文档库 最新最全的文档下载
当前位置:文档库 › 不等式解法探究论文

不等式解法探究论文

不等式解法探究论文
不等式解法探究论文

不等式解法探究

摘要:不等式可以求最大值、最小值,给我们的日常生活带来了效率。不等式在高中数学中不是孤立存在的,在函数、数列、解析几何、平面向量……,几乎所有的章节都有不等式的知识,可以说不等式贯穿了整个高中数学,由此可见不等式的重要性。不等式题目呈现不同形式,包括函数定义域、解不等式、与简易逻辑相结合、与圆锥曲线相结合、与数列相结合、求取值范围、均值不等式……。本文针对各种不等式,给出一些解法供大家学习参考。

关键词:不等式;解法;探究

Abstract:Inequality can be maximum, minimum, bring to our daily life efficiency. Inequality in the high school math do not exist in isolation, in function and sequence, analytic geometry, plane vector and so on , almost all the chapters have the knowledge of the inequality, to say the inequality throughout the high school mathematics, the importance of this inequality. Inequality present different forms, including function domain, inequality, combined with a simple logic, combined with a conic, combined with a progression, scope, and the mean inequality. This paper in view of the various kinds of inequality, I give some solution to consult for everybody to learn.

Key words:inequation ; solutio;explore

引言

不等式是高中数学学习中的一个重要内容,也是一大难点。论文归纳了高中不等式的类型,并以具体题目为例来分析和探究不等式的解题方法,以促进高中不等式的学习。在论文中,作者将会介绍一元二次不等式、绝对值不等式、分式不等式、简单高次不等式、指数不等式、对数不等式、无理数不等式这七种不等式的具体解法,让读者建立起基本的不等式思维。

1、 一元二次不等式的解法

1.1 一元二次不等式的定义

含有一个未知数且未知数的最高次数为2的不等式叫做一元二次不等式。它的一般形式是 0a 2>++c bx x 或0a 2<++c bx x (0a ≠)其中c bx x ++2a 是实数域内的二次三项式。

1.2 一元二次不等式解法的步凑

第一步、将二次项系数化为正数;

第二步、判断相应的一元二次方程是否有实数根; 第三步、根据根的情况写出相应的解集。 1.3 一元二次不等式四种解法例题讲解

解法一(十字相乘法) 当04b 2≥-=?ac 时,

一元二次方程0a 2=++c bx x 有两个实根,那么c bx x ++2a 可分解为如

))((a 21x x x x --的形式。

这样,解一元二次不等式就可归结为解两个一元一次不等式组。一元二次不等式的解集就是这两个一元一次不等式组的解集的交集。

例1、试解一元二次不等式 067x 22<+-x

解:利用十字相乘法:

得()()023x 2<--x 然后,分两种情况讨论。 1) 02,03x 2>-<-x

得2x 5.1x ><且(不成立) 2)02,03x 2<->-x

得2x 5.1x <>且 得最终不等式的解集为:

2x 5.1<<

解法二(配方法)

此外,亦可用配方法解一元二次不等式。 如上面例题中: 67x 22+-x ()65.3x 22+-=x

()60625.3-0625.35.3x 22++-=x ()6125.6-0625.35.3x 22++-=x ()0125.0-75.1x 22

<-=

()125.075.1x 22

<-

()0625.075.1x 2

<-

两边开平方,得:25.075.1<-x 且25.075.1->-x

2x <且5.1x > 得不等式的解集为

{}2.51|x <

一元二次不等式也可通过一元二次函数图象进行求解。

通过观察图象可知,二次函数图象与X 轴的两个交点,然后根据题中所需求"<0"或">0"而推出答案。

求一元二次不等式的解集实际上是将这个一元二次不等式的所有项移到不等式一侧并进行因式分解分类讨论求出解集。解一元二次不等式,可将一元二次方程不等式转化成二次函数的形式,求出函数与X 轴的交点,将一元二次不等式,二次函数,一元二次方程联系起来,并利用图象法进行解题,使得问题简化。

解法四(数轴穿根)

数轴穿根:用穿根法解高次不等式时,就是先把不等式一端化为零,再对另一端分解因式,并求出它的零点,把这些零点标在数轴上,再用一条光滑的曲线,从x 轴的右端上方起,依次穿过这些零点,这大于零的不等式的解对应这曲线在x 轴上方部分的实数x 得起值集合,小于零的这相反。这种方法叫做序轴穿根法,又叫“穿根法”。口诀是“从右到左,从上到下,奇穿偶不穿。”

步骤:

1.把二次项系数变成正的(不用是1,但是得出者为正解);

2.画数轴,在数轴上从小到大依次标出所有根;

3.从右上角开始,一上一下依次穿过不等式的根,奇过偶不过

(即遇到含X 的项是奇次幂就穿过,偶次幂就跨过。后文有详细介绍); 4.注意看看题中不等号有没有等号,没有的话还要注意写结果时舍去使不等式为0的根。

例如:

不等式023x 2≤+-x (最高次项系数一定要为正,不为正要化成正的) ⒈分解因式:()()021x ≤--x ;

⒉找方程()()021x =--x 的根:1x =或2x =; ⒊画数轴,并把根所在的点标上去;

⒋注意,此时从最右端开始,从2的右上方引出一条曲线,经过点2,继续向左绘制,类似于抛物线,再经过点1,向点1的左上方无限延伸;

⒌看题求解,题中要求求小于等于0的解,那么只需在数轴上观察哪一段在数轴及数轴以下即可,观察可以得到:2x 1≤≤。

2、绝对值不等式的解法

2.1 绝对值不等式的性质

在不等式应用中,经常涉及质量、面积、体积等,也涉及某些数学对象(如实数、向量)的大小或绝对值。它们都是通过非负数来度量的。

2.2 绝对值不等式的几何意义

2.3 绝对值不等式三种解法例题讲解

表2.3 绝对值不等式的三种解法同解变形

例2、解不等式273x -<.

解:原不等式转化为3273x -<-<,即4210x <<,得25x <<.

所以原不等式的解集为{}25x x <<.

例3、解不等式525x -<.

解:原不等式转化为255x -<,则5255x -<-<,得05x <<.

所以原不等式的解集为{}05x x <<.

