文档库 最新最全的文档下载
当前位置:文档库 › 低硫转换程序

低硫转换程序

低硫转换程序
低硫转换程序

5. Backround & Future(背景及未来)

MARPOL 73/78, Annex Vl outlines international requirements for vessel air emissions and pollution prevention.

MARPOL73/78附则6概要描述了船舶气体排放和防污染的国际要求.

Under the terms of the convention, nations must require ships of their administration and foreign ships in their waters to comply with these international air pollution prevention regulations.

根据公约条款的要求,成员国必须要求所有进入他们水域和本国船遵守国际防大气污染规则

Upon entry into force of Annex VI to MARPOL on the 19 May 2005, the sulphur oxide (SOx) emissions from ships are controlled by setting a limit of 4.5% on the sulphur content of marine fuel oils. Further, a limit of 1.5% on the sulphur content of marine fuel oil is apply in designated SOx Emission Control Areas (SECAs).

根据2005年5月19日开始生效的MARPOL附则6,所有船用燃油的硫份最高为4.5%.在规定的硫氧化物排放控制区SECAs区使用的燃油硫份不得超过1.5%.

SECAs

IMO has currently agreed on the designation of two SECA’s, the first is the Baltic Sea and the second the North Sea with English Channel. It is expected that further SECA’s will be designated and IMO has set forth certain criteria for designating such SECA’s.

目前IMO同意已就指定两个SECAs达成共识.第一个是波罗的海区域,第二个是北海包括英吉利海峡.可以预期将来IMO将指定更多的这样的SECAs区并已设立确定的目标.

ECA (Emission Control Area)

ECA means to unite Sulphur Emission Control Areas (SECA) with incorporation of NOx emission as requirements.

So far Emission Control Area means an area where the adoption of special mandatory measures for emissions from ships is required to prevent, reduce and control air pollution from SOx, NOx, and particulate matter and its attendant adverse impacts on human health and the environment. Emission Control Areas includes those listed in, or designated under regulations MARPOL ANNEX VI Reg. 13 and 14.

ECA是硫化物的排放控制区(SECA)和氮氧化物的排放控制的结合.ECA进一步表示采取特殊的强制措施防止,减少和控制SOx, NOx,颗粒物和由含有这些元素的物质对人类健康和环境有害的大气污

染物的排放.

NOx

As a part of the revision of MARPOL Annex VI, IMO countries agreed to set stricter limits for NOx from ships too. MEPC of IMO agreed in 57th meeting that in the ECAs, NOx reduction from 17

g/kWh to 14.4 g/kWh is mandatory for engines constructed after 2011.

After 2016 only max of 3.4 gkWh-1 is allowed for new ships. This practically makes catalytic converters compulsory for ships sailing in NOx ECA areas, provided that low sulphur fuel can be produced at sufficient quantities.

It is noteworthy that IMO also requires modification of old engines built in 1990-2000, so that they conform to existing NOx limits of 17 gkWh-1.

作为MARPOL附则6的修订版的一部分,IMO成员国同意设定更严格的船舶氮氧化物排放控制.IMO 海洋环境保护委员会在57次会议上达成协议在ECAs2011年以后建成的船用柴油机氮氧化物的排

放从降低到14.4g/KWh.2016年以后的新船,降低到最大3.4g/KWh. 这实际上是强制要求能为航行

在NOx ECA控制区的船舶生产足够的低硫油.值得注意的是,IMO同时对于1990-2000之间生产的柴油机提出了改进要求以满足现行的17g/KWh的氮氧化物的排放要求.

Revised MARPOL Annex VI

The Baltic Sea and the North Sea will become ECA's upon entry into force of the revised MARPOL Annex VI. The MEPC agreed that two sessions of MEPC would be required to complete the necessary revisions to the Code.

Subsequently it was agreed to revise the entry into force date to 1 July 2010.

Global limits reduced to 3.50% from the 1st January 2012.

Global limit reduced to 0.50% from 1st January 2020, subject to a 2018 review.

Global limit reduced to 0.50% by the 1st January 2025.

Sulphur content in fuel oils reduced to 1.00% within an Emission Control Area (ECA) from the 1st July 2010.

ECA Sulphur content limits reduced to 0.10% from the 1st January 2015.

Those ships using separate fuel and entering or leaving an ECA shall carry a written procedure showing how the fuel oil change-over is to be done, allowing sufficient time for the fuel oil service system to be fully flushed of all fuel oils exceeding the applicable sulphur content prior entry into ECA.

The volume of low sulphur fuel oils in each tank as well as the date, time, and position of the ship when any fuel-oil-change-over operation is completed prior to the entry into an ECA or commenced after exit from such an area, shall be recorded.

当MARPOL附则6修订版生效时,波罗的海和北海区域将成为ECA’s. 海洋环境保护委员会已同意第二次会议上将完成相关的必要修正.

2010年7月1日评估生效的可能性.

2012年1月1日开始,全球允许最高含硫量为3.5%;

2018年将进行评估,如果当时燃油的生产技术能力能提供0.5%的低硫油,则从2020年1月1日起全球允许最高含硫量为0.5%;如果不行,则

推迟到2025年1月1日;.

自2010年7月1日起,ECA控制区,燃油硫份减至最高1.00%;

自2015年1月1日起,ECA控制区,燃油硫份减至最高0.10%;

对于进入和离开ECA的船舶,必须携带纸质燃油转换程序,说明在进入ECA前,必须提前足够的时间

转换,确保燃油系统中的燃油完全符合ECA的要求.在进入ECA前燃油转换完成时或离开ECA后燃油转换开始时每个油舱中的低硫油,和日期,时间船位必须要记录.

SECA Areas

-Baltic Sea

-North Sea

East of 5 West – English Channel

East of 4 West – North Sea

South of 62 North

57.44.08 North – Baltic Sea

Summary - EU and other requirements

2007 1st January CARB Max 0.5% sulphur within 24 miles of California shore

11th August EU North Sea and English Channel SECA enters into force

22nd Nov IMO North Sea and English Channel SECA enters into force

2008 1st January EU Max 0.1% sulphur for marine gas oils

2010 1st January EU Max 0.1% sulphur bunker fuel in use at EU berths

EU Max 0.1% sulphur in all EU inland waterways

CARB Max 0.1% sulphur within 24 miles of California shore

2012 1st January EU

Max 0.1% sulphur bunker fuel in use by Greek ferries at Greek ports

6. Change-over procedures

Change-over between heavy fuel oil grades is standard practice and so is changeover from heavy fuel oil to marine diesel oil in connection with e.g. dry-dockings.

Change-over from heavy fuel oil to marine gas oil is however completely different and clearly not common standard. If gas oil is mixed in while the fuel temperature is still very high, there is a high probability of gassing in the fuel oil service system with subsequent loss of power.

It should be acknowledged that the frequency and timing of such change-over may increase and become far more essential upon entry into force of SECA’s.

