文档库 最新最全的文档下载
当前位置:文档库 › 气孔

气孔

人教版七年级上第三章第三节

气孔

学校:山西师范大学

班级:生物技术1003班

姓名:白惠茹

气孔

小水珠

主要是叶片的气孔,叶柄和嫩茎也可以

气孔的大小、分布和数目

植物

气孔数/mm2下表皮气孔大小

长×宽(μm)上表皮下表皮

小麦331438×7玉米526819×5燕麦252338×8向日葵5815622×8番茄1213013×6苹果040014×12莲400—

?阳生植物的气孔小而密集,阴生植物叶表皮的气孔少

?环境不同中的同一种植物,叶表皮的气孔数不同,阳光充足处较多,阴湿处较少

?有些植物的上下表皮都有气孔,一般下表皮较多一些

气孔

气孔是植物蒸腾失水的“门户”,也是气体交换的“窗口”。

一对半月形“保卫细胞“保卫细胞围成的“空腔”

保卫细胞吸水膨胀,气孔张开。保卫细胞失水收缩,气孔关闭。

气孔如何控制水分和气体的进出

?保卫细胞的形状是能够调节的,气孔既能张开,又能闭合

?每当太阳升起时,气孔就慢慢张开了,空气也就涌进气孔,为叶片制造有机物提供二氧化碳;当然水分也会通过气孔散失。当夜幕降临,叶片的生产活动就停止了,大多数气孔缩小或关闭,蒸腾作用随之减弱。

Thank you!

白惠茹

侵入气孔、析出气孔、针状气孔产生的原因有哪些

侵入气孔、析出气孔、针状气孔产生的原因有哪些? 侵入气孔产生的原因是:型砂中的水分与粘结剂中的挥发物,都会因受热变成气体。如果型砂(或芯砂)透气性差,或浇注系统设计不合理,或砂型紧实度过高.或砂型排气不良以及气道堵塞,都会使铸型中所产生的气休(浇注时)不能及时排出,就可能冲破金属表面凝固膜,而钻进铁水里去,若不能上浮排出,便留在铸件中形成气孔。因此应尽量减少铸型中的气体来源和增加铸型的排气能力。其具体措施有: (1)严格控制型砂的水分,同时起膜与修型时,不宜刷水过多。煤粉等加入量不宜过多,从而减少发气量。一般型砂中水<6%,煤<7%。 (2)干型要保证烘干的质量,烘干后停放时间不宜过长,以免返潮。 (3)适当地提高浇注温度,浇注时缓慢平稳,保征型腔内原有气体来得及排出。 (4)铸型紧实度要适当,保持良好的透气性。同时还要开气冒口,扎气眼;泥芯要有通气道等。 (5)浇注系统的设置要合理,要考虑型腔内排气畅通及金属液平稳地流入铸型。 (6)合箱时要注意封死芯头间隙,以免铁水钻入而堵塞通气道。 (7)对于大平面铸件,最好采用倾斜浇注,出气孔处高势,以利排气。 (8)泥芯撑和冷铁必须干净无锈 (9)适当减少粘结剂,可附加一些透气性材料,如木屑等。 (10)可选用圆性砂粒,增加型砂的透气性。 析出气孔产生的原因是:气体在金属中的溶解度随温度下降而急剧减少。在熔炼过程中,金属吸收了较多的气体,而在冷却凝固过程中,析出的气体若不能排出型外,则留在铸件中成为气孔。因此,要尽量减少铁水在熔炼和浇注时的吸气和减少铁水的粘度,以便气泡上浮排除。其具体措施有: (1)使用干燥炉料,并限制含气量较多的回炉料的用量。对锈蚀严重成表面有油的炉料要经过热处理后再使用,对本身含气量高的炉料,应重熔再生后再使用。 (2)尽量减少炉料与炉气接触:在金属液表面复盖溶剂,采用快速熔炼工艺,严格控制风量和风压等。 (3)浇包要完全烘干。 (4)进行脱气处理:方法是加入合金不溶性气体,把溶于金属液中的气体带出。如炼钢中加铁矿石沸腾而除去氢气、氮气等。 (5)采用真空熔炼,以清除金属液中气体或使用金属液在压力下结品,使已溶于金属的气体未来得及析出就已凝固。 (6)增加型砂的透气性:紧实度要合适,扎气眼,水分适宜。 (7)适当提高浇注温度,以降低金属液枯度。让气体易于排除。 (8)炉缸、前炉和铁水包需烘干后再使用。 (9)浇注时要避免断流,从而做到连续浇注。 (10)浇注时,必须点火引气。 针状气孔小,细而长,如针状,主要由氢和氧生成。其中氢可能以分子状态存在,也可能以原子状态存在。以分子状态存在时,如钢中有足够的氧化亚铁,则氢与氧化亚铁中的氧化合而成水蒸气,这种水蒸气可以直接生成针孔,也可以作为针孔的核心,周围的氢向其扩散,聚集而长大,终于生成针孔。以原子状态存在时,则熔解于钢水(或铁水)中,随着温度下降,氢被析出,并迅速扩散,或扩散到已有核心处,聚集长大,或扩散到已有析出氧的地方,与氧化合而成水蒸汽,从而生成针孔。在所有情况下,氢的扩散都要受到相邻金属品粒的阻碍,被迫向细长方向发展而成为针状。氧多以分子状态存在,并

