文档库 最新最全的文档下载
当前位置:文档库 › 初值问题

初值问题

初值问题
初值问题

《计算机数学基础(2)》辅导六

第14章常微分方程的数值解法

一、重点内容

1.欧拉公式:

(k=0,1,2,…,n-1)

局部截断误差是O(h2)。

2. 改进欧拉公式:

或表示成:

平均形式:

局部截断误差是O(h3)。

3. 四阶龙格――库塔法公式:

其中κ1=f(x k,y k);κ2=f(x k+

0.5h,y k+

0.5

hκ1);κ3=f(x k+

0.5

h,y k+

0.5

hκ2);

κ4=f(x k+h,y k+hκ3)

局部截断误差是O(h5)。

二、实例

例1用欧拉法解初值问题

取步长h=0.2。计算过程保留4位小数。

解h=0.2,f(x,y)=-y-xy2。首先建立欧拉迭代格式

=0.2y k(4-x k y k) (k=0,1,2)

当k=0,x1=0.2时,已知x0=0,y0=1,有

y(0.2)≈y1=0.2×1(4-0×1)=0.8

当k=1,x2=0.4时,已知x1=0.2,y1=0.8,有

y(0.4)≈y2=0.2×0.8×(4-0.2×0.8)=0.6144

当k=2,x3=0.6时,已知x2=0.4,y2=0.6144,有

y(0.6)≈y3=0.2×0.6144×(4-0.4×0.6144)=0.4613 例2 用欧拉预报-校正公式求解初值问题

取步长h=0.2,计算y(1.2),y(1.4)的近似值,小数点后至少保留5位。

解步长h=0.2,此时f(x,y)=-y-y2sin x

欧拉预报-校正公式为:

有迭代格式:

当k=0,x0=1,y0=1时,x1=1.2,有

=y0(0.8-0.2y0sin x0)=1×(0.8-0.2×1sin1)=0.63171

y(1.2)≈y1

=1×(0.9-0.1×1×sin1)-0.1(0.63171+0.631712sin1.2)=0.71549 当k=1,x1=1.2,y1=0.71549时,x2=1.4,有

=y1(0.8-0.2y1sin x1)=0.71549×(0.8-0.2×0.71549sin1.2)

=0.47697

y(1.4)≈y2

=0.71549×(0.9-0.1×0.71549×sin1.2)

-0.1(0.47697+0.476972sin1.4)

=0.52611

例3写出用四阶龙格――库塔法求解初值问题

的计算公式,取步长h=0.2计算y(0.4)的近似值。至少保留四位小数。

解此处f(x,y)=8-3y,四阶龙格――库塔法公式为

其中κ1=f(x k,y k);κ2=f(x k+

0.5h,y k+

0.5

hκ1);κ3=f(x k+

0.5

h,y k+

0.5

hκ2);

κ4=f(x k+h,y k+hκ3)

本例计算公式为:

其中κ1=8-3y k;κ2=5.6-2.1y k;

κ3=6.32-2.37y k;κ4=4.208+1.578y k

=1.2016+0.5494y k (k=0,1,2,…)

当x0=0,y0=2,

y(0.2)≈y1=1.2016+0.5494y0=1.2016+0.5494×2=2.3004

y(0.4)≈y2=1.2016+0.5494y1=1.2016+0.5494×2.3004=2.4654 例4对初值问题

y(0)=1,证明用梯形公式求得的近似解为

并证明当步长h→0时,y n→e-x

证明解初值问题的梯形公式为

∵f(x,y)=-y

整理成显式

反复迭代,得到

∵y0=1 ∴

若x>0,为求y(x)的近似值,用梯形公式以步长h经过n步计算得到x,故x=nh,有

例5选择填空题:

1. 取步长h=0.1,用欧拉法求解初值问题

的计算公式是

答案:,k=0,1,2,…,y0=1

解答:欧拉法的公式

(k=0,1,2,…,n-1)