例4、解不等式1

x x

<

.(注:此题提供了另外一种解绝对值不等式的方法。) 解:分0x >、0x <两种情况讨论。当0x >时,绝对值直接去掉,在原不等式两边同乘以x 得21x <,解得01x <<.当0x <时,原不等式转化为1x

x

-<

,两边同乘以x 得21x ->,即21x <-,解得?.所以原不等式的解集为{}01x x <<.

例5、不等式组03232x x x x x >??

--?>?++?

的解集是

A . {

}02x x << B . 502x x ?

?<

?

C . {0x x <<

D . {}03x x << 解:从各选项来看,只需解方程

3232x x x x --=++或3232x x x x

--=-++.前者解得0x =,后者解得x =于是选C .(注:绝对值不等式的解集的端点值必为方程的解。)

例6、解不等式4321x x ->+.

解(方法一):原不等式等价于4304321x x x -≥??->+?或430

(43)21

x x x -+?.解之得

342x x ?

≥??

?>?或34

13x x ?

,即2x >或13x <.所以原不等式的解集为123x x x ??>+或43(21)x x -<-+,解之得

原不等式的解集为123x x x ?

?>

?或.

3、 分式不等式的解法

3.1 分式不等式的定义

与分式方程类似,像()()0/>x g x f 或()()0/

()x g 不为0)这样,分母中含有未知数的不等式称为分式不等式。

3.2 分式不等式解法的核心思想

表3.2 分式不等式的解法

如上表中,将分式不等式转化为整式不等式,然后运用整式不等式的方法求解。这就是分式不等式解法的核心思想。 3.3 分式不等式例题讲解 例6、解不等式

21

x

x >-. 解(方法一):分1x >与1x <两种情况讨论。当1x >时,原不等式转化为

2(1)x x >-,解之得2x <,但前提是1x >,所以此时不等式的解为12x <<;

当1x <时,原不等式转化为2(1)x x <-,解之得2x >,但前提是1x <,所以此时解为?.综上所述,原不等式的解集为{}12x x <<. 解(方法二):把不等式右边的2移到左边并通分得

2

01

x x -+>-,再等价转化为(2)(1)0x x -+->,解此一元二次不等式得到原不等式的解集为

{}12x x <<.

例7、解不等式

1

02

x x -≤-. 解(方法一):原不等式等价于1020x x ->??-

20

x x -?或1x =.解之得

{}12x x ≤<.

解(方法二):原不等式等价于(1)(2)0

2x x x --≤??≠?,解之得{}12x x ≤<.

4、 简单高次不等式的解法

4.1 简单高次不等式的概念

解不等式是初等数学重要内容之一,高中数学常出现高次不等式,其类型通常为一元高次不等式。常用的解法有化为不等式组法、列表法和根轴法(串根法或穿针引线法)来求解。

4.2 简单高次不等式三种解法例题讲解

方法一(列表法) 解题步骤:

①将不等式化为())0(0))...((x 21<>---n x x x x x 形式(各项x 的符号化“+”),令()0))..((x 21=---n x x x x x ,求出各根,不妨称之为分界点,一个分界点把(实数)数轴分成两部分,n 个分界点把数轴分成n+1部分……;

②按各根把实数分成的n+1部分,由小到大横向排列,相应各因式纵向排列(由对应较小根的因式开始依次自上而下排列); ③计算各区间内各因式的符号,下面是乘积的符号; ④看下面积的符号写出不等式的解集. 例9、解不等式:(x-1)(x+2)(x-3)>0;

解:①检查各因式中x 的符号均正;

②求得相应方程的根为:-2,1,3; ③列表如下:

表4.2 (x-1)(x+2)(x-3)>0各因式积

④由上表可知,原不等式的解集为:{}

312><<-x x x 或 方法二(分组法)

此种方法的本质是分类讨论,强化了“或”与“且”,进一步渗透了 “交”与“并”的思想方法。

方法三(根轴法又叫穿针引线法,串根法)

①将不等式化为())0(0))...((x 21<>---n x x x x x 形式,并将各因式x 的系数 化“+”;(为了统一方便) ②求根,并在数轴上表示出来;

③由右上方穿线,经过数轴上表示各根的点(为什么?原因为:当+∞=x 时不等式左侧恒为正。);

④若不等式(x 的系数化“+”后)是“0>”,则找“线”在x 轴上方的区间;若不等式是“0<”,则找“线”在x 轴下方的区间.

注意:奇穿偶不穿

例10、解不等式()()()()()054321>-----x x x x x

解:解方程()()()()()054321=-----x x x x x 得根分别为1,2,3,4,5,在数轴

上标根如下:

图4-1 ()()()()()054321>-----x x x x x 数轴上标根

然后穿针引线,记住穿针口诀(从右到左、从上到下、奇穿偶回)如

下:

图4-2 ()()()()()054321>-----x x x x x 数轴上穿针引线

不等式大于零取数轴上方的部分,如下:

图4-3 ()()()()()054321>-----x x x x x 数轴上取值

于是原不等式的解集为{}12345x x x x <<<<>或或 例11、解不等式253(1)(2)(3)(4)(5)0x x x x x ----->.

解:解方程253(1)(2)(3)(4)(5)0x x x x x -----=得根分别为1,2,3,4,5,

在数轴上标根如下:

图4-4 2

5

3

(1)(2)(3)(4)(5)0x x x x x ----->数轴上标根

然后穿针引线,记住穿针口诀(从右到左、从上到下、奇穿偶回),

注意到此题与上题的区别,根为2的那一项的指数为2,为偶数;根为3,4的那两项的指数均为奇数;其余根所在项的指数均为1,为奇数。于是此题穿针引线的方法与上题略有不同,指数为奇数的穿过数轴,指数为偶数的不能穿过数轴,应该迂回。此题只有2要迂回,具体过程如下:

图4-5 2

5

3

(1)(2)(3)(4)(5)0x x x x x ----->数轴上穿针引线

不等式大于零取数轴上方的部分,如下:

图4-6 2

5

3

(1)(2)(3)(4)(5)0x x x x x ----->数轴上取值

于是原不等式的解集为{}1345x x x x <<<>或或.

例12、解不等式

26

01

x x x --≤-. 解:根据分式不等式的解法,原不等式等价于2(6)(1)0

10x x x x ?---≤?-≠?

即(3)(2)(1)0

10

x x x x -+-≤??-≠?,画数轴标根及穿针引线如下:

图4-7

26

01

x x x --≤-数轴标根及穿针引线 于是解得213

1

x x x ≤-≤≤??≠?或,所以原不等式的解集为{}213x x x ≤-<≤或

5、 指数不等式的解法

5.1 指数不等式的解法归纳

表5.1 指数不等式的解法

5.2 指数不等式例题讲解

例13、解不等式22112x x

-??

