文档库 最新最全的文档下载
当前位置:文档库 › 高中数学完整讲义——复数

高中数学完整讲义——复数

高中数学完整讲义——复数
高中数学完整讲义——复数

题型一:复数的概念

【例1】若复数()()2321a a a i -++-是纯虚数,则实数a 的值为( )

A.1?? B .2???C.1或2?? D .1-

【例2】若复数为纯虚数,则实数的值为( )

A . B. C. D .或

【例3】已知02a <<,复数z 的实部为a ,虚部为1,则z 的取值范围是( )

A.()15,?

B .()13,??C.()

15,

D.()

13,

【例4】若复数(2)i bi ?+是纯虚数,则实数b = .

【例5】设1z 是复数,211z z iz =-(其中1z 表示1z 的共轭复数),已知2z 的实部是1-,则2z 的虚部

为 .

【例6】复数3

2

1i +=( ) A.12i + ? ?B.12i - ???C .1- ?

D.3

【例7】计算:0!1!2!100!i +i +i +

+i = (i 表示虚数单位)

2

(1)(1)z x x i =-+-x 1-011-1典例分析

复数

【例8】设22(253)(22)i z t t t t =+-+-+,t ∈R ,则下列命题中一定正确的是( )

A .z 的对应点Z 在第一象限 B.z 的对应点Z 在第四象限 C.z 不是纯虚数 D .z 是虚数

【例9】在下列命题中,正确命题的个数为( )

①两个复数不能比较大小;

①若22(1)(32)i x x x -+++是纯虚数,则实数1x =±;

①z 是虚数的一个充要条件是z z +∈R ; ①若a b ,是两个相等的实数,则()()i a b a b -++是纯虚数; ①z ∈R 的一个充要条件是z z =.

①1z =的充要条件是1

z z

=.

A .1 B.2? C .3? D.4

题型二:复数的几何意义

【例10】复数i

i z -+=1)2(2

(i 是虚数单位)在复平面上对应的点位于( )

A .第一象限? B.第二象限 ?C.第三象限

D.第四象限

【例11】复数13i z =+,21i z =-,则复数

1

2

z z 在复平面内对应的点位于( ) A .第一象限?

B .第二象限

C.第三象限?? D .第四象限

【例12】在复平面内,复数2009

2

1i (1i)+-对应的点位于( )

A .第一象限 ?

B .第二象限

C .第三象限

D .第四象限

【例13】在复平面内,复数sin2cos2z i =+对应的点位于( )

A .第一象限??

B.第二象限?? C.第三象限?

?D .第四象限

【例14】在复平面内,复数

2

1i

+对应的点与原点的距离是( ) A. 1 B .

C .2 D.

【例15】若复数z 满足(1)1i z ai -=+,且复数z 在复平面上对应的点位于第二象限,则实数a 的取

值范围是( )

A.1>a

B.11<<-a ?C .1--

【例16】已知复数z=3+4i所对应的向量为,把依逆时针旋转θ得到一个新向量为.

若对应一个纯虚数,当θ取最小正角时,这个纯虚数是( ) A .3i B.4i C.5i D.-5i

【例17】复数2i

12i

m z -=

+(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( ) A .第一象限

B.第二象限 ?

C.第三象限 ?

D.第四象限

【例18】若35ππ44

θ??∈ ??

?

,,复数(cos sin )(sin cos )i θθθθ++-在复平面内所对应的点在( )

A.第一象限 B.第二象限 C .第三象限 D .第四象限

【例19】设A B ,为锐角三角形的两个内角,则复数(cot tan )(tan cot )z B A B A i =-+-对应的点位于复平? 面的( )

A.第一象限 B.第二象限 C .第三象限 D.第四象限

【例20】如果复数z 满足i i 2z z ++-=,那么i 1z ++的最小值是( )

A.1 ?

? ?C.2

【例21】满足1z =及13

22

z z +

=-的复数z 的集合是( ) OZ OZ 1OZ 1OZ

.1122????-+

--??????

, B.1111i i 2222??

+-????, C

.??-????

? D

.1122???

?+-??????

【例22】已知复数(2)i()x y x y -+∈R ,

则y

x

的最大值为_______.

【例23】复数z 满足条件:21i z z +=-,那么z 对应的点的轨迹是( )

A.圆

?B.椭圆 ?C.双曲线? D .抛物线

【例24】复数1z ,2z 满足120z z ≠,1212z z z z +=-,证明:2

122

0z z <.

【例25】已知复数1z ,2z

满足11z =

,21z =,且124z z -=,求1

2

z z 与12z z +的值.

【例26】已知复数12z z ,满足121z z ==,

且12z z -=

,求证:12z z +=.

【例27】已知12z z ,

∈C ,121z z ==

,12z z +=求12z z -.

【例28】已知复数z 满足(23i)(23i)4z z -+-=,求d z =的最大值与最小值.

题型三:复数的四则运算

【例29】复数3

1i i ??

- ???

等于( )

A.8 ?

B.8-?

C.8i ?? D .8i -

【例30】设a ∈R ,且2()a i i +为正实数,则a =( )

A .1± ? B.1

C .0?

D .1-

【例31】已知复数1z i =-,则221

z z

z -=-( )

A.2i ? B.2i - ? C .2 D.2-

【例32】设z 的共轭复数是z ,若4z z +=,8z z ?=,则

z

z

等于( ) A.i ? B.i -

C.1±

D.i ±

【例33】已知集合(3)(3)

2i i z i

+-=

-,则||z =( )

? B

?

D.

【例34】已知复数12232i 23i ,(2i)z z +=-=

+,则1

2

z z =( )

A . 49 B.7 C . 25 D. 5

【例35】若将复数11i

i

+-表示为a bi +(a ,b ∈R ,i 是虚数单位)的形式,则a b += .

