________________ ____________、________________ 、______________。 6、已知三角形三边长分别为6、8、10,则由它的中位线构成的三角形的面积为_____、周长为______________________ 7、等腰梯形的中位线长为6cm,腰长为5cm,则周长为_____________。 8、菱形ABCD中的一边与两条对角线夹角的差是20°,则该菱形各内角度数是_____ 9、对角线互相垂直的等腰梯形的高为5cm,则梯形的面积为______________________ 10、已知菱形的面积为96cm2,对角线长为16cm,则此菱形的边长为_______________ 二、单项选择题(每题3分,共30分) 11、已知:如图,D为△ABC的边AB的中点,E在AC上,CE= 1/3AC,BE、CD交于O点,若OE=2,则OB=() A、2 B、4 C、6 D、8 12、如图,等腰梯形ABCD中,AD∥BC,∠B+∠C=90°,E、F分别是 AD、BC的中点, 若AD=5cm,BC=13cm,则EF=()cm. A、4 B 、5 C、6.5 D、9 13、已知:△ABC的周长是a,D、E、F分别是△ABC三边的中点,在△DEF的内部再作这样的三角形……,则作出这样的第n 个三角形其周长为() A、a B、2a C、1/2a D、(1/2)n a 14、菱形的两条对角线长分别为6cm和8cm,则菱形的高为() A、24/5 B、48/5 C、6/5 D、12/5 15、如图,AB∥CD,,AE⊥CD,AE=12,BD=15,AC=20, 则梯形面积为() A、130 B、140 C、150 D、160 三、简答题(每题6分,共24分) 1、如图,MN是梯形ABCD的中位线,BC=5AD, 求四边形AMND与四边形ABCD的面积之比 2、等腰梯形的一个底角为45°,高为h,中位线长为m,求梯形下底的长

人教版八年级上册数学 【几何模型三角形轴对称】试卷(培优篇)(Word版 含解析)

人教版八年级上册数学【几何模型三角形轴对称】试卷(培优篇)(Word版 含解析) 一、八年级数学轴对称解答题压轴题(难) 1.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动, (1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC. (2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC (图3),判断并直接写出MB、MC的数量关系. (3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由. 【答案】(1)见解析;(2)MB=MC.理由见解析;(3)MB=MC还成立,见解析.【解析】 【分析】 (1)连接AM,根据全等三角形的对应边相等可得AD=AE,AB=AC,全等三角形对应角相等可得∠BAD=∠CAE,再根据等腰三角形三线合一的性质得到∠MAD=∠MAE,然后利用“边角边”证明△ABM和△ACM全等,根据全等三角形对应边相等即可得证; (2)延长DB、AE相交于E′,延长EC交AD于F,根据等腰三角形三线合一的性质得到BD=BE′,然后求出MB∥AE′,再根据两直线平行,内错角相等求出∠MBC=∠CAE,同理求出MC∥AD,根据两直线平行,同位角相等求出∠BCM=∠BAD,然后求出∠MBC=∠BCM,再根据等角对等边即可得证; (3)延长BM交CE于F,根据两直线平行,内错角相等可得∠MDB=∠MEF,∠MBD=∠MFE,然后利用“角角边”证明△MDB和△MEF全等,根据全等三角形对应边相等可得MB=MF,然后根据直角三角形斜边上的中线等于斜边的一半证明即可. 【详解】 (1)如图(2),连接AM,由已知得△ABD≌△ACE, ∴AD=AE,AB=AC,∠BAD=∠CAE.