> ?

??

.

解:原不等式转化为220

1122x x

-??

??

> ?

?????

,等价于220x x -<,解得{}02x x <<. 例14、解不等式247230x x ?-?+>.

解:注意到()2

24x x =,令2x t =,则原不等式转化为22730t t -+>,解一

元二次不等式得132t t ><

或,即1

2322

x x ><或,解得{}13log 2-<>x x x 或 6、 对数不等式的解法

6.1 对数不等式的定义

对数不等式是一种两边由对数构成的不等式. 6.2 对数不等式例题讲解 例15、解不等式12

log (1)0x ->.

解:原不等式即112

2

log (1)log 1x ->,则有011x <-<,解得{}12x x <<.

例16、解不等式12

log (1)1x ->.

解:原不等式即11

2

2

1log (1)log 2x ->,则有1012x <-<,解得312x x ?

?<

?.. 例17、解不等式82

log 3

x ≤-.

解:原不等式即881log log 4x ≤,解得104x x ?

?

<≤????

7、 无理数不等式的解法

7.1 无理数不等式的解法归纳

表7.1.1 无理不等式的解法

表7.1.2 无理数不等式解法的等价转化

7.2 无理数不等式例题讲解 例18> 解:原不等式等价于34030343x x x x -≥??

-≥??->-?,解得43312x x x ?

≥??≥???>

?

,即{}3x x ≥.

例1921x <-.

解(方法一):原不等式等价于2210101(21)x x x x ?->?

+≥??+<-?,解得12150

4x x x x ?>??≥-???>

或,即

54x x ??>???

?.

例2021x >-.

解:原不等式等价于2

210

21010101(21)x x x x x x ?-≥-??+≥??+>-?或,解得514x x ?

?-≤

补充:此处提供例19与例200的另一种方法:数形结合法。该法简单又直观,宜首选。在很多解不等式的题中都能用此法。大致步骤为先识别是哪两个函数在比较函数值,再在同一个坐标系中把这两个函数的图象画出来,最后只需观察哪个函数在哪些范围内图象高,在哪些范围内图象低,图象高的说明函数值越大,图象低的说明函数值越小。比如,此题中涉及的两个函数分别是1+=x y 与

12-=x y ,在同一坐标系中作出函数1+=x y 与12-=x y 的图象如下:

图7-1 1+=

x y 与12-=x y 的图象

从图象可以得知(图象高,函数值大;图象低,函数值小):

当51,4x ??

∈-????

21x >-;

当5

4x =

21x =-;

当5,4x ??

∈+∞ ???

21x <-.

8、 综合型不等式例题讲解

例21、解不等式2

21log 01x

x x

+<+. .解:原不等式即2

221log log 11x

x x x

+<+,可等价转化为2

2021211110111x x x x x x <<>????

??++><

?++??

或 解之得2211022

11011x x x x x x ??

<<>??

????+>+<+<+??

或 解得110220110x x x x x ??<<>??????<<>

即112x x ??<

.

例22、解不等式1211log 22042x x

??????

--

.

解:原不等式即112211log 22log 142x x

??????

--

,可等价转化为

1122142x x

????

--> ? ?????

,整理得2

1123022x x

??????

-->?? ? ?????????

,即

1131022x x ????????-+>???? ? ?????????????

,因1102x

??

+> ???恒成立,所以不等式转化为

1302x

??

-> ???,即132x ??

> ???

,继续转化为12

l o g

3

1122x

????> ? ?

????,解得

1

2

l o g 3x x ?

?

. 9、 总结

在上面的论文中,我们了解到了不等式的各种解法,那么我们如何把它们运用到实际生活中去呢?这是一个实践的过程,正所谓“学以致用”。

高中数学新课标的基本理念是注重高中数学的基础性,与时俱进信息时代的到来,使数学得到更广泛的应用,体现数学的文化价值,数学是研究现实世界的空间形式和数量关系的一门学科,它是人类文化的重要组成部分之一,不仅是研究其它学科,以及人们参加社会生产和生活的必不可少的工具,还具有极高的美学价值。本论文的内容很好的实现了新课标的要求,通过与现实生活中资源利用问题相结合,不仅将基本不等式的知识再次巩固,将基础知识落实到位,还让读者通过基本不等式模型去解决实际生活中的最值问题,感受到数学之美,数学之价值,并意识运用数学知识可以帮助我们解决一些生活中的难题,在增强读者对于资源节约的使命感、责任感的同时,还帮助读者树立了资源节约意识的美德,很好的培养了让读者爱数学、爱资源、爱社会的思想情操。

参考文献

[1] 童美亚. 新疆内地高中班预科自编教材《方程与不等式》编写及实施跟踪研究[D]. 华东师范大学, 2011.

[2] 杨庆华. 浅谈矛盾转化观点在数学教学中的运用[J]. 保山师专学报, 1998(2):44-44.

[3] 谭德盛. 不等式的解法[J]. 黑龙江医药, 1980(6):3-5.

[4] 曹志新. 高中生解不等式困难点的研究[D]. 东北师范大学, 2013.

[5]王众杰. 数学师范生教学实践调查问卷设计[J]. 洛阳师范学院学报, 2013(5):121-123.

[6] 陈军. 不等式Fx·Φx12≥0的解法探讨[J]. 数学教学通讯, 1999(1):38-38.

[7] 顾晓岩. 含参数不等式问题的解法剖析[J]. 出版发行研究, 2006(4):48-50.

[8] 王怀学. 解不等式[J]. 数学通讯, 2007(20):44-47.

[9] 王文清. 中考中方程组、不等式组的内容及方法[J]. 山东教育(中学刊), 2006(32):49-55.