【例36】若复数3i

12i

a ++(a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为( ) A.2-? B.4? C .6- ?D .6

【例37】i 是虚数单位,若

,则乘积的值是( ) A.15- B.3- C.3 D .15

【例38】设且,若复数是实数,则( )

A. ? B .? C .?

D.

【例39】若a 为实数,

i i

ai 2212-=++,则a 等于( )

17(,)2i

a bi a

b R i

+=+∈-ab a b ∈R ,0b ≠3

()a bi +223b a =223a b =229b a =22

9a b =

A. 2 ?B .-错误! C.2错误!未定义书签。 D.-2错误!

【例40】若复数z=i a 3)2(+- (R a ∈)是纯虚数,则ai

i

a ++1=

【例41】定义运算(,)(,)a b c d ac cd ?=-,则符合条件(,12)(1,1)0z i i i +?+-=的复数z 的所对

应的点在( )

A .第一象限

B .第二象限 C.第三象限 D .第四象限

【例42】定义运算

a b ad bc c d

=-,则符合条件

120121z i i

i

+=--的复数z 对应的点在( )

A.第一象限 B.第二象限 C.第三象限 D.第四象限

【例43】投掷两颗骰子,得到其向上的点数分别为m 和n ,

则复数(i)(i)m n n m +-为实数的概率为( )

A .

B .

C . D.

【例44】已知复数z 满足01,120082009=++=z z z ,则复数z =_____________

【例45】已知m ∈R ,若6(i)64i m m +=-,则m 等于( )

A .2- ?B

.

. D .4

【例46

4等于( )

A.1+

?B

.1- C

.1 ?

D.1--

【例47

12

131416112

【例48】已知复数1cos i z θ=-,2sin i z θ=+,则12z z ?的最大值为( )

A .

3

2

??B D.3

【例49】若复数1i z =+,求实数a b ,使22(2)az bz a z +=+.(其中z 为z 的共轭复数)

【例50】设x 、y 为实数,且5

11213x y i i i

+=

---,则x y +=________.

【例51】对任意一个非零复数z ,定义集合{|}n z M w w z n ==∈N ,

. ①设z 是方程1

0x x

+

=的一个根,试用列举法表示集合z M .若在z M 中任取两个数,求其和为零的概率P ;

①若集合z M 中只有3个元素,试写出满足条件的一个z 值,并说明理由.

【例52】解关于x 的方程256(2)i 0x x x -++-=.

【例53】已知21z x =+,22()i z x a =+,对于任意x ∈R ,均有12z z >成立,试求实数a 的取值范

围.

【例54】关于x 的方程2(2)i 10x a i x a +--+=有实根,求实数a 的取值范围.

【例55】设方程220x x k -+=的根分别为α,β,且αβ-=k 的值.

【例56】用数学归纳法证明:(cos isin )cos()isin()n n n n θθθθ++=+∈N ,

. 并证明1(cos isin )cos isin θθθθ-+=-,从而(cos isin )cos()isin()n n n θθθθ-+=-.

【例57】若cos isin αα+是方程121210n n n n n x a x a x a x a ---+++

++=(12n a a a ∈R ,,,)的解,

求证:12sin sin 2sin 0n a a a n ααα++

+=.

【例58】已知1

z

z -是纯虚数,求z 在复平面内对应点的轨迹.

【例59】设复数1z ,2z 满足12120z z A z A z ?+?+?=,其中A =求12z A z A +?+的值.

【例60】设复数z 满足2z =,求24z z -+的最值.

【例61】若()23i f z z z =+-,()63i f z i +=-,试求()f z -.

【例62】已知虚数ω为1的一个立方根, 即满足31ω=,且ω对应的点在第二象限,证明2ωω=,并

求23111

ωωω++与2

11ω

ω

++的值.

【例63】若232012320n n a a a a a ωωωω++++

+=(012212n n a a a a ω+∈∈=-+N R ,,,,,,),

求证:036147258a a a a a a a a a +++

=+++=+++

【例64】设z 是虚数,1

w z z

=+是实数,且12w -<<.

①求z 的值及z 的实部的取值范围; ①设11z

u z

-=

+,求证:u 为纯虚数; ①求2w u -的最小值.

【例65】对任意一个非零复数z ,定义集合21{|}n z M w w z n -==∈N ,

⑴ 设σ是方程1

x x

+

的一个根,试用列举法表示集合M σ; ①设复数z M ω∈,求证:z M M ω?.

【例66】已知复数01i(0)z m m =->,i z x y =+和i w x y ''=+,其中x y x y '',,,均为实数,i 为虚数单

位,且对于任意复数z ,有0w z z =?,2w z =.

⑴ 试求m 的值,并分别写出x '和y '用x y ,表示的关系式;

①将()x y ,作为点P 的坐标,()x y '',作为点Q 的坐标,上述关系式可以看作是坐标平面上点

的一个变换:它将平面上的点P 变到这一平面上的点Q .

? 当点P 在直线1y x =+上移动时,试求点P 经该变换后得到的点Q 的轨迹方程;

? ①是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求? 出所有这些直线;若不存在,则说明理由.

