文档库 最新最全的文档下载
当前位置:文档库 › FLUENT算例 (5)搅拌桨底部十字挡板的流场分析

FLUENT算例 (5)搅拌桨底部十字挡板的流场分析

搅拌桨底部十字挡板的流场分析搅拌设备在各个行业运用的十分广泛,搅拌就是为了更够更快速更高效的将物质与介质充分混合,发生充分的反应,而搅拌中存在着许多不利于混合的情况,比如液体旋流。为了解决这个问题,之前很多人提出在罐体的侧壁上增加挡板,可以抵消大部分旋流,然后大部分都是研究侧挡板的,对于底部挡板的研究十分少,本文就在椭圆底部挡板增加十字型挡板,对罐体中进行流场分析。

1.Gambit建模

首先用Gambit建模图形如下:

图1:Gambit建立的模型

分为两个区域,里面的圆柱为动区域,外面包着的大圆柱设为静区域,静区域划分网格大,划分粗糙,内部动区域划分网格小,划分精细。边界条件主要设置了轴,搅拌桨,底部挡板,上层液面。以下就是fluent进行数值模拟。

2.fluent数值模拟

2.1导入case文件

2.2对网格进行检查

Minimum volume的数值大于0即可。

图2网格检查2.3调节比例

单位选择mm单位。

图3比例调节2.4定义求解器参数

设置如图4所示

图4设置求解器参数2.5设置能量线

图5能量线

2.6设置粘度模型,选择k-e模型

k-e模型对该模型模拟十分实用。

图6粘度模型2.7定义材料

介质选择液体水。

2.8定义操作条件

由于存在着终于,建模时的方向向上,所以在Z轴增加一个重力加速度。

图8操作条件

2.9定义边界条件

在边界设置重,动区域如图所示,将材料设成水,motion type设成moving reference frame (相对滑动),转速设为10rad/s,单位可在Define中的set unit中的angular-velocity设置。而在在轴的设置中,如上图所示,将wall motion设成moving wall,motion设成Absolute,速度设成-10,由于轴跟动区域速度是相对的,所以设成反的。

图9动区域边界条件

图10轴边界条件2.10设置求解器

求解器的设置如图11需将momentum改成0.5即可

图11求解器

2.11初值初始化

在Slove中选择solution initialiation设置一下,初值全为0.

2.12设置残留控制

将plot点上,其他参数如图12所示。

图12残留控制

2.14递代计算

选择递代2000次,进行递代计算。

3.结果

通过fluent的数值模拟,得出以下的结论。

图13-a 底部加“十字形”挡板时距釜底中心20 mm处横截面速度矢量图

图13-b 底部加“十字形”挡板时距釜底中心20 mm处横截面速度云图底部加“十字形”挡板时,从图13-a和13-b可以看出,靠近反应釜底部的流体会产生由外向内的径向流动,此时在搅拌釜的底部形成了伯格斯[4](Burgers)涡流,在挡板和反应釜底部中心的间距的径向上,靠近挡板一侧的流体的速度达到最大,在反应釜底部中心处流体的速度较大。

Fluent是目前国际上比较流行的商用CFD软件包,在美国的市场占有率为60%,凡是和流体、热传递和化学反应等有关的工业均可使用。它具有丰富的物理模型、先进的数值方法和强大的前后处理功能,在航空航天、汽车设计、石油天然气和涡轮机设计等方面都有着广泛的应用。

CFD商业软件FLUENT,是通用CFD软件包,用来模拟从不可压缩到高度可压缩范围内的复杂流动。由于采用了多种求解方法和多重网格加速收敛技术,因而FLUENT能达到最佳的收敛速度和求解精度。灵活的非结构化网格和基于解的自适应网格技术及成熟的物理模型,使FLUENT在转换与湍流、传热与相变、化学反应与燃烧、多相流、旋转机械、动/变形网格、噪声、材料加工、燃料电池等方面有广泛应用。目前与FLUENT配合最好的标准网格软件是ICEM,而不是早已过时的GAMBIT。

FLUENT软件包含三种算法:非耦合隐式算法、耦合显式算法、耦合隐式算法,是商用软件中最多的;

FLUENT软件包含丰富而先进的物理模型,使得用户能够精确地模拟无粘流、层流、湍流。湍流模型包含Spalart-Allmaras模型、k-ω模型组、k-ε模型组、雷诺应力模型(RSM)组、大涡模拟模型(LES)组以及最新的分离涡模拟(DES)和V2F模型等。另外用户还可以定制或添加自己的湍流模型;

适用于牛顿流体、非牛顿流体;

含有强制/自然/混合对流的热传导,固体/流体的热传导、辐射;

化学组份的混合/反应;

自由表面流模型,欧拉多相流模型,混合多相流模型,颗粒相模型,空穴两相流模型,湿蒸汽模型;

融化溶化/凝固;蒸发/冷凝相变模型;

离散相的拉格朗日跟踪计算;

非均质渗透性、惯性阻抗、固体热传导,多孔介质模型(考虑多孔介质压力突变);

风扇,散热器,以热交换器为对象的集中参数模型;

惯性或非惯性坐标系,复数基准坐标系及滑移网格;

动静翼相互作用模型化后的接续界面;

基于精细流场解算的预测流体噪声的声学模型;

质量、动量、热、化学组份的体积源项;

丰富的物性参数的数据库;

磁流体模块主要模拟电磁场和导电流体之间的相互作用问题;

连续纤维模块主要模拟纤维和气体流动之间的动量、质量以及热的交换问题;

高效率的并行计算功能,提供多种自动/手动分区算法;内置MPI并行机制大幅度提高并行效率。另外,FLUENT特有动态负载平衡功能,确保全局高效并行计算;

FLUENT软件提供了友好的用户界面,并为用户提供了二次开发接口(UDF);

FLUENT软件采用C/C++语言编写,从而大大提高了对计算机内存的利用率。

在CFD软件中,Fluent软件是目前国内外使用最多、最流行的商业软件之一。Fluent的软件设计基于"CFD计算机软件群的概念",针对每一种流动的物理问题的特点,采用适合于它的数值解法在计算速度、稳定性和精度等各方面达到最佳。由于囊括了Fluent Dynamical International比利时PolyFlow和Fluent Dynamical International(FDI)的全部技术力量(前者是公认的在黏弹性和聚合物流动模拟方面占领先地位的公司,后者是基于有限元方法CFD软件方面领先的公司),因此Fluent具有以上软件的许多优点。