[10] 王秀红. Jensen不等式的积分形式及应用河北理科教学研究[J].2003,(03):46-47

[11] 赵振威. 琴森不等式及其应用数学教学[J]. 1982,(03):36-40

[12] 华东师范大学数学系. 数学分析[M]. 北京:高等教育出版社,2001

[13] 余元希,田万海,毛宏德. 初等代数研究[M]. 北京:北京大学出版社,1985

[14] E.贝肯巴赫,R.贝尔曼. 不等式入门[M]. 北京:北京大学出版社,1985

[15] 付夕联,包芳勋,张召生,张玉峰. 关于Jensen不等式中的思想方法曲阜师范大学学报[J].1993,(03):79-82

关于用微积分理论证明不等式的方法

关于用微积分理论证明不等式的方法 学校代码专业代码本科毕业论文(设计) 题目:关于用微积分理论证明不等式的方法 学院: 专业: 学号: 姓名: 指导教师: 年 5月 13日 填写说明 一、毕业论文(设计)须用70克A4纸计算机双面打印,具体打印格式参见教务处主页《山西财经大学普通全日制本科毕业论文(设计)写作指南》。 二、毕业论文(设计)必须按规定的要求进行装订。 1、装订顺序

封面 学术承诺 目录 中文摘要、关键词 英文摘要、英文关键词 正文 参考文献 附录(可选) 致谢 山西财经大学本科毕业论文(设计)指导教师评定表 山西财经大学本科毕业论文(设计)答辩成绩与总成绩评定表 2、装订。由学生自主装订。装订线在左侧。 3、理工科毕业设计的软件要以光盘的形式附在论文的后面(装入小袋,封口),不要单独保存,不能丢失。 4、如果毕业论文(设计)因专业特殊,无法打印的部分可以手写或手绘,但需保持页面整洁,布局合理。 毕业论文(设计)学术承诺 本人郑重承诺:所呈交的毕业论文是我个人在导师指导下进行的研究工作及取得的研究成果。除了文中特别加以标注和致谢的地方外,论文中不存在抄袭情况,论文中不包含其他人已经发表的研究成果,也不包含他人或其他教学机构取得研究成果。 作者签名:日期:

毕业论文(设计)使用授权的说明 本人了解并遵守山西财经大学有关保留、使用毕业论文的规定。 即:学校有权保留、向国家有关部门送交毕业论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。 (保密的论文在解密后应遵守此规定) 作者签名:指导教师签名: 日期:日期: 目录 中文摘要Ⅰ 英文摘要Ⅱ 第一章用微积分理论证明不等式常见的几种方法 1 第一节用可导函数的单调性证明不等式法 1 第二节利用函数的最大值或最小值证明不等式法 2 第三节用拉格朗日中值定理证明不等式法 3 第四节用柯西中值定理证明不等式法 4 第五节上述几种方法小结 6 第二章用微积分理论证明不等式其他几种方法7 第一节用导数定义证明不等式法7 第二节用函数的凹凸性证明不等式8 第三节用泰勒公式证明不等式法9 第四节用幂级数展开式证明不等式法10

不等式解法探究论文

不等式解法探究 摘要:不等式可以求最大值、最小值,给我们的日常生活带来了效率。不等式在高中数学中不是孤立存在的,在函数、数列、解析几何、平面向量……,几乎所有的章节都有不等式的知识,可以说不等式贯穿了整个高中数学,由此可见不等式的重要性。不等式题目呈现不同形式,包括函数定义域、解不等式、与简易逻辑相结合、与圆锥曲线相结合、与数列相结合、求取值范围、均值不等式……。本文针对各种不等式,给出一些解法供大家学习参考。 关键词:不等式;解法;探究 Abstract:Inequality can be maximum, minimum, bring to our daily life efficiency. Inequality in the high school math do not exist in isolation, in function and sequence, analytic geometry, plane vector and so on , almost all the chapters have the knowledge of the inequality, to say the inequality throughout the high school mathematics, the importance of this inequality. Inequality present different forms, including function domain, inequality, combined with a simple logic, combined with a conic, combined with a progression, scope, and the mean inequality. This paper in view of the various kinds of inequality, I give some solution to consult for everybody to learn. Key words:inequation ; solutio;explore

含参不等式以及含参不等式组的解法

含参不等式以及含参不等式组的解法 不等式在中考中的运用,往往掺杂参数来增加难度,我们只要读清楚题目找到解题思路便能迎刃而解了。本节课我们就重点讲讲如何读题去寻找解题思路。 含参不等式: 解不等式5(x-1)<3x+1 通过去括号、移项、合并同类项等一系列运算可以求出解为:x<3 求不等式 57x -<3 2 -x 的最小整数解. 通过去括号、移项、合并同类项等一系列运算可以求出解为:x>8 31 ,故可以得出最小整数为4. 那么含参不等式如下: 解含参不等式ax0时 X< a b X ≤ a b a<0时 X>a b X ≥a b a=0时 若b>0,则解集为任意数 若b ≥0,则解集为任意数 若b ≤0,则这个不等式无解 若b<0,则这个不等式无解 在这些需要讨论的情况下,等号最后讨论才方便,不会讨论重合。 例题:1、求不等式kx+2>2x-3的解集 移项、合并同类项、讨论取值 2、(1)求不等式解集mx+a>nx+b 移项、合并同类项、讨论取值 (2)(m-1)x>a 2+1对于任意x 都成立,则参数m 的值为 练习 :1、求不等式kx+2>3的解集 2、(1)求不等式mx-2<-7-nx 的解集 (2)求不等式m 2x+1<-x+5的解集 3、关于x 的方程5x-2m=-4-x 的解满足2

含参不等式组: 观察下列不等式组的解集 ?? ?>>31 x x ???<<31 x x ???<>31 x x ?? ?><3 1 x x 同大取大 同小取小 大小小大中间找 大大小小无限了 例题:1、(1)求不等式x-a )(x-b )>0的解集。 (2)求不等式 320-x +518-x +716-x +914-x +11 12 -x >5的解集。 那么5的倍数呢?不是5的倍数,18呢? 2、(1)已知关于x 的不等式组???>-≥-1 250 x a x 只有四个整数解,求实数a 的取值范围。 (2)已知关于x 的不等式组? ??-<+>232 a x a x 无解,则a 的取值范围是? 3、已知关于x 的不等式(a+3b )>a-b 的解集是x<-3 5 ,试求bx-a>0的解集。 4、已知关于x 的不等式组?? ? ??-<<->k x x x 111 (1)求其解集。 (2)由(1)可知,不等式组的解集是随数k 的值的变化而变化,当k 为任意有理数时,写出不等式的解集。 练习:1、已知关于x 数的不等式组?? ?>->-0 230 x a x 的整数解共有6个,则a 的取值范围是?