高中数学-复数的基础知识

复数 基础知识 1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除 等运算。便产生形如a+bi (a,b ∈R )的数,称为复数。所有复数构成的集合称复数集。通常用C 来表示。 2.复数的几种形式。对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。若z=r(cos θ+isin θ),则θ称为z 的辐角。若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=22b a +.如果用e i θ表示cos θ+isin θ,则z=re i θ ,称为复数的指数形式。 3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。模与共轭的性质有: (1)2121z z z z ±=±;(2)2121z z z z ?=?;(3)2||z z z =?;(4)2 121z z z z =???? ??;(5)||||||2121z z z z ?=?; (6)||||||2121z z z z =;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2;(9)若|z|=1,则z z 1= 。 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z 1=r 1(cos θ1+isin θ1), z 2=r 2(cos θ2+isin θ2),则z 1??z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)];若2 1212,0r r z z z =≠[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z 1z 2=r 1r 2e i(θ1+θ2),.)(2 12121θθ-=i e r r z z 5.棣莫弗定理:[r(cos θ+isin θ)]n =r n (cosn θ+isinn θ). 6.开方:若=n w r(cos θ+isin θ),则)2s i n 2(c o s n k i n k r w n π θπ θ+++=, k=0,1,2,…,n-1。 7.单位根:若w n =1,则称w 为1的一个n 次单位根,简称单位根,记Z 1=n i n ππ2sin 2cos +,则全部单位根可表示为1,1Z ,1121,,-n Z Z .单位根的基本性质有(这里记k k Z Z 1=,

高中数学复数专题知识点整理

专题二 复数 【1】复数的基本概念 (1)形如a + b i 的数叫做复数(其中R b a ∈,);复数的单位为i ,它的平方等于-1,即1i 2-=.其中a 叫做复数的实部,b 叫做虚部 实数:当b = 0时复数a + b i 为实数 虚数:当0≠b 时的复数a + b i 为虚数; 纯虚数:当a = 0且0≠b 时的复数a + b i 为纯虚数 (2)两个复数相等的定义: 00==?=+∈==?+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且 (3)共轭复数:z a bi =+的共轭记作z a bi =-; (4)复平面:建立直角坐标系来表示复数的平面叫复平面;z a bi =+,对应点坐标为(),p a b ;(象限的复习) (5)复数的模:对于复数z a bi =+,把z =z 的模; 【2】复数的基本运算 设111z a b i =+,222z a b i =+ (1) 加法:()()121212z z a a b b i +=+++; (2) 减法:()()121212z z a a b b i -=-+-; (3) 乘法:()()1212122112z z a a b b a b a b i ?=-++ 特别22z z a b ?=+。 (4)幂运算:1i i =21i =-3i i =-41i =5i i =61i =-?????? 【3】复数的化简 c di z a bi +=+(,a b 是均不为0的实数);的化简就是通过分母实数化的方法将分母化为实数:()()22ac bd ad bc i c di c di a bi z a bi a bi a bi a b ++-++-==?=++-+ 对于()0c di z a b a bi +=?≠+,当c d a b =时z 为实数;当z 为纯虚数是z 可设为c di z xi a bi +==+进一步建立方程求解

高中数学 推理与证明 板块三 数学归纳法完整讲义(学生版).doc

学而思高中完整讲义:统计.板块一.随机抽样.学生版 题型一:数学归纳法基础 【例1】已知n 为正偶数,用数学归纳法证明1111111 12()234 124 2n n n n -+-+ +=+++ -++时,若已假设2(≥=k k n 为偶数)时命题为真,则还需要用归纳假设再证 ( ) A .1+=k n 时等式成立 B .2+=k n 时等式成立 C .22+=k n 时等式成立 D .)2(2+=k n 时等式成立 【例2】已知n 是正偶数,用数学归纳法证明时,若已假设n=k (2≥k 且为偶数)时命题 为真,,则还需证明( ) A.n=k+1时命题成立 B. n=k+2时命题成立 C. n=2k+2时命题成立 D. n=2(k+2)时命题成立 【例3】某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当 1+=k n 时命题也成立. 现已知当7=n 时该命题不成立,那么可推得 ( ) A .当n=6时该命题不成立 B .当n=6时该命题成立 C .当n=8时该命题不成立 D .当n=8时该命题成立 【例4】利用数学归纳法证明 “* ),12(312)()2)(1(N n n n n n n n ∈-???????=+???++ ”时,从“k n =”变到“1+=k n ”时,左边应增乘的因式是 ( ) A 12+k B 112++k k C 1)22)(12(+++k k k D 1 3 2++k k 【例5】用数学归纳法证明),1(1112 2 *+∈≠--= ++++N n a a a a a a n n ,在验证n=1时,左边计算所得的式子是( ) A. 1 B.a +1 C.2 1a a ++ D. 4 2 1a a a +++ 【例6】用数学归纳法证明n n n n n 2)()2)(1(=+++ ))(12(31*∈+????N n n ,从“k 到k+1”左端需乘的代数式是( ) 典例分析

高中数学复数

第1章:复数与复变函数 §1 复数 1.复数域 形如iy x z +=的数,称为复数,其中y x ,为实数。实数x 和实数y 分别称为复数iy x z +=的实部与虚部。记为 z x Re =, z y Im = 虚部为零的复数可看成实数,虚部不为零的复数称为虚数,实部为零虚部不为零的复数称为纯虚数。复数iy x z -= 和iy x z +=称为互为共轭复数,z 的共轭复数记为z 。 设 ,复数的四则运算定义为 加(减)法: 乘法: 除法: 相等: 当且仅当 复数的四则运算满足以下运算律 ①加法交换律 1221z z z z +=+ ②加法结合律 321321)()(z z z z z z ++=++ ③乘法交换律 1221z z z z ?=? ④乘法结合律 321321)()(z z z z z z ??=?? ⑤乘法对加法的分配律 3121321)(z z z z z z z ?+?=+? 全体复数在引入相等关系和运算法则以后,称为复数域. 在复数域中,复数没有大小. 正如所有实数构成的集合用R 表示,所有复数构成的集合用C 表示。

例 设i 3,i 5221+=-=z z ,求 2 1 z z . 分析:直接利用运算法则也可以,但那样比较繁琐,可以利用共轭复数的运算结果。 解 为求 2 1 z z ,在分子分母同乘2z ,再利用1i 2-=,得 i 101710110i 171)i 3)(i 52(2222121-=-=--=??=z z z z z z z 2.复平面 一个复数iy x z +=本质上由一对有序实数唯一确定。于是能够确定平面上全部的点和全体复数间一一对应的关系。如果把x 和y 当作平面上的点的坐标,复数z 就跟平面上的点一一对应起来,这个平面叫做复数平面或z 平面,x 轴称为实轴,y 轴称为虚轴. 在复平面上,从原点到点 所引的矢量 与复数z 也构成一一对应 关系,且复数的相加、减与矢量相加、减的法则是一致的,即满足平行四边形法则,例如: 这样,构成了复数、点、矢量之间的一一对应关系. 3. 复数的模与辐角 向量 的长度称为复数 的模或绝对值,即:

最新高中数学《复数》经典考题分类解析

最新高中数学《复数》经典考题分类解析 复数的代数运算年年必考,其题目活而不难,主要考查学生灵活运用知识的能力,复数的几何意义也是考查的一个重点。落实考查特点有利于抓住复习中的关键:(1)复数的概念,包括虚数、纯虚数、复数的实部与虚部、复数的模、复数的相等、共轭复数的概念。(2)复数代数形式基本运算的技能与技巧,特别是 i ±1的计算,注意转化思想的训练,善于将复数向实数转化。 (3)复数的几何意义, 1、复数的概念以及运算 例1i 是虚数单位,238i 2i 3i 8i ++++=L .(用i a b +的形式表示,a b ∈R ,) 解:原式=i -2-3i +4+5i -6-7i +8=4-4i 点评:复数是高中数学的重要内容,是解决数学问题的重要工具,本题考查了复数的概念以及复数的引入原则,主要考查i 12-=的实际应用问题。 例2若a 为实数, =,则a 等于( ) A . B . C . D .-解析:由已知得:等式左边=i a a i ai 3 223223)21)(2(-++=-+ 由复数相等的充要条件知:???????-=-=+23 220322a a ,所以a = 点评:本题考查了复数的基本运算以及复数相等的概念。 例3若复数(1)(2)bi i ++是纯虚数(i 是虚数单位,b 是实数),则b =( ) A .2 B .12 C .12- D .2- 解析:(1)(2)bi i ++=i b b )12()2(++-,因为(1)(2)bi i ++是纯虚数,因此

???≠+=-0 1202b b 所以b =2。 点评:本题考查的复数的乘法运算问题,通过该运算考查了纯虚数的概念。 2、复数的几何意义 复数与复平面上的点,及复平面上从原点出发的向量建立了一一对应关系,这样使得 复数问题可以借助几何图形的性质解决,反之,一些解析几何问题、平面几何问题也可以借助于复数的运算加以解决。 例4若35ππ44θ??∈ ??? ,,则复数(cos sin )(sin cos )i θθθθ++-在复平面内所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 解析:复数的实部a =)4sin(2sin cos π θθθ+=+,虚部b = )4sin(2cos sin πθθθ-=-,因为4 543πθπ<<,所以 ππθπππθπ<-<<+<42,234,所以0)4sin(<+πθ,0)4 sin(>-πθ,即a<0,b>0,所以复数对应的点在第二象限。 点评:本题以复数的三角形式作为命题背景,考查了复数的三角形式运算以及三角函数的恒等变化,以及复数的几何意义。复数与复平面内的点的对应关系经常出现在考题中,关键是把复数化简成bi a +的形式,并且准确的判断出a 、b 的符号是求解问题的关键。 3、复数的开放性的考查 例4.复数i z a b a b =+∈R ,,,且0b ≠,若24z bz -是实数,则有序实数对()a b ,可以是 .(写出一个有序实数对即可) 解析:因为24z bz -=i b ab ab b a )42()4(222-+--是实数,所以有 0422=-b ab ,因为0≠b ,所以b a 2=,所以答案可以填写(2,1)或(2,4)、(3,6)等等。

高一数学讲义完整版

高一数学复习讲义09年版 函数部分(1) 重点:1把握函数基本知识(定义域、值域) x(a>0、<0) 主要是指数函数y=a x(a>0、<0),对数函数y=log a 2二次函数(重点)基本概念(思维方式)对称轴、 开口方向、判别式 考点1:单调函数的考查 2:函数的最值 3:函数恒成立问题一般函数恒成立问题(重点讲) 4:个数问题(结合函数图象) 3反函数(原函数与对应反函数的关系)特殊值的取舍 4单调函数的证明(注意一般解法) 简易逻辑(较容易) 1. 2. 3. 4.

启示:对此部分重点把握第3题、第4题的解法(与集合的关系) 问题1:恒成立问题解法及题型总结(必考) 一般有5类:1、一次函数型:形如:给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m, n]内恒有f(x)>0(<0) 练习:对于满足0-4x+p-3恒成立的x的取值范围 2、二次函数型:若二次函数y=ax2+bx+c=0(a≠0)大于0恒成立,则有a>0Δ<0若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解 练习:1设f(x)=x2-2ax+2,当x∈[-1, +∞)时,都有f(x)>a恒成立, a的取值范围 2关于x的方程9x+(4+a)3x+4=0恒有解,求a的范围。 3、变量分离型 若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解 练习:若1-ax>1/(1+x),当对于x∈[0, 1]恒成立,求实数a的取值范围。 4利用图象 练习:当x∈(1, 2)时,不等式(x-1)2

高一数学复数的运算练习题

复数的运算测试题 一、选择题 1.0a =是复数()z a bi a b =+∈R ,为纯虚数的( ) A.充分条件但不是必要条件 B.必要条件但不是充分条件 C.充要条件 D.既不是充分也不必要条件 答案:B 2.若12z i =+,23()z ai a =+∈R ,12z z +的和所对应的点在实轴上,则a 为( ) A.3 B.2 C.1 D.—1 答案:D 3.复数22(2)(2)z a a a a i =-+--对应的点在虚轴上,则( ) A.2a ≠或1a ≠ B.2a ≠且1a ≠ C.0a = D. 2 a =或 0a = 答案:D 4.设1z ,2z 为复数,则下列四个结论中正确的是( )