FLUENT系列软件包括通用的CFD软件FLUENT、POLY­FLOW、FIDAP,工程设计软件FloWizard、FLUENT for CATIAV5,TGrid、G/Turbo,CFD教学软件FlowLab,面向特定专业应用的ICEPAK、AIRPAK、MIXSIM软件等。

FLUENT软件包含基于压力的分离求解器、基于压力的耦合求解器、基于密度的隐式求解器、基于密度的显式求解器,多求解器技术使FLUENT软件可以用来模拟从不可压缩到高超音速范围内的各种复杂流场。FLUENT软件包含非常丰富、经过工程确认的物理模型,可以模拟高超音速流场、转捩、传热与相变、化学反应与燃烧、多相流、旋转机械、动/变形网格、噪声、材料加工等复杂机理的流动问题。

FLUENT软件的动网格技术处于绝对领先地位,并且包含了专门针对多体分离问题的六自由度模型,以及针对发动机的两维半动网格模型。

POLYFLOW是基于有限元法的CFD软件,专用于粘弹性材料的层流流动模拟。它适用于塑料、树脂等高分子材料的挤出成型、吹塑成型、拉丝、层流混合、涂层过程中的流动及传热和化学反应问题。

FloWizard是高度自动化的流动模拟工具,它允许用户进行设计及在产品开发的早期阶段迅速而准确地验证设计。它引导用户从头至尾地完成模拟过程,使模拟过程变得非常容易。

FLUENT for CATIAV5是专门为CATIA用户定制的CFD软件,将FLUENT 完全集成在CATIAV5内部,用户就像使用CATIA其他分析环境一样使用FLUENT软件。

G/Turbo是专业的叶轮机械网格生成软件。

AIRPAK是面向HVAC工程师的CFD软件,并依照ISO7730标准提供舒适度、PMV、PPD等衡量室内外空气质量(IAQ)的技术指标。

MIXSIM是专业的搅拌槽CFD模拟软件。

除FLUENT外,常用的CFD软件及相关仿真软件还有专业三维流场分析软件——CFX、三维CFD快速求解器——CART3D、流体系统仿真、设计与优化平台——Flowmaster、专业的离散元仿真分析软件——EDEM等。

(完整版)《FLUENT中文手册(简化版)》

FLUENT中文手册(简化版) 本手册介绍FLUENT的使用方法,并附带了相关的算例。下面是本教程各部分各章节的简略概括。 第一部分: ?开始使用:描述了FLUENT的计算能力以及它与其它程序的接口。介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。在本章中给出了一个简单的算例。 ?使用界面:描述用户界面、文本界面以及在线帮助的使用方法,还有远程处理与批处理的一些方法。?读写文件:描述了FLUENT可以读写的文件以及硬拷贝文件。 ?单位系统:描述了如何使用FLUENT所提供的标准与自定义单位系统。 ?使用网格:描述了各种计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale)、分区(partition)等方法对网格的修改。还描述了非一致(nonconformal)网格的使用. ?边界条件:描述了FLUENT所提供的各种类型边界条件和源项,如何使用它们,如何定义它们等 ?物理特性:描述了如何定义流体的物理特性与方程。FLUENT采用这些信息来处理你的输入信息。 第二部分: ?基本物理模型:描述了计算流动和传热所用的物理模型(包括自然对流、周期流、热传导、swirling、旋转流、可压流、无粘流以及时间相关流)及其使用方法,还有自定义标量的信息。 ?湍流模型:描述了FLUENT的湍流模型以及使用条件。 ?辐射模型:描述了FLUENT的热辐射模型以及使用条件。 ?化学组分输运和反应流:描述了化学组分输运和反应流的模型及其使用方法,并详细叙述了prePDF 的使用方法。 ?污染形成模型:描述了NOx和烟尘的形成的模型,以及这些模型的使用方法。 第三部分: ?相变模拟:描述了FLUENT的相变模型及其使用方法。 ?离散相变模型:描述了FLUENT的离散相变模型及其使用方法。 ?多相流模型:描述了FLUENT的多相流模型及其使用方法。 ?移动坐标系下的流动:描述单一旋转坐标系、多重移动坐标系、以及滑动网格的使用方法。 ?解法器(solver)的使用:描述了如何使用FLUENT的解法器。 ?网格适应:描述了如何优化网格以适应计算需求。 第四部分: ?显示和报告数据界面的创建:本章描述了explains how to create surfaces in the domain on which you can examine FLUENT solution data ?图形和可视化:本章描述了检验FLUENT解的图形工具 ?Alphanumeric Reporting:本章描述了如何获取流动、力、表面积分以及其它解的数据。 ?流场函数的定义:本章描述了如何定义FLUENT面板内出现的变量选择下拉菜单中的流动变量,并且告诉我们如何创建自己的自定义流场函数。 ?并行处理:本章描述了FLUENT的并行处理特点以及使用方法 ?自定义函数:本章描述了如何通过用户定义边界条件,物理性质函数来形成自己的FLUENT软件。 如何使用该手册 对于初学者,建议从阅读“开始”这一章起步。 对于有经验的使用者,有三种不同的方法供你使用该手册:按照特定程序的步骤从按程序顺序排列的目录列表和主题列表中查找相关资料;从命令索引查找特定的面板和文本命令的使用方法;从分类索引查找特定类别信息(在线帮助中没有此类索引,只能在印刷手册中找到它)。 什么时候使用Support Engineer:Support Engineer能帮你计划CFD模拟工程并解决在使用FLUENT 中所遇到的困难。在遇到困难时我们建议你使用Support Engineer。但是在使用之前有以下几个注意事项:●仔细阅读手册中关于你使用并产生问题的命令的信息 ●回忆导致你产生问题的每一步 ●如果可能的话,请记下所出现的错误信息 ●对于特别困难的问题,保存FLUENT出现问题时的日志以及手稿。在解决问题时,它是最好的资源。