气孔结构与抗冻性的关系

气孔结构与抗冻性的关系 摘要 硬化混凝土含气量对于建筑在高寒高盐度等地区的强度与寿命具有重要意义。混凝土中的孔与抗冻性有着密切的联系,这可以从冻融破坏机理的角度来说明。有两种假说来说明冻融破坏的机制:静水压假说和渗透压假说。 静水压假说 混凝土中除了有凝胶孔和孔径大小不等的毛细孔外,还有在搅拌和成型过程中引入的空气,以及掺加引气剂或引气型减水剂人为引入的空气泡。前者约占混凝土体积的1%,后者则根据外加剂掺量而不等(2%-7%)。由于毛细孔力的作用,细的毛细孔先吸水,孔径较大的空气泡由于空气的压力,常压条件下不易吸满水。粗孔中的水先结冰,在降温过程中,在水冻结成冰膨胀的推动下,细孔中未冻结水向粗孔渗透,形成静水压力,这是冻融破坏的动力。当由冻结产生的水压力超过混凝土强度能承受的程度,混凝土即破坏。这是静水压假说。 采用VISION208混凝土含气量检测仪来测定硬化混凝土的气孔体系参数,所测定参数主要有气泡总个数、硬化后混凝土含气量、气泡比表面积、气泡平均半径、气泡间距系数和气泡孔径分布。 通过VISION208硬化混凝土含气量检测仪获得的图片示例

G.Fagerlundr为了更形象地说明静水压力的影响因素,假定了一个模型,图1-2所示。 假设混凝土中某两个空气泡之间的距离为d,两空气泡之间的毛细孔吸水饱和并部分结冰。在空气泡之间的某点A,距空气泡为x,由于结冰生成的水压力为P。由D'Arcy定律知,水的流量与水压力梯度成正比,见式(1-1)

冰水混合物的流量即厚度为x薄片混凝土中单位时间内由于结冰产生的体积增量,见式(1-2): 将(1-2)式代入(1-1)式,积分得到A点的水压力P A,见式(1-3) 该处的水压力计算式为在厚度d的范围内,最大水压力在x=d 2 式(1-4) 从式(1- 4)可知:毛细孔水饱和时,结冰产生的最大静水压力与材料渗透系数成反比,又与结冰量的增加速率和空气泡的平均间距的平方成正比,而结冰量的增加速率又与毛细孔水的含量(与水灰比、混凝土的水化程度有关)和降温速度成正比。