常见不等式通用解法

常见不等式通用解法总结 一、基础的一元二次不等式,可化为类似一元二次不等式的不等式 ①基础一元二次不等式 如2260x x --<,2210x x -->,对于这样能够直接配方或者因式分解的基础一元二次不等式,重点关注解区间的“形状”。 当二次项系数大于0,不等号为小于(或小于等于号)时,解区间为两根的中间。 2260x x --<的解为3 (,2)2 - 当二次项系数大于0,不等号为大于(或大于等于号)时,解区间为两根的两边。 2210x x --> 的解为(,1(1)-∞?+∞ 当二次项系数小于0时,化成二次项系数大于0的情况考虑。 ②可化为类似一元二次不等式的不等式(换元) 如1392x x +->,令3x t =,原不等式就变为2320t t -+<,再算出t 的范围,进而算出x 的范围 又如243 2 x ax >+ ,令2t x =,再对a 进行分类讨论来确定不等式的解集 ③含参数的一元二次不等式 解法步骤总结: 如不等式210x ax ++>,首先发现二次项系数大于0,而且此不等式无法直接看出两根,所以,讨论24a ?=-的正负性即可。 此不等式的解集为0,0,{|}20,()R a x R x ? ??-∞?+∞? 又如不等式223()0x a a x a -++>,发现其可以通过因式分解化为2()()0x a x a -->,所 以只需要判定2a 和a 的大小即可。 此不等式的解集为22 01,{|}01,(,)(,) 01,(,)(,) a or a x R x a a a a a or a a a ==∈≠?? <<-∞?+∞??<>-∞?+∞?

含参不等式

含参不等式知识互联网 题型一:不等式(组)的基本解法

x ( x ( b ( 无解(大大小小无解了) 典题精练 【例1】 ⑴解不等式 31 423 x x x +--+≤. ⑵解不等式组12(1)532122 x x x --?? ?-<+??≤,并在数轴上表示出解集 ⑶求不等式组2(2)43 251x x x x --??--? ≤<的整数解 ⑷解不等式组32215x x -<-<

⑸解不等式组253473 x x -?? (2012年朝阳一模) 题型二:含参数的不等式(组) 思路导航 对于含参不等式,未知数的系数含有字母需要分类讨论:如不等式ax b <, 例题精讲 【引例】⑴关于x 的一次不等式组x a x b >???? ⑵13kx +> ⑶132kx x +>- ⑷36mx nx +<--

⑸() 212m x +< ⑹()25n x --< 【例3】 ⑴不等式 ()1 23 x m m ->-的解集与2x >的解集相同,则m 的值是 . ⑵关于x 的不等式2x a -≤-1的解集如图所示,则a 的值为 . ⑶ 关于x 的不等式5ax >的解集为5 2 x <-,则参数a 的值 . ⑷ ①若不等式组3 x x a >??>? 的解集是x a >,则a 的取值范围是 . ②若不等式组3 x x a >??? ≥的解集是x a ≥,则a 的取值范围是 . A .3a ≤ B .3a = C .3a > D .3a ≥ (北京二中期中考试) ⑸已知关于x 的不等式组2 32x a x a +??-?≥≤无解,则a 的取值范围是 . ⑹已知关于x 的不等式组>0 53x a x -??-? ≥无解,则a 的取值范围是 . 【例4】 ⑴ 已知关于x 的不等式组0 521≥x a x -??->? 只有四个整数解,则实数a 的取值范围是 . ⑵ 如果关于x 的不等式50x m -≤的正整数解只有4个,那么m 的取值范围是( ) A .2025m <≤ B .2025m <≤ C .25m < D .20m ≥ (北京五中期中考试)

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

一元二次不等式及其解法教学设计

一元二次不等式及其解法 【设计思想】 新的课程标准指出:数学课程应面向全体学生;促进学生获得数学素养的培养和提高;逐步形成数学观念和数学意识;倡导学生探究性学习。这与建构主义教学观相吻合。本节课正是基于上述理念,通过对已学知识的回忆,引导学生主动探究。强调学习的主体性,使学生实现知识的重构,培养学生“用数学”的意识。本节课的设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对书本知识的再创造、再发现的过程,从而培养学生的创新意识。 【教材分析】 本节课是人教社普通高中课程标准实验教材数学必修5第三章《不等式》第二节一元二次不等式及其解法,本节主要内容是从实际问题中建立一元二次不等式,并能解一元二次不等式。这一节共分三个课时,本节课属于第一课时,课题为《一元二次不等式及其解法》。学数学的目的在于用数学,除了让学生探究并掌握一元二次不等式的解法外,更重要的是要领悟函数、方程、不等式的密切联系,体会数形结合,分类讨论,等价转换等数学思想。 【学情分析】 学生在初中就开始接触不等式,并会解一元一次不等式。 【教学目标】 知识与技能:通过学生自主预习与课上探究掌握一元二次方程、一元二次不等式、二次函数之间的关系和一元二次不等式的解法; 过程与方法:自主探究与讨论交流过程中,培养学生运用等价转化和数形结合等数学思想解决数学问题的能力; 情感态度价值观:培养学生的合作意识和创新精神。 【教学重点】一元二次不等式的解法。 【教学难点】一元二次方程、一元二次不等式和二次函数的关系。 【教学策略】 探究式教学方法 (创设问题情境——界定问题——选择问题解决策略——执行策略——结果评价) 【课前准备】 教具:“几何画板”及PPT课件. 粉笔:用于板书示范.

数学分析中不等式证明方法论文

数学分析中不等式证明方法论文 毕业论文(设计)开题报告 题目:数学分析中不等式证明方法 1 目录 摘要((((((((((((((((((((((((((((((((((((((((((((((3 英文摘要((((((((((((((((((((((((((((((((((((((((((((((4 第1章不等式的定义及研究背景(((((((((((((((((((((((((5 1.1不等式的定义((((((((((((((((((((((((((((((((((((5 1.2不等式的研究背景(((((((((((((((((((((((((((((((((5 第2章数学分析中不等式的证明方法与举例(((((((((((((((6 2.1?构造变上限积分函数(((((((((((((((((((((((((((((((6 2.2?利用拉格朗日中值定理进行证明(((((((((((((((((((((((((7 2.3?利用微分中值定理证明积分不等式((((((((((((((((((((((((8 2.4?积分中值定理解不等式((((((((((((((((((((((((((((((((((9 2.5?利用泰勒公式证明不等式((((((((((((((((((((((((((((((((10 2.6?用函数的极值进行证明(((((((((((((((((((((((((((((((((12 2.7?用函数凹凸性进行不等式的证明((((((((((((((((((((((((((13 2.8利用函数单调性解不等式((((((((((((((((((((((((((((((((13 2.9利用条件极值求解不等式((((((((((((((((((((((((((((((((14 2.10利用两边夹法则证明不等式(((((((((((((((((((((((((((((15 第3章不等式证明方法的归纳总结(((((((((((((((((((((17 第4章论文的结论与展望(((((((((((((((((((((((((((((((18 致谢