Additionally, the time, ship’s posit ions at the start and completion of change-over to and from

1.5% fuel oil must be recorded in a logbook (e.g. ER log. book), together with details of the tanks involved and fuel used. It can be anticipated that the same will be applicable with respect to the EU proposal upon entry into force.

Following description of procedure, how it is possible to keep set limits of Sulphur with entrance in SECA(s).

不同牌号的重油之间的转换,重油转为轻油是很日常的操作,但是重油转为MGO却是完全不同的概念,如果在重油温度还很高时换入MGO,燃油将会气化,从而造成船舶失去动力.举世公认,随着SECA’s进入强制,这种转换将变得越来越频繁.另外,时间,转换开始和结束的船位,相关油舱的详细情

况必须记录进相应的记录簿(如轮机日志).可以预期,欧洲港口相关要求也将生效.下面描述了转换程序,以及如何保证进入SECA ’s 前保证所用燃油含硫量低于

1.5%.

The No.2 https://www.wendangku.net/doc/144222116.html, is appointed as the low sulphur fuel oil storage tank. 2 days before passing western borderline of SECA / EU, lower sulphur fuel oil Settling Tank should be filled with the

separator.

1. According to the LR ’

0.67tons/hours, G/E 0.075tons/hours); 2. open 86v, close85v;

3. open30v,37v,31v,34v;close 28v,29v,37v,33v.

NO.2重油舱为低硫油储油舱,低硫油必须在经过SECA / EU 前两天驳入低硫油沉淀柜加温并通过分油机分离入低硫油日用柜.

1. 根据劳氏提供的计算法,得出符合要求的转换时间表如下(计算时,系统含有0.5吨燃油,主机耗油

SOx and Fuel Oil Quality - Bunker Delivery Notes

Bunker Delivery Notes contain information specified in Appendix V to Annex VI

Sulphur content of not more than 4.5 % m/m

Kept aboard for 3 years after bunker delivery

Sox和燃油质量– BDN

BDN附录5包含附则6要求的特有信息

硫份不超过4.5 % m/m

加油后保留在船3年

SOx and Fuel Oil Quality - Bunker Samples

Each sample not less than 400 ml for each delivery

Sealed

Uniquely identified

Location (including facility), date & method drawn

Marked with the delivery date

Marked with the name of the bunker facility

Marked with the vessel’s name and IMO num ber

Signed by the fuel supplier’s representative and the Master or Officer in charge

Marked with the bunker grade

Onboard storage at cool/ambient temperature and not stored in direct sunlight or in an accommodation space

Sample retained for a minimum of 12 months

Sox和燃油质量–油样

每次加油时每个油样不少于400ml;

已加上封条;

每个油样有唯一标识;

地方(包括设施),日期和油样提取方法;

标识上加油日期;

标识上加油设施的名称;

标识上船名和IMO号;

供油船代表的签字和受油船船长或加油负责人的签字;

标识上所加燃油的品牌;

储存在船舶凉快或环境温度下不要放在阳光直射或生活区;

油样留船最少12个月.

Sulphur Emission Control Areas (SECA) Baltic Sea / North Sea

If separate fuel tanks are used –verify that “high” & “low” sulphur fuels cannot be blended/mixed

Verify unauthorized inter-connection of “high” & “low” sulphur fuel piping

Approved exhaust gas cleaning system (if installed)

Verify logs to ensure date, time, position, of fuel change over was documented

Verify bunker delivery notes to verify 1.5% m/m sulphur fuel was delivered

Sulphur content consumed in SECA does not exceed 1.5% m/m 注意事项(SECA/波罗的海/ 北海)

如果使用单独的油舱–确认高低硫油不能混合;

确认没有未经授权的高低硫油的内部管路连接;

批准的排气清洗系统(如有);

确认燃油转换的日期,时间,船位记录有存档;

确认BDN载明所加燃油硫份不超过1.5%;

确认SECA 区内消耗的燃油硫份不超过1.5%m/m;

代码转换程序设计

微机原理及接口技术 上机实习 题目数制转换课程设计学院自动化学院 专业电气工程及其自动化班级电气1206 姓名周杰 指导教师李道远 2014 年12 月28 日

上机实习任务书 学生姓名:周杰专业班级:电气1206班 指导教师:李道远工作单位:自动化学院 题目: 代码转换程序设计 初始条件: 完成一个字母或数制之间的转化程序,主程序分别具有3 种可选择的子功能,按相应的字符可分别进入相应的子功能并在屏幕上显示结果,按“Q”键退出。 1)实现二进制数向十六进制数的转换 2)实现十六进制数向二进制数的转换 3)实现十六进制数向十进制数的转换 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) (1)设计任务及要求分析 (2)方案比较及认证说明 (3)系统原理阐述 (4)硬件设计课题需要说明:硬件原理,电路图,采用器件的功能说明 (5)软件设计课题需要说明:软件思想,流程图,源程序及程序注释 (6)调试记录及结果分析 (7)总结 (8)参考资料 (9)附录:芯片资料或程序清单,软件演示屏幕拷贝图或硬件实物图

目录 一、课题需求分析 (1) 二、课程设计分析 (1) 1.功能描述 (1) 2. 功能模块分析 (2) 三、设计方案 (3) 1.系统流程图 (3) 2.子程序模块设计 (4) 2.1二进制转换成十六进制模块 (4) 2.2十六进制数转换成二进制数模块 (4) 2.3十六进制数转换成二进制数模块 (4) 3. 程序详细设计 (4) 3.1数据段程序设计 (4) 3.2宏定义体 (5) 3.3代码段程序设计 (6) 3.4二进制转换成十六进制子程序 (7) 3.5十六进制数转换成二进制数子程序 (8) 3.6十六进制数转换成十进制数子程序 (9) 4.程序调试结果及分析 (10) 结束语 (13) 参考文献 (14) 附录 (15)

低硫油区的规定

关于防止燃油含硫量超标而被滞留的工作提醒 近期从中国船级社获悉:部分SECA港口加强对船舶使用的燃油硫含量进行检测:一艘香港旗船舶在进入北美地区SECA排放控制区时,因所使用的燃油硫含量超标,被美国USCG滞留;另外一艘船舶在荷兰鹿特丹港接受PSC检查时,检查官现场在沉淀柜和日用柜之间管路取低硫油油样化验,结果含硫量超过1% m/m,也同样被PSC滞留。请各轮按公司体系文件的要求,采取切实措施,避免此类缺陷的发生,各地区燃油硫含量限制标准及实施日期见下表: 已公布各地区燃油硫含量限制标准及实施日期 分析船舶造成燃油含硫量超标问题的原因,主要有如下的几种可能: 1、未设专用低硫油舱的船舶,在换油过程中无法将高硫燃油彻底驳出,加入的低硫油品含硫量虽然低于要求值但比较接近标准,造成低、高硫油混合后其实际含硫量高于标准值。 2、加油公司提供的油品有可能存在不满足标准的情况。 3、换油程序可能存在偏差。由于船员在编制换油程序时可能只凭经验或想