铝压铸件产生气孔的可能原因

铝压铸件产生气孔的可能原因(供参考) 一. 人的因素: 1. 脱模剂是否噴得太多? 因脱模济发气量大,用量过多时,浇注前未燃尽,使挥发气体被包在铸件表层。所以在同一条件下,某些工人操作时会产生较多的气孔的原因之一。 选用发气量小的脱模济,用量薄而均匀,燃净后合模。 2 未经常清理溢流槽和排气道? 3 开模是否过早? 是否对模具进行了预热?各部位是否慢慢均匀升温,使型腔、型芯表面温度为150℃~200℃。 4 刚开始模温低时生产的产品有无隔离? 5 如果无预热装置时是否使用铝合金料慢速推入型腔预热或用其它方法 加热? 6 是否取干净的铝液,有无将氧化层注入压室? 7 倒料时,是否将勺子靠近压室注入口,避免飞溅、氧化或卷入空气降 温等。 8 金属液一倒入压室,是否即进行压射,温度有无降低了?。 9 冷却与开模,是否根据不同的产品选择开模时间? 10 有无因怕铝液飞出(飞水),不敢采用正常压铸压力?更不敢偿试 适当增加比压。? 11 操作员有无严格遵守压铸工艺? 12 有无采用定量浇注?如何确定浇注量? 二. 机(设备、模具、工装)的因素: 主要是指模具质量、设备性能。 1 压铸模具设计是否合理,会否导致有气孔? 压铸模具方面的原因: 1.浇口位置的选择和导流形状是否不当,导致金属液进入型腔产生正面撞击和产生旋涡。(降低压射速度,避免涡流包气) 2.浇道形状有无设计不良? 3.内浇口速度有无太高,产生湍流? 4.排气是否不畅? 5.模具型腔位置是否太深? 6.机械加工余量是否太大?穿透了表面致密层,露出皮下气孔? 压铸件的机械切削加工余量应取得小一些,一般在0.5mm左右,既可减轻铸件重量、减少切削加工量以降低成本,又可避免皮下气孔露出。余量最好不要大于0.5mm,这样加工出来的面基本看不到气孔的,因为有硬质层的保护。 2 排气孔是否被堵死,气排不出来? 3 冲头润滑剂是否太多,或被烧焦?这也是产生气体的来源之一。 4 浇口位置和导流形状,有无金属液先封闭分型面上的排溢系统? 5 内浇口位置是否不合理,通过内浇口后的金属立即撞击型壁、产生涡 流,气体被卷入金属流中? 6 排气道位置不对,造成排气条件不良?

铸铁件氮气孔产生的原因分析及特征

铸铁件氮气孔产生的原因分析及特征 特征:枝晶间裂隙状氮气孔 这种缺陷呈裂隙状多角形或断续裂纹状,跟其它的气孔类缺陷大不相同,从外观上看没有明显的气体痕迹,但能明显看到粗大的树枝晶,跟缩孔、缩松缺陷有点类似,所以在有些较厚大件上,经常被误认为是缩孔、缩松。值得一提的是,这种气孔在铸件断面上呈大面积分布,有的也分布在较大的平面处,在铸件最后凝固如冒口附近,热节中心最为密集,这类气孔常发生在同一炉或同一浇包浇注的全部或大部分铸件中。由于是在凝固过程晚期形成的,因而气孔孔洞形状不是圆球形的,而改变为多角形或枝晶间裂隙状的,这说明气泡生成及长大时,其周边被固体的枝晶壁所包围,而不能形成圆球形的气孔。 来源:液态金属所吸收的氮来自多种途径,主要有两大类,一是浇注前金属液本身所含的氮;二是树脂砂中所含的氮。 对于冲天炉熔炼的灰铸铁,炉料中的废钢是氮的重要来源,碱性电弧炉废钢,其含氮量可达 60ppm~140ppm,废钢多于35%,就有可能产生氮气孔,树脂砂中所含的氮来源于树脂及固化剂、再生砂中积累的氮、型砂中的含氮附加物及涂料中的氮沥青焦炭含氮量高,作为增碳剂使用时容易产生氮气孑L,必须引起高度重视。而电极电墨作为增碳剂,则由于其含氮量低而不容易发生氮气孑L。此外,在熔炼过程中即使加入含氮量高的增碳剂,如沥青焦炭,也只有在刚加入铁液时含氮量急剧增加,当铁液保温十多分钟后,含氮量逐渐恢复到加增碳剂前的水平。 机理: 用树脂砂生产铸铁件更容易产生氮气孔,这是因为当铁液浇人铸型后,含N的树脂受热分解出NH3,NH3又在金属液表面离解,NH3一[N]+3/2H2,[N]原子相当一部分进入铸型金属界面尚处于熔融