八年级数学下册-平面几何综合复习-人教新课标版

平面几何综合复习 【典型例题】: 例3、已知:如图在?ABC 中,AB =AC 。延长AB 到D ,使BD =AB ,取AB 的中点E ,连结CD 和CE 求证:CD =2CE 分析:(1)要证长线段CD 是某小量的2倍,可在长线段上截取一半,这种方法,叫“截取法”或(折半法),要证CD =2CE ,可考虑在CD 上截取一半,再证明CE 等于CD 的一半即可。 证明: 过B 点作BF //AC 交CD 于F , AB =BD ∴=DF CF ,且BF AC =1 2 AB AC ACB //,∴∠=∠2 BF AC ACB //,,∴∠=∠∴∠=∠112 又 BE AB BF AC BE BF ==∴=121 2 ., 在??CEB CFB 和中 BE BF BC BC =∠=∠=??? ? ?12 ∴?∴==??CEB CFB EC CF CD ,1 2 即CE =2EC 分析:(2)这类题目还可以将短线延长,或说加倍法,证它等于长线段的方法,也称“拼加法”。 提示: 将CE 延长到G ,使EG =CE , 连结AG ,BG ,可证明?ACG ??BDC ,从而得到CG =CD ,因而有CD =2CE 。 例4、已知:如图,在?ABC 中,D 、E 分别在AB 、AC 上,BD=CE ,BE 、CD 的中点分别是M ,N ,直线MN 分别交AB ,AC 于点P 、Q 求证:AP=AQ 分析:这是一道已知中点求证线段相等的问题,往往可以通过中位线,将条件、结论分别转移到可以建立直接联系的图形上,此题要证AP =AQ ,就要证 ∠=∠APQ AQP M N , ,分别是BE 、CD 中点,且BD =CE ,又 BC 是?BDC 和?BCE 的公共边,∴取BC 的中点F ,再连MF 、NF , 就可以通过三角形中位线定理将已知条件以及要证明的 ∠=∠APQ AQP 等量代换到?FMN 中,从而可证得AP =AQ 。 证明: 取BC 的中点F ,连结FM ,FN ∵M ,N 分别是 BE CD ,的中点

(完整版)八年级数学几何经典题【含答案】

F 八年级数学几何经典题【含答案】 1、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长 线交MN 于E 、F . 求证:∠DEN =∠F . 2、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG , 点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半. 3、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF . . 4、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF . B

5、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF . 6、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE =CF .求证:∠DPA =∠DPC . 7如图,△ABC 中,∠C 为直角,∠A=30°,分别以AB 、AC 为边在△ABC 的外侧作正△ABE 与正△ACD ,DE 与AB 交于F 。 求证:EF=FD 。 8如图,正方形ABCD 中,E 、F 分别为AB 、BC 的中点,EC 和DF 相交于G ,连接AG ,求证:AG=AD 。 9、已知在三角形ABC 中,AD 是BC 边上的中线,E 是AD 上的一点,且BE=AC,延长BE 交AC 与F,求证AF=EF D F E P C B A F P D E C B A

人教版八年级数学上册第11章三角形几何证明专题练习题(无答案)

八年级数学(上)几何证明专题练习题 1、已知:在"ABC 中,/ A=900, AB=AC 在BC 上任取一点 P ,作PQ// AB 交AC 于Q 作PR // CA 交BA 于R, D 是BC 的中点,求证:" RDQ 是等腰直角三角形。 已知:在"ABC 中,/ A=900, AB=AC D 是AC 的中点,AE ± BD, AE 延长线交 BC 于F ,求 证:/ ADB=/ FDC 已知:在"ABC 中BD CE 是高,在BD CE 或其延长线上分别截取 BM=AC CN=AB 求证: MAL NA 已知:如图(1),在△ ABC 中,BP 、CP 分别平分/ ABC 和/ ACB DE 过点P 交AB 于D,交 AC 于 E , 且 DE// BC 求证:DE - DB=EC 2、 3、 4、 C

5、在Rt A ABC 中,AB = AC, / BAC=90 ° , O 为BC 的中点。 (1) 写出点O到厶ABC的三个顶点A、B、C的距离的大小关系(不要求证明); (2) 如果点M、N分别在线段AB、AC上移动,在移动中保持AN= BM,请判断厶OMN 的形状,并证明你的结论。 7、如图,等腰三角形ABC中,AB = AC , / A = 90°, BD平分/ ABC , DE丄BC且BC = 10,求厶DCE的周长。 8 ?如图所示,已知AD是/ BAC的平分线,EF垂直平分AD交BC的延长线于点F,交AD于点E,连接AF ,求证:/ B= / CAF。 6、如图,△ ABC为等边三角形,延长 连结EC、ED,求证:CE=DE BC 到D,延长BA 到E, AE=BD ,

