文档库 最新最全的文档下载
当前位置:文档库 › 互成角度的两个共点力的合成

互成角度的两个共点力的合成

互成角度的两个共点力的合成
互成角度的两个共点力的合成

实验目的

验证两个共点力合成时的平行四边形定则 实验器材

方木板、白纸、弹簧秤 ( 两只 ) 、橡皮条、细绳套 ( 两个 ) 、三角板、刻度尺、图钉 ( 几个 )透明 胶带 实验原理

一个力 F ′的作用效果与两个共点力 F 1 和 F 2 的共同作用效果都是把橡皮条拉伸到某点,所以F ′为 F 1 和 F 2 的合力 . 作出 F ′的图示,再根据力的平行四边形定则作出 F 1 和 F 2 的合力 F 的图示,比较 F ′与 F 是否大小相等,方向相同 . 实验步骤

(1) 用图钉把白纸钉在方木板上。

(2) 把方木板平放在桌面上,用图钉把橡皮条的一端固定在 A 点 ( 如图 4-1 所示 ) 橡皮条的另一端拴上两个绳套。

(3) 用两只弹簧秤分别钩住细绳套,互成角度地拉橡皮条,使橡皮条伸长到某一位置 O . 用铅笔描下 O 点的位置和两条细绳套的方向,并记录弹簧秤的读数.注意在使用弹簧秤的时候,要使它的弹簧与木板平面平行。

图4-1

图4-2

互成角度的两个共点力的合成

(4) 用铅笔和刻度尺从力的作用点 ( 位置 O ) 沿着两条绳套的方向画直线,按选定的标度作这两只弹簧秤的拉力 F 1 和 F 2 图示,以 F 1 和 F 2 为邻边利用刻度尺和三角板作平行四边形,过 O 点画平行四边形的对角线,即为合力 F 的图示。

(5) 只用一个弹簧秤,通过细绳把橡皮条的结点拉到同样位置 O . 读出弹簧秤的示数,记下细绳的方向,按同一标度作出这个力 F ′的图示 , 见图4-2。

(6) 比较力 F ′与用平行四边形定则求得的合力 F 的大小和方向,看它们是否相等 。

(7) 改变两个分力的大小和夹角,再做两次实验,将三次实验结束填入实验数据表格中。

实验数据

注意事项

(1) 使用弹簧秤前,要先观察指针是否指在零刻度处,若指针不在零刻度处,要设法调整指针,使之指在零刻度处 . 再将两个弹簧秤的挂钩钩在一起,向相反方向拉,如果两个示数相同方可使用 .

(2) 实验中的两只细绳套不要太短 .

动画(演示实验步骤3、4、5)

(3) 在同一次实验中,使橡皮条拉长时结点的位置一定要相同 .

(4) 在使用弹簧秤拉力时,拉力应沿弹簧秤的轴线方向 . 弹簧秤中弹簧轴线、橡皮条、细绳套应该位于与纸面平行的同一平面内 . 要防止弹簧秤卡壳,防止弹簧秤或橡皮条与纸面有摩擦 .

(5) 在同一实验中,画力的图示选定的标度要相同 . 并且要恰当选定标度,使力的图示稍大一些 .

复习专题:共点力平衡问题

【课题】共点力作用下的静态平衡问题 【课型】复习课 【三维目标】 一、知识与能力 掌握共点力作用下的静态平衡问题的解决方法。 二、过程与方法 系统的归纳在共点力平衡问题中可能会用到的整体法和隔离法;正交分解法和矢量三角形法。 三、情感态度与价值观 通过系统的归纳与学习,使学生能够把电磁学中力学知识跟平衡问题有机的结合,积极应对高考。 【教学重点】 共点力平衡问题的一般方法;整体法与隔离法;研究对象的转移;正交分解法及矢量三角形法 【教学难点】 整体法与隔离法的选择;正交分解法 【教学过程】 一、新课导入 上节课我们通过考点网络结构的方式给大家复习了高中阶段必须掌握的几种力:重力、弹力、摩擦力、电场力、安培力、洛伦兹力。那么物体在这些力的作用下可能会达到平衡状态,今天我们就一起来复习物体在共点力作用下

的静态平衡问题的解决方法及其他物理方法。 二、课程设计 问:何为物体的静态平衡? 答:物体在力的作用下保持静止状态或匀速直线运动状态。 接下来我们就通过一道例题来总结一下解决共点力平衡问题的一般方法和步骤。(过渡) 例1:如图所示,两根相距L的光滑金属导轨平行放置,导轨所在平面与水平面间的夹角为θ,质量为m 的金属杆ab 垂直导轨放置,整个装置处于垂直金属导轨平面向上的匀强磁场中。当金属杆ab中通有从a到b的电流I时,金属杆ab保持静止。求: (1)金属杆对导轨的压力。 (2)磁感应强度的大小。 解:以通电金属杆为研究对象, 受力分析如图,正交分解重力, 得:mg x=mgsinθ mg y=mgcosθ

则,mgsinθ=IBL mgcosθ=F 解方程的B= mgsinθ/IL 根据牛顿第三定律,金属杆对导轨的压力为mgcosθ。 现在我们来总结下解决这个问题的一般步骤: 【课件展示】 (一)选择合适的研究对象(选对象) (二)对研究对象进行受力分析(分析力) (三)选择合适的方法处理受力(处理力) (四)根据平衡条件列出方程(列方程) (五)解方程,得出结论(得结论) 有的同学可能在想,老师现在都第二轮复习了,你怎么还讲这么简单的题目呢?我要告诉大家的是,我们现在并不是学会解这道题,而是学会解决这类问题的一般方法。那么,请问大家知道在解决这类问题的每一个步骤中又会遇到什么特殊情况吗?让我们回过头来在看一下每个解题步骤。(过渡) (一)选择合适的研究对象(选对象) 【课件展示】 1、整体法:在分析两个或者两个以上物体间的相互作用时,如果两个物体的运动状态相同,且分析的受力是两个物体的外力。