气孔类别

本文从铝合金铸件气孔类别分析入手,指出铝合金铸件气孔可分为点状针孔、网状针孔、综合性针孔三类;氢是造成铝合金铸件针孔的主要原因,而氢的主要来源则是由于水蒸气分解所产生的。因此,铝合金在熔炼过程中造成水蒸气产生的原因,也就是直接影响针孔形成的主要因素。由于铝合金铸件气孔对铸件的品质尤其是对其力学性能产生不良的影响,作者在文中论述了铝合金铸件气孔形成的主要因素,并针对铝合金铸件气孔形成的主要因素提出了相应的预防措施,文章最后扼要总结了预防铝合金铸件针孔必须遵守的“防”、“排”、“溶”工艺原则。 引言: 在纯铝中加入一些金属或非金属元素所熔制的铝合金是一种新型的合金材料,由于其比重小,比强度高,具有良好的综合性能,因此被广泛用于航空工业、汽车制造业、动力仪表、工具及民用器具制造等方面。随着国民经济的发展以及经济一体化进程的推进,其生产量和耗用量大有超过钢铁之势。 加强对铝合金材料性能的研究,保证铝合金铸件具有优良品质,既是我们每一个科技工作者义不容辞的责任,也是同我们的日常生活息息相关的头等大事。本文结合作者铝合金铸件生产实践经验谈谈铝合金铸件气孔与预防问题。 1.气孔类别 由于铝合金具有严重的氧化和吸气倾向,熔炼过程中又直接与炉气或外界大气相接触,因此,如熔炼过程中控制稍许不当,铝合金就很容易吸收气体而形成气孔,最常见的是针孔。针孔(gas porosity/pin-hole),通常是指铸件中小于1mm的析出性气孔,多呈圆形,不均匀分布在铸件整个断面上,特别是在铸件的厚大断面和冷却速度较小的部位。根据铝合金析出性气孔的分布和形状特征,针孔又可以分为三类①,即: (1) 点状针孔:在低倍组织中针孔呈圆点状,针孔轮廓清晰且互不连续,能数出每平方厘米面积上针孔的数目,并能测得出其直径。这种针孔容易与缩孔、缩松等予以区别开来。 (2) 网状针孔:在低倍组织中针孔密集相连成网状,有少数较大的孔洞,不便清查单位面积上针孔的数目,也难以测出针孔的直径大小。 (3) 综合性气孔:它是点状针孔和网状针孔的中间型,从低倍组织上看,大针孔较多,但不是圆点状,而呈多角形。 铝合金生产实践证明,铝合金因吸气而形成气孔的主要气体成分是氢气,并且其出现无一定的规律可循,往往是一个炉次的全部或多数铸件均存在有针孔现象;材料也不例外,各种成分的铝合金都容易产生针孔。 2.针孔的形成 铝合金在熔炼和浇注时,能吸收大量的氢气,冷却时则因溶解度的下降而不断析出。有的资料介绍②,铝合金中溶解的较多的氢,其溶解度随合金液温度的升高而增大,随温度的下降而减少,由液态转变成固态时,氢在铝合金中的溶解度下降19倍。(氢在纯铝中的溶解度与温度的关系见图1③)。因此铝合金液在冷却的凝固过程中,氢的某一时刻,氢的含量超过了其溶解度即以气泡的形式析出。因过饱和的氢析出而形成的氢气泡,来不及上浮排出的,就在凝固过程中形成细小、分散

s23 观察叶表皮气孔的结构及开闭的实验

观察叶表皮气孔的结构及开闭的实验 一、教学目标: 知识目标:通过实验观察认识气孔并能描述气孔的组成,了解其开闭原理。能力目标:1、通过制作临时装片,培养学生动手能力。 2、通过观察气孔的结构,培养学生观察能力。 3、通过气球的模拟实验,培养学生的分析能力。 情感目标:让学生认同叶对绿色植物的重要性,自觉形成植绿爱绿的美好情感。 二、实验内容: 1、实验名称:⑴、观察叶表皮气孔的结构。 ⑵、模拟气孔开闭实验。 2、实验器材:大烧杯、显微镜、盖玻片、载玻片、纱布、吸水纸、刀片、培养皿、滴管、镊子、石棉网、铁架台、酒精灯、火柴。 3、主要材料准备:青菜叶片(注:要用展开的大叶片)或者月季