A.若22120z z +>,则2212z z >- B. 12 z z -= C.22121200z z z z +=?== D.11z z -是纯虚数或零 答案:D 5.设22(253)(22)z t t t t i =+-++-+,t ∈R ,则下列命题中正确的是( ) A.z 的对应点Z 在第一象限 B.z 的对应点Z 在第四象限 C.z 不是纯虚数 D.z 是虚数 答案:D 6.若1i +是实系数方程20x bx c ++=的一个根,则方程的另一个根为( ) A.1i - B.1i -+ C.1i -- D.i 答案:A 7.已知复数1cos z i θ=-,2sin z i θ=+,则1 2z z ·的最大值为( )

A.3 2 D.3 答案:A 8.已知m ∈R ,若6()64m mi i +=-,则m 等于( ) A. 2- B. C. D.4 答案:B 9.在复平面内12 ω=-对应的向量为OA ,复数2ω对应的向量为 OB .那么向量AB 对应的复数是( ) A.1 B. 1- D. 答案:D 10.在下列命题中,正确命题的个数为( ) ①两个复数不能比较大小; ②123z z z ∈C ,,,若221221()()0z z z z -+-=,则13z z =; ③若22(1)(32)x x x i -+++是纯虚数,则实数1x =±; ④z 是虚数的一个充要条件是z z +∈R ; ⑤若a b ,是两个相等的实数,则()()a b a b i -++是纯虚数; ⑥z ∈R 的一个充要条件是z z =.

(完整word版)高中数学-复数专题

复数专题 一、选择题 1 .(2012年高考(天津理)) i 是虚数单位,复数7= 3i z i -+ ( ) A .2i + B .2i - C .2i -+ D .2i -- 2 .(2012年高考(新课标理))下面是关于复数2 1z i = -+的四 个命题:其中的真命 题为 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1- ( ) A .23,p p B .12,p p C .,p p 24 D .,p p 34 3 .(2012年高考(浙江理))已知i 是虚数单位,则 3+i 1i -= ( ) A .1-2i B .2-i C .2+i D .1+2i 4 .(2012年高考(四川理))复数2(1)2i i -= ( ) A .1 B .1- C . i D .i - 5 .(2012年高考(上海理))若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则 ( ) A .3,2==c b . B .3,2=-=c b . C .1,2-=-=c b . D .1,2-==c b . 6 .(2012年高考(陕西理))设,a b R ∈, 是虚数单位,则“0ab =”是“复数b a i + 为纯虚数”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 7 .(2012年高考(山东理))若复数z 满足(2)117z i i -=+( i 为虚数单位),则z 为 ( ) A .35i + B .35i - C .35i -+ D .35i -- 8 .(2012年高考(辽宁理))复数 22i i -=+ ( ) A .34i - B .34i + C .41i - D .3 1i +

高中数学完整讲义——复数

题型一:复数的概念 【例1】若复数()()2321a a a i -++-是纯虚数,则实数a 的值为( ) A.1?? B .2???C.1或2?? D .1- 【例2】若复数为纯虚数,则实数的值为( ) A . B. C. D .或 【例3】已知02a <<,复数z 的实部为a ,虚部为1,则z 的取值范围是( ) A.()15,? B .()13,??C.() 15, D.() 13, 【例4】若复数(2)i bi ?+是纯虚数,则实数b = . 【例5】设1z 是复数,211z z iz =-(其中1z 表示1z 的共轭复数),已知2z 的实部是1-,则2z 的虚部 为 . 【例6】复数3 2 1i +=( ) A.12i + ? ?B.12i - ???C .1- ? D.3 【例7】计算:0!1!2!100!i +i +i + +i = (i 表示虚数单位) 2 (1)(1)z x x i =-+-x 1-011-1典例分析 复数

【例8】设22(253)(22)i z t t t t =+-+-+,t ∈R ,则下列命题中一定正确的是( ) A .z 的对应点Z 在第一象限 B.z 的对应点Z 在第四象限 C.z 不是纯虚数 D .z 是虚数 【例9】在下列命题中,正确命题的个数为( ) ①两个复数不能比较大小; ①若22(1)(32)i x x x -+++是纯虚数,则实数1x =±; ①z 是虚数的一个充要条件是z z +∈R ; ①若a b ,是两个相等的实数,则()()i a b a b -++是纯虚数; ①z ∈R 的一个充要条件是z z =. ①1z =的充要条件是1 z z =. A .1 B.2? C .3? D.4 题型二:复数的几何意义 【例10】复数i i z -+=1)2(2 (i 是虚数单位)在复平面上对应的点位于( ) A .第一象限? B.第二象限 ?C.第三象限 D.第四象限 【例11】复数13i z =+,21i z =-,则复数 1 2 z z 在复平面内对应的点位于( ) A .第一象限? B .第二象限 C.第三象限?? D .第四象限 【例12】在复平面内,复数2009 2 1i (1i)+-对应的点位于( ) A .第一象限 ? B .第二象限 C .第三象限 D .第四象限 【例13】在复平面内,复数sin2cos2z i =+对应的点位于( ) A .第一象限?? B.第二象限?? C.第三象限? ?D .第四象限

高中数学复数练习题百度文库

一、复数选择题 1.复数3 (23)i +(其中i 为虚数单位)的虚部为( ) A .9i B .46i - C .9 D .46- 2.已知i 为虚数单位,则复数23i i -+的虚部是( ) A . 35 B .35i - C .15 - D .1 5 i - 3.已知复数21i z i =-,则复数z 在复平面内对应点所在象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4. )) 5 5 11-- +=( ) A .1 B .-1 C .2 D .-2 5.若复数1z i =-,则 1z z =-( ) A B .2 C . D .4 6.若 1m i i +-是纯虚数,则实数m 的值为( ). A .1- B .0 C .1 D 7.若复数2i 1i a -+(a ∈R )为纯虚数,则1i a -=( ) A B C .3 D .5 8.已知复数z 满足2 2z z =,则复数z 在复平面内对应的点(),x y ( ) A .恒在实轴上 B .恒在虚轴上 C .恒在直线y x =上 D .恒在直线y x =-上 9.复数z 满足22z z i +=,则z 在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10.已知2021(2)i z i -=,则复平面内与z 对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 11.设复数z 满足41i z i =+,则z 的共轭复数z 在复平面内的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 12.设a + ∈R ,复数()()() 2 4 2 121i i z ai ++=-,若1z =,则a =( ) A .10 B .9 C .8 D .7