讲解:求解共点力平衡问题的八种方法

求解共点力平衡问题的八种方法 一、分解法 一个物体在三个共点力作用下处于平衡状态时, 将其中任意一个力沿其他两个力的反方 向分解,这样把三力平衡问题转化为两个方向上的二力平衡问题, 则每个方向上的一对力大 小相等。 二、合成法 对于三力平衡时,将三个力中的任意两个力合成为一个力,则其合力与第三个力平衡, 把三力平衡转化为二力平衡问题。 [例1]如图1所示,重物的质量为 m ,轻细绳Ao 和Bo 的A 端、B 端是固定的,平衡 时AO 是水平的,BO 与水平面的夹角为 θ, AO 的拉力F i 和BO 的拉力F ?的大小是( ) A . F i = mgcos θ B. F i = mgcot θ C. F 2= mgs in θ D. F 2= mg/sin θ [解析]解法一(分解法) 用效果分解法求解。F 2共产生两个效果:一个是水平方向沿 A →O 拉绳子AO ,另一个 是拉着竖直方向的绳子。如图 2甲所示,将F 2分解在这两个方向上,结合力的平衡等知识 解得F i = F ?' = mgcot θ F ?= F —眉 卫迅。显然,也可以按mg (或F i )产生的效果分解 Sin θ Sin θ F i )来求解此题。 解法二(合成法) 由平行四边形定则,作出 F i 、F 2的合力F i2,如图乙所示。又考虑到 F i2 = mg ,解直角 三角形得F i = mgcot θ, F 2= mg/sin θ,故选项 B 、D 正确。 mg (或

[答案]BD 三、正交分解法 物体受到三个或三个以上力的作用处于平衡状态时,常用正交分解法列平衡方程求解: F X合=0, F y合=0。为方便计算,建立坐标系时以使尽可能多的力落在坐标轴上为原则。 [例2]如图3所示,用与水平成θ角的推力F作用在物块上,随着θ逐渐减小直到水平的过程中,物块始终沿水平面做匀速直线运动。关于物块受到的外力,下列判断正确的是 A .推力F先增大后减小 B .推力F —直减小 C.物块受到的摩擦力先减小后增大 D .物块受到的摩擦力一直不变 [解析]对物体受力分析,建立如图4所示的坐标系。 r Γ∣Γ & ^^I匚 图4 由平衡条件得 FCoS θ—F f = 0 F N —(mg + FS in θ)= 0 又F f= μF N 可见,当θ减小时,F —直减小,故选项B正确。 [答案]B 四、整体法和隔离法 若一个系统中涉及两个或者两个以上物体的平衡问题,在选取研究对象时,要灵活运用整体法和隔离法。对于多物体问题,如果不求物体间的相互作用力,优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;很多情况下,通常采用整体法和隔离法 相结合的方法。 [例3](多选)如图5所示,放置在水平地面上的质量为M的直角劈上有一个质量为m 联立可得 μ mg cos θ—μin θ 图3

互成角度的两个力的合成

互成角度的两个力的合成 实验目的 验证互成角度的两个共点力合成的平行四边形定则。 实验原理 1、结点受三个共点力作用处于平衡状态,则F1、F2之合力必与橡皮条拉力平衡。 2、改用一个拉力F'使结点回到O点,则F' 必与F1、F2的合力等效。 3、以F1、F2为邻边作平行四边形求出合力F,比较F与F' 的大小和方向,以验证互成角度的两个力合成时的平行四边形定则。 注意事项 1、弹簧秤校零。 2、拉力要沿弹簧秤轴线方向。 3、注意弹簧秤的弹性限度。 4、本实验允许的误差范围是:力的大小为1% ~ 5%,F与F'的夹角不大于7度,若误差过大应仔细分析原因。 实验结论 通过实验验证可知:两个互成角度的共点力的合成遵循平行四边形定则。平行四边形定则实际上不仅适用于力的合成,它也是求矢量和时普遍适用的法则。 实验考点 本实验是研究矢量合成方法的一个基本实验,内容比较简单。主要考查操作过程中的注意事项、弹簧秤的读数、分析误差的来源和减小方法以及条件变化时的动态调整等。 经典考题 1、图是甲、乙两位同学在《互成角度的两个共点力的合成》实验中所得到的实验结果,若用F表示两个分力F1、F2的合力,用F’表示F1和F2的等效力,则可以判断 _______(填“甲”或“乙”)同学的实验结果是尊重事实的.

2、在《互成角度的两个共点力的合成》实验中,橡皮条一端固定在木板上,用两个弹簧秤把橡皮条的另一端拉到某一位置O点,以下操作中错误的是() A. 同一次实验过程中,O点的位置允许变动 B. 在实验中,弹簧秤必须保持与木板平行,读数时视线要正对弹簧秤的刻度 C. 实验中,先将其中一个弹簧秤沿某一方向拉到最大量程,然后只需调节另一弹簧秤拉力的大小和方向,把橡皮条结点拉到O点 D. 实验中,把橡皮条的结点拉到O点时,两秤之间的夹角应取90°不变,以便于计算合力的大小 3、在《互成角度的两个共点力的合成》的实验中,采取下列哪些措施可减小实验误差?() A. 两个分力F1、F2间的夹角要尽量大些 B. 两个分力F1、F2的大小要尽量大些 C. 拉橡皮条的细绳要稍长一些 D. 实验前,先把所用的两个弹簧秤的钩子相互钩住,平放在桌子上,向相反方向拉动,检查读数是否相同. 答案 1.解析:由题设可知,F为F1和F2的合力,通过平行四边形定则所得,而F’是F1和F2的等效力,即用一只弹簧秤拉橡皮条时的拉力,显然F’的方向应在细线的方向上,而F’的方向与细绳在同一直线上,故甲同学是尊重事实的。 点评:本题解答的焦点在F’的方向的确定上。两位同学的实验结果都有误差,这是正常的,但乙同学很明显在F’的方向的确定上违背了实验的要求,作图是错误的。 2.解析:本题选择的答案为A、C、D. A中O点位置不允许变动,这样才可以使两次效果相同;C中不允许将秤的拉力大小拉到最大量程,这样不便于调节;D中两秤之间的夹角是任意的,使平行四边形定则具有一般性. 点评:本题解答的焦点是本实验的基本要求要熟悉,注意事项要清楚,这样对具体的实验过程才能有正确的把握. 3.解析:本题选择的答案为B、C、D。B中可使秤的示数在读数时误差减小;C中可使拉力的方向确定更准确;D中是检查弹簧秤的零点是否准确. 点评:本题考查的是减小误差的措施,因此选项中应尽可能从减小误差的角度去分析、判断,最后直接挑选。故读数的精确、作图的准确及弹簧秤的检查理应成为必然的选项. 追溯“力的平行四边形定则”的由来 1586年,荷兰的斯蒂文在《静力学基础》一书中最早提出力的分解与合成原理。他的研究是置于从斜面上物体和链条的平衡入手的:将14个等质量的小球均匀地穿在线上组成首尾相连的一串球链,或者将一条质量均匀的链条挂在斜面上,若这些小球处于自由状态,如图1所示,它们将怎样运动?他从永动机不可能原理出发,认为小球必然平衡,即使去掉下面的8个对称悬挂的小球也应静止。由此得出:在等高的斜面上,相同的重物的作用与斜面的长度成反比,即重力、斜面压力和绳的张力的平衡关系及与斜面边长的比例关系。他还把左边的4个小球和右边的两个小球分别凝成一球或把球链变成均匀的链条,结果也一样。这样就在两力成直角的情况下引入了力的三角形定则,并把这一原理(没有明确表达出)应用到图2