fluent计算错误分析

1. FlUENT 1.1 求解方面 1.1.1 floating point error是什么意思?怎样避免它? Floating point error已经提过很多次了并且也已经对它讨论了许多。下面是在Fluent论坛上的一些答案: 从数值计算方面看,计算机所执行的运算在计算机内是以浮点数(floating point number)来表示的。那些由于用户的非法数值计算或者所用计算机的限制所引起的错误称为floating point error。 1)非法运算:最简单的例子是使用Newton Raphson方法来求解f(x)=0的根时,如果执行第N次迭代时有,x=x(N),f’(x(N))=0,那么根据公式x(N+1)=x(N)-f(x(N))/ f’(x(N))进行下一次迭代时就会出现被0除的错误。 2)上溢或下溢:这种错误是数据太大或太小造成的,数据太大称为上溢,太小称为下溢。这样的数据在计算机中不能被处理器的算术运算单元进行计算。 3)舍入错误:当对数据进行舍入时,一些重的数字会被丢失并且不可再恢复。例如,如果对0.1进行舍入取整,得到的值为0,如果再对它又进行计算就会导致错误。 避免方法 计算和迭代我认为设一个比较小的时间步长会比较好的。或者改成小的欠松驰因子也会比较好。从我的经验来看,我把欠松驰因子设为默认值的1/3;降低欠松驰因子或使用耦合隐式求解;改变欠松驰因子,如果是非稳态问题可能是时间步长太大;改善solver-control-limits 比例或许会有帮助;你需要降低Courant数;如果仍然有错误,不选择compute from初始化求解域,然后单击init。再选择你想从哪个面初始化并迭代,这样应该会起作用。另外一个原因可能是courant数太大,就样就是说两次迭代之间的时间步太大并且计算结果变化也较大(残差高)。 网格问题当我开始缩放网格时就会发生这个错误。在Gambit中,所有的尺寸都是以mm 为单位,在fluent按scale按钮把它转换成m,然后迭代几百次时就会发生这种错误。但是当我不把网格缩放到m时,让它和在Gambit中一样,迭代就会成功;我认为你应当检查网格,你的网格数太多了,使用较少的网格问题就会解决;网格太多,计算机资源不够用,使使比较粗的网格。 边界条件在我的分析中,我设了一个wall边界条件来代迭axis边界条件,结果fluent拒绝计算并告诉我floating point error。你的边界条件不能代表真实的物理现象;错误的边界条件定义可能会导致floating point error。例如把内边界设成interior;一次我使用对称边界条件模拟2D区间时也遇到这种问题,我把symmetry设为axe symmetric,就发生了floating point error;检查你设的湍流参数,减小湍流强度,先进行50次迭代。 多处理器问题我近来在进行多处理器模拟时也遇到相似的问题。问题的解决方法是在单个处理器上运行,这样就运算得很好。 错误迭代以错误的条件来初始化,在开始迭代时就会发生floating point error。 1.1.2 coupled和segregated求解有什么区别? Coupled会同时求解所有的方程(质量守恒方程、动量守恒方程和能量守恒方程)而不是单个方程求解(方程互相分离)。当速度和压力高度耦合(高压和高速)时应该使用耦合求解,但这样会需要较长的计算时间。 在耦合求解中,能量方程中总是包含组分扩散(Species Diffusion Term)项。

fluent 介绍

想起CFD,人们总会想起FLUENT,丰富的物理模型使其应用广泛,从机翼空气流动到熔炉燃烧,从鼓泡塔到玻璃制造,从血液流动到半导体生产,从洁净室到污水处理工厂的设计,另外软件强大的模拟能力还扩展了在旋转机械,气动噪声,内燃机和多相流系统等领域的应用。今天,全球数以千计的公司得益于FLUENT的这一工程设计与分析软件,它在多物理场方面的模拟能力使其应用范围非常广泛,是目前功能最全的CFD软件。 FLUENT因其用户界面友好,算法健壮,新用户容易上手等优点一直在用户中有着良好的口碑。长期以来,功能强大的模块,易用性和专业的技术支持所有这些因素使得FLUENT成为企业选择CF D软件时的首选。 网格技术,数值技术,并行计算 计算网格是任何CFD计算的核心,它通常把计算域划分为几千甚至几百万个单元,在单元上计算并存储求解变量,FLUENT使用非结构化网格技术,这就意味着可以有各种各样的网格单元:二维的四边形和三角形单元,三维的四面体核心单元、六面体核心单元、棱柱和多面体单元。这些网格可以使用FLUENT的前处理软件GAMBIT自动生成,也可以选择在ICEM CFD工具中生成。

六面体核心网格 四边形平铺网格 在目前的CFD市场, FLUENT以其在非结构网格的基础上提供丰富物理模型而著称,久经考验的数值算法和鲁棒性极好的求解器保证了计算结果的精度,新的NITA算法大大减少了求解瞬态问题的所需时间,成熟的并行计算能力适用于NT,Linux或Unix平台,而且既适用单机的多处理器又适用网络联接的多台机器。动态加载平衡功能自动监测并分析并行性能,通过调整各处理器间的网格分配平衡各CPU的计算负载。