高中数学完整讲义——复数

高中数学讲义 题型一:复数的概念 【例1】若复数()()2321a a a i -++-是纯虚数,则实数a 的值为( ) A .1 B .2 C .1或2 D .1- 【例2】若复数为纯虚数,则实数的值为( ) A . B . C . D .或 【例3】已知02a <<,复数z 的实部为a ,虚部为1,则z 的取值范围是( ) A .()15, B .()13, C .(1 D .(1 【例4】若复数(2)i bi ?+是纯虚数,则实数b = . 【例5】设1z 是复数,211z z iz =-(其中1z 表示1z 的共轭复数),已知2z 的实部是1-,则2z 的虚部 为 . 【例6】复数3 2 1i +=( ) A .12i + B .12i - C .1- D .3 【例7】计算:0!1!2! 100!i +i +i + +i = (i 表示虚数单位) 2(1)(1)z x x i =-+-x 1-011-1典例分析 复数

高中数学讲义 【例8】设22(253)(22)i z t t t t =+-+-+,t ∈R ,则下列命题中一定正确的是( ) A .z 的对应点Z 在第一象限 B .z 的对应点Z 在第四象限 C .z 不是纯虚数 D .z 是虚数 【例9】在下列命题中,正确命题的个数为( ) ①两个复数不能比较大小; ②若22(1)(32)i x x x -+++是纯虚数,则实数1x =±; ③z 是虚数的一个充要条件是z z +∈R ; ④若a b , 是两个相等的实数,则()()i a b a b -++是纯虚数; ⑤z ∈R 的一个充要条件是z z =. ⑥1z =的充要条件是1 z z =. A .1 B .2 C .3 D .4 题型二:复数的几何意义 【例10】复数i i z -+=1)2(2 (i 是虚数单位)在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【例11】复数13i z =+,21i z =-,则复数 1 2 z z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【例12】在复平面内,复数2009 2 1i (1i)+-对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【例13】在复平面内,复数sin 2cos 2z i =+对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限

湖北省武汉市部分市级示范高中高二数学复数练习试题 百度文库

一、复数选择题 1.复数()1z i i =?+在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.若复数1z i i ?=-+,则复数z 的虚部为( ) A .-1 B .1 C .-i D .i 3.已知a 为正实数,复数1ai +(i 为虚数单位)的模为2,则a 的值为( ) A B .1 C .2 D .3 4.已知,a b ∈R ,若2 ()2a b a b i -+->(i 为虚数单位),则a 的取值范围是( ) A .2a >或1a <- B .1a >或2a <- C .12a -<< D .21a -<< 5.在复平面内复数Z=i (1﹣2i )对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.若复数()()24z i i =--,则z =( ) A .76i -- B .76-+i C .76i - D .76i + 7.已知复数5i 5i 2i z =+-,则z =( ) A B .C .D .8.已知复数5 12z i =+,则z =( ) A .1 B C D .5 9.若复数z 满足421i z i +=+,则z =( ) A .13i + B .13i - C .3i + D .3i - 10.满足313i z i ?=-的复数z 的共扼复数是( ) A .3i - B .3i -- C .3i + D .3i -+ 11.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ?④z z ,其结果一定是实数的是( ) A .①② B .②④ C .②③ D .①③ 12.复数 2i i -的实部与虚部之和为( ) A .35 B .15- C .15 D . 35 13.设21i z i +=-,则z 的虚部为( )

高中数学高考总复习复数习题

高中数学高考总复习复 数习题 Last revised by LE LE in 2021

高中数学高考总复习复数习题一、选择题 1.复数3+2i 2-3i =( ) A.i B.-i C.12-13i D.12+13i 2.在复平面内,复数6+5i,-2+3i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是( ) A.4+8i B.8+2i C.2+4i D.4+i 3.若复数(m2-3m-4)+(m2-5m-6)i表示的点在虚轴上,则实数m的值是( ) A.-1 B.4 C.-1和4 D.-1和6 4.(文)已知复数z= 1 1+i ,则z-·i在复平面内对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限 (理)复数z在复平面上对应的点在单位圆上,则复数z2+1 z ( ) A.是纯虚数 B.是虚数但不是纯虚数C.是实数

D.只能是零 5.复数(3i-1)i的共轭复数 ....是( ) A.-3+i B.-3-i C.3+i D.3-i 6.已知x,y∈R,i是虚数单位,且(x-1)i-y=2+i,则(1+i)x-y的值为( ) A.-4 B.4 C.-1 D.1 7.(文)复数z1=3+i,z2=1-i,则z=z1·z2在复平面内对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 (理)现定义:e iθ=cosθ+isinθ,其中i是虚数单位,e为自然对数的底,θ∈R,且实数指数幂的运算性质对e iθ都适用,若a=C50cos5θ-C52cos3θsin2θ+ C 54cosθsin4θ,b=C 5 1cos4θsinθ-C 5 3cos2θsin3θ+C 5 5sin5θ,那么复数a+b i等于 ( ) A.cos5θ+isin5θ B.cos5θ-isin5θ C.sin5θ+icos5θ D.sin5θ-icos5θ 8.(文)已知复数a=3+2i,b=4+xi(其中i为虚数单位),若复数a b ∈R,则实数x 的值为( ) A.-6 B.6