人教版高一物理上册必修1《4.4实验 互成角度的两个共点力的合成》同步练习及答案(优质推荐)

人教版高一物理上册必修1《4.4实验互成角度的两个共点力的合成》 同步练习及答案 第4章怎样求合力与分力 实验互成角度的两个共点力的合成 1.在“验证力的平行四边形定则”的实验中,某同学第一步用一个弹簧测力计钩住细绳 套拉橡皮条,使结点到达某一位置O;第二步用两个弹簧测力计分别钩住两个细绳套互成角度地拉橡皮条,使结点到达同一位置O。第二步中必须记录的是() A.两细绳的长度和两细绳的方向 B.橡皮条伸长的长度和两细绳的方向 C.两弹簧测力计的读数和橡皮条伸长的长度 D.两细绳套的方向和两弹簧测力计的读数 解析:力的合成与分解都要满足平行四边形定则,因此必须知道力的大小和方向,才能作出力的平行四边形,A、B、C错误,D正确。 答案:D 2.(多选)下面列出的措施中,哪些是有利于改进本节实验以减小误差的() A.橡皮条弹性要好,拉到O点时拉力适当大些 B.两个分力F1和F2间的夹角要尽量大些 C.拉橡皮条时,橡皮条、细绳和弹簧测力计平行贴近木板面 D.拉橡皮条的绳要细,而且要稍长一些 解析:拉力“适当”大些能减小误差;而夹角“尽量”大些,则使作图误差变大,A正确,B错误;橡皮条等贴近木板,目的是使拉线水平;绳细且稍长便于确定力的方向,所以选项C、D正确。 答案:ACD 3.在做“互成角度的两个共点力的合成”的实验中,只用一个测力计也可以完成这个实验,下面的几个用单个测力计完成实验的说法中,正确的是() A.把两条细线中的一条与测力计连接,然后同时拉这两条细线,使橡皮筋一端伸长到O 点位置,读出测力计的示数F1的值 B.把两条细线中的一条与测力计连接,然后同时拉动这两条细线,使橡皮筋一端伸长到 O点,读出测力计的示数F1;放回橡皮筋,再将测力计连接到另一条细线上,再同时拉这两条细线,使橡皮筋再伸长到O点,读出测力计的示数F2 C.用测力计连接一条细线拉橡皮筋,使它的一端伸长到O点,读出F1;再换另一条细线与测力计连接拉橡皮筋,使它的一端仍然伸长到O点,读出F2 D.把两根细线中的一条细线与测力计连接,然后同时拉这两条细线,使橡皮筋的一端伸长到O点,记下两条细线的方向及测力计的示数F1;放回橡皮筋后,将测力计连接到另一条细线上,再同时拉这两条细线,使橡皮筋一端伸长到O点,并使两条细线位于记录下来的方 向上,读出测力计的读数为F2 解析:用一个测力计完成共点力合成的实验与用两个测力计完成基本步骤相同,但必须 保证效果相同,同时能完整地作出平行四边形进行比较。 答案:D

共点力平衡的几种解法(例题带解析)

共点力平衡的几种解法 1. 力的合成、分解法:对于三力平衡,一般根据“任意两个力的合力与第三个力等大反向”的关系,借助三角函数、相似三角形等手段求解;或将某一个力分解到另外两个力的反方向上,得到的这两个分力势必与另外两个力等大、反向;对于多个力的平衡,利用先分解再合成的正交分解法。 2. 矢量三角形法:物体受同一平面内三个互不平行的力作用平衡时,这三个力的矢量箭头首尾相接,构成一个矢量三角形;反之,若三个力矢量箭头首尾相接恰好构成三角形,则这三个力的合力必为零,利用三角形法,根据正弦定理、余弦定理或相似三角形等数学知识可求得未知力。 矢量三角形作图分析法,优点是直观、简便,但它仅适于处理三力平衡问题。 3. 相似三角形法:相似三角形法,通常寻找的是一个矢量三角形与三个结构(几何)三角形相似,这一方法也仅能处理三力平衡问题。 4. 正弦定理法:三力平衡时,三个力可构成一封闭三角形,若由题设条件寻找到角度关系,则可用正弦定理列式求解。 5. 三力汇交原理:如果一个物体受到三个不平行外力的作用而平衡,这三个力的作用线必在同一平面上,而且必为共点力。 6. 正交分解法:将各力分别分解到x轴上和y轴上,运用两坐标轴上的合力等于零的条件,多用干三个以上共点力作用下的物体的平衡,值得注意的是,对“x、y方向选择时,尽可能使落在x、y轴上的力多;被分解的力尽可能是已知力。不宜分解待求力。 7. 动态作图:如果一个物体受到三个不平行外力的作用而处于平衡,其中一个力为恒力,第二个力的方向一定,讨论第二个力的大小和第三个力的大小和方向。 三. 重难点分析: 1. 怎样根据物体平衡条件,确定共点力问题中未知力的方向? 在大量的三力体(杆)物体的平衡问题中,最常见的是已知两个力,求第三个未知力。解决这类问题时,首先作两个已知力的示意图,让这两个力的作用线或它的反向延长线相交,则该物体所受的第三个力(即未知力)的作用线必定通过上述两个已知力的作用线的交点,然后根据几何关系确定该力的方向(夹角),最后可采用力的合成、力的分解、拉密定理、正交分解等数学方法求解。 2. 一个物体受到n个共点力作用处于平衡,其中任意一个力与其余(n-1)个力的合力有什么关系? 根据二力平衡条件,一个物体受n个力平衡可看作是任意一个力和其余(n-1)个力的合力应满足平衡条件,即任意一个力和其余(n-1)个力的合力满足大小相等、方向相反、作用在同一直线上。 3. 怎样分析物体的平衡问题 物体的平衡问题是力的基本概念及平行四边形定则的直接应用,也是进一步学习力和运动关系的基础。 (1)明确分析思路和解题步骤 解决物理问题必须有明确的分析思路.而分析思路应从物理问题所遵循的物理规律本身去探求。物体的平衡遵循的物理规律是共点力作用下物体的平衡条件:,要用该规律去分析平衡问题,首先应明确物体所受该力在何处“共点”,即明确研究对象.在分析出各个力的大小和方向后,还要正确选定研究方法,即合成法或分解法,利用平行四边形定则建立各力之间的联系,借助平衡条件和数学方法,确定结果.由上述分析思路知,解决平衡问题的基本解题步骤为: ①明确研究对象。 在平衡问题中,研究对象常有三种情况: <1> 单个物体,若物体能看成质点,则物体受到的各个力的作用点全都画到物体的几何中心上;若物体不能看成质点,则各个力的作用点不能随便移动,应画在实际作用位置上。 <2> 物体的组合,遇到这种问题时,应采用隔离法,将物体逐个隔离出去单独分析,其关键是找物体之间的联系,相互作用力是它们相互联系的纽带。 <3> 几个物体的的结点,几根绳、绳和棒之间的结点常常是平衡问题的研究对象。 ②分析研究对象的受力情况 分析研究对象的受力情况需要做好两件事:

实验 (四) 探究两个互成角度的力的合成规律

实验(四)探究两个互成角度的力的合成规律1.在做“探究两个互成角度的力的合成规律”的实验中,以下说法中正确的是() A.用两个弹簧测力计拉小圆环时,两细绳之间的夹角必须为90°,以便求出合力的大小 B.用两个弹簧测力计拉小圆环时,小圆环的位置必须与用一个弹簧测力计拉时小圆环的位置重合 C.若用两个弹簧测力计拉时合力的图示F与用一个弹簧测力计拉时拉力的图示F′不完全重合,说明力的平行四边形定则不一定是普遍成立的 D.同一实验过程中,小圆环所处的位置O允许变动 解析:选B两细绳之间的夹角是任意的,A错误;同一实验过程中,前后两次小圆环的位置相同,力的作用效果才相同,B正确,D错误;由于测量和作图存在误差,F′和F 的方向不一定完全重合,实验可以证明,在误差允许的范围内,平行四边形定则总是成立的,C错误。 2.某同学利用如图所示的装置来“探究两个互成角度的力的合成规 律”:在竖直木板上铺有白纸,固定两个光滑的滑轮A和B,将绳子打 一个结点O,每个钩码的重量相等,当系统达到平衡时,根据钩码个数 读出三根绳子的拉力F T OA、F T OB和F T OC,回答下列问题: (1)改变钩码个数,实验能完成的是________。(绳子能承受的拉力足 够大) A.钩码的个数N1=N2=2,N3=4 B.钩码的个数N1=N3=3,N2=4 C.钩码的个数N1=N2=N3=4 D.钩码的个数N1=3,N2=4,N3=5 (2)在拆下钩码和绳子前,最重要的一个步骤是________。 A.标记结点O的位置,并记录OA、OB、OC三段绳子的方向和钩码个数 B.量出OA、OB、OC三段绳子的长度 C.用量角器量出三段绳子之间的夹角 D.用天平测出钩码的质量 (3)在作图时,你认为图中________(填“甲”或“乙”)是正确的。

求解共点力平衡问题的常见方法(经典归纳附详细答案)

求解共点力平衡问题的常见方法 共点力平衡问题,涉及力的概念、受力分析、力的合成与分解、列方程运算等多方面数学、物理知识和能力的应用,是高考中的热点。对于刚入学的高一新生来说,这个部分是一大难点。 一、力的合成法 物体在三个共点力的作用下处于平衡状态,则任意两个力的合力一定与第三个力大小相等,方向相反; 1.(2008年·广东卷)如图所示,质量为m 的物体悬挂在轻质支架上,斜梁OB 与竖直方向的夹角为θ(A 、B 点可以自由转动)。设水平横梁OA 和斜梁OB 作用于O 点的弹力分别为F 1和F 2,以下结果正确的是( ) A.F 1=mgsinθ B.F 1= sin mg q C.F 2=mgcosθ D.F 2=cos mg q 二、力的分解法 在实际问题中,一般根据力产生的实际作用效果分解。 2、如图所示,在倾角为θ的斜面上,放一质量为m 的光滑小球,球被竖直的木板挡住,则球对挡板的压力和球对斜面的压力分别是多少? 3.如图所示,质量为m 的球放在倾角为α的光滑斜面上,试分析挡板AO 与斜面间的倾角β多大时,AO 所受压力最小。 三、正交分解法 解多个共点力作用下物体平衡问题的方法 物体受到三个或三个以上力的作用时,常用正交分解法列平衡方程求解: 0x F =合,0 y F =合. 为方便计算,建立坐标系时以尽可能多的力落在坐标轴上为原则 . θ

4、如图所示,重力为500N 的人通过跨过定滑轮的轻绳牵引重200N 的物体,当绳与水平面成60° 角时,物体静止。不计滑轮与绳的摩擦,求地面对人的支持力和摩擦力。 四、相似三角形法 根据平衡条件并结合力的合成与分解的方法,把三个平衡力转化为三角形的三条边,利用力的三角形与空间的三角形的相似规律求解. 5、 固定在水平面上的光滑半球半径为R ,球心0的正上方C 处固定一个小定滑轮,细线一端拴一小球置于半球面上A 点,另一端绕过定滑轮,如图5所示,现将小球缓慢地从A 点拉向B 点,则此过程中小球对半球的压力大小N F 、细线的拉力大小T F 的变化情况是 ( ) A 、N F 不变、T F 不变 B. N F 不变、T F 变大 C , N F 不变、T F 变小 D. N F 变大、T F 变小 6、两根长度相等的轻绳下端悬挂一质量为m 物体,上端分别固定在天花板M 、N 两点,M 、N 之间距离为S ,如图所示。已知两绳所能承受的最大拉力均为T ,则每根绳长度不得短于____ 。 五、用图解法处理动态平衡问题 对受三力作用而平衡的物体,将力矢量图平移使三力组成一个首尾依次相接的封闭力三角形,进而处理物体平衡问题的方法叫三角形法;力三角形法在处理动态平衡问题时方便、直观,容易判断. 7、如图4甲,细绳AO 、BO 等长且共同悬一物,A 点固定不动,在手持B 点沿圆弧向C 点缓慢移动过程中,绳BO 的张力将 ( ) A 、不断变大 B 、不断变小 C 、先变大再变小 D 、先变小再变大 六.矢量三角形在力的静态平衡问题中的应用 若物体受到三个力(不只三个力时可以先合成三个力)的作用而处于平衡状态,则这三个力一定能构成一个力的矢量三角形。三角形三边的长度对应三个力的大小,夹角确定各力的方向。 8.如图所示,光滑的小球静止在斜面和木版之间,已知球重为G ,斜面的倾角为θ,求下列情况