象编制,未进行过实际验证,因此造成换油程序本身可能不满足要求。 4、换油操作可能存在偏差。船员未严格执行换油程序,造成换油时间过短,兼用油舱或混合油柜以及管路中仍残留有部分高硫油。 据上,特提醒船上特注意如下事项: 1、对于未配备专用低硫油舱的船舶,如需前往ECA区域,建议先对兼用燃油舱进行彻底清理。对于进厂修理的船舶,建议对兼用燃油舱和主副机燃油沉淀柜和日用柜或混合油柜进行彻底清洁,以减少油泥数量,为后续营运中船员自行清洁打下良好的基础。在船舶燃油兼用舱加低硫油前,需反复确认并将该舱彻底排空。如换油程序规定的换油时间过短,应适当修改换油程序,将低硫油舱换油时间尽量提前。 2、对于目前计划前往ECA区域,并已存船部分低硫油的船舶,要根据加油单据检查其含硫量,以做到心中有数。如接近1.00%,则应考虑添加含硫量相对较低的燃油,以综合和稀释原来已混兑的燃油,可以考虑采取替代措施,(如设备允许)可在低硫燃油中加入0.1%的低硫轻油,以满足港口取样化验的应急需要。 3、对有两个沉淀柜和两个日用柜船舶,应设专用的低硫油沉淀柜和日用柜。如没有条件的船舶,进入含硫量限制区域或港口前,应该提前转换为低硫油,总的原则是在保障安全情况下,使得高硫油剩余量尽可能少。 4、添加的低硫燃油的含硫量要尽可能低,比如在0.5% m/m以下,不应接近于1.00% m/m;否则很容易在取样化验时出现纰漏。理论上来讲,含硫量接近1.00% m/m的燃油换油所需要的时间应更长。 5、船员应了解ECA区域的划分,各ECA区域含硫量的不同要求;熟悉换油操作程序,并严格履行程序;理解燃油含硫量控制的重要性并掌握相应的操作技能。 6、在欧盟港口停泊(包括系泊和锚泊)超过2小时的船舶必须使用硫含量不超过0.1% m/m 的燃油。虽同是欧盟国家,但各个港口要求有时也不一样,需要船长提前联系代理了解清楚进港前主机换油事宜。部分港口要求抵达锚地前主机也应使用含硫量不大于0.1%的燃油。 7、如前往ECA区域途中无法购得合格燃油,根据MARPOL公约附则VI 第18.2.4条的规定,船舶应及时通知其主管机关和相关目的港的主管当局,具体要求请与船旗国和目的港联系。根据18.2.1.2条,目的港将要求提供“已努力寻找该燃油的替代资源,并且尽管为获得合格燃油尽了最大努力,仍不能购得该燃油的证据。” 另,国际海事组织环境委员会在其第62 届会议上以MEPC.201(62) 决议通过的经修订的MARPOL附则V,于2013 年1 月1 日生效,对船舶垃圾的处理进行了严格的规定,请严格按照更新后的船舶垃圾管理的相关规定处理船舶垃圾。

船舶“油改气”

船舶“油改气” 船舶“油改气”是一改以往纯柴油的单一燃料模式,成为可使用柴油和LNG(液化天然气)两种燃料的混动力船舶。其工作原理是通过将系统加装到以柴油为单一燃料运行的船用柴油机上,使用柴油—天然气按3∶7混合作燃料,由天然气提供主要所需动力,而柴油只起引燃和润滑作用,一旦LNG使用完毕因故不能及时填充或者燃气系统出现故障不能使用,船舶仍可在纯柴油模式下正常运行。 天然气属低温液体,其密度比空气轻,在发生泄漏后会自动向上溢开,不会对水体产生污染;同时,在加入特殊嗅剂后,天然气如有泄漏会及时被发现。另外,天然气的燃点比汽油和柴油都要高,瞬间着火比油慢,也易扩散,不易达到爆炸极限,所以安全性能很高。 改造后的船舶其成本也大大的降低,据介绍,安徽芜湖柴油—LNG 混合动力改装船(5000t级)设计动力性能与使用柴油相当,加一次气能确保续航里程4000km。在额定负荷下柴油替代率可达85%以上。按0号柴油7.09元/升、LNG零售价6元/公斤计(1升柴油相当于1.05标方天然气),平均燃料成本下降25%以上。(该船舶是由中石油昆仑能源和海南嘉润动力有限公司合作实施) 而经实际验证,在同等载重和动力的情况下,航行同样距离平均燃料成本可下降30%以上,尾气排放综合下降50%以上。同时,由于天然气燃烧相对充分,其维护保养费用也将有所下降。 近1年来,柴油—LNG双燃料船在国内成功试航的案例,已有不少:

今年4月8日,由中石油昆仑能源公司承担并组织研发的满载排水量5000吨级的柴油—LNG混合动力改装船在安徽芜湖举行试航仪式。 3月11日,由中国长航集团、北京中兴恒和投资集团及富地石油控股集团共同推进的LNG—柴油双燃料散货船“长讯三号”试航成功。 去年8月,由江苏省宿迁市地方海事局牵头、北京油陆集团公司出资研发的船用柴油—LNG混合动力改造船——3000吨级“苏宿货1260”号货船在京杭运河苏北段成功试航。同期,由湖北西蓝天然气公司与武汉轮渡公司合作改造的“武拖轮302号”在武汉试水成功。 上述讯息表明,现阶段天然气在我国内河船舶领域的应用已取得了重要成果 制约船用燃料“气改油”的最大瓶颈之一是缺乏相应的国家政策和标准。现实的情况是,创新走在了前面,政策和标准还没有跟上。知情人士指出,由于正式检验标准缺失,那些改装后的双燃动力船仅能做一些省内短距离的运输。 加气也具有很大的问题。相关人士介绍,以LNG为燃料的船舶加气一般有两种方式:一是通过长软管道给船舶进行直接加气;但由于LNG需要低温储存、运输,因此此类设备需配套LNG大型低温储罐、保温长软管道、BOG回收系统、冷冻机等多项设备,从而同时做到LNG 的传输、加气与循环回收利用,而这项技术尚存未能完全攻克的难关。