此处,迭代公式为

,k=0,1,2,…,y0=1

2. 改进欧拉法的平均形式的公式是( )

(A)

(B)

(C)

(D)

答案:(D)

解答:见改进欧拉法平均形式公式。

三、练习题

1. 求解初值问题欧拉法的局部截断误差是( ),改进欧拉法的局部截断误差是( );四阶龙格――库塔法的局部截断误差是( )

(A)O(h2) (B)O(h3) (C)O(h4) (D)O(h5)

2. 改进欧拉预报-校正公式是

3. 设四阶龙格――库塔法公式为

其中κ1=f(x k,y k);κ2=f(x k+

0.5,y k+

0.5

hκ1);κ3=f(x k+

0.5

,y k+

0.5

hκ2);

κ4=f(x k+h,y k+hκ3)

取步长h=0.3,用四阶龙格――库塔法求解初值问题

的计算公式是。

4. 取步长h=0.1,用欧拉法求解初值问题

5. 试写出用欧拉预报-校正公式求解初值问题

的计算公式,并取步长h=0.1,求y(0.2)的近似值。要求迭代误差不超过10-5。

6. 对于初值问题

试用(1)欧拉法;(2)欧拉预报-校正公式;(3)四阶龙格――库塔法分别计算y(0.2),y(0.4)的近似值。

7. 用平均形式改进欧拉法公式求解初值问题

在x=0.2,0.4,0.6处的近似值。

四、练习题答案

1. (A),(B),(D)

2. ;

3. 0.2591625+0.7408375y k (k=0,1,2,…)

提示:其中κ1=1-y k;κ2=0.85(1-y k);

κ3=0.8725(1-y k);κ4=0.73825(1-y k)

=0.2591625+0.7408375y k (k=0,1,2,…)

4. y1=1,y2=1.005000,y3=1.015050,

y4=1.030276,y5=1.050882,y6=1.077154,

y7=1.109469,y8=1.148300,y9=1.194232,y10=1.247972

5. 计算公式为

(k=0,1,2,…)

∴y(0.2)≈y2

6. 欧拉法:y(0.2)≈1.00000;y(0.4)≈1.08000

欧拉预报-校正公式:y(0.2)≈1.02084;y(0.4)≈1.04240 四阶龙格――库塔法:y(0.2)≈1.002673;y(0.4)≈1.021798

7. y p=0,y c=0.04,y1=0.02;

y p=0.056,y c=0.0888,y2=0.0724;

y p=0.13792,y c=0.164816,y3=0.151368

<>

第三章 一微分方程的解的存在定理

第三章 一阶微分方程的解的存在定理 教学目的 讨论一阶微分方程的解的存在与唯一性定理,解的延拓定理,解对初值的连续性与可微性定理,解对参数的连续性定理 教学要求 掌握存在与唯一性定理及其证明,会用皮卡逼近法求近似解,理解解对初值的连续性与可 微性定理,解对参数的连续性定理,了解奇解及其求法。 教学重点 几个主要定理的条件及其证明 教学难点 逐次逼近法的应用及其思想;应用存在与唯一性定理及解的延拓定理来研究方程的解;奇解及其求法 教学方法 讲练结合教学法、提问式与启发式相结合教学法。 教学手段 传统板书与多媒体课件辅助教学相结合。 课题导入 在上一章我们讨论了一阶方程的解的初等积分法。解决了几个特殊的方程。但是,对许多微分方程,为22'y x y +=,不可能通过初等积分法求解,这就产生了一个问题,一个不能用初等积分法求解的微分方程是否意味着没有解呢?或者说,一个微分方程的初值问题在何种条件下一定有解呢?当有解时,农的解是否是唯一的呢?毫无疑问,这是一个很基本的问题,不解决这个问题对微分方程的进一步研究,就无从谈起,本章将重点讨论一阶微分方程的解存在问题的唯一定理, §3.1解的存在唯一性定理与逐步逼近法 教学目的 讨论Picard 逼近法及一阶微分方程的解的存在与唯一性定理,解的延拓定理,解对初值的连续性与可微性定理。 教学要求 熟练掌握Picard 逼近法,并用它证明一阶微分方程初值问题解的存在与唯一性定理及其证明,会用Picard 逼近法求近似解, 教学重点 Picard 存在唯一性定理及其证明