花叶子(注:学生可选取多种校园常见绿色植物的叶子)、红色月季花花瓣、开水、清水、气球、长胶带(最后用双面胶,粘性大)。 注:教师准备红霉素药膏、碘伏、创可贴。以防同学烫伤、划伤。三、实验设计思路 本节课的重点是观察气孔的结构,以及分析气孔开闭的原理。 难点是分析气孔开闭原理。 本实验包括三个小实验: 1.开水烫叶子——分组实验 通过本实验学生可以宏观的感受叶片和花瓣的表皮有气孔存在。 2.制作青菜叶片临时装片和红色花瓣临时装片,在显微镜观察气孔 的结构——分组实验 通过本实验可以从微观世界观察气孔的形态结构。 3.气球模拟实验——演示实验 通过本实验可以在动态中分析气孔开闭的原理。 注:根据实验桌的大小,我把学生分为3人一组,一人为组长,进行主要的实验操作,其他两人辅助。 四、实验教学过程 在测定植物蒸腾作用的实验基础上,引导学生产生疑问,植物体内的水分是通过什么样的结构散失出来的呢?带着疑问进行下面的实验: 实验一、开水烫青菜叶 如图,学生分组实验,点燃酒精灯,加热烧杯中 的清水至沸腾,学生迅速把准备好的各种叶片放 入开水中,教师及时提示学生观察上表皮和下表 皮的表面,是否有明显的气泡产生。并提示学生 比较上下表皮产生细胞的数量,组长总结:大多 叶片下表皮产生的气泡多于上表皮产生的气泡。 当然,由于每次烫的叶片数量不多,可能同种叶子每组的结果不同,学生会产生

压铸件气孔的成因和解决办法

压铸件气孔的成因和解决办法 铝压铸是将铝液快速高压充填到模具型腔的铸造。铝液充填压铸模型腔的时间极短,一般为百分之几秒或千分之几秒。压铸过程中形成的气孔有光滑的表面,形状多为圆形或椭圆形,其多存在于铸件的表面或皮下针孔,也可能在铸件内部。气孔的来源主要为压铸过程中卷入的气体或铝液析气。 一、压铸过程中卷气。 1、压铸机压铸现在基本上采取三级压射,在第一级压射时,压射冲头以较慢的速度推进(通常在0.3m/s以内),这有利于将压室中的气体挤出;第二级压射则是按压铸件的结构、壁厚选择适当的流速,内浇口速度极快(一般冲头速度为1~6m/s,薄壁件、高气密性件、镁合金件有可能达到8m/s以上的速度),将铝液把型腔基本充满。这一级是压铸件产生气孔的关键,速度越高越易产生涡流而形成气孔。这一过程里,控制压铸件气孔主要通过控制一、二级压射速度和一、二级切换点来实现。一、二级速度尽量低一点(但太低会影响铸件成型或表面质量,要根据实际情况而定);二级压射的起点可选择在不允许有铸件气孔的部位之后,不同的铸件我们可选择不同的起点。同时随着压铸机射出速度、增压建压时间、提速时间等工作性能的不断提高和完善,铸件气孔将会越来越少。 2、一套好的压铸模应具备良好的浇注系统、排溢系统。在压铸过程中要尽量使多股浇道,铝液流与铸件方向保持一致,尽量不互相碰撞而产生涡流及因充填混乱造成卷气;另外使多股浇道充填型腔要注意做到同时填充,不能让一股或几股铝液先到最后端死角后再返回产生涡流。压铸模上的集渣包和排气道分布要合理。 3、压铸模具的温度对铸件的质量和气孔也有着关键的影响。当模温过高时,脱模剂在高温下挥发不能形成致密的皮膜,易造成粘膜;而模温过低,则脱模剂形成的皮膜有未挥发的水分,使脱模效果差,导致铸件气孔。通常模具预热温度为150℃~180℃,工作保持温度为220℃~280℃。 4、涂料产生的气体 a、首先是涂料的性能:挥发点太高,发气量大对铸件气孔有直接影响。 b、从喷涂工艺上看:喷涂使用量过多,喷涂时间过长,易造成气体挥发量大,还会使模具表面温度过低,模具表面水气一时无法蒸发,合模后型腔产生大量气体。生产过程中我们要选择性能好的涂料,挥发点要低,产生气体量要小。 5、最后由于压铸的特点是以很快的速度充填型腔,铝液在模具内快速凝固形成产品,所以铸件内部一定会有因铝液卷气产生的气孔。但铸件表层也会因快速凝固形成细晶粒的致密层,这些细晶粒具有较高的机械性能,只要铸件的加工余量尽量小一点,铸件的物理性能也可以得到保证。过大的加工余量就会把表面致密层加工掉,从而引起内部气孔暴露,铸件的物理性能降低。 下面举例说说我们生产的铝不粘锅的工艺: 1、产品名称:铝不粘锅,铸件轮廓尺寸为Φ250×180的圆锅,壁厚2.5mm。 2、材料:ADC12。 3、压铸机:650T。 4、产品要求:表面质量要求光滑,需在430℃高温下进行特氟隆处理,如果铸件有气孔,表面会鼓包,因此铸件不能有气孔、缩松、夹杂。