坐标转换工具说明书-1208

§10.2坐标转换工具 HGO 数据处理软件包提供了坐标转换程序,可以进行地方坐标与WGS-84坐标的相互转换,同时具备参数求解功能。 下面对这个工具进行介绍: 10.2.1概述 首先,介绍一下常见的三种坐标表示方法:经纬度和椭球高(BLH),空间直角坐标(XYZ),平面坐标和水准高程(xyh/NEU)。注意:椭球高是一个几何量,而水准高是一个物理量。 我们通常说的WGS-84坐标是经纬度和椭球这一种,北京54坐标是平面坐标和水准高程这一种,实质是有平面基准和高程基准组成的。 此外,再注意一下坐标转换的严密性问题,在同一个椭球里的纯几何转换都是严密的(BLH<->XYZ),而在不同的基准之间的转换是不严密的。举个例子,在WGS-84坐标和北京54坐标之间是不存在一套转换参数可以全国通用的,因为前者是一个地心坐标系,后者是一个参心坐标系。高程转换是由几何高向物理高转换。因此在每个地方必须用椭球进行局部拟合,通常用7参数模型来拟合。 那么,两个椭球间的坐标转换应该是怎样的呢?一般而言比较严密的是用七参数法(或称布尔莎模型),即X平移,Y平移,Z平移,X旋转,Y旋转,Z旋转,尺度变化K。要求得七参数就需要在一个地区需要3个以上的已知点(7个参数至少7个方程可解,所以需要三个点列出9个方程),如果区域范围不大、最远点间的距离不大于30Km(经验值)的情况可以用三参数,即X平移,Y平移,Z平移,而将X旋转,Y旋转,Z旋转,尺度变化K视为0,所以三参数只是七参数的一种特例。 七参数模型的实质是用一个局部椭球去拟合地方坐标系的形态;所以转换后获得的地方椭球高就是水准高。当然我们也可以把平面和高程两个方向分别进行拟合。例如平面用四参数模型拟合,高程方向则用二次曲面等模型来拟合。这样分开处理的模式相对七参数模型自由度更高。但是由于四参数模型参数较少,表达能力较弱,通常只用于小区域坐标转换。 综上所述,从实用的角度出发,坐标转换程序提供了两种转换策略供给客户选择使用: 1.七参数模型,一步得到地方平面和水准数据。 2.四参数加高程拟合模型,分两步得到地方平面和水准数据。 由于各厂家的模型和流程定义可能是不一样的,这里就我们公司的转换流程描述如下:七参数的转换过程是这样的:

实验三 代码转换

电工电子实验中心 实验报告 课程名称:计算机硬件技术基础实验名称:代码转换 姓名:学号: 评定成绩:审阅教师:实验时间:2017.05.02 南京航空航天大学

— 一、实验目的要求 1) 掌握 ASCII 码转换的基本方法。 2) 学会 INT21 功能调用, 掌握人机对话的设计方法。 3) 进一歩熟悉 Tddebug 调试环境和 Turbo Debugger 的使用。 二、实验任务 从键盘输入小写字母(最多 20 个),以“.”号作为结束标志, 将其变换成相应的大写字母输岀在屏幕上。 三、实验代码 CRLF MACRO MOV DL, 0DH MOV AH, 02H INT 21H MOV DL, 0AH ;宏定义回车,换行 MOV AH, 02H INT 21H ENDM DATA SEGMENT MES1 DB 'PLEASE INPUT THE SMALL LETTER,ENDED WITH ".":$' MES2 DB 'THE CAPTAL LETTER IS:$' SMALL DB 50 ;?预留键盘输入缓冲区长度为50个 DB 0 ;?预留实际键盘输入字符数的个数 DB 50 DUP(0) CAPITAL DB 50 DUP('$') ;?预留大写字母缓冲区长度为50个 DATA ENDS STACK1 SEGMENT STACK DB 100 DUP (0) STACK1 ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA,SS:STACK1 START PROC FAR PUSH DS MOV AX, 0 PUSH AX

船用低硫油管理、转换与操作

船用低硫油管理、转换与操作 船用低硫油管理,转换与操作 Management,TransferandOperationofMarineLowSulphurFuel 口陈秋华 WiththecomingintoeffectofIMO'Sconventiononship'Sgasemissionconvention,therequir ementsonship'Semission willturnstricterandlow—sulphurfuelwillbeappliedwidely.Thissimultaneouslybringsaboutaseriesofproblemsin relationtotheoperationofship'Smainengine,auxiliaryengine,boiler,oilseparator,etc. 国际海事组织fIMO)已经将大气 污染物由MARPOLAnnexVI中硫化 物排放控制区改成了排放物控制区. 并于2010年7月1日生效.这一改 变.意味着大气污染物由原来的S0x 的排放控制扩大到了对更多大气排放 物的控制(如NOx排放等).目前,IMO 批准了北海和波罗的海和英吉利海峡 这两个大气排放控制区.航行在以上 航区的船舶燃油中的含硫量要求在 2010年7月1日后要低于1.0%.2015 年1月1日以后要低于0.1%.随着以 上公约的生效.对于船舶排放物的要 求将更加严格.低硫油会得到广泛的 使用,同时这对船舶主机,辅机,锅炉, 分油机等设备的管理带来一系列的技 术问题为了叙述的方便.下文中低硫 油指含硫量低于0.1%的燃油(ULsH—

船舶油改气行业介绍

船舶“油改气”行业介绍 双燃料发动机现状 柴油/CNG双燃料发动机的应用存在两种技术途径: 一种途径是柴油机生产厂家针对柴油机本身如何更适合天然气燃料特点而进行专门设计,直接生产天然气单一燃料发动机或天然气/柴油双燃料发动机。 另一种途径是针对在用柴油机进行改装;用柴油机的双燃料改装是快捷而有效的方法。 国内在二十世纪九十年代开始通过引进国外产品在汽油机上使用CNG,以机械控制方式为主要特征。近几年来,国内几个主要的柴油机制造厂开始与国外合作共同开发柴油/CNG双燃料发动机。 玉柴与加拿大CIC公司合作开发了YC6108ZQN增压柴油/CNG双燃料发动机; 一汽锡柴与新西兰、美国合作共同开发了CA6110柴油/CNG双燃料发动机; 二汽朝柴与意大利合作正在开发CY6102CNG单燃料发动机。 国外双燃料船舶发动机发展状况 从1964年投入使用的第一艘LNG运输船舶,到2005年由法国大西洋船厂建造成功的49700t级LNG运输船,这四十年的时间里世界大船厂建造了许多全冷式液化气船舶。考虑到天然气供应的充足性,以及在缺少天然气情况下

的续航问题,现在使用越来越多的还是以天然气/柴油这种搭配作为发动机 燃料。世界上几家大的船舶动力公司都致力于开发研制双燃料发动机,如芬 兰瓦锡兰公司,德国的MANB&W柴油机公司,法国的S.E.M.T皮尔斯蒂克公 司等。 2000年以前,船舶发动机气体燃料的存储方式主要是压缩天然气,而在近些 年的发展中,气体燃料储存的方式向液化天然气方向倾斜。 国内双燃料船舶发动机发展状况 目前国内很多高校和科研机构都对天然气/柴油双燃料发动机做过大量的实 验研究。比如天津大学内燃机燃烧学国家重点实验室对D6114增压发动机掺 烧CNG的实验研究;武汉理工大学能源与动力工程学院对6110柴油机掺烧 CNG的实验研究;哈尔滨工程大学动力与能源工程学院对2135G柴油机掺烧 CNG的实验研究。 我国的政府主管部门和船舶相关企业已开始进入LNG船用燃料研发领域,并 取得了阶段性成果。从2009年起我国即开始围绕LNG动力船舶正在积极开 展一些尝试。目前,国内涉及船舶燃料油改气项目的企业主要有北京油陆、 湖北西蓝、昆仑能源、桂林新奥、新疆广汇、福建中闽等公司。 项目实施单位示范船舶名称用途水域项目进展情况 序 号