教学难点 逐次逼近分析法的应用及其思想. 教学方法 讲练结合教学法、提问式与启发式相结合教学法。 教学手段 传统板书与多媒体课件辅助教学相结合。 一. 存在唯一性定理 1.定理1,考虑初值问题 ),(y x f dx dy = (3.1) 00)(y x y = 其中f(x,y)在矩形区域 R : b y y a x x ≤-≤-||,||00 (3.2) 上连续,并且对y 满足Lipsthits 条件:即存在常数L>0,使对所有 R y x y x ∈),(),,(21常存成立, |||),(),(|2121y y L y x f y x f -≤- 则初值问题(cauchy 问题)(3.1)在区间h x x ≤-||0上解存在唯一,这里 |),(|max ),, min(),(y x f M M b a h R y x ∈== 证明思路:1.初值问题(3.1)的解存在等价一动积分方程?+=x x dy y x f y y 0 ),(0(3.5)的连续解。 2.构造( 3.5)所得解函数序列{)(x n ?} 任取一连续函数)(0x ?,b y x ≤-|)(|00?代入(3.5)左端的y ,得 ?+=x x dx x x f y x 0 ))(,()(01??)(x n ?)(x n ? Λ2,1,))(,()(0 01=+=?+n dx x x f y x x x n n ?? 3.函数序列{)(x n ?}在|,|00h x h x +-上一致收敛到)(x ?。这里为3 ?∞→∞ →+x x n n n dx x x f y x 0 ))(,(lim )(lim 0?

解的存在唯一性

解的存在唯一性定理证明及其研究 专业名称:数学与数学应用 组长:赵亚平 组员:刘粉娟、王蓓、孙翠莲 指导老师:岳宗敏

解的存在唯一性定理证明及其研究 摘要 线性微分方程是常微分课本中的重要组成部分,线性微分方程组解的存在唯一性是最重要,也是不可或缺的一部分,通过课本所学知识运用逐步逼近法以及压缩映射原理分别对一阶,高阶线性微分方程组解的存在唯一性进行的详细的论述证明。对于线性方程组解的情况,主要是通过对增广矩阵进行初等行变换,了解其秩的情况,在运用克莱默法则,从而得出其解的存在唯一性的情况。 关键词:解的存在唯一性 线性微分方程组 线性方程组 (一)一阶微分方程的解的存在唯一性定理与逐步逼近法 存在唯一性定理 考虑初值问题 ),(y x f dx dy = 00)(y x y = (1) 其中f(x,y)在矩形区域R : b y y a x x ≤-≤-||,||00 (2) 上连续,并且对y 满足Lipschits 条件:即存在常数L>0(L 为利普

希茨常数),使不等式 |||),(),(|2121y y L y x f y x f -≤- 对所有R y x y x ∈),(),,(21都成立,则初值问题(1)在区间h x x ≤-||0上解存在且唯一,这里 |),(|max ),, min(),(y x f M M b a h R y x ∈== 证明思路: 1.初值问题(1)的解存在等价于求积分方程 ?+=x x dy y x f y y 0),(0 (3) 的连续解。 2.构造(3)所得解函数序列{)(x n ?},任取一连续函数)(0x ?, b y x ≤-|)(|00?代入(3)右端的y ,得 …… 2,1,))(,()(0 01=+=?+n dx x x f y x x x n n ?? 3.函数序列{)(x n ?}在|,|00h x h x +-上一致收敛到)(x ?。这里为 )(x n ?=dx x x f y n x x n ))(,(lim 1-00 ??∞ →+ dx x x f y x x f y x x x x n ??+ =+=∞ →0 ))(,()) (,(lim 01-n 0?? 4.)(x ?为(3)的连续解且唯一。首先在区间],[00h x x +是讨论,在错误!未找到引用源。上类似。 证明过程: 命题1 :初值问题(1)等价于积分方程

常微分方程初值问题数值解法.