八年级数学下册 平面几何经典难题训练 沪科版

经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF . 2、已知:如图,P 是正方形ABCD 内一点,∠PAD =∠PDA =150 . 求证:△PBC 是正三角形. 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1 的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线 交MN 于E 、F . 求证:∠DEN =∠F . 经典难题(二) A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

F 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且 (1)求证:AH =2OM ; (2)若∠BAC =600 ,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、 E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半. 经典难 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .

八年级数学几何板块专题复习

八年级数学几何板块专 题复习 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

八年级数学 几何板块专题复习 一、考点、热点回顾 一、三角形 1. 三角形基本概念 1. 定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形,用符号“?” 表示,顶点是C B A ,,的三角形记作“ABC ?” ,读作“三角形ABC ”。 2. 三角形分类: ①三角形按边的关系分类 ②三角形按角的关系分类 3. 三角形三边关系定理:三角形的两边之和大于第三边.(根据两点之间线段最短可得) 推论:三角形两边之差小于第三边. 4. 三角形内角和定理:三角形三个内角和等于 180。 推论:直角三角形的两个锐角互余。 5. 三角形的外角及其性质:1、三角形的一个外角等于和它不相邻的两个内角的和。 2、三角形的一个外角大于任何一个和它不相邻的内角。 6. 三角形的三条重要线段 (1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。注意:①是一个三角形有三条角平分线,并且相交于三角形内部一点,我们把这一点叫做三角形的内心;②是三角形的角平分线是一条线段,而角的平分线是一条射线。 (2)在三角形中,连结一个顶点和它对边的中点的线段叫做三角形的中线。注意:①一个三角形有三条中线,并且相交于三角形内部一点,我们把这个点叫做三角形的重心;②三角形的重心把中线的长度按2:1的比例分开。

(3)从三角形一个顶点向它对边画垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。注意:①三角形的高是线段,而垂线是直线。②锐角三角形 的三条高都在三角形内部;直角三角形的两条高与直角边重合,另一条高在三角形内部;钝角三角形的两条高在外部,一条高在内部。 2.全等三角形 1. 定义:能够完全重合的两个三角形叫做全等三角形。 2. 表示方法:△ABC全等于△DEF,或△ABC≌△DEF。 3. 全等三角形的性质:全等三角形的对应边相等 全等三角形的对应角相等 4.三角形全等的判定 三边对应相等的两个三角形全等。 两角和它们的夹边对应相等的两个三角形全等。 (5)斜边、直角边 .):斜边和直角边对应相等的两个直角三角形全等。 注:角角角、边边角不能判定两三角形全等。 【经典例题】 1.下列命题正确的是( ) A、全等三角形是指形状相同的两个三角形 B、全等三角形是指面积相同的两个三角形 C、两个周长相等的三角形是全等三角形 D、全等三角形的周长、面积分别相等 2.如图1,ΔABD≌ΔCDB,且AB、CD是对应边;下面四个结论中不正确的是:( ) A、ΔABD和ΔCDB的面积相等 B、ΔABD和ΔCDB的周长相等 C、∠A+∠ABD =∠C+∠CBD D、 AD AB DE BC EF AC DF ,, =∠=∠= ,,AB DE B E BC EF === ,,ABC DEF △≌△如图 ==∠=∠ ,,AB DE AC DF B E ∠=∠=∠=∠ B E B C EF C F