坐标转换源代码--GPS定位程序(C--)

坐标转换源代码--GPS定位程序(C++) GPS数据处理中为了满足不同的需要,处理的数据要进行坐标转换,得到在不同坐标系统下的结果,下面是笛卡尔坐标系,大地坐标系,站心地平坐标系(线型和极坐标形式)之间的转换源代码: 头文件: #ifndef _COORDCOVERT_H #define _COORDCOVERT_H #include "stdlib.h" //WGS-84椭球体参数 const double a=6378137.0;//长半轴 const double flattening=1/298.257223563;//扁率 const double delta=0.0000001; typedef struct tagCRDCARTESIAN{ double x; double y; double z; }CRDCARTESIAN; typedef CRDCARTESIAN *PCRDCARTESIAN;

//笛卡尔坐标系 typedef struct tagCRDGEODETIC{ double longitude; double latitude; double height; }CRDGEODETIC; typedef CRDGEODETIC *PCRDGEODETIC; //大地坐标系 typedef struct tagCRDTOPOCENTRIC{ double northing; double easting; double upping; }CRDTOPOCENTRIC; typedef CRDTOPOCENTRIC *PCRDTOPOCENTRIC; //站心地平坐标系(线坐标形式) typedef struct tagCRDTOPOCENTRICPOLAR{ double range;

代码转换汇编

二进制编码的十进制数,简称BCD码(Binarycoded Decimal). 这种方法是用4位二进制码的组合代表十进制数的0,1,2,3,4,5,6 ,7,8,9 十个数符。4位二进制数码有16种组合,原则上可任选其中的10种作为代码,分别代表十进制中的0,1,2,3,4,5,6,7,8,9 这十个数符。最常用的BCD码称为8421BCD码,8.4.2.1 分别是4位二进数的位取值。点击此处将给出十进制数和8421BCD编码的对应关系表。 1、BCD码与十进制数的转换 BCD码与十进制数的转换.关系直观,相互转换也很简单,将十进制数75.4转换为BCD码如: 75.4=(0111 (0101.0100)BCD 若将BCD码1000 0101.0101转换为十进制数如: (1000 0101.0101)BCD=85.5 注意:同一个8位二进制代码表示的数,当认为它表示的是二进制数和认为它表示的是二进制编码的十进制数时,数值是不相同的。 例如:00011000,当把它视为二进制数时,其值为24;但作为2位BCD码时,其值为18。 又例如00011100,如将其视为二进制数,其值为28,但不能当成BCD码,因为在8421BCD 码中,它是个非法编码 . 2、BCD码的格式 计算机中的BCD码,经常使用的有两种格式,即分离BCD码,组合BCD码。 所谓分离BCD码,即用一个字节的低四位编码表示十进制数的一位,例如数82的存放格式为: _ _ _1 0 0 0 _ _ _ _0 0 1 0 其中_表示无关值。 组合BCD码,是将两位十进制数,存放在一个字节中,例82的存放格式是1000 0010 3、BCD码的加减运算 由于编码是将每个十进制数用一组4位二进制数来表示,因此,若将这种BCD码直接交计算机去运算,由于 计算机总是把数当作二进制数来运算,所以结果可能会出错。例:用BCD码求38+49。 解决的办法是对二进制加法运算的结果采用"加6修正,这种修正称为BCD调整。即将二进制加法运算的结果修正为BCD码加法运算的结果,两个两位BCD数相加时,对二进制加法运算结果采用修正规则进行修正。修正规则: (1)如果任何两个对应位BCD数相加的结果向高一位无进位,若得到的结果小于或等于9, 则该不需修正;若得到的结果大于9且小于16时,该位进行加6修正。 (2)如果任何两个对应位BCD数相加的结果向高一位有进位时(即结果大于或等于16),该位进行加6修正. (3)低位修正结果使高位大于9时,高位进行加6修正。 下面通过例题验证上述规则的正确性。 用BCD码求35+21 BCD码求25+37 用BCD码求38+49 用BCD码求42+95 用BCD码求91+83 用BCD码求94+7 用BCD码求76+45 两个组合BCD码进行减法运算时,当低位向高位有借位时,由于"借一作十六"与"借一作十"的差别,将比正确的结果多6,所以有借位时,可采用"减6修正法"来修正.两个BCD码进行加减时,先按二进制加减指令进行运算,再对结果用BCD调整指令进行调整,就可得到正确的十进制运算结果。实际上,计算机中既有组合BCD数的调整指令,也有分离BCD数的调整指

船舶低硫油转换程序

船舶低硫油转换程序 以某轮为例: 某轮主辅机燃油系统中存油量大约400LTR,航行时主辅机每小时燃油消耗量大约1370LTR;换油应在船舶到达燃油含硫量限制区域前1小时路程的位置进行更换换油操作。 具体操作如下: 一.到达燃油含硫量限制区域航行 1. 当船舶到达距离含硫量限制区域1小时路程位置时,通知机舱进行换油操作。 2.主机转换成低硫油操作,打开低硫油日用柜出口阀FS05V和FS08V,关闭普通燃油日用柜出口阀FS04V和FS07V,系统进入低硫燃油。 3. 汽缸油转换,打开低硫汽缸油硫测量柜出口阀L0208V、L029V将汽缸油进口三通阀 L030V转至低硫测量柜位置,关闭高硫汽缸油硫测量柜出口阀L014V、L015V,将汽缸油回油转换三通阀L031转至低硫测量柜位置。 4. 锅炉低硫油转换,由于锅炉燃油与主机燃油共用油柜出口管,主机转换后锅炉进油就已 经完成,只需将回油桶回油三通阀FS01V转至低硫油柜位置。 5. 发电机使用重油时与主机共用同一燃油系统,转换与主机一致。 二. 在燃油含硫量限制港口靠泊进港前转换操作 1. 在船舶进港备车之前,关闭主机燃油系统加热,当油温降到换油温度时将轻重油转换阀 转到轻油位置,使主机使用轻柴油,同时将锅炉轻重油转换阀转到轻油位置,使锅炉使用轻柴油。 2. 到港前打开低硫轻柴油柜出口阀FP27V、FP30V,关闭日用轻柴油柜出口阀FS06V、FS06, 启动发电机柴油供给泵,将发电机轻重油转换阀转至轻柴油位置,是发电机使用含硫量低于0.1%的轻柴油,同时主机和锅炉燃油系统也都转换成了含硫量低于0.1%的轻柴油。三.出燃油含硫量限制区域燃油转换 1. 离港后低硫轻柴油转换成普通轻柴油,将轻油日用柜出口阀打开,关闭低硫轻油日用 柜出口阀,使系统使用普通轻柴油; 2. 当船舶离开港区及航道后驾驶台应通知机舱准备进行换油操作, a. 主机辅机燃油系统:此时开启主机燃油系统加热器,待油温到达换油温度时将主机燃 油系统轻重油转换阀转至重油位置,同时将发电机进出口轻重油转换阀转至重油位置,停止发电机轻柴油泵,使主机和辅机是由低硫燃油。 b. 锅炉操作,将锅炉加温开启当油温到达转换温度时将锅炉燃油轻重油转换阀转至重油 位置,锅炉燃油系统使用低硫燃油。 3. 出含硫量限制区域航行时,船舶到达限制区域分界线时驾驶台应通知机舱换用非低 硫燃油,此时轮机员开启燃油日用柜出口阀关闭低硫燃油日用柜出口阀,完成由低硫燃 油到非低硫燃油的转换。 4. 主机汽缸油转换,当主机燃油转为非低硫燃油时将高碱值汽缸油测量柜出口阀打开,将 汽缸油进口三通阀转至高碱值油柜位置,再关闭低碱值汽缸油测量柜出口阀,将汽缸油 回油阀转至高碱值汽缸油柜位置。 四.记录 1. 时间、船位记录,将燃油转换完成时间、船舶船位记录与轮机日志及记录本中。 2. 燃油存量、流量计读数及各种燃油耗量记录,将低硫油存量存放位置及换油时油表读数 各燃油消耗情况记录于轮机日志及记录本中。