常微分方程初值问题数值解法 朱欲辉 (浙江海洋学院数理信息学院, 浙江舟山316004) [摘要]:在常微分方程的课程中讨论的都是对一些典型方程求解析解的方法.然而在生产实 际和科学研究中所遇到的问题往往很复杂, 在很多情况下都不可能给出解的解析表达式. 本篇文章详细介绍了常微分方程初值问题的一些数值方法, 导出了若干种数值方法, 如Euler法、改进的Euler法、Runge-Kutta法以及线性多步法中的Adams显隐式公式和预测校正 公式, 并且对其稳定性及收敛性作了理论分析. 最后给出了数值例子, 分别用不同的方法计算出近似解, 从得出的结果对比各种方法的优缺点. [关键词]:常微分方程;初值问题; 数值方法; 收敛性; 稳定性; 误差估计 Numerical Method for Initial-Value Problems Zhu Yuhui (School of Mathematics, Physics, and Information Science, Zhejiang Ocean University, Zhoushan, Zhejiang 316004) [Abstract]:In the course about ordinary differential equations, the methods for analytic solutions of some typical equations are often discussed. However, in scientific research, the problems are very complex and the analytic solutions about these problems can’t be e xpressed explicitly. In this paper, some numerical methods for the initial-value problems are introduced. these methods include Euler method, improved Euler method, Runge-Kutta method and some linear multistep method (e.g. Adams formula and predicted-corrected formula). The stability and convergence about the methods are presented. Some numerical examples are give to demonstrate the effectiveness and accuracy of theoretical analysis. [Keywords]:Ordinary differential equation; Initial-value problem; Numerical method; Convergence; Stability;Error estimate

常微分方程初值问题的数值解法

第七章 常微分方程初值问题的数值解法 --------学习小结 一、本章学习体会 通过本章的学习,我了解了常微分方程初值问题的计算方法,对于解决那些很难求解出解析表达式的,甚至有解析表达式但是解不出具体的值的常微分方程非常有用。在这一章里求解常微分方程的基本思想是将初值问题进行离散化,然后进行迭代求解。在这里将初值问题离散化的方法有三种,分别是差商代替导数的方法、Taylor 级数法和数值积分法。常微分方程初值问题的数值解法的分类有显示方法和隐式方法,或者可以分为单步法和多步法。在这里单步法是指计算第n+1个y 的值时,只用到前一步的值,而多步法则是指计算第n+1个y 的值时,用到了前几步的值。通过对本章的学习,已经能熟练掌握如何用Taylor 级数法去求解单步法中各方法的公式和截断误差,但是对线性多步法的求解理解不怎么透切,特别是计算过程较复杂的推理。 在本章的学习过程中还遇到不少问题,比如本章知识点多,公式多,在做题时容易混淆,其次对几种R-K 公式的理解不够透彻,处理一个实际问题时,不知道选取哪一种公式,通过课本里面几种方法的计算比较得知其误差并不一样,,这个还需要自己在往后的实际应用中多多实践留意并总结。 二、本章知识梳理 7.1 常微分方程初值问题的数值解法一般概念 步长h ,取节点0,(0,1,...,)n t t nh n M =+=,且M t T ≤,则初值问题000 '(,),()y f t y t t T y t y =≤≤??=?的数值解法的一般形式是 1(,,,...,,)0,(0,1,...,)n n n n k F t y y y h n M k ++==- 7.2 显示单步法 7.2.1 显示单步法的一般形式 1(,,),(0,1,...,1)n n n n y y h t y h n M ?+=+=-