典型共点力平衡问题例题汇总

典型共点力作用下物体的平衡例题 [[例1]如图1所示,挡板AB和竖直墙之间夹有小球,球的质量为m,问当挡板与竖直墙壁之间夹角θ缓慢增加时,AB板及墙对球压力如何变化。 极限法 [例2]如图1所示,细绳CO与竖直方向成30°角,A、B两物体用跨过滑轮的细绳相连,已知物体B所受到的重力为100N,地面对物体B的支持力为80N,试求 (1)物体A所受到的重力; (2)物体B与地面间的摩擦力; (3)细绳CO受到的拉力。 例3]如图1所示,在质量为1kg的重物上系着一条长30cm的细绳,细绳的另一端连着圆环,圆环套在水平的棒上可以滑动,环与棒间的静摩擦因数为0.75,另有一条细绳,在其一端跨过定滑轮,定滑轮固定在距离圆环0.5m的地方。当细绳的端点挂上重物G,而圆环将要开始滑动时,试问 (1)长为30cm的细绳的张力是多少? (2)圆环将要开始滑动时,重物G的质量是多少?

(3)角φ多大? [分析]选取圆环作为研究对象,分析圆环的受力情况:圆环受到重力、细绳的张力T、杆对圆环的支持力N、摩擦力f的作用。 [解]因为圆环将要开始滑动,所以,可以判定本题是在共点力作用下物体的平衡问题。由牛顿第二定律给出的平衡条件∑F x=0,∑F y=0,建立方程有 μN-Tcosθ=0, N-Tsinθ=0。 设想:过O作OA的垂线与杆交于B′点,由AO=30cm,tgθ=,得B′O的长为40cm。在直角三角形中,由三角形的边长条件得AB′=50cm,但据题述条件AB=50cm,故B′点与滑轮的固定处B点重合,即得φ=90°。 (1)如图2所示选取坐标轴,根据平衡条件有 Gcosθ+Tsinθ-mg=0, Tcosθ-Gsinθ=0。 解得 T≈8N, (2)圆环将要滑动时,得 m G g=Tctgθ, m G=0.6kg。

高中物理-专题练习-专题2共点力的平衡及应用

图1 图2 图3 专题2 共点力的平衡及应用 导学目标 1.掌握共点力的平衡条件及推论.2.掌握整体法及隔离法的应用.3.会分析动态平衡问题及极值问题. 一、共点力的平衡[基础导引]1.如图1所示,一个人站在自动扶梯的水平台 阶上随扶梯匀速上升,它受到的力有 ( )A .重力、支持力 B .重力、支持力、摩擦力 C .重力、支持力、摩擦力、斜向上的拉力 D .重力、支持力、压力、摩擦力 2.在图2中,灯重G =20 N ,AO 与天花板间夹角α=30 °,试求AO 、 BO 两绳受到的拉力多大? [知识梳理]共点力的平衡 共点力 力的作用点在物体上的____________或力的____________交于一点的几个力叫做共点力.能简化成质点的物体受到的力可以视为共点力 平衡状态 物体处于________状态或____________状态,叫做平衡状态.(该状态下物体的加速度为零) 平衡条件 物体受到的________为零,即F 合=____或{ ΣF x =0 ΣF y =0 思考:物体的速度为零和物体处于静止状态是一回事吗? 二、平衡条件的推论 [基础导引] 1.如图3所示,斜面上放一物体m 处于静止状态,试求斜面对物体的 作用力的合力的大小和方向. 2.光滑水平面上有一质量为5 kg 的物体,在互成一定角度的五个水平力作用下做匀速运动,这五个力矢 量首尾连接后组成一个什么样图形?若其中一个向南方向的5 N 的力转动90°角向西,物体将做什么运动? [知识梳理]1.二力平衡 如果物体在两个共点力的作用下处于平衡状态,这两个力必定大小________、方向________,为一对____________. 2.三力平衡如果物体在三个共点力的作用下处于平衡状态,其中任意两个力的________一定与第三个力大小________、方向________. 3.多力平衡 如果物体受多个力作用处于平衡状态,其中任何一个力与其余力的________大小________、方向________. 考点一 处理平衡问题常用的几种方法 考点解读1.力的合成法 物体在三个共点力的作用下处于平衡状态,则任意两个力的合力一定与第三个力大小相等、方向相反;“力的合成法”是解决三力平衡问题的基本方法. 2.正交分解法 物体受到三个或三个以上力的作用时,常用正交分解法列平衡方程求解:F x 合=0,F y 合=0.为方便计算,建立直角坐标系时以尽可能多的力落在坐标轴上为原则. 3.三角形法 对受三力作用而平衡的物体,将力的矢量平移使三力组成一个首尾依次相接的封闭三角形,进而处理物体平衡问题的方法叫三角形法;三角形法在处理动态平衡问题时方便、直观,容易判断.

实验 探究两个互成角度力的合成规律

实验探究两个互成角度力的合成规律 一、实验目的 1.验证互成角度的两个共点力合成时的平行四边形定则。 2.培养应用作图法处理实验数据和得出结论的能力。 二、实验原理 互成角度的两个力F 1、F 2 与另外一个力F'产生相同的效果,看F 1 、F 2 用平行四边形定则求 出的合力F与F'在实验误差允许范围内是否相等。 三、实验器材 木板、白纸、图钉若干、橡皮条、细绳、弹簧测力计两个、三角板、刻度尺、铅笔。 四、实验步骤 1.用图钉把白纸钉在水平桌面上的方木板上。 2.用图钉把橡皮条的一端固定在A点,橡皮条的另一端拴上两个细绳套。 3.用两只弹簧测力计分别钩住细绳套,互成角度地拉橡皮条,使橡皮条与细绳的结点伸长到 某一位置O,如图所示,记录两弹簧测力计的读数,用铅笔描下O点的位置及此时两细绳套的方向。 4.只用一只弹簧测力计通过细绳套把橡皮条与细绳套的结点拉到同样的位置O,记下弹簧测力计的读数和细绳套的方向。 5.改变两弹簧测力计拉力的大小和方向,再做两次实验。