坐标转换流程

坐标转换流程: 第一步:在ArcMap中将公里网坐标的图上画一个矩形框,这个框不是随意的, 是与已有经纬度的图的的框的大小一致(即所框的范围一致),请附注这个矩形的大小: 第二步:在toolbox中的Conversion Tools的to coverage,将biankuang.shp和行政区域.shp(或其他公里网图)转成cov的文件夹(注意是转换出一个文件夹) 假设分别名为bbb和ccc,都是在c:\test下 (建议不在这里转,workstation有一个毛病,转换后面数据都会变成线数据, 这一步可以用ArcToolBox来做) 第三步:打开workstation的arc 第四步:将目录转到cov文件夹所在目录 命令:&work c:\test 第五步:进入arcedit 命令:arcedit disp 9999(这时才是进入编辑状态) 第六步:加cov,你先加那个图,再把边框 边框以背景的形式添上去 命令:editcov ccc drawen all -------------是按顺序执行 draw backcov bbb 2 backen all draw 第七步:加四个控制点,顺序:左下角-》左上角-》右上角-》右下角 (editfea tic(编辑控制点) select all delete (删除原来的控制点) save) add (加新控制点) 快捷键:ctr+v放大 ctr+f满平显示就是返回放大前 这时有1,3,5,6,7,8,9的option操作 5是删除last点 加完四个点,按9退出加了就存盘,退出编辑状态, save ccc q 第八步:那个经维度的文件转换成cov,目的是看四个控制点的坐标 找到社会要素的区镇_region.shp等四个文件 复制到c:\test

硫氧化物排放控制区船舶燃用低硫燃油的措施

硫氧化物排放控制区船舶燃用低硫燃油的措施 2009年10月19日 内容提要:针对MARPOL 附则Ⅵ的要求,分析低硫燃油特点,推荐船舶进入硫氧化物排放控制区域(SECAs)提前换用低硫燃油的时间计算方法,提出燃用低硫燃油的技术措施。 关键词:MARPOL 附则Ⅵ低硫燃油硫氧化物排放控制区燃油转换措施 MARPOL73/78 公约附则Ⅵ《防止船舶造成大气污染规则》(简称附则VI)要求船用燃油含硫量:航行于一般地区小于4.5%(以下称高硫燃油);航行于硫氧化物排放控制区域(SECA)小于1.5%(以下称低硫燃油)。 低硫燃油价格高。因此,当前最普遍和有效的作法是,SECA 区域以外燃用高硫燃油,进入SECA 区域燃用低硫燃油。 这样做,涉及船上某些操作且要求较高。本文分析低硫燃油的特点,提出SECA 区域船舶燃用低硫燃油的措施。 1 低硫燃油 低硫燃油与高硫燃油有区别。 (1)低硫燃油硅、铝含量较高 现代石化工业,为了提高轻质燃料油的产量,采用催化裂化技术,原油炼制过程中加入含有硅和铝元素的催化剂。残渣油中催化剂的硅、铝颗粒很难全部分离出来。 硅和铝颗粒会像磨料一样: ●进入燃油系统加速高压油泵柱塞套筒偶件磨损、出油阀卡阻、喷油器针阀磨损; ●直接接触缸套、活塞环,嵌入生铁的石墨基结构中加剧磨损,严重时甚至拉缸、活塞环断裂、扫气箱着火、增压器喘振、增压器轴承损坏等,威胁船舶安全。 低硫燃油硅和铝含量有时超过25 ppm,而高硫燃油的硅和铝含量通常小于15 ppm(ISO8217 限定最高值80 ppm)。 (2)低硫燃油含硫量低 低硫燃油含硫量低,应使用总碱值低的气缸油。燃用低硫燃油而使用高碱值气缸油,气缸油中多余的碱性物质会浓缩并黏附在缸套内壁上破坏缸套润滑油膜的完整性,加剧缸套、活塞环磨损,严重时导致拉缸、活塞环断裂等故障。

内河船用LNG发展现状和前景

xx船用LNG发展现状和前景 前言: 2016年,交通运输部在推广内河船舶应用LNG技术的同时,大力鼓励符合标准要求的船舶进行动力系统整体更新改造,亦出台了相关经济补贴政策,但应者寥寥。究其原因,除LNG经济优势减弱,改造初始投资较高等一些经济因素影响船民改造积极性外,动力系统各组成设备的供货周期长,特别是LNG船用储罐的取证、供货期一般为3-4个月,也大大制约了船舶改造工期及进度控制。如何在最短的时间内完成船舶动力系统的整体更新改造,最大程度降低对船舶运营收益的影响成为推进此项工作亟需解决的难题。 一、宏观环境 交通运输作为能源消耗性行业,是温室气体和大气污染排放的重要来源。在节能减排、能源危机的大背景下,作为石油消耗大户和污染排放大户的交通运输行业成为能源转型替代的先头阵地,基于此LNG得到了迅速推广。进入交通清洁能源领域伊始,LNG主要用于公路交通。近年来,随着国家节能减排和绿色水运的深入推进,水运行业的LNG需求开始显现,船舶领域的LNG应用成为新趋势。但航运低迷、货运订单下降、油气价差缩减、规范不完备等因素也在一定程度上制约了内河船用LNG的发展。 1.1船用LNG的政策支持 2010年,国家交通部开始推动内河船舶应用LNG试点工作,内河船舶“油改气”从摸索中起步。2010年,武拖轮“302”号和“苏宿货1260号”改造成功,揭开了船舶油改气的序幕。此后,越来越多的船舶加入到“油改气”行列,为我国LNG动力船舶改造积累了经验。 2013年,交通运输部发布了《关于推进水运行业应用LNG的指导意见》,内河船舶LNG应用进入系统推进阶段。此后,为实现水运行业节能减排、转型升级,政府部门陆续发布利好政策,鼓励船舶应用LNG作为动力燃料,内河船舶油改气规模逐步扩大。改建成本是船东的主要考虑因素,同年,交通部水运局发布《“十二五”水运节能减排总体推进实施方案》,建立节能减排专项资金,用于水运节能减排体系建设、试点工程补偿、推广项目激励、研究开发资