Fluent动网格专题讨论

Fluent动网格专题讨论(-) 题记:在学习使用Fluent的时候,有不少朋友需要使用动网格模型(Dynamic Mesh Model),因此,本版推出这个专题,进行大讨论,使大家在使用动网格时尽量少走弯路,更快更好地掌握;也欢迎使用过的版友积极参与讨论指导,谢谢! 该专题主要包括以下的主要内容: ##1. 动网格的相关知识介绍; ##2. 以NACA0012翼型俯仰振荡实例进行讲解动网格的应用过程; ##3. 与动网格应用有关的参考文献; ##4. 使用动网格进行计算的一些例子。 ##1. 动网格的相关知识介绍 有关动网格基础方面的东西,请具体参考FLUENT User’s Guide或FLUENT全攻略的相关章节,这里只给出一些提要性的知识要点。 1、简介 动网格模型可以用来模拟流场形状由于边界运动而随时间改变的问题。边界的运动形式可以是预先定义的运动,即可以在计算前指定其速度或角速度;也可以是预先未做定义的运动,即边界的运动要由前一步的计算结果决定。网格的更新过程由FLUENT 根据每个迭代步中边界的变化情况自动完成。在使用动网格模型时,必须首先定义初始网格、边界运动的方式并指定参予运动的区域。可以用边界型函数或者UDF 定义边界的运动方式。FLUENT 要求将运动的描述定义在网格面或网格区域上。如果流场中包含运动与不运动两种区域,则需要将它们组合在初始网格中以对它们进行识别。那些由于周围区域运动而发生变形的区域必须被组合到各自的初始网格区域中。不同区域之间的网格不必是正则的,可以在模型设置中用FLUENT软件提供的非正则或者滑动界面功能将各区域连接起来。 注:一般来讲,在Fluent中使用动网格,基本上都要使用到UDF,所以你最好具备一定的C语言编程基础。 2、动网格更新方法 动网格计算中网格的动态变化过程可以用三种模型进行计算,即弹簧近似光滑模型(spring-based smoothing)、动态分层模型(dynamic layering)和局部重划模型(local remeshing)。 弹簧近似光滑模型 在弹簧近似光滑模型中,网格的边被理想化为节点间相互连接的弹簧。移动前的网格间距相当于边界移动前由弹簧组成的系统处于平衡状态。在网格边界节点发生位移后,会产生与位移成比例的力,力量的大小根据胡克定律计算。边界节点位移形成的力虽然破坏了弹簧系统原有的平衡,但是在外力作用下,弹簧系统经过调整将达到新的平衡,也就是说由弹簧连接在一起的节点,将在新的位置上重新获得力的平衡。从网格划分的角度说,从边界节点的位移出发,采用虎克定律,经过迭代计算,最终可以得到使各节点上的合力等于零的、新的网格节点位置,这就是弹簧光顺法的核心思想。 原则上弹簧光顺模型可以用于任何一种网格体系,但是在非四面体网格区域(二维非三角形),最好在满足下列条件时使用弹簧光顺方法: (1)移动为单方向。 (2)移动方向垂直于边界。 如果两个条件不满足,可能使网格畸变率增大。另外,在系统缺省设置中,只有四面体网格(三维)和三角形网格(二维)可以使用弹簧光顺法,如果想在其他网格类型中激活该模型,需要在dynamic-mesh-menu 下使用文字命令spring-on-all-shapes?,然后激活该选项即可。 动态层模型 对于棱柱型网格区域(六面体和或者楔形),可以应用动态层模型。动态层模型的中心思想是根据紧邻运动边界网格层高度的变化,添加或者减少动态层,即在边界发生运动时,如果紧邻边界的网格层高度增大到一定程度,就将其划分为两个网格层;如果网格层高度降低到一定程度,就将紧邻边界的两个网格层合并为一个层: 如果网格层j扩大,单元高度的变化有一临界值:

fluent并行计算配置(曙光文档)

1.并行处理
? Fluent支持并行计算,且提供检查和修改并行配置工具。你可用 一个专用并行机(如多处理器工作站)或通过工作平台的网络运行 Fluent。下面介绍Fluent并行计算的特点。 ? 1.1 并行计算简介 ? Fluent并行计算就是利用多个计算节点(处理器)同时进行计算。 并行计算可将网格分割成多个子域,子域的数量是计算节点的整数倍 (如8个子域可对应于1、2、4、8个计算节点)。每个子域(或子域的集 合)就会“居住”在不同的计算节点上。它有可能是并行机的计算节 点,或是运行在多个CPU工作平台上的程序,或是运行在用网络连接 的不同工作平台(UNIX平台或是Windows平台)上的程序。计算信息 传输率的增加将导致并行计算效率的降低,因此在作并行计算时选择 求解问题很重要

? 推荐运行并行Fluent的操作步骤如下: ? 开启平行求解器,选择计算节点数。 ? 读入case文件,让Fluent自动将网格分割为几个子域。最好是在建立 问题之后分割,因为这种分割和计算的模型有关(象非等形接触面、 滑移网格、shell-conduction encapsulation的自适应)。如果你的 case文件中包含滑移网格,或是在计算过程中要对非等形接触面进行 修改,那就得用串行求解器进行分割。 ? 还有其他的方法进行分割,如在串行或并行求解器上进行手工分割。 ? 仔细检查分割区域,如必要再重新分割,。 ? 进行计算。

? -------------------------------------------------------------? ID Hostname O.S. PID Mach ID HW ID Name ? -------------------------------------------------------------? node-2 fili irix 16729 2 11 Fluent Node ? node-1 bofur irix 16182 1 10 Fluent Node ? host balin sunos 5845 0 7 Fluent Host ? node-0* balin sunos 5864 0 -1 Fluent Node ? O.S.指体系结构,PID是进程ID数,Mach ID是计算节点ID,HW ID 是交换机的标识符。

Fluent性能分析

Fluent性能分析 仅仅就我接触过得谈谈对fluent的认识,并说说哪些用户适合用,哪些不适合 fluent对我来说最麻烦的不在里面的设置,因为我本身解决的就是高速流动可压缩N-S方程,而且本人也是学力学的,诸如边界条件设置等概念还是非常清楚的同时我接触的流场模拟,都不会有很特别的介质,所以设置起来很简单 对我来说,颇费周折的是gambit做图和生成网格,并不是我不会,而是gambit对作图要求的条件很苛刻,也就是说,稍有不甚,就前功尽弃,当然对于计算流场很简单的用户,这不是问题。有时候好几天生成不了的图形,突然就搞定了,逐渐我也总结了一点经验,就是要注意一些小的拐角地方的图形,有时候做布尔运算在图形吻合的地方,容易产生一些小的面最终将导致无法在此生成网格, fluent里面的计算方法是有限体积法,而且我觉得它在计算过程中为了加快收敛速度,采取了交错网格,这样,计算精度就不会很高。同时由于非结构网格,肯定会导致计算精度的下降,所以我一贯来认为在fluent里面选取复杂的粘性模型和高精度的 格式没有任何意义,除非你的网格做的非常好。 而且fluent5.5以前的版本(包括5。5),其物理模型,(比如粘性流体的几个模型)都是预先设定的,所以,对于那些做探索性或者检验新方法而进行的模拟,就不适合 用。 同时gambit做网格,对于粘性流体,特别是计算湍流尺度,或者做热流计算来说其网格精度一般是不可能满足的,除非是很小的计算区域 所以,用fluent做的比较复杂一点的流场(除了经典的几个基本流场) 其计算所得热流,湍流,以及用雷诺应力模拟的粘性都不可能是准确的, 这在物理上和计算方法已经给fluent判了死刑,有时候看到很多这样讨论的文章,觉得 大家应该从物理和力学的本质上考虑问题。 但是,fluent往往能计算出量级差不多的结果,我曾经做了一个复杂的飞行器热流计算,高超音速流场,得到的壁面热流,居然在量级上是吻合的,但是,从计算热流需要的壁面网格精度来判断,gambit所做的网格比起壁面网格所满足的尺寸的要大了至少2个数量级, 我到现在还不明白fluent是怎么搞的。 综上,我觉得,如果对付老板的一些工程项目,可以用fluent对付过去但是如果真的做论文,或者需要发表文章,除非是做一些技术性工作,比如优化计算 一般用fluent是不适合的。 我感觉fluent做力的计算是很不错的,做流场结构的计算,即使得出一些涡也不是流场本身性质的反应,做低速流场计算,fluent的优势在于收敛 速度快,但是低速流场计算,其大多数的着眼点在于对流场结构的探索,所以计算得到的结果就要好好斟酌一下了,高速流场的模拟中,一般着眼点在于气动力的结果,压力分布