常微分方程初值问题

常微分方程初值问题 12.1引言 在数学模型中经常出现的常微分方程在科学的许多分支中同样出现,例如工程和经济学。不幸的是却很少出现这些方程可得到表示在封闭的形式的解的情况,所以通常采用数值方法来寻找近似解。如今,这通常可以非常方便的达到高精度和在解析解和数值逼近之间可靠的误差界。在本节我们将关注一阶微分方程(12.1)形式关于实值函数y的实变 量x的结构和数值分析方法,其中和f是一个给定的实值函数的两个变量。为了从解曲线的无限族选择一个特定的积分构成(12.1)的通解,微分方程将与初始条件一起考虑:给定两个实数和,我们寻求一个(12.1)的解决方案,对于有 (12.2) 微分方程(12.1)与初始条件(12.2)被称为一个初值问题。如果你认为任何(12.1),(12.2)形式的初始值问题具有一个唯一解,看看以下例子。 例12.1考虑微分方程,初始条件,其中α是一个固定的实数,α∈(0,1)。 这是一个关于上述想法的简单验证,对于任何非负实数C, 是初值问题在区间[ 0,∞)上的一个解。因此解的存在性是肯定的,但解不一定唯一;事实上,初始值问题的解有一个无限族,当参数。 我们注意到,在与α∈(0,1)相反的情况下,当α≥1,初值问题,具有唯一解y(x)≡0。 例12.1表明函数f必须遵循相对于它的第二个参数的一定的增长性条件,以保证(12.1),(12.2)有唯一解。精确的保证初始值问题(12.1),(12.2)假设f解的存在惟一基于下面的定理。 定理12.1(Picard theorem)假定实值函数是连续的矩形区域D定义 ;当时;且f 满足Lipschitz条件:存在L>0则 。

常微分方程初值问题答案

1.(10分)对常微分方程初值问题(0)1(01) dy y dx y x ?=-???=≤≤? 取步长0.1,h = 分别用改进的Euler 法和标准的四阶Runge-Kutta 法作数值计算,写出公式和简要推导过程,并把结果填入表内。 解:(1) 改进的Euler 方法: 代入公式得10.905n n y y +=,即0.905n n y = …2分 (2)标准的四阶Runge-Kutta 方法: 1 12341213 2430.1(22)0.90483756 (0.05)0.95(0.05)0.9525(0.1)0.90475n n n n n n n n n n y y k k k k y k y k y k y k y k y k y k y +?=++++=?? =-?? =-+=-??=-+=-??=-+=-?? 即0.9048375n n y = ……(4分) 2. 对常微分方程初值问题12 (0)1(01) dy y dx y x ?=-???=≤≤? 取步长0.1,h = 分别用改进的Euler 法和标准的四阶Runge-Kutta 法作数值计算,写出公式和推导过程,并把结果填入表内。

解:(1) 改进的Euler 方法: 代入公式得10.95125n n y y +=,即0.95125n n y = ……………….(2分) (2)标准的四阶Runge-Kutta 方法: 1 12341213 2430.1(22)0.9512196 /2(0.05)/20.4875(0.05)/20.4878125(0.1)/20.47622n n n n n n n n n n y y k k k k y k y k y k y k y k y k y k y +?=++++=?? =-?? =-+=-??=-+=-??=-+=-?? 即0.95145314n n y =……(4分) 《数值分析》复习题 一、填空题 1.绝对误差限=末位的一半+单位,相对误差限=绝对误差限/原值*100% 1. 度量一根杆子长250厘米,则其绝对误差限为 ,相对误差限是 。 2. 测量一支铅笔长是16cm , 那么测量的绝对误差限是 ,测量的相对误差限是 。 3. 称量一件商品的质量为50千克,则其绝对误差限为 ,相对误差限是 。 2.利用平方差的方法 4. 在数值计算中,当a _____________