坐标转换器使用说明

大地坐标(BLH) 平面直角坐标(XYZ) 四参数:X 平移、Y 平移、旋转角和比例 七参数:X平移,Y平移,Z 平移,X 轴旋转,Y 轴旋转,Z 轴旋转,缩放比例(尺度比) GPS控制网是由相对定位所求的的基线向量而构成的空间基线基线向量网,在GPS控制网的平差中,是以基线向量及协方差为基本观测量。 图3-1表示为HDS2003数据处理软件进行网平差的基本步骤,从图中可以看到,网平差实际上可以分为三个过程: l、前期的准备工作,这部分是用户进行的。即在网平差之前,需要进行坐标系的设置、并输入已知点的经纬度、平面坐标、高程等。 2、网平差的实际进行,这部分是软件自动完成的; 3、对处理结果的质量分析与控制,这部分也是需要用户分析处理的过程。 图3-1 平差过程 坐标系选择 针对不同的平差,要相应选择不同的坐标系,是否输入相应信息。在笔者接触过的项目中,平差时先通过三维无约束平差后,再进行二维约束平差。由于先进行的时三维无约束平差,是在WGS84坐标系统下进行的。 首先更改项目的坐标系统。在菜单“项目”->“坐标系统”或在工具栏“坐标系统”,则弹出“坐标

系统”对话框,选择WGS-84坐标。 图3-2 坐标系统 这里注意的是,在“投影”下见图,中央子午线是114°。很多情况下这里需要进行修改。 图3-3 WGS84投影 软件中自带的“中国-WGS 84”是允许修改的,我们换种方法:就是新建一个坐标文件,其他参数都和“中国-WGS84”一致,仅仅将中央子午线修改下。 在上图中,点击“新建”,得到“COORD GM”对话框,在“文件”->“新建”,如图

图3-4 新建坐标系统 然后在“设置”->“地图投影”,直接修改中央子午线,这里以81°为例,点击确定后,返回“COORD GM”对话框。 图3-5 投影设置 将输入源坐标和输入目标坐标的椭球,均改为WGS84。在“文件”->“保存”,输入名称和国家(中国),退出操作。

代码转换(大小写字母转换)

北华航天工业学院 课程设计报告(论文) 设计课题:代码转换 大小写字母转换 专业班级:电子信息工程 学生姓名: 指导教师: 设计时间: 2010-12-16

北华航天工业学院电子工程系 微机原理课程设计任务书 指导教师:教研室主任: 年月日

内容摘要 在课程设计之前,具备微机原理的理论知识和实践能力;熟悉汇编语言编程技术;熟悉80X86的CPU结构和指令系统;熟悉相关常用接口电路的设计使用方法是必不可少的。因此原理部分重新温习并整理了相关知识。 课程设计要求进行大小写字母的转换。其实字母大小写的区别在于他们的ASCII码范围,它们之间的转换其实就是加减相应的ASCII码值。在判断输入的字母是大写的还是小写的(即判断输入符号ASCII码在41H~5AH还是在61H~7AH内)之后,决定判断是加上还是减去ASCII码值。 关键词:汇编代码转换大小写

目录 一、概述 (1) 二、方案设计与论证 (1) 1.汇编语言基础 (1) 2.方案设计 (2) 三、程序设计 (3) 1.程序设计流程图 (3) 2.程序代码 (4) 四、运行结果 (5) 五、心得体会 (6) 六、参考文献 (6)

一、概述: 在计算机系统中有多种数制和编码,常用的数制有二进制、八进制以及十六进制,常用的代码有BCD码、ASCll码和七段显示码等。这些数制和编码根据其作用的不同,在存储形式上也有差异。在实际应用中,它们也因使用的要求不同而有所差异。在配备操作系统管理程序的计算机中,有些代码转换程序已在系统管理软件中编好。还有些代码转换需要根据使用要求通过编程完成。因此,代码转换是非数据处理中最常见的情况。 二、方案设计: 1、汇编语言基础 汇编:计算机不能直接识别和执行汇编语言程序,而要通过“翻译”把源程序译成机器语言程序(目标程序)才能执行,这一“翻译”工作称为汇编。汇编有人工汇编和计算机汇编两种方法。 汇编语言是面向机器的,每一类计算机分别有自己的汇编语言。汇编语言占用的内存单元少,执行效率高,广泛应用于工业过程控制与检测等场合。 汇编语言语句格式 标号:操作符操作数;注释 START: MOV A, 30H ;A←(30H) 标号用来标明语句地址,它代表该语句指令机器码的第一个字节的存储单元地址。 标号一般规定由1~8个英文字母或数字组成,但第一个符号必须是英文字母。 注释只是对语句或程序段的含义进行解释说明,以方便程序的编写、阅读和交流,简化软件的维护,一般只在关键处加注释。 伪指令:伪指令只用于汇编语言源程序中,对汇编过程起控制和指导的作用,不生成机器码。汇编结束,自动消失。 汇编语言程序设计步骤

CORS坐标转换软件使用说明

坐标转换软件使用说明  1、功能介绍  在南京进行测量的同行一直受到坐标系统和已知控制点的困扰, 所以往往许多测量成果因坐标系统问题得不到承认,浪费了大量的人 力物力。基于此:本公司集全部精干技术力量,研发本款坐标转换软 件,可以说:它是全体测量工作者的福音。  南京CORS因为其免费,应用十分广泛,但是使用南京CORS在 很多情况下,因为已知控制点原因无法实地取得平面坐标而限制了 CORS优势的发挥。本软件可以实现基于南京CORS测量的WGS84 坐标与92南京地方坐标双向自由转换,转换精度与权威部门转换成 果比较(在南京市6800平方公里范围内,包括高淳、溧水、六合、 浦口):平面残差中误差优于±5mm、高程残差中误差均优于±1cm。精度完全具有保障,免去到处寻找控制点带来的人力、财力和时间浪费。按照最新城市规范规定,这种模式可以实现城市E级GPS控制 点的平面测量。  本软件是一款后处理软件,即:内业处理软件,它不能在实地计 算坐标,通过事后(采集)或事前(放样)数据处理,同样可以让你 在野外无忧无障碍开展工作。  适用平台:Windows 32位所有系统平台。  2、外业采集数据转换操作介绍  外业测量数据从RTK手簿中以WGS84坐标格式导出,导出以后 将文件复制到计算机,假设文件名为0513.dat。在电脑中启动软件,