含参不等式的解法

含参数的一元二次不等式的解法 含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。 一. 二次项系数为常数 例1、解关于x 的不等式:0)1(2 >--+m x m x 解:原不等式可化为:(x-1)(x+m )>0 (两根是1和-m ,谁大?) (1)当1<-m 即m<-1时,解得:x<1或x>-m (2)当1=-m 即m=-1时,不等式化为:0122 >+-x x ∴x ≠1 (3)当1>-m 即m>-1时,解得:x<-m 或x>1 综上,不等式的解集为: (){}m x x x m -><-<或时当1|,11 (){}1|,12≠-=x x m 时当 (){}1-|,13><->x m x x m 或时当 例2:解关于x 的不等式:.0)2(2 >+-+a x a x (不能因式分解) 解:()a a 422 --=? (方程有没有根,取决于谁?) ()()R a a a 时,解集为即当32432404212 +<<-<--=? ()()3 2432404222 +=-==--=? a a a a 或时当

(i )13324-≠ -=x a 时,解得:当 (ii )13-324-≠+=x a 时,解得: 当 ()()时 或即当32432404232 +>-<>--=? a a a a 两根为()2 42)2(2 1 a a a x --+ -= ,()2 42)2(2 2 a a a x --- -= . ()()2 42)2(2 42)2(2 2 a a a x a a a x --+ -> --- -< 或此时解得: 综上,不等式的解集为: (1)当3 2 4324+<<-a 时,解 R ; (2)当324-=a 时,解集为(13,-∞-)?( +∞ -,13); (3)当324+=a 时,解集为(13,--∞-)?(+∞ -- ,13); (4)当3 24-a 时, 解集为(2 48)2(, 2 +---∞-a a a )?( +∞ +-+ -,2 4 8)2(2 a a a ); 二.二次项系数含参数 例3、解关于x 的不等式:.01)1(2 <++-x a ax 解:若0 =a ,原不等式.101>?<+-?x x 若0--?或.1>x 若0 >a ,原不等式.0)1)(1(<-- ? x a x )(* 其解的情况应由a 1与1的大小关系决定,故 (1)当1=a 时,式)(*的解集为φ ; (2)当1>a 时,式)(*11<

高考数学百大经典例题——不等式解法

典型例题一 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或 0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 , 0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

①0 ) ( ) ( ) ( ) ( < ? ? < x g x f x g x f ②0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( < ? = ? ≤ ? ? ? ≠ ≤ ? ? ≤x g x f x f x g x f x g x g x f x g x f 或 或 (1)解:原不等式等价于 ? ? ? ≠ - + ≥ + - + - ? ≥ + - + - ? ≤ + - + + - ? ≤ + - - - + ? ≤ + - - ? + ≤ - )2 )( 2 ( )2 )( 2 )( 1 )( 6 ( )2 )( 2 ( )1 )( 6 ( )2 )( 2 ( 6 5 )2 )( 2 ( )2 ( )2 (3 2 2 3 2 2 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x 用“穿根法” ∴原不等式解集为[)[) +∞ ? - ? - -∞,6 2,1 )2 , (。 (2)解法一:原不等式等价于0 2 7 3 1 3 2 2 2 > + - + - x x x x 2 1 2 1 3 1 2 7 3 1 3 2 2 7 3 1 3 2 )2 7 3 )( 1 3 2( 2 2 2 2 2 2 > < < < ? ?? ? ? ? < + - < + - ?? ? ? ? > + - > + - ? > + - + - ? x x x x x x x x x x x x x x x 或 或 或 ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞。 解法二:原不等式等价于0 )2 )(1 3( )1 )(1 2( > - - - - x x x x )2 ( )1 3 )( 1 )( 1 2(> - ? - - - ?x x x x 用“穿根法” ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞ 典型例题三

数学论文【不等式的证明方法】(汉)

不等式的证明方法 麦盖提县库尔玛乡中学 买合木提·买买提 2012年12月30日

2 不等式的证明方法 不等式的证明方是中学数学的难点和重点,证明不等式的途径是利用不等式的性质进行代数变形,经常用到的证明不等式的主要方法有基本法 如:比较法,综合法,分析法。其他方法:如反证法,放缩法,数学归纳法,涣元法,构造法和判别式法等。 1.证明不等式的基本方法 1.1比较法 比较法是证明不等式的方法之一,比较法除了比差法之外,还有比商法,它们的解题依据及步具步骤如下: 比差法。主要依据是实数的运算性质与大小顺序关系。即 , 0,0,0a b a b a b a b a b a b ->?>- 欲证a b >只需证 1a b > 欲证a b <只需证1a b < 基本解题步骤是:作商——变形——判断。(与1的大小) 例1. 求证: 222(2)5a b a b +≥-- 2 2 2 2 4254250a b a b a b a b +≥--=>+-++≥ 2 2 (44)(21)0a a b b -++++≥

3 2,1a b ==-时等号成立。 所以222(2)5a b a b +≥--成立。 例2. 已知,a b R +∈求证a b b a a b a b ≥ 证: ,a b R +∈ 又 ()a b a b b a a b a a b b -=∴()1a b b a a b a a b a b b -≥?≥ (1)当a b >时, 1a b >,0a b ->所以()1a b a b -> (2)当a b <时01,a a b o b < <-<所以()1a b a b -> (3)当a b =时不等式取等号。 所以(1),(2),(3)知,不等式a b b a a b a b ≥成立。 1.2.综合法 综合法就是从已知式已证明过的不等式出发,根据不等式的性质推出,欲证的不等式,通过一系列已确定的命题(包含不等式的性质,已掌握的重要不等式)逐步推演,从而得到所要求证的不等式成立,这种方法叫做综合法。 几个重要不等式:2222()0,(),2,(,a b a b a b ab a b ->≠+≥ 为实数) /2(0,0),//2,(,a b a b a b b a a b +≥ >>+≥同号) /3a b c ++≥a b c ==成立) 例3.已知 a b ≠ 且 ,a b R +∈ 求证: 3322 a b a b ab +>+