六斜叶式搅拌器流场数值模拟

大学 Zhengzhou University Cae课程论文 六斜叶式搅拌器流场数值模拟 Numerical Simulation of Shell-side Fluid-flow in the Six pitched blade stirrer 专业班级:过程装备与控制工程3班 作者:郝苒杏 作者学号:20090360310 完成时间:2012年12月16日

目录 摘要 (1) Abstract (1) 1、背景与意义 (1) 2、研究现状 (2) 3、数学物理模型 (2) 3.1基本控制方程 (2) 3.2湍流模型介绍 (3) 4、六斜叶搅拌器fluent数值模拟 (3) 4.1搅拌器结构 (3) 4.2几何建模 (4) 4.3网格划分 (4) 4.4模型求解设置 (5) 4.5边界条件设置 (6) 4.6残差设置 (7) 4.7初始化并且迭代求解 (8) 5结果分析 (8) 5.1网格独立性考核 (8) 5.2搅拌器流场速度矢量分析 (9) 5.3搅拌器压力场分析 (10) 6结论 (11) 7参考文献 (11)

六斜叶式搅拌器流场数值模拟 摘要 本文以常规六斜叶搅拌器设备为研究对象,采用数值模拟的方法,研究了搅拌器搅拌釜的流场特性的分布规律。研究结果表明:六斜叶搅拌器流动呈现为一个位于搅拌叶片外侧的大漩涡和一个位于叶片下方的小漩涡,两个漩涡之间存在流体和能量的交换,在六斜叶搅拌器中,桨叶区湍动能较大,能量耗散率高。将CFD技术应用于搅拌器搅拌流场的分析,基于Naives-Stokes方程和标准k-e 紊流模型,求解搅拌器的湍流场,数值模拟的结果对搅拌器水力优化设计具有指导意义。 Abstract In this paper, numerical simulation is eateries out to study the flow fields in three stirred tanks such as the general Pitched blade turbines(PDT),the standard RUSHTON,and a stirred equipment with special usage. The results show that there is a large-scale vortex in the outer of the blade and a small vortex below the blade. The ruction stirred is vary little flow exchange between the vortices. The region of the stirred bale has a relative large turbulence and high turbulence dissipation rate. Stirrer CFD technology is applied to the analysis of the flow field, which is based on the Naives-Stokes equations and the standard k-e turbulence model and to solve agitator turbulence field. The numerical simulation results of the agitator is helpful to guide the design of its hydraulic optimization. 1、背景与意义 搅拌与混合是应用最广泛的过程操作之一,搅拌设备也大量应用于化工、轻工、医药、食品、造纸、冶金、生物、废水处理等行业中。由于相际接触面积大、传热传质效率高、操作稳定、结构简单、制造方便等优点,使得搅拌设备既可以当做反应器应用于很多场合,例如在合成橡胶,合成纤维和合成塑料这三大合成材料的生产中,搅拌设备作为反应器的约占反应器总数的85%一90%。同时也有大量的搅拌设备并不是仅用在化学反应中应用物料的混合、传热、传质以及制备乳液、悬浮液等。在很多化工过程中,例如水煤浆和原油的输送是煤化工,石油化的重要特征,这种高浓度的液体输送前需要有相应的搅拌过程来防止进行前可能的沉淀。 在发酵工业中,搅拌操作同样占有非常重要的地位。发酵工业涉及到很多有氧呼吸的微生物,同时氧气在发酵液中的溶解度一般都很低。为了保证微生物基本代活动所需要的氧气,氧气的迅速有效的供给尤为重要。有氧发酵过程中所涉及到的搅拌操作主要是气液传质和分散。此外,(l)发酵过程中一般都伴随有中间补给,搅拌操作可以使补给原料和基料迅速混合,避免了局部的浓度过高。(2)微生物的代活动和搅拌过程都能产生大量的热,这些可以通过搅拌来强化传热从而使搅拌釜的物料温度保持均匀。(3)可以使发酵液中的菌体和固体基质均匀的悬浮。 在实现混合操作的过程中,转轮的搅拌推流形式起着很重要的作用。不同的转轮造成的搅拌推流效果差别很大,而不同的生产过程有不同的搅拌推流目的。本文将CFD软件应用于搅拌器的搅拌流场分析,对以后的设计和分析具有指导性的意义。

FLUENT动网格讲解分析

题记:在学习使用Fluent的时候,有不少朋友需要使用动网格模型(Dynamic Mesh Model),因此,本版推出这个专题,进行大讨论,使大家在使用动网格时尽量少走弯路,更快更好地掌握;也欢迎使用过的版友积极参与讨论指导,谢谢! 该专题主要包括以下的主要内容: ##1.动网格的相关知识介绍; ##2.以NACA0012翼型俯仰振荡实例进行讲解动网格的应用过程; ##3. 与动网格应用有关的参考文献; ##4. 使用动网格进行计算的一些例子。 ##1.动网格的相关知识介绍 有关动网格基础方面的东西,请具体参考FLUENT User’s Guide或FLUENT全攻略的相关章节,这里只给出一些提要性的知识要点。 1、简介 动网格模型可以用来模拟流场形状由于边界运动而随时间改变的问题。边界的运动形式可以是预先定义的运动,即可以在计算前指定其速度或角速度;也可以是预先未做定义的运动,即边界的运动要由前一步的计算结果决定。网格的更新过程由FLUENT 根据每个迭代步中边界的变化情况自动完成。在使用动网格模型时,必须首先定义初始网格、边界运动的方式并指定参予运动的区域。可以用边界型函数或者UDF 定义边界的运动方式。FLUENT 要求将运动的描述定义在网格面或网格区域上。如果流场中包含运动与不运动两种区域,则需要将它们组合在初始网格中以对它们进行识别。那些由于周围区域运动而发生变形的区域必须被组合到各自的初始网格区域中。不同区域之间的网格不必是正则的,可以在模型设置中用FLUENT软件提供的非正则或者滑动界面功能将各区域连接起来。 注:一般来讲,在Fluent中使用动网格,基本上都要使用到UDF,所以你最好具备一定的C 语言编程基础。 2、动网格更新方法 动网格计算中网格的动态变化过程可以用三种模型进行计算,即弹簧近似光滑模型(spring-based smoothing)、动态分层模型(dynamic layering)和局部重划模型(local remeshing)。 弹簧近似光滑模型 在弹簧近似光滑模型中,网格的边被理想化为节点间相互连接的弹簧。移动前的网格间距相当于边界移动前由弹簧组成的系统处于平衡状态。在网格边界节点发生位移后,会产生与位移成比例的力,力量的大小根据胡克定律计算。边界节点位移形成的力虽然破坏了弹簧系统原有的平衡,但是在外力作用下,弹簧系统经过调整将达到新的平衡,也就是说由弹簧连接在一起的节点,将在新的位置上重新获得力的平衡。从网格划分的角度说,从边界节点的位移出发,采用虎克定律,经过迭代计算,最终可以得到使各节点上的合力等于零的、新的网格节点位置,这就是弹簧光顺法的核心思想。 原则上弹簧光顺模型可以用于任何一种网格体系,但是在非四面体网格区域(二维非三角形),最好在满足下列条件时使用弹簧光顺方法: (1)移动为单方向。 (2)移动方向垂直于边界。 如果两个条件不满足,可能使网格畸变率增大。另外,在系统缺省设置中,只有四面体网格 (三维)和三角形网格(二维)可以使用弹簧光顺法, 需要在dynamic-mesh-menu 下使用文字命令spring-on-all-shapes?,然后激活该选项即