界面如下:  图一:程序启动界面  首先选择转换方向下拉列表框,此时选择“WGS84—>NJ92”,表示将WGS84坐标转向92南京地方坐标,此时软件会出现一个按钮 键读入数据并转换,点击该按钮,在弹出的文件对话框中选择从手簿 导出的外业坐标文件。如:0513.dat,点击打开按钮即可完成转换。如图二:  图二:选择原始数据文件  记得一定要选择你的原始数据文件格式在点击打开按钮。转换完 成以后又会在对话框中再出现一个按钮导出转换成果,点击它即可将

坐标转换步骤

坐标转换步骤 1、总平图找个已知的点的坐标 2、首先用快捷键 D 调出标注样式 3、把精度调成0.00000000000 测量这个点的角度 4、因为总平图都是倾斜的和正交的情况下有一定的角度 5、把单项的图纸打开 6、全部框选 7、右键旋转 8、输入总平图的角度 9、然后enter 确认 10、从总平图中记录交点的坐标 11、在单项图纸中usc 命令N命定-鼠标左键点击交点,此时此交点已被定 义为0 点 12、输入zbbz 命令点击交点显示坐标为0,0,0 13、再次ucs 命令--- 鼠标左键移动到交点位置(切记不要点击)此时输入 坐标值

再输入X 坐标(坐标值前输入负号)输入标14、输入坐标的方法为先输入Y 坐标(坐标值前输入负号)输入 标 点“,”- 八、、? 点 八、、 ---- 再输入Z 坐标(一般都为0) 15、连续点击两次enter 键,此时此交点已被定义为输入的坐标值 16、再次zbbz 命令此时会显示和从总平图中记录交点的坐标一致 17、大功告成 截图如下 1、打开总平图,总平图找个已知的点的坐标 2、快捷键 D -E Nter--- 如下 3、点击修改,调节右下角精度为最大 4、点击置为当前,点击关闭 5、点击标注角度 6、打开单项图纸如下 7、全部框选- 右键旋转点击交点 8、输入角度

9、enter 确定

再输入X 坐标(坐标值前输入负号)输入标10、ucs 命令输入N 11、enter 确定点击交点 12、输入zbbz 命令 13、e nter 确定 14、再次ucs 命令 15、enter 确定输入坐标 16、鼠标十字丝移动到交点位置(切勿点击)连续 点击两次enter 键 17、输入zbbz 命令 18、e nter 确定 大功告成

算法到程序的转换

算法到程序的转换 用伪代码描述的算法是不能直接在机器上执行的,从算法的伪代码描述到算法的实现,所必须做的事情通常包括如下几个方面。 一常量、结构体、扩充数据类型的说明 比如# define TRUE 1 二添加库函数说明语句 比如# include 三局部变量的添加 比如int i,min; 四语句的转换 将类C中一些不符合C/C++语言的语法,如数据交换及一些为描述算法方便而扩充的其他语句转换成符合语法的语句。 比如a[j] a[j+1]; 转换为: x=a[j]; a[j]=a[j+1]; a[j+1]=x; 五辅助过程或者函数的添加 算法描述只涉及问题的求解部分,通常只对应一个或者多个函数或者过程,而不是完整的可运行的程序。所以除了上述4步之外还需要添加一些数据输入输出及调用函数等。 由此可见,算法描述和算法实现是有一定距离的,因为本课程的关注点主要在算法的描述上,而描述是看不到运行结果的,所以同学们容易感到迷茫。这个问题,我们可以通过验证性实践来强化认识。 下面是验证性实践的步骤: 1 预备知识的学习 验证性实验的目的是验证教材中的数据结构及其应用的算法,实验前有必要了解实验相关的背景,即相关知识点,明确本次实验的内容。 2 源程序阅读和分析 实验前,需要弄清楚下列问题。即: (1)程序结构和程序功能; (2)输入数据有什么?格式是什么? (3)输出是什么?输出数据的意义是什么? (4)设计验证实例为运行程序做准备。 3 调试和测试源程序 (1)编写源程序 (2)编译链接程序 (3)用设计好的实例验证程序 (4)对程序结果进行分析,通过分析运行结果和输入的合理性,理解算法思想与实现,判断算法逻辑上的正误。 4 补充和改进源程序 第一次实验的内容: 单链表验证程序结构。在主程序中实现菜单的选择,所选择的菜单项目包括: (1)创建链表; (2)在第i个位置插入元素;

法规警示:船舶进出排放控制区域时的燃油转换

Class News No.22/2014 英国劳氏船级社信息2014年6月17日 Statutory Alert: Fuel change-over when entering and exiting emission control areas 法规警示:船舶进出排放控制区域时的燃油转换 Applicability: All shipowners and operators 适用:所有的船东和船舶运营者 From 1 January, 2015, the maximum sulphur content of fuel oil used within the MARPOL Annex VI Emission Control Areas (ECAs) will be 0.10%, unless using an approved alternative means for controlling sulphur emissions. In most cases, the fuel used will be low-sulphur distillate oil (LSDO). Many ships operating both inside and outside ECAs will change-over between LSDO and residual fuel oil (RFO) when entering and exiting ECAs. 从2015年1月1日起,在MARPOL公约附则VI规定在排放控制区域(ECAs)内使用的燃油,其硫含量将不得超过 0.10%,除非使用已批准的控制硫排放的装置。在大部分情况下,必须使用低硫燃油(LSDO)。许多在ECAs内外区域 都运营的船舶在出入ECAs时候需要在LSDO和残渣燃油(RFO)间进行转换。 Lloyd’s Register Rule requirements 劳氏船级社船舶规范的要求 The Lloyd’s Register (LR) Rule requirements for fuel oil systems are contained within Pt.5 Ch.14 sections 2, 3 and 4; these contain design requirements for systems which are to operate on either LDSO or RFO grades, or both. LR also offers the optional descriptive note, DIST, for shipowners and operators applying industry best practice to the use of LSDO. The ShipRight Procedure for Assigning DIST Descriptive Note contains further guidance on measures to be considered by owners and operators. 劳氏船级社(LR)对船舶燃油系统的要求涵盖在其船舶规范第5篇第14章的第2,3和4部分。这些包括了在使用 LDSO或RFO或者两者都使用时的系统设计要求。为船东和船舶操作者应用有关使用LDSO的行业最佳做法,LR 还提供了非强制的描述性注释符号DIST。为授予DIST符号的ShipRight程序包涵了船东和船舶操作者应考虑的相 关措施的进一步指导。 In cases where existing fuel systems, engines or other equipment on LR classed ships are not suitable for operation on LSDO in addition to RFO, or where manufacturers have recommended equipment modifications, any proposed modifications must be submitted to LR for approval. If you are uncertain about whether equipment on board your ships requires approval, please contact your local LR office for advice. 如果LR入级船舶上的现有的燃油系统,柴油机或其他设备除了RFO外不适合LSDO操作的,或者设备制造商建议 改装设备的情况下,任何建议的改装都必须提交LR批准。如果您不确定船上相关设备的改装是否需要审批,请联系 您所在地的当地LR办公室进行咨询。

相关文档
相关文档 最新文档