五、数据处理 1.用铅笔和刻度尺从结点O沿两细绳套方向画直线,按选定的标度作出这两只弹簧测力计 的拉力F 1和F 2 的图示,并以F 1 和F 2 为邻边用刻度尺和三角板作平行四边形,过O点画平行四边 形的对角线,此对角线即合力F的图示。 2.用刻度尺从O点按同样的标度沿记录的方向作出实验步骤4中弹簧测力计的拉力F'的图示。 3.比较F与F'是否完全重合或几乎完全重合,从而验证平行四边形定则。 六、注意事项 1.同一实验中的两只弹簧测力计的选取方法是:将两只弹簧测力计调零后互钩对拉,读数相同。 2.在同一次实验中,使橡皮条拉长时,结点的位置O一定要相同。 3.用两只弹簧测力计钩住细绳套互成角度地拉橡皮条时,夹角不宜太大也不宜太小,在60°~100°为宜。 4.实验时弹簧测力计应与木板平行,读数时眼睛要正视弹簧测力计的刻度,在合力不超过量程及橡皮条弹性限度的前提下,拉力的数值尽量大些。 5.细绳套应适当长一些,便于确定力的方向。不要直接沿细绳套的方向画直线,应在细绳套末端用铅笔画一个点,移开细绳套后,再将所标点与O点连接,即可确定力的方向。 6.在同一次实验中,画力的图示所选定的标度要相同,并且要恰当选取标度,使所作力的图示稍长一些。 七、误差分析 1.弹簧测力计本身的误差。 2.读数误差和作图误差。

实验三:互成角度的两个共点力的合成

实验三:互成角度的两个共点力的合成 一、实验目的 验证互成角度的两个共点力合成时遵循平行四边形定则。 二、实验原理 使F'的作用效果以及F1和F2的作用效果都是使橡皮条伸长到某点,所以F'为F1和F2的合力,作出F'的图示,再根据平行四边形定则作出F1和F2的合力F'的图示,比较F、F'是否大小相等方向相同。 三、实验器材 方木板;白纸;弹簧秤(两只);橡皮条;细绳套(两个);三角板;刻度尺;图钉(几个)。 四、实验步骤 1、用图钉把白纸钉在方木板上。 2、把方木板平放在桌面上,用图钉把橡皮条的一端固定在A点,橡皮条的另一端拴上两个细绳套。 3、用两只弹簧秤分别钩住细绳套,互成角度地拉橡皮条,使橡皮条伸长到某一位置O(图2—43)。用铅笔描下O点的位置和两条细绳套的方向,并记录弹簧秤的读数。注意在使用弹簧秤的时候,要使它的弹簧与木板平面平行。 4、用铅笔和刻度尺从力的作用点(位置O)沿着两条绳套的方向画直线,按选定的标度作出这两只弹簧秤的拉力F1和F2的图示,以F1和F2为邻边利用刻度尺和三角板作平行四边形,过O点画平行四边形的对角线,即为合力F的图示。方向作出这只弹簧秤的拉力F'的图示。 5、比较一下,力F'与用平行四边形法则求出的合力F在大小和方向上是否相同。 6、改变两个力F1'、F2的大小和夹角,再重复实验两次。

五、注意事项 1、使用弹簧秤前,要先观察指针是否指在零刻度处,若指针不在零刻度处,要设法调整指针,使之指在零刻度处。 2、使用弹簧秤时,要使它与木板平行,读数尽量大些,拉伸时不要超出量程。 3、在同一次实验中,橡皮条拉长时的结点的位置一定要相同。 4、在画力的合成图时,要恰当选定标度(单位长度所表示力的大小)。 课后反思:

处理共点力平衡问题的常见方法和技巧

处理共点力平衡问题的常见方法和技巧 物体所受各力的作用线(或其反向延长线)能交于一点,且物体处于静止状态或匀速直线运动状态,则称为共点力作用下物体的平衡。它是静力学中最常见的问题,下面主要介绍处理共点力作用下物体平衡问题的一些思维方法。 1. 解三个共点力作用下物体平衡问题的方法 解三个共点力作用下物体平衡问题的常用方法有以下五种: (1)力的合成、分解法:对于三力平衡问题,一般可根据“任意两个力的合成与第三个力等大反向”的关系,即利用平衡条件的“等值、反向”原理解答。 例1. 如图1所示,一小球在纸面内来回振动,当绳OA和OB拉力相等时,摆线与竖直方向的夹角为:() 图1 A. 15° B. 30° C. 45° D. 60° 解析:对O点进行受力分析,O点受到OA绳和OB绳的拉力F A和F B及小球通过绳子对O点的拉力F三个力的作用,在这三个力的作用下O点处于平衡状态,由“等值、反向”原理得,F A和F B的合力F合与F是等值反向的,由平行四边形定则,作出F A和F B的合力F合, 如图2所示,由图可知,故答案是A。 图2

(2)矢量三角形法:物体受同一平面内三个互不平行的力作用平衡时,这三个力的矢量箭头首尾相接,构成一个矢量三角形;反之,若三个力矢量箭头首尾相接恰好构成三角形,则这三个力的合成必为零,因此可利用三角形法,求得未知力。 例2. 图3中重物的质量为m,轻细线AO和BO的A、B端是固定的。平衡时AO是水平的,BO与水平面的夹角为。AO的拉力和BO的拉力的大小是:() 图3 A. B. C. D. 解析:因结点O受三力作用而平衡,且与mg垂直,所以三力应组成一个封闭的直 角三角形,如图4所示,由直角三角形知识得:,所以选项B、D正确。 图4 (3)正弦定理法:三力平衡时,三个力可构成一封闭三角形,若由题设条件寻找到角度关系,则可用正弦定理列式求解。

共点力平衡的七大题型Word版含解析(2020年10月整理).pdf

专题 共点力平衡的七大题型 目录 一、三类常考的“三力静态平衡”问题 (1) 热点题型一 三个力中,有两个力互相垂直,第三个力角度(方向)已知。 (1) 热点题型二 三个力互相不垂直,但夹角(方向)已知 。 (3) 热点题型三 三个力互相不垂直,且夹角(方向)未知但存在几何边长的变化关系。 (5) 二、三类常考的“动态平衡”模型 (6) 热点题型四 矢量三角形法类 (6) 热点题型五 相似三角形法类 (9) 热点题型六 单位圆或正弦定理发类型 (10) 热点题型七 衣钩、滑环模型 (12) 【题型归纳】 一、三类常考的“三力静态平衡”问题 热点题型一 三个力中,有两个力互相垂直,第三个力角度(方向)已知。 解决平衡问题常用的方法有以下五种 ①力的合成法②力的正交分解法③正弦定理法④相似三角形法⑤矢量三角形图解法 【例1】如图所示,光滑半球形容器固定在水平面上,O 为球心,一质量为m 的小滑块,在水平力F 的作用下静止P 点。设滑块所受支持力为N F 。OF 与水平方向的夹角为θ。下列关系正确的是( ) A .θtan mg F = B .θtan mg F = C . θtan mg F N = D .θtan mg F N = 【答案】 A 解法一 力的合成法滑块受力如图甲,由平衡条件知:mg F =tan θ?F =mg tan θ,F N =mg sin θ 。