实验报告七 常微分方程初值问题的数值解法

课程名称 数值计算方法 实验项目名称 常微分方程初值问题的数值解法 实验成绩 指导老师(签名 ) 日期 2015/12/16 一. 实验目的和要求 1. 用Matlab 软件掌握求微分方程数值解的欧拉方法和龙格-库塔方法; 2. 通过实例学习用微分方程模型解决简化的实际问题。 二. 实验内容和原理 编程题2-1要求写出Matlab 源程序(m 文件),并有适当的注释语句;分析应用题2-2,2-3,2-4,2-5要求将问题的分析过程、Matlab 源程序和运行结果和结果的解释、算法的分析写在实验报告上。 2-1 编程 编写用向前欧拉公式和改进欧拉公式求微分方程数值解的Matlab 程序,问题如下: 在区间[],a b 内(1)N +个等距点处,逼近下列初值问题的解,并对程序的每一句添上注释语句。 0(,)()y f x y a x b y a y '=≤≤= Euler 法 y=euler(a,b,n,y0,f,f1,b1) 改进Euler 法 y=eulerpro(a,b,n,y0,f,f1,b1) 2-2 分析应用题 假设等分区间数100n =,用欧拉法和改进欧拉法在区间[0,10]t ∈内求解初值问题 ()()20 (0)10 y t y t y '=-?? =? 并作出解的曲线图形,同时将方程的解析解也画在同一张图上,并作比较,分析这两种方法的精度。 2-3 分析应用题 用以下三种不同的方法求下述微分方程的数值解,取10h =

201 (0)1 y y x x y '=+≤≤?? =? 画出解的图形,与精确值比较并进行分析。 1)欧拉法; 2)改进欧拉法; 3)龙格-库塔方法; 2-4 分析应用题 考虑一个涉及到社会上与众不同的人的繁衍问题模型。假设在时刻t (单位为年),社会上有人口()x t 人,又假设所有与众不同的人与别的与众不同的人结婚后所生后代也是与众不同的人。而固定比例为r 的所有其他的后代也是与众不同的人。如果对所有人来说出生率假定为常数b ,又如果普通的人和与众不同的人的婚配是任意的,则此问题可以用微分方程表示为: () (1())dp t rb p t dt =- 其中变量()()()i p t x t x t =表示在时刻t 社会上与众不同的人的比例,()i x t 表示在时刻t 人口中与众不同的人的数量。 1)假定(0)0.01,0.02p b ==和0.1r =,当步长为1h =年时,求从0t =到50t =解()p t 的近似值,并作出近似解的曲线图形。 2)精确求出微分方程的解()p t ,并将你当50t =时在分题(b)中得到的结果与此时的精确值进行比较。 【MATLAB 相关函数】 求微分方程的解析解及其数值的代入 dsolve(‘egn1’, ‘egn2’,L ‘x ’) subs (expr, {x,y,…}, {x1,y1,…} ) 其中‘egn i ’表示第i 个方程,‘x ’表示微分方程中的自变量,默认时自变量为t 。 subs 命令中的expr 、x 、y 为符合型表达式,x 、y 分别用数值x1、x2代入。 >> syms x y z >> subs('x+y+z',{x,y,z},{1,2,3}) ans = 6 >> syms x >> subs('x^2',x,2) ans = 4 >> s=dsolve(‘12Dy y ∧=+’, ‘(0)1y =’, ‘x ’) ans = tan(14)x pi -*