如何在超算中心使用fluent做并行计算——入门

现在国内的开放式机群环境越来越多,许多都部署了fluent(大好事),不过还是有许多人不太清楚如何利用这些有用的资源。这里结合我所在单位的情况做一个简单的介绍,其他的机群环境大同小异。 1、什么是机群?有什么特点? 机群又叫集群,当然就是许多的计算机(废话),因为机器太多 了,又需要协同工作,所以需要按照一定的方式来管理,管理 的结构形式叫做拓扑(这个不用管)。机群使用的电脑是刀片(又 薄又长的机箱)形式(为了便于插入机柜),一个刀片一般称为 一个节点。 一般而言,机群会分为三种节点:管理节点(若干台),编译节 点(若干台),计算节点(其余全部)。这三种节点的配置略有 不同(废话),管理节点主要用来存储使用机群的用户的信息,如名字,密码,可以使用机器数的权限,用户状态等等;编译 节点一般用来预查程序故障,用户的程序先在这里试运行,查 看是否与系统兼容等;计算节点用来直接计算其他节点提供来 的程序。 就配置而言,管理节点和编译节点一般相同,会部署软件环境; 计算节点只会部署简单的必要运行文件。计算机点之间会采用 高速交换机,速度可达几十GB/s,如IB等;计算节点与编译、登陆节点之间采用普通的万兆交换机。 2、如何使用机群? 机群中一般采用linux操作系统来操作(多用户情况下效率高),

用户会通过远程登录软件(如xshell)来登录到登陆节点进行个 人的操作(一般会通过VPN网络加密数据传输)。 Linux集群将程序任务分解发送到计算节点上时,是通过LSF作 业调度系统(也有其他的,如PBS等)来实现的,这个系统的 作用是使整个机群负载均衡,便于管理,所以我们使用fluent 也要通过这个系统。在成熟的集群中,用户登录之后,默认便 可以使用作业调度系统了。使用时,除了常见的linux命令以外,调度系统也有一些简单的命令,这个一般会有手册介绍,常用 的就3、5个,很好记。 3、如何在集群中使用fluent? 因为fluent是成熟的封装好的商业软件,所以用户直接使用命 令调用即可。 但是因为大部分的linux下的远程登录是不支持图形界面的,所 以我们看不到在windows下的熟悉界面,无法进行操作。其实, fluent最早也是linux下的软件,它提供了一种jou脚本来操作 各种命令(即帮助中的TUI命令),我们在windows的图形界面 中,也可以在控制台窗口中查看如何使用。这样,我们在启动 fluent软件时,指定它的jou执行脚本即可使软件按照我们的意 图来进行操作了。如果在帮助中找太慢,可以在windows的 fluent图形界面下,右下角控制台中用回车键显示文字命令,q 键返回。 4、实例

FLUENT 15.0 VOF模型测试报告

ANSYS 15.0 系列测试报告 FLUENT 15.0 VOF模型 测试人:崔亮安世亚太公司 测试时间:2013.12.01

1、仿真平台 HP Z820工作站,Intel Xeon E5-2690 * 2,内存64GB,2TB SATA硬盘。安装ANSYS 15.0 Preview3版本。 2、仿真模型 对某车型上带有底部隔板的油箱,在车辆加速时油箱内燃油晃动的瞬态过程进行瞬态仿真分析,网格单元数约10万,使用FLUENT的VOF模型计算空气和燃油的两相交界面。重点考察FLUENT 15.0中VOF模型的计算效率和两相交界面捕捉精度的提升。 测试案例的几何形状 测试案例的网格模型 3、试用情况 1).稳定性 在整个试用过程中,软件保持稳定,未出现任何不流畅、死机、系统崩溃等情况。2).流畅度 模型拖动、旋转、缩放等操作十分流畅,模型设定及求解过程操作十分流畅。 3).效率 该模型使用0.0005秒的时间步长进行瞬态计算,共计算了2000步,共计1.0秒时长。使用15.0 Preview3版本所用的计算时间为3693秒。之前使用13.0版本计算该模型所用计算时间为4381秒。新版本提速15.7%。 4).硬件资源调用情况 由于该模型网格数量较少,仅使用单核进行求解计算。在整个计算过程中,单核占用率达到100%,内存占用峰值约为400 MB。之前使用13.0版本计算该模型的内存占用峰值约

为450兆。新版本对内存的峰值占用约为旧版本的90%左右。 5).计算精度 VOF模型的计算精度体现在两相交界面捕捉的清晰程度,15.0版本的交界面捕捉清晰程度比旧版本略有提升,对于一些较小的气泡有着更好的捕捉能力。 t=0.45s时,15.0版本和13.0版本计算的两相交界面对比 t=0.45s时,15.0版本和13.0版本计算的两相交界面对比 4、总结 在ANSYS 15.0 Preview3版本的试用过程中,对FLUENT 15.0中VOF模型的计算效率提升感到满意,相比较于旧版本,约有15%的计算速度提升,这对缩短仿真分析的周期有极大帮助;还有约10%的内存峰值占用量下降,这对于合理利用现有硬件资源进行更大规模的模型计算有着重要意义。此外,新版本VOF模型的计算精度也有所提升,两相交界面捕捉更加锐利,对于一些较小的气泡,相对于旧版本有着更好的捕捉能力