含参不等式题型知识讲解

含参不等式题型 一、给出不等式解的情况,求参数取值范围: 总结:给出不等式组解集的情况,只能确定参数的取值范围。记住:“大小小大有解;大大小小无解。”注:端点值格外考虑。 1:已知关于x 的不等式组3x x a >-???????+>-??的解集是x>2a,则a 的取值范围是 。 4、已知关于x 的不等式组2113x x m -?>???>?的解集为2x >,则( ) .2.2.2.2A m B m C m D m ><=≤

5、关于x 的一元一次不等式组x a x b >?? >?的解集是x>a,则a 与b 的关系为( ) ...0.0A a b B a b C a b D a b ≥≤≥>≤< 6、若关于x 的不等式组841x x x m +-??? p f 的解集是x >3,则m 的取值范围是 7、若关于x 的不等式组8x x m ?,有解,则m 的取值范围是__ ___。 8、若关于x 的不等式组?? ?->+<121m x m x 无解,则m 的取值范围是 。 二、给出不等式解集,求参数的值 总结:给出不等式组确切的解集,可以求出参数的值。方法:先解出含参的不等式组中每个不等式的解集,再利用已知解集与所求解集之间的对应关系,建立方程。 1:若关于x 的不等式组2123x a x b -? 的解集为11x -<<,求()()11a b +-的值。 2:已知关于x 的不等式组()324213 x x a x x --≤???+>-??的解集是13x ≤<,求a 的值。 3、若关于x 的不等式组 的解集为 ,求a,b 的值 {a b x b a x 22>+<+3 3<<-x

不等式的证明方法论文

不等式的证明方法 摘要 不等式的形式与结构多种多样,其证明方法繁多,技巧性强,也没有通法,所以研究范围极广,难度极大.目前国内外研究者已给出很多不等式的证明方法,已有文献分别就不等式的性质、各种证明方法及应用作了论述.论文以现有研究成果为基础,整理和归纳了常用的不等式证明方法,包括构造几何图形、构造复数、构造定比分点、构造主元、构造概率模型、构造方差模型、构造数列、构造向量、构造函数、代数换元、三角换元、放缩法、数学归纳法,让每一种方法兼具理论与实践性.旨在使学生对不等式证明问题有一个较为深入的了解,进而在解决相关不等式证明问题时能融会贯通、举一反三,达到事半功倍的效果,同时为从事教育的工作者提供参考. 关键词:不等式;证明;方法

Methods for Proving Inequality Abstract:The form of structure of inequality is diversity, and the proving methods of it are various which requires lots of skills, and there is no common way, so it is a extremely difficult study. Researchers have been given a lot of inequality proof methods at home and abroad, the existing literature, respectively, the nature of inequality, certificate of various methods and application are discussed. The paper on the basis of existing research results and summarizes the commonly used methods of inequality proof, including structural geometry, structure complex, the score point, tectonic principal component, structure, tectonic sequence probability model, structure of variance model, vector construction, constructor, algebra in yuan, triangle in yuan, zoom method, mathematical induction, making every kind of method with both theory and practice. The aim is to make the student have a more thorough understanding on the inequality problems , and in solving the problem of relative inequality proof can digest the lines, to achieve twice the result with half the effort, at the same time provide a reference for engaged in education workers. Key words: inequality; proof; method

高一数学一元二次不等式解法经典例题

例若<<,则不等式--<的解是1 0a 1(x a)(x )01 a [ ] A a x B x a .<< .<<1 1 a a C x a .>或<x a 1 1 选A x ≥3或x . ?? ?????a b = =-121 2 ,. 例4 解下列不等式 (1)(x -1)(3-x)<5-2x (2)x(x +11)≥3(x +1)2 (3)(2x +1)(x -3)>3(x 2+2) (4)3x 2-+--+-313 2 511 3 12 2x x x x x x >>()()

分析 将不等式适当化简变为ax 2+bx +c >0(<0)形式,然后根据“解公式”给出答案(过程请同学们自己完成). 答 (1){x|x <2或x >4} (2){x|1x }≤≤3 2 (3)? (4)R (5)R 说明:不能使用解公式的时候要先变形成标准形式. 例不等式+> 的解集为5 1x 1 ] x = 0} ] 解法一原不等式的同解不等式组为≠. x -?? 20 故排除A 、C 、D ,选B . 解法二≥化为=或-->即<≤ x 3 20x 3(x 3)(2x)02x 3--x 两边同减去2得0<x -2≤1.选B . 说明:注意“零”. 例不等式 <的解为<或>,则的值为7 1{x|x 1x 2}a ax x -1 [ ]

A a B a C a D a .< .> .= .=- 1212 1 21 2 分析可以先将不等式整理为 <,转化为 0()a x x -+-11 1 [(a -1)x +1](x -1)<0,根据其解集为{x|x <1或x >2} 可知-<,即<,且- =,∴=.a 10a 12a 1112 a - 答 选C . ≤0} 分析 先确定A 集合,然后根据一元二次不等式和二次函数图像关 系,结合,利用数形结合,建立关于的不等式.B A a ? 解 易得A ={x|1≤x ≤4} 设y =x 2-2ax +a +2(*) (1)B B A 0若=,则显然,由Δ<得??

数学不等式证明方法论文开题报告

湖北大学 本科毕业论文(设计)开题报告 题目高中数学不等式的证明方法 姓名梁艳平学号2011221104110067 专业年级2011级数学与应用数学 指导教师付应雄职称副教授 2015年03月03日 本课题的研究目的及意义 现实世界中的量有相等关系,也有不等关系,凡是与比较量的大小有关的问题,都要用到不等式的知识。不等式在解决最优化、最优控制、经济等各类实际问题中有广泛的应用,它是学习和研究现代科学和技术的一个基本工具。 不等式在中学数学中占有重要地位,在历年高考中颇为重视。由于不等式的形式各异,所以证明方法灵活、技巧多样,因此不等式的证明也是中学数学的难点之一。 为了突破难点,我认为有必要对一些常见的证明方法和典型例题进行一些思考、研究和总结。 已了解的本课题国内外研究现状。 不等式的证明方法在国内外的研究都趋于高深、复杂、多方向化。 不等式的证明方法也大多用于竞赛和考察数学素养。 本课题的研究内容 本课题主要研究不等式一些常见的证明方法:比较法,综合法,分析法,反证法,放缩法,数学归纳法,换元法,构造法和判别式法等。 本课题研究的实施方案、进度安排。 首先通过查阅国内外相关文献资料对不等式的证明方法做一个全面的了解,并了解学生对于不等式的证明方法的掌握程度与思考方式,其次,对于每种方法要举出一个典型的例子来帮助读者理解。 2015年1月——2014年2月:搜集、分析资料,确定题目; 2015年3月初:开题报告; 2015年3月初——3月底:撰写论文初稿;3月31日前提交纸质版初稿; 2015年4月中旬前:修改论文,定稿:外文翻译; 2015年4月底:论文答辩。 已查阅的主要参考文献 [1]胡汉明.不等式证明问题的思考方法.数学通讯.2004(11). [2]韩京俊.初等不等式的证明方法.哈尔滨工业大学出版社. [3]严镇军.不等式.人民教育出版社. [4]王胜林.卫赛民.证明不等式的几种特殊方法,数学通讯.