第八章 常微分方程初值问题的解法

第八章常微分方程初值问题的解法 在科学与工程问题中,常微分方程描述物理量的变化规律,应用非常广泛. 本章介绍最基本的常微分方程初值问题的解法,主要针对单个常微分方程,也讨论常微分方程组的有关技术. 8.1引言 本节介绍常微分方程、以及初值问题的基本概念,并对常微分方程初值问题的敏感性进行分析. 8.1.1 问题分类与可解性 很多科学与工程问题在数学上都用微分方程来描述,比如,天体运动的轨迹、机器人控制、化学反应过程的描述和控制、以及电路瞬态过程分析,等等. 这些问题中要求解随时间变化的物理量,即未知函数y(t),t表示时间,而微分方程描述了未知函数与它的一阶或高阶导数之间的关系. 由于未知函数是单变量函数,这种微分方程被称为常微分方程(ordinary differential equation, ODE),它具有如下的一般形式①: g(t,y,y′,?,y(k))=0 ,(8.1) 其中函数g: ?k+2→?. 类似地,如果待求的物理量为多元函数,则由它及其偏导函数构成的微分方程称为偏微分方程(partial differential equation, PDE). 偏微分方程的数值解法超出了本书的范围,但其基础是常微分方程的解法. 在实际问题中,往往有多个物理量相互关联,它们构成的一组常微分方程决定了整个系统的变化规律. 我们先针对单个常微分方程的问题介绍一些基本概念和求解方法,然后在第8.5节讨论常微分方程组的有关问题. 如公式(8.1),若常微分方程包含未知函数的最高阶导数为y(k),则称之为k阶常微分方程. 大多数情况下,可将常微分方程(8.1)写成如下的等价形式: y(k)=f(t,y,y′,?,y(k?1)) ,(8.2) 其中函数f: ?k+1→?. 这种等号左边为未知函数的最高阶导数y(k)的方程称为显式常微分方程,对应的形如(8.1)式的方程称为隐式常微分方程. 通过简单的变量代换可将一般的k阶常微分方程转化为一阶常微分方程组. 例如对于方程(8.2),设u1(t)=y(t),u2(t)=y′(t),?,u k(t)=y(k?1), 则得到等价的一阶显式常微分方程组为: {u1′=u2 u2′=u3 ? u k′=f(t,u1,u2,?,u k) .(8.3) 本书仅讨论显式常微分方程,并且不失一般性,只需考虑一阶常微分方程或方程组. 例8.1 (一阶显式常微分方程):试用微积分知识求解如下一阶常微分方程: y′=y . [解] 采用分离变量法进行推导: ①为了表达式简洁,在常微分方程中一般省略函数的自变量,即将y(t)简记为y,y′(t)简记为y′,等等.

解的存在唯一性定理

一阶微分方程解的存在性定理的其它证明方法 姜旭东 摘要 本文在文[1]对一阶微分方程初值问题解得存在唯一性定理证明的基础上,应用压缩映像原理,Schauder 不动点定理,以及Euler 折线法,给出了一阶微分方程解得存在唯一性定理的其它几种证法. 关键词 一阶微分方程 不动点定理 解的存在性 唯一性 1、引言 微分方程来源于生活实际,研究微分方程的目的在于掌握它所反映的客观规律。在文[1]第二章里,介绍了能用初等解法求解的一阶方程的若干类型,但同时指出,大量的一阶方程一般是不能用初等解法求解它的通解,而实际问题需要的往往是要求满足某种初始条件的解. 本文在文[1]对一阶微分方程初值问题解的存在唯一性定理证明的基础上,应用压缩映像原理,Schauder 不动点定理,以及Euler 折线法,给出了一阶微分方程解的存在唯一性定理的其它几种证法. 考虑一阶微分方程 (,)dy f x y dx = (1.1) 这里(,)f x y 是在矩形区域 00:||,||R x x a y y b -≤-≤ (1.2) 上的连续函数. 函数(,)f x y 在R 上满足Lipschitz 条件,即存在常数L >0,使得不等式 1212|(,)(,)|||f x y f x y L y y -≤- (1.3) 对所有12(,),(,)x y x y R ∈都成立, L 称为Lipschitz 常数。 定理1.1、如果(,)f x y 在R 上连续且关于y 满足Lipschitz 条件,则方程(1.1)存在唯一的解 ()y x ?=,定义于区间0||x x h -≤上,连续且满足初始条件 00()x y ?= 这里min(, )b h a M =,(,)max |(,)|x y R M f x y ∈=. 文[1]中采用皮卡逐步逼近法来证明这个定理.为了简单起见,只就区间00x x x h ≤≤+来讨论,对于

相关文档
相关文档 最新文档