(完整版)上海高中数学-复数讲义

复数 一、知识点梳理: 1、 i 的周期性: 4 4n+1 4n+2 4n+3 4n i =1 ,所以, i =i, i =-1, i =-i, i =1 n Z 4n 4n 1 4n 2 4n 3 i i i i C a bi |a,b R 叫做复数集。 N Z Q R C. 3、复数相等: a bi c di a c 且b=d ; a bi 0 a 0且b=0 实数 (b=0) 4、复数的分类: 复数 Z a bi 一般虚数 (b 0,a 0) 虚数 (b 0) 纯虚数 (b 0,a 0) 虚数不能比较大小,只有等与不等。即使是 3 i,6 2i 也没有大小。 uur uur 5、复数的模:若向量 OZ 表示复数 z ,则称 OZ 的模 r 为复数 z 的模, z |a bi| a 2 b 2 ; 8、复数代数形式的加减运算 复数 z 1与 z 2的和: z 1+z 2=( a +bi )+( c +di )=( a +c )+( b +d )i . a, b, c, d R 复数 z 1与 z 2的差: z 1- z 2=( a +bi )-( c +di )=( a - c )+( b -d )i . a, b, c, d R 复数的加法运算满足交换律和结合律 数加法的几何意义: 复数 z 1=a +bi ,z 2=c +di a, b,c, d R ;OZ = OZ 1 +OZ 2 =( a ,b )+( c , d )=( a +c ,b +d ) =( a +c )+( b +d )i uurur uuuur uuuur 复数减法的几何意义:复数 z 1- z 2的差( a - c )+( b -d )i 对应 由于 Z 2Z 1 OZ 1 OZ 2 ,两个 复数的差 z -z 1 与连接这两个向量终点并指向被减数的向量对应 . 9. 特别地, z u A u B ur z B - z A. , z u A u B ur AB z B z A 为两点间的距离。 |z z 1 | |z z 2 |z 对应的点的轨迹是线段 Z 1Z 2的垂直平分线; |z z 0| r , z 对应 的点的 2 、复数的代数形式: a bi a,b R , a 叫实部, b 叫虚部,实部和虚部都是实数。 积或商的模可利用模的性质( 1) z 1 L z n z 1 z 2 L z n ,(2) z 1 z 1 z 2 z 2 z 2 6、复数的几何意义: 复数 z a bi a,b R 一一对应 复平面内的点 Z(a,b) 一一对应 uur 复数 Z a bi a,b R 平面向量 OZ , 7、复平面: 这个建立了直角坐标系来表示复数的坐标平面叫其中 x 轴叫做实轴, y 轴叫做虚轴 ,实轴上的点都表示实数; 除了原点外, 虚轴上的点都表示纯虚数

高中数学复数练习题百度文库

一、复数选择题 1.已知复数1z i =+,则2 1z +=( ) A .2 B C .4 D .5 2.在复平面内,复数534i i -(i 为虚数单位)对应的点的坐标为( ) A .()3,4 B .()4,3- C .43,55??- ??? D .43,55?? - ??? 3.若复数1z i i ?=-+,则复数z 的虚部为( ) A .-1 B .1 C .-i D .i 4.已知a 为正实数,复数1ai +(i 为虚数单位)的模为2,则a 的值为( ) A B .1 C .2 D .3 5.已知i 为虚数单位,若复数()12i z a R a i +=∈+为纯虚数,则z a +=( ) A B .3 C .5 D .6.若复数1z i =-,则1z z =-( ) A B .2 C . D .4 7.已知复数5 12z i =+,则z =( ) A .1 B C D .5 8.若 1m i i +-是纯虚数,则实数m 的值为( ). A .1- B .0 C .1 D 9.在复平面内,复数z 对应的点是()1,1-,则1 z z =+( ) A .1i -+ B .1i + C .1i -- D .1i - 10.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( ) A .3 B .5 C .6 D .8 11.已知复数z 满足()1+243i z i =+,则z 的虚部是( ) A .-1 B .1 C .i - D .i 12.若i 为虚数单位,,a b ∈R ,且2a i b i i +=+,则复数a bi -的模等于( ) A B C D

高中数学复数(DOC)

复 数 知识回顾: 一、复数的概念 1. 虚数单位i (1) 它的平方等于1-,即2 i 1=-; (2) 实数可以与它进行四则运算,进行四则运算时,原有的加、乘法运算仍然成立,即满足交换律与结合律. (3) i 的乘方:4414243*i 1,i i,i 1,i i,N n n n n n +++===-=-∈,它们不超出i b 的形式. 2. 复数的定义 形如i(,)R a b a b +∈的数叫做复数,单个复数常常用字母z 表示.把复数z 表示成i a b +时,叫做复数的代数形式.,a b 分别叫做复数的实部与虚部,记作Re ,Im z z . 注意复数的实部和虚部都是实数. 3. 复数相等 如果两个复数1i(,)R z a b a b =+∈和2i(,)R z c d c d =+∈的实部和虚部分别相等,即,a c b d ==,那么这两个复数相等,记作i i a b c d +=+.一般的,两个复数只能说相等或不相等,而不能比较大小. 4. 共轭复数 当两个复数实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,也称这两个复数互相共轭.复数z 的共轭复数用z ,也就是当i z a b =+时,i z a b =-. a a =,i i b b =-. 二、复数的分类

正整数 有理数,Q Z q p q p ??=∈???? 零(0a b ==) 实数R :(0b =) 负整数 复数C 无理数 i (,) R z a b a b =+∈ 纯虚数(0a =) 虚数(0b ≠) 非纯虚数(0a ≠) i z a b =+是实数0b z z ?=?=. i z a b =+是纯虚数0,00,0a b z z z ?=≠?+=≠. 三、复平面及复数的坐标表示 1. 复平面 在直角坐标系里,点z 的横坐标是a ,纵坐标是b ,复数i z a b =+可用点(,)Z a b 来表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x 轴为实轴,y 轴出去原点的部分称为虚轴. 2. 复数的坐标表示 一个复数i z a b =+对应了一个有序实数对(,)a b ;反之一个有序实数对(,)a b 对应了一个复数i a b +.在复平面内,复数i z a b =+与复平面内的点(,)Z a b 是一一对应的. 我们常把复数i a b +看作点(,)Z a b . 3. 复数的向量表示