人教版八年级数学几何专题

人教版八年级数学几何专题本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

2 八年级数学下册期末专题复习和训练:几何计算题、证明题 一、题型特点:四边形(五种常见的)、三角形的中位线、矩形的推论穿插其中,…… 二、常见新型题型:动点、折纸、开放(条件、结论开放)、探索性(数量关系、位置关系),…… 三、图形搭建:三角形中搭建四边形、四边形中搭建三角形、组合图形,…… 下面我根据图形搭建结构特征进行分类,列举一部分和本期几何部分(主要是平行四边形)的计算题、证明题,让我们共同来探究、解析. 一、以平行四边形搭建起来的图形 例1. ABCD 中,AB=4cm ,AD=7cm, ∠ABC 的平分线交AD 于E,交CO 的延长线于F, 求DF 的长? 分析: 本题要求的DF 长的途径有两条:其一.DF CF CD =-;其二. DF DE AD AE ==-. 比较容易得出BCF 是等腰三角形,即CF CB =的对边相等可以得出:,CD AB 4cm CB AD 7cm ====.故DF 743cm =-= 例2.△ABC 、△ADE 都是正三角形,CD=BF. (1)、求证:△ACD ≌△CBF (边上的何处时,四边形CDEF 为平行四边形,且∠DEF=30°, 分析: ⑴.证明△ACD ≌△CBF 已经有了CD=BF ,而△ABC 、△ADE 都是正三角形又可以给我们提供 ,CA CB ACD CBF 60=∠=∠=条件,根据“SAS ”判定方法可以证得△ACD ≌△CBF. ⑵.根据⑴问的△ACD ≌△CBF 得出AD CF =,又△ADE 是正三角形的DE CF =,所以CF DE =;要使四边形CDEF 为平行四边形可以证CF DE . 若四边形CDEF 为平行四边形,则FCD DEF 30∠=∠=;当EDB 30∠=时,就有FCD EDB ∠=∠,此时就能证得CF DE .由正△ADE 可以得出ADE 60∠=,则 ADB 603090∠=+=,AD BC ⊥;由于等腰三角形具有“三线合一”的特征,所以当D 运动至BC 边上中点时,四边形CDEF 为平行四边形. 练习: 1.如图,在□ABCD 中,AE ⊥BC,AF ⊥CD,∠EAF=60°,则∠B=( 2.□ABCD 的周长为60cm,对角线AC 、BD 交于点O,△AOB 的周 长比△BOC 的周长多10cm,则AD=( ),DC=( ); 3.□ABCD 中,∠ABC 的平分线BE 交AD 于E 点,若∠ABE=25°CD=5cm,BC=7cm,那么 ∠ABE=( ),∠BED=( ),AE=( )4. 已知□ABCD ,BE=AB,BF =BD. 求证:5. △ABC 是正三角形,AE=BD,DF ∥CE,EF ∥CD. 求证: △AGF ≌△EAC 6.以△ABC 的三边在BC 的同侧做等边△EBC 、等边△FBA

八年级下册数学几何压轴题

八年级下册数学几何压轴题 1.如图,已知菱形ABCD中,∠ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D重合)分别向直线AB、AD作垂线,垂足分别为E、F. (1)BD的长是---------------------; (2)连接PC,当PE+PF+PC取得最小值时,此时PB的长是-----------------------------; 2.如图,在等边三角形ABC中,BC=6cm. 射线AG//BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F 从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s). (1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF; (2)填空:①当t为--------------------s时,四边形ACFE是菱形; ②当t为何值时,EF⊥BC,并加以说明; 3.如图,在矩形纸片ABCD中,AB=33,BC=6,沿EF折叠后,点C落在AB边上的点P处,点D落在点Q处,AD与PQ相交于点H,∠BPE=30°;⑴求BE、QF的长;⑵求四边形PEFH的面积;

4.如图,在矩形ABCD中,AB=3cm,∠DBC=30°,动点P以2cm/s的速度,从点B出发,沿B→D的方向,向点D 运动;动点Q以3cm/s的速度,从点D出发,沿D→C→B的方向,向点B移动.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒. (1)求△PQD的面积S(cm2)与运动时间t(s)之间的函数关系式,并写出自变量t的取值范围. (2)在运动过程中,是否存在这样的t,使得△PQD为直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由. 5 如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E. (1)求证:四边形ABCE是平行四边形; (2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长. 6 如图,在四边形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t. (1)求CD的长; (2)当四边形PBQD为平行四边形时,求四边形PBQD的周长; (3)当点P在AB、CD上运动时,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.

相关文档
相关文档 最新文档