常见不等式的解法

常见不等式的解法 【知识要点】 一、一元一次不等式的解法 任何一个一元一次不等式经过不等式的同解变形后,都可以化为(0)ax b a >≠的形式. 当0a >时,不等式的解集为b x x a ??> ????;当0a <时,不等式的解集为b x x a ? ? < ???? . 二、一元二次不等式20(0)ax bx c a ++≥≠的解法 1、二次不等式2 ()0f x ax bx c =++≥(0a >)的解法:最好的方法是图像法,充分体现了数形结合 的思想.也可以利用口诀(大于取两边,小于取中间)解答. 2、当二次不等式()f x =2 0(0)ax bx c a ++≥<时,可以画图,解不等式,也可以把二次项的系数a 变成正数,再利用上面的方法解答. 3、温馨提示 (1)不要把不等式2 0ax bx c ++>看成了一元二次不等式,一定邀注意观察分析2x 的系数. (2)对于含有参数的不等式注意考虑是否要分类讨论. (3)如果运用口诀解一元二次不等式,一定要注意使用口诀必须满足的前提条件. (4)不等式的解集必须用集合或区间,不能用不等式,注意结果的规范性. 三、指数不等式和对数不等式的解法 解指数不等式和对数不等式一般有以下两种方法 (1)同底法:如果两边能化为同底的指数或对数,先化为同底,再根据指数、对数的单调性转化为代数不等式,底数是参数时要注意观察分析是否要对其进行讨论,并注意到对数真数大于零的限制条件. ①当1a >时, ()() ()()f x g x a a f x g x >?>; ()0log ()log ()()0 ()()a a f x f x g x g x f x g x >?? >?>??>? ②当01a <<时, ()() ()()f x g x a a f x g x >?<; ()0log ()log ()()0 ()()a a f x f x g x g x f x g x >?? >?>??

教案高中含参不等式的恒成立问题整理版.doc

高中数学不等式的恒成立问题 一、用一元二次方程根的判别式 有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决。 基本结论总结 例1 对于x ∈R ,不等式恒成立,求实数m 的取值范围。 例2:已知不等式04)2(2)2(2 <--+-x a x a 对于x ∈R恒成立,求参数a 的取值范围. 解:要使04)2(2)2(2 <--+-x a x a 对于x ∈R恒成立,则只须满足: (1)???<-+-<-0)2(16)2(4022 a a a 或 (2)?? ? ??<-=-=-0 40)2(20 2a a 解(1)得?? ?<<-<2 22 a a ,解(2)a =2 ∴参数a 的取值范围是-2<a ≤2. 练习 1. 已知函数])1(lg[2 2 a x a x y +-+=的定义域为R ,求实数a 的取值范围。 2.若对于x ∈R ,不等式恒成立,求实数m 的取值范围。 3.若不等式的解集是R ,求m 的范围。 4.x 取一切实数时,使3 47 2+++kx kx kx 恒有意义,求实数k 的取值范围.

例3.设22)(2 +-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,求实数m 的取值范围。 关键点拨:为了使 在 恒成立,构造一个新函数 是解题的关键,再利用二次 函数的图象性质进行分类讨论,使问题得到圆满解决。若二次不等式中x 的取值范围有限制,则可利用根的分布解决问题。 解:m mx x x F -+-=22)(2 ,则当),1[+∞-∈x 时,0)(≥x F 恒成立 当120)2)(1(4<<-<+-=?m m m 即时,0)(>x F 显然成立; 当0≥?时,如图,0)(≥x F 恒成立的充要条件为: ??? ? ??? -≤--≥-≥?1 220)1(0m F 解得23-≤≤-m 。综上可得实数m 的取值范围为)1,3[-。 例4 。已知1ax x )x (f 2+-=,求使不等式0)x (f <对任意]2,1[x ∈恒成立的a 的取值范围。 解法1:数形结合 结合函数)x (f 的草图可知]2,1[x ,0)x (f ∈<时恒成立? 25a 0 a 25)2(f 0a 2)1(f >?? ?<-=<-=得。所以a 的取值范围是),25 (+∞。 解法2:转化为最值研究 4a 1)2a x ()x (f 22- +-= 1. 若]2,1[)x (f ,3a 232a 在时即≤≤上的最大值,25a ,0a 25)2(f )x (f max ><-==得3a 25 ≤<所以。 2. 若0a 2)1(f )x (f ]2,1[)x (f ,3a 2 3 2a max <-==>>上的最大值在时即,得2a >,所以3a >。 综上:a 的取值范围是),2 5 (+∞。 注:1. 此处是对参a 进行分类讨论,每一类中求得的a 的范围均合题意,故对每一类中所求得的a 的范围求并集。 2. I x ,m )x (f ∈<恒成立)m (m )x (f max 为常数?∈> 解法3:分离参数 ]2,1[x ,x 1x a ]2,1[x ,01ax x 2∈+ >?∈<+-。设x 1 x )x (g +=, 注:1. 运用此法最终仍归结为求函数)x (g 的最值,但由于将参数a 与变量x 分离,因此在求最值时避免了分类讨论,使问题相对简化。 2. 本题若将“]2,1[x ∈”改为“)2,1(x ∈”可类似上述三种方法完成。 仿解法1:?∈<)2,1(x ,0)x (f 25a 0 )2(f 0)1(f ≥?? ?≤≤得即),25 [:a +∞的范围是 读者可仿解法2,解法3类似完成,但应注意等号问题,即此处2 5 a = 也合题。 O x y x -1

相关文档