高中数学完整讲义——概率-随机事件的概率1.事件及样本空间

版块一:事件及样本空间 1.必然现象与随机现象 必然现象是在一定条件下必然发生某种结果的现象; 随机现象是在相同条件下,很难预料哪一种结果会出现的现象. 2.试验:我们把观察随机现象或为了某种目的而进行的实验统称为试验,把观察结果或实验的结果称为试验的结果. 一次试验是指事件的条件实现一次. 在同样的条件下重复进行试验时,始终不会发生的结果,称为不可能事件; 在每次试验中一定会发生的结果,称为必然事件; 在试验中可能发生,也可能不发生的结果称为随机事件. 通常用大写英文字母A B C L ,,,来表示随机事件,简称为事件. 3.基本事件:在一次试验中,可以用来描绘其它事件的,不能再分的最简单的随机事件,称为基本事件.它包含所有可能发生的基本结果. 所有基本事件构成的集合称为基本事件空间,常用Ω表示. 版块二:随机事件的概率计算 1.如果事件A B ,同时发生,我们记作A B I ,简记为AB ; 2.一般地,对于两个事件A B ,,如果有()()()P AB P A P B =,就称事件A 与B 相互独立,简称A 与B 独立.当事件A 与B 独立时,事件A 与B ,A 与B ,A 与B 都是相互独立的. 3.概率的统计定义 一般地,在n 次重复进行的试验中,事件A 发生的频率 m n ,当n 很大时,总是在某个常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记为()P A . 从概率的定义中,我们可以看出随机事件的概率()P A 满足:0()1P A ≤≤. 当A 是必然事件时,()1P A =,当A 是不可能事件时,()0P A =. 4.互斥事件与事件的并 互斥事件:不可能同时发生的两个事件叫做互斥事件,或称互不相容事件. 由事件A 和事件B 至少有一个发生(即A 发生,或B 发生,或A B , 都发生)所构成的事件C ,称为事件A 与B 的并(或和),记作C A B =U . 若C A B =U ,则若C 发生,则A 、B 中至少有一个发生,事件A B U 是由事件A 或B 所包含的基本事 知识内容 板块一.事件及样本空间

【2020高考资料夹】高中数学完整讲义:集合.板块三.集合的运算.学生版

1 题型一 集合的基本运算 【例1】若{}|1,I x x x =-∈Z ≥,则I N e= . 【例2】已知全集{(,)|R ,R}I x y x y =∈∈,{(1,1)}P =,表示I P e. 典例分析 板块三.集合的运算

2 【例3】若集合{1,1}A =-,{|1}B x mx ==,且A B A =U ,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或0 【例4】若{}{}{},,|,A a b B x x A M A ==?=,求B M e. 【例5】已知2{|43,}A y y x x x ==-+∈R ,2{|22,}B y y x x x ==--+∈R ,则A B I 等于 ( ) A .? B .{1,3}- C .R D .[1,3]-

3 【例6】若{}{}21,4,,1,A x B x ==且A B B =I ,则x = . 【例7】若集合{}{} 22(,)0,(,)0,,M x y x y N x y x y x y =+==+=∈∈R R ,则有( ) A .M N M =U B .M N N =U C .M N M =I D .M N =?I 【例8】已知集合{}{}22,1,3,3,21,1A a a B a a a =+-=--+,若{}3A B =-I ,求实数a 的 值.

4 【例9】设集合{|(3)()0,R}A x x x a a =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B U I . 【例10】设集合22{|0},{|0}A x x x B x x x =-==+=,则集合A B =I ( ) A .0 B .{}0 C .? D .{}1,0,1- 【例11】已知全集是R ,{|37},{|210}A x x B x x =<=<<≤,求R ()A B U e,R ()A B I e

高中数学复数基础部分练习题

1. 计算:i i 31-=________. 2. 下面四种说法中,正确的是 ( ) A. 实数b a =,则()()i b a b a ++-是纯虚数; B. 模相等的复数为共轭复数; C. 如果z 是纯虚数,则z z ≠; D. 任何数的偶次幂不小于零.¥ 3. i i -+11的值为 4. 若复数i m m m m m z )34(3 222+-+--+=是纯虚数,则实数=m ¥ 5. 下列命题中,正确的命题是 。 (1)对任意两个复数y x ,,若满足y x >,则y x ,必定都是实数 (2)复数),(R b a bi a z ∈+=的虚部是bi (3)当0=a 时,复数),(R b a bi a z ∈+=为纯虚数 (4)因为i 表示虚数单位,所以它不是一个虚数 ¥ 6. 已知)(2)1(32 2yi x i i y x -=+-+,其中y x ,都是实数,求复数=+yi x ¥ 7. 已知i z m z -==2,21,若21z z >,则实数m 的取值范围是 8. 已知复数z 满足4=z ,若0Im Re =+z z ,则=z 9. 21z z =是21z z =的 条件。¥ 10. 复数R m i m m z ∈-++=,)23()1(,求复数z 的模的最小值为 11. 若实数z 满足53=+-i z ,则=z 12. 已知i a a a z )21()6(21-+--=,i a a a z )22()3(22+-+-=,其中R a ∈,若21z z =,则=a 13. 若集合},|2||{},,11|{C z z i z z N C z z z M ∈=-=∈=+=,则=?N M ¥ 14. 已知1,=∈z C z ,求2-z 的取值范围¥ 15. 若i z +=2,则2z 的共轭复数为 16. 计算:=????200953i i i i ΛΛ¥

相关文档
相关文档 最新文档