FLUENT 动网格教程

FLUENT动网格教程 摘自https://www.wendangku.net/doc/132395373.html,/dvbbs/dispbbs.asp?boardid=61&id=1396题记:在学习使用Fluent的时候,有不少朋友需要使用动网格模型(Dynamic Me sh Model),因此,本版推出这个专题,进行大讨论,使大家在使用动网格时尽量少走弯路,更快更好地掌握;也欢迎使用过的版友积极参与讨论指导,谢谢!。 该专题主要包括以下的主要内容: §一、动网格的相关知识介绍; §二、以NACA0012翼型俯仰振荡实例进行讲解动网格的应用过程; §三、与动网格应用有关的参考文献; §四、使用动网格进行计算的一些例子。 §一、动网格的相关知识介绍 有关动网格基础方面的东西,请具体参考FLUENT User’s Guide或FLUENT全攻略的相关章节,这里只给出一些提要性的知识要点。 1、简介 动网格模型可以用来模拟流场形状由于边界运动而随时间改变的问题。边界的运动形式可以是预先定义的运动,即可以在计算前指定其速度或角速度;也可以是预先未做定义的运动,即边界的运动要由前一步的计算结果决定。网格的更新过程由FLUE NT 根据每个迭代步中边界的变化情况自动完成。在使用动网格模型时,必须首先定义初始网格、边界运动的方式并指定参予运动的区域。可以用边界型函数或者UDF定义边界的运动方式。FLUENT 要求将运动的描述定义在网格面或网格区域上。如果流场中包含运动与不运动两种区域,则需要将它们组合在初始网格中以对它们进行识别。那些由于周围区域运动而发生变形的区域必须被组合到各自的初始网格区域中。不同区域之间的网格不必是正则的,可以在模型设置中用FLUENT软件提供的非正则或者滑动界面功能将各区域连接起来。 注:一般来讲,在Fluent中使用动网格,基本上都要使用到UDF,所以你最好具备一定的C语言编程基础。

[整理]fluent经典问题请问双CPU并行计算的效率问题.

fluent 经典问题请问双CPU并行计算的效率问题.txt27信念的力量在于即使身处逆境,亦能帮助你鼓起前进的船帆;信念的魅力在于即使遇到险运,亦能召唤你鼓起生活的勇气;信念的伟大在于即使遭遇不幸,亦能促使你保持崇高的心灵。发信人: rao (绕绕), 信区: NumComp 标题: [合集] 请问双CPU并行计算的效率问题 发信站: BBS 水木清华站 (Mon Jul 7 03:32:43 2003), 站内 ☆─────────────────────────────────────☆ xuzheng (天使暂时离开@_@反方向的钟) 于 (Fri Jul 4 11:03:44 2003) 提到: 大致上只有一个CPU在工作,或者两CPU占有率相当于一个CPU mpich1.2.5+fortran 怎么配置可以使两个CPU同时工作?? BOW ☆─────────────────────────────────────☆ luxz (panda--在热死和冻死边缘挣扎) 于 (Fri Jul 4 11:04:57 2003) 提到: mpirun -np 2 *.exe 【在 xuzheng (天使暂时离开@_@反方向的钟) 的大作中提到: 】 : 大致上只有一个CPU在工作,或者两CPU占有率相当于一个CPU : mpich1.2.5+fortran : 怎么配置可以使两个CPU同时工作?? : BOW ☆─────────────────────────────────────☆ xuzheng (天使暂时离开@_@反方向的钟) 于 (Fri Jul 4 11:06:27 2003) 提到: 不是,你误解了我的意思 再具体点说就是16个节点双CPU的集群,并行计算过程中 每个节点的CPU效率大概只有50%

FLUENT算例 (5)搅拌桨底部十字挡板的流场分析

搅拌桨底部十字挡板的流场分析搅拌设备在各个行业运用的十分广泛,搅拌就是为了更够更快速更高效的将物质与介质充分混合,发生充分的反应,而搅拌中存在着许多不利于混合的情况,比如液体旋流。为了解决这个问题,之前很多人提出在罐体的侧壁上增加挡板,可以抵消大部分旋流,然后大部分都是研究侧挡板的,对于底部挡板的研究十分少,本文就在椭圆底部挡板增加十字型挡板,对罐体中进行流场分析。 1.Gambit建模 首先用Gambit建模图形如下: 图1:Gambit建立的模型 分为两个区域,里面的圆柱为动区域,外面包着的大圆柱设为静区域,静区域划分网格大,划分粗糙,内部动区域划分网格小,划分精细。边界条件主要设置了轴,搅拌桨,底部挡板,上层液面。以下就是fluent进行数值模拟。 2.fluent数值模拟 2.1导入case文件

2.2对网格进行检查 Minimum volume的数值大于0即可。 图2网格检查2.3调节比例 单位选择mm单位。 图3比例调节2.4定义求解器参数 设置如图4所示

图4设置求解器参数2.5设置能量线 图5能量线 2.6设置粘度模型,选择k-e模型 k-e模型对该模型模拟十分实用。

图6粘度模型2.7定义材料 介质选择液体水。 2.8定义操作条件

由于存在着终于,建模时的方向向上,所以在Z轴增加一个重力加速度。 图8操作条件 2.9定义边界条件 在边界设置重,动区域如图所示,将材料设成水,motion type设成moving reference frame (相对滑动),转速设为10rad/s,单位可在Define中的set unit中的angular-velocity设置。而在在轴的设置中,如上图所示,将wall motion设成moving wall,motion设成Absolute,速度设成-10,由于轴跟动区域速度是相对的,所以设成反的。