解法二 力的分解法 将滑块受的力水平、竖直分解,如图丙所示,mg =F N sin θ,F =F N cos θ,联立解得:F =mg tan θ,F N =mg sin θ 。 解法三 力的三角形法(正弦定理) 如图丁所示,滑块受的三个力组成封闭三角形,解直角三角形得:F =mg tan θ,F N =mg sin θ 。 【点睛】通过例题不难发现针对此类题型应采用“力的合成法”解决较为容易。 【变式1】(2019·新课标全国Ⅱ卷)物块在轻绳的拉动下沿倾角为30°的固定斜面向上匀速运动,轻绳与斜 面平行。,重力加速度取10m/s 2。若轻绳能承受的最大张力为1 500 N ,则物块的质量最大为( ) A .150kg B . C .200 kg D . 【答案】A 【解析】 T =f +mg sin θ,f =μN ,N =mg cosθ,带入数据解得:m =150kg ,故A 选项符合题意。 【变式2】(2019·新课标全国Ⅲ卷)用卡车运输质量为m 的匀质圆筒状工件,为使工件保持固定,将其置于 两光滑斜面之间,如图所示。两斜面I 、Ⅱ固定在车上,倾角分别为30°和60°。重力加速度为g 。当卡车沿平 直公路匀速行驶时,圆筒对斜面I 、Ⅱ压力的大小分别为F 1、F 2则( ) A .12F F , B .12F F , C .121==22F mg F , D .121==22 F F mg , 【答案】D 【解析】对圆筒进行受力分析知圆筒处于三力平衡状态,受力分析如图,由几何关系可知,1cos30F mg '=?, 2sin 30F mg '=?。解得12F mg '=,212F mg '= 由牛顿第三定律知121,22 F mg F mg ==,故D 正确

求解共点力平衡问题得十一种方法(附详细答案)

求解共点力平衡问题得十一种方法 共点力平衡问题,涉及力得概念、受力分析、力得合成与分解、列方程运算等多方面数学、物理知识与能力得应用,就是高考中得热点。对于刚入学得高一新生来说,这个部分就是一大难点。 一、力得合成法物体在三个共点力得作用下处于平衡状态,则任意两个力得合力一定与第三个力大小相等,方向相反; 1、(2008年·广东卷)如图所示,质量为m得物体悬挂在轻质支架上,斜梁OB与竖直方向得夹角为θ(A、B点可以自由转动)。设水平横梁OA与斜梁OB作用于O点得弹力分别为F1与F2,以下结果正确得就是( ) A、F1=mgsinθB、F1= C、F2=mgcosθD、F2= 二、力得分解法在实际问题中,一般根据力产生得实际作用效果分解。 2、如图所示,在倾角为θ得斜面上,放一质量为m得光滑小球,球被竖直得木板挡住,则球对挡板得压力与球对斜面得压力分别就是多少? 3.如图所示,质量为m得球放在倾角为α得光滑斜面上,试分析挡板AO与斜 θ 面间得倾角β多大时,AO所受压力最小。 三、正交分解法解多个共点力作用下物体平衡问题得方法 物体受到三个或三个以上力得作用时,常用正交分解法列平衡方程求解: ,、为方便计算,建立坐标系时以尽可能多得力落在坐标轴上为原则、 4、如图所示,重力为500N得人通过跨过定滑轮得轻绳牵引重200N得物体,当绳与水平面成60°角时,物体静止。不计滑轮与绳得摩擦,求地面对人得支持力与摩擦力。 四、相似三角形法根据平衡条件并结合力得合成与分解得方法,把三个平衡力转化为三角形得三条边,利用力得三角形与空间得三角形得相似规律求解、 5、固定在水平面上得光滑半球半径为R,球心0得正上方C处固定一个小 定滑轮,细线一端拴一小球置于半球面上A点,另一端绕过定滑轮,如图5 所示,现将小球缓慢地从A点拉向B点,则此过程中小球对半球得压力大小、 细线得拉力大小得变化情况就是 ( )

共点力动态平衡分类及解题方法总结

共点力动态平衡问题分类及解题方法 一、总论 1、动态平衡问题的产生——三个平衡力中一个力已知恒定,另外两个力的大小或者方向不断变化,但物体仍然平衡,典型关键词——缓慢转动、缓慢移动…… 2、动态平衡问题的解法——解析法、图解法 解析法——画好受力分析图后,正交分解或者斜交分解列平衡方程,将待求力写成三角函数形式,然后由角度变化分析判断力的变化规律; 图解法——画好受力分析图后,将三个力按顺序首尾相接形成力的闭合三角形,然后根据不同类型的不同作图方法,作出相应的动态三角形,从动态三角形边长变化规律看出力的变化规律。 3、动态平衡问题的分类——动态三角形、相似三角形、圆与三角形(2类)、其他特殊类型 二、例析 1、第一类型:一个力大小方向均确定,一个力方向确定大小不确定,另一个力大小方向均不确定——动态三角形 【例1】如图,一小球放置在木板与竖直墙面之间。设墙面对球的压力大小为F N1,球对木板的压力大小为F N2。以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置。不计摩擦,在此过程中 A .F N1始终减小,F N2始终增大 B .F N1始终减小,F N2始终减小 C .F N1先增大后减小,F N2始终减小 D .F N1先增大后减小,F N2先减小后增大 解法一:解析法——画受力分析图,正交分解列方程,解出F N1、F N2随夹角变化的函数,然后由函数讨论; 【解析】小球受力如图,由平衡条件,有 联立,解得:θsin 2N mg F =,θtan 1N mg F = 木板在顺时针放平过程中,θ角一直在增大,可知F N1、F N2都一直在减 小。选B 。 解法二:图解法——画受力分析图,构建初始力的三角形,然后“抓住 不变,讨论变化”,不变的是小球重力和F N1的方向,然后按F N2方向变化规 律转动F N2,即可看出结果。 【解析】小球受力如图,由平衡条件可知,将三个力按顺序首尾相接,可形成如右图所示闭合三角形,其中重力mg 保持不变,F N1的方向始终水平向右,而F N2的方向逐渐变得竖直。 则由右图可知F N1、F N2都一直在减小。 【拓展】水平地面上有一木箱,木箱与地面间的动摩擦因数为μ(0<μ<1)。现对木箱施加一拉力F ,使木箱做匀速直线运动。设F 的方向与水平地面的夹角为θ,如图所示,在θ从0逐渐增大到90°的过程中,木箱的速度保持不变,则 A .F 先减小后增大 B .F 一直增大 C .F 一直减小 D .F 先增大后减小 解法一:解析法——画受力分析图,正交分解列方程,解出F 随夹角θ变化的函数,然后由函数讨论; 【解析】木箱受力如图,由平衡条件,有 F N F mg F f θ F N2 mg F F N1 F mg θ