FLUENT和ANSYS的并行计算设置

Fluent并行计算 以2核为例: 1:找到fluent安装目录中的启动程序,在地址栏中复制目录例如:C:\Fluent.Inc\ntbin\ntx86 2:开始-->程序-->附件-->命令提示符 cd C:\Fluent.Inc\ntbin\ntx86 3:fluent 3d –t2 (启动3d模型,两核) 6.在ansys中使用多核处理器的方法: 使用AMG算法,可以使多个核同时工作。使用方法1或2. 方法1: (1). 在ansys product lancher 里面lauch标签页选中parallel performance for ansys. (2). 然后在求解前执行如下命令: finish /config,nproc,n!设置处理器数n=你设置的CPU数。 /solu eqslv,amg !选择AMG算法 solve !求解 方法2: (1). 在ansys product lancher 里面lauch标签页选中parallel performance for ansys. (2). 在D:\professional\Ansys Inc\v90\ANSYS\apdl\start90.ans中添加一行:/config,nproc,2.别忘了把目录换成你自己的安装目录. 化学反应软件 FactSage_Demo COMSOL

Courant number实际上是指时间步长和空间步长的相对关系,系统自动减小courant数,这种情况一般出现在存在尖锐外形的计算域,当局部的流速过大或者压差过大时出错,把局部的网格加密再试一下。 在FLUENT中,用courant number来调节计算的稳定性与收敛性。一般来说,随着courant number的从小到大的变化,收敛速度逐渐加快,但是稳定性逐渐降低。所以具体的问题,在计算的过程中,最好是把courant number从小开始设置,看看迭代残差的收敛情况,如果收敛速度较慢而且比较稳定的话,可以适当的增加courant number的大小,根据自己具体的问题,找出一个比较合适的courant number,让收敛速度能够足够的快,而且能够保持它的稳定性。FLUENT计算开始迭代最好使用较小的库朗数,否则

windows 系统下启动linux主机群的fluent并行操作

windows 系统下启动linux主机群的fluent并行操作 第一步,首先在linux系统下安装好fluent,包括更改环境变量,操作如下: ANSYS 12.0产品的linux安装方法 1.将ANSYS 12.0 安装光盘放进光驱,后,系统会自动Mount,但是这个Mount指定的参数可能不对,则需要执行以下命令: 1.mkdir dvdrom_dir (在根目录下) 2.mount -t iso9660 /dev/cdrom dvdrom_dir 3.cd dvdrom_dir 4../INSTALL (直接运行命令INSTALL即可) 2. 出现下图请选择“I AGREE ”并单击“Next” 3 出现下图请选择对应的操作系统,并单击“ Next” 4. 出现下图,请在“Install directory:” 里写入安装的路径,或者单击“Browse”选择,这里就使用默认路径了

5.出现下图,请选择要安装的产品 6. 出现下图,请单击“Next” 7.出现下图,请选择“Next”

8.出现下图,请选择Next 9. 出现下图证明安装正在进行 10.出现下图证明产品安装完毕,请单击“ Next” 11. 出现下图,请单击“Exit” 12. 出现下图,产品安装完毕,请单击“Next”

13.弹出以下窗口,配置服务器相关信息 请在hostname1下面输入服务器主机名,如“server”,并单击OK。如果碰到无法输入的情况,这时直接点击cancel。再进入ansys的安装目录, ../ansys_inc/shared_files/licensing下,编辑文件ansyslmd.ini,内容为: SERVER=1055@hostname ANSYSLI_SERVERS=2325@hostname 注意:大小写一致。

fluent经验总结

1什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什 么样的影响? 1、亚松驰(Under Relaxation):所谓亚松驰就是将本层次计算结果与上一层次结果的差值作适当缩减,以避免由于差值过大而引起非线性迭代过程的发散。用通用变量来写 出时,为松驰因子(Relaxation Factors)。《数值传热学-214》 2、FLUENT中的亚松驰:由于FLUENT所解方程组的非线性,我们有必要控制的变化。一般用亚松驰方法来实现控制,该方法在每一部迭代中减少了的变化量。亚松驰最简 单的形式为:单元内变量等于原来的值加上亚松驰因子a与变化的积, 分离解算器使用亚松驰来控制每一步迭代中的计算变量的更新。这就意味着使用分离解算器解的方程,包 括耦合解算器所解的非耦合方程(湍流和其他标量)都会有一个相关的亚松驰因子。在FLUENT中,所有变量的默认亚松驰因子都是对大多数问题的最优值。这个值适合于很多问题,但是对于一些特殊的非线性问题(如:某些湍流或者高Rayleigh数自然对流问题),在计算开始时要慎重减小亚松驰因子。使用默认的亚松驰因子开始计算是很好的习惯。如 果经过4到5步的迭代残差仍然增长,你就需要减小亚松驰因子。有时候,如果发现残差 开始增加,你可以改变亚松驰因子重新计算。在亚松驰因子过大时通常会出现这种情况。 最为安全的方法就是在对亚松驰因子做任何修改之前先保存数据文件,并对解的算法做几 步迭代以调节到新的参数。最典型的情况是,亚松驰因子的增加会使残差有少量的增加, 但是随着解的进行残差的增加又消失了。如果残差变化有几个量级你就需要考虑停止计算 并回到最后保存的较好的数据文件。注意:粘性和密度的亚松驰是在每一次迭代之间的。 而且,如果直接解焓方程而不是温度方程(即:对PDF计算),基于焓的温度的更新是要进行亚松驰的。要查看默认的亚松弛因子的值,你可以在解控制面板点击默认按钮。对于 大多数流动,不需要修改默认亚松弛因子。但是,如果出现不稳定或者发散你就需要减小 默认的亚松弛因子了,其中压力、动量、k和e的亚松弛因子默认值分别为0.2,0.5,0.5和0.5。对于SIMPLEC格式一般不需要减小压力的亚松弛因子。在密度和温度强烈耦合 的问题中,如相当高的Rayleigh数的自然或混合对流流动,应该对温度和/或密度(所用 的亚松弛因子小于1.0)进行亚松弛。相反,当温度和动量方程没有耦合或者耦合较弱时,流动密度是常数,温度的亚松弛因子可以设为1.0。对于其它的标量方程,如漩涡,组分,PDF变量,对于某些问题默认的亚松弛可能过大,尤其是对于初始计算。你可以将松弛因子设为0.8以使得收敛更容易。 SIMPLE与SIMPLEC比较 在FLUENT中,可以使用标准SIMPLE算法和SIMPLEC(SIMPLE-Consistent)算法,默认是SIMPLE算法,但是对于许多问题如果使用SIMPLEC可能会得到更好的结果,尤其是可以应用增加的亚松驰迭代时,具体介绍如下: 对于相对简单的问题(如:没有附加模型激活的层流流动),其收敛性已经被压力速

相关文档