23-课时3 实验:探究两个互成角度的力的合成规律

第三章相互作用——力 4力的合成和分解 课时3实验:探究两个互成角度的力的合成规律 基础过关练 题组一操作步骤 1.在“探究两个互成角度的力的合成规律”实验中,把橡皮条一端固定于P点,另一端(自由端)通过细绳套连接两个弹簧测力计a、b,并将该端拉至O点,如图所示。下 列操作不正确的是() A.读数时,视线要垂直弹簧测力计的刻度板 B.平行于木板拉弹簧测力计,且示数不能超过最大测量值 C.改用一个弹簧测力计拉橡皮条时,自由端仍要拉到O点 D.保持弹簧测力计b的位置不变,改变弹簧测力计a的位置,重复实验 2.(2019江苏南通海安高级中学期中)在“探究两个互成角度的力的合成规律”实验中,用两个弹簧测力计分别钩住细绳套,互成角度地拉橡皮条,使它伸长到某一位置O 点。为了确定两个分力的大小和方向,这一步操作中必须记录的是() A.橡皮条固定端的位置 B.描下O点位置、两个细绳套的方向及两个弹簧测力计的读数 C.橡皮条伸长后的总长度 D.两个弹簧测力计的读数 3.(2019山东济南一中期中)在“验证力的平行四边形定则”实验中,需要将橡皮条的 一端固定在水平木板上,先用一个弹簧测力计拉橡皮条的另一端到某一点并记下该点的位置O;再将橡皮条的另一端系两根细绳,细绳的另一端都有绳套,用两个弹簧测力计分别钩住绳套,并互成角度地拉橡皮条。 (1)某同学认为在此过程中必须注意以下几项: A.两根细绳必须等长

B.橡皮条应与两绳夹角的平分线在同一直线上 C.在使用弹簧测力计时要注意使弹簧测力计与木板平面平行 D.在用两个弹簧测力计同时拉细绳时要注意使两个弹簧测力计的读数相等 E.在用两个弹簧测力计同时拉细绳时必须将橡皮条的另一端拉到用一个弹簧测力计拉时记下的位置O 其中正确的是。(填入相应的字母) (2)实验情况如图甲所示,其中A为固定橡皮条的图钉,O为橡皮条与细绳的结点,OB 和OC为细绳。图乙是在白纸上根据实验结果画出的图。 ①图乙中的F与F'两力中,方向一定沿AO方向的是。 ②本实验采用的科学方法是。 A.理想实验法 B.等效替代法 C.控制变量法 D.建立物理模型法 题组二数据处理 4.(2019湖北龙泉中学期中)做“验证力的平行四边形定则”的实验时: (1)除已有的器材(方木板、白纸、弹簧测力计、细绳套、刻度尺、图钉和铅笔)外,还必须有和。 (2)在做上述实验时,在水平放置的木板上垫上一张白纸,把橡皮条的一端固定在板上,另一端结两个细绳套,通过细绳用两个互成角度的弹簧测力计拉橡皮条,使结点移到某一位置O,此时需记 下:、、,然后用一个弹簧测力计把橡皮条拉长,使结点到达,再记下。(3)在某次实验中,某同学的实验结果如图所示,其中A为固定橡皮条的图钉,O为橡皮条与细绳结点的位置。图中是力F1与F2的合力的理论值;是力F1与F2的合力的实验值。通过把和进行比较,验证平行四边形定则。

两个共点力的合力的大小

两个共点力的合力的大小变化情况分析 两个共点力F 1与F 2的方向一定,夹角θ不变时,使两力增大,它们的合力是否增大?下面试运用初等几何关系对这一问题进行简要的讨论: (1)若θ角为锐角 根据平行四边形法则可知,合力的大小一定随分力的增大而增大,合力的方向则可能改变,也可能不变,如图1所示。 (2)若θ角为钝角 当两个分力增大时,合力的方向可能改变,也可能不变,如图2所示。 ①假定F 1不变,只增大F 2,根据平行四边形法则,可以作出如图3所示的示意图,其中F 1与F 2 的合力为F ;当F 2增大为F 2’时,合力为F ’; 当F 2增大为F 2’’时,合力为F ’’。由图可知,合力F 的最小值应为F 与F 2垂直的时候(这时O 点到直线MN 的距离最短)。显然,当F 1与F 2所成的角大于90?时,随着F 2的逐渐增大,合力F 先逐渐减小,至F ’为最小,然后再逐渐增大,当F 1与F 2所成的角小于90?时,随着F 2的逐渐增大,合力F 一定增大。 ②假定F 2不变,只改变F 1,结论与上述分析完全相同。 ③假定F 1、F 2同时增大时,只要合力F 与一个分力的夹角大于90?,则合力仍然可能增大,也可能减小。 如图4所示,设F 1、F 2的合力为F 。根据平行 四边形法则,得?OACB 。现以O 为圆心,以表示合力的线段OC 为半径,作一圆弧交AC 的延长线于D 点,得到一弓形,如图中画斜线部分。如果F 1、F 2都增大,从图中可看出,只要以F 1、F 2为邻边所作的平行四边形与O 点相对的另一顶点位于弓形之中,对角线的长将小于OC ,则F 1、F 2虽同时增大,但合力F 却减小。若以F 1、F 2为邻边所作的平行四边形与O 点相对的另一顶点位于弓形之外,则对角线的长将大于OC ,说明合力随两分力的增大而增大。 如果由O 点作CD 弦的垂线,交CD 弦于P 点,交CD 弧于E 点。然后过E 点作CD 的平行线交OA 的延长线于G 点;过D 点作BC 的平行线交OB 的延长线于H 点。设AG 表示? F 1,BH 表示? F 2,由几何关系可得: AG =OG -OA =OE sin (180?-θ) -OA =OC sin (180?-θ) -OA , 即? F 1=F sin (180?-θ) -F 1=F 12+F 22+2F 1F 2 cos (180?-θ) F sin (180?-θ) -F 1。 BH =CD =2CP =2(AP -AC )=2[OA cos (180?-θ)-OB ] , 即? F 2=2[F 1 cos (180?-θ)-F 2] 。 ’ 1111 图1 F F 11’ 11’ 图2 F H 11 图4

相关文档
相关文档 最新文档