气孔形成的原因

气孔形成的原因及解决的措施 杨群收汇编在工厂的生产实践中,人们对气孔的叫法不一样。有的叫气眼、气泡、气窝,丛生气孔,划为一体统称为“气孔”。 气孔是铸件最常见的缺陷之一。在铸件废品中,气孔缺陷占很大比例,特别是在湿模砂铸造生产中,此类缺陷更为常见,有时会引起成批报废。球墨铸铁更为严重。气孔是在铸件成型过程中形成的,形成的原因比较复杂,有物理作用,也有化学作用,有时还是两者综合作用的产物。有些气孔的形成机理尚无统一认识,因为其形成的原因可能是多方面的。 各类合金铸件,产生气孔缺陷有其共性,但又都是在特定条件下生成的,因此又都具有特殊性。所以要从共性中分析产生气孔的一般规律,也要研究特性中的特有规律,以便采取有效的针对性措施,防止气孔缺陷的产生。 一、气孔的特征 气孔大部分产生在铸件的内表面或内部、砂芯面以及靠近芯撑的地方。形状有圆形的、长方形的以及不规则形状,直径有大的、小的也有似针状丛生孔形。气孔通常具有干净而光滑的内孔面,有时被一层氧化皮所覆盖。光滑的孔内颜色一般是白色,或带有一层暗蓝色,有的气孔内壁还有一个或几个小铁豆豆,常把这种气孔称作“铁豆气孔”。距铸件表面很近的气孔,又叫“皮下气孔”,往往通过热处理、清滚或者机械加工后才被发现。还有一种常见

的气孔,叫做“气缩孔”,是气体和铸件凝固时的收缩而共同促使其产生的,形状又有其特殊性。铸钢和高牌号铸铁都常出这种名称的缺陷,但形成的机理有所差异。 气孔和缩孔是可以区别开的,一般说来气孔是圆形或梨形的孔洞,内壁光滑。而不像缩孔那样内表面比较粗糙。 二、气体的来源 各类铸造合金在熔炼及成型过程中,总要和气体相接触的,气体就会进入并以各种形式存在于合金中,气体来源是多方面的,归纳起来,主要来自以下几个方面: 1、原材料带进的。各种铁类、铁合金、燃料、熔剂等,自身就含有气体,有的带有雨雪潮湿,有的锈蚀,有的带有浊污,在熔炼过程中都有可能产生气体,其中一部分就会滞留在合金液中。有人提出:炉料上带的雨水、雪湿、浊污随炉料进入炉内,在炉料还是固态仅发红时,它们就已蒸发或烧掉,怎么会留存在铁水里呢?在资料里,用语言详细解释的不多,但在实践中,只要炉料(生铁、废钢、回炉料)受雨雪淋湿,湿着入炉,铁水一定会氧化,这确是事实。潮湿炉料在炉内的变化是无法看到的,但是废钢、生铁夏天被雨淋后,其表面很快就会有一层黄色的锈,这则是常见的!这层黄色的锈就是铁氧化的象征。 [Fe]+[H2O]——[FeO]+2[H]↑ 另外我们还会常见到这种现象,露天堆放的生铁、废钢经雨雪淋后,冬天生锈发黄的时间慢,夏天生锈发黄的时间快,夏天经雨淋后

气孔形成的原因及解决的措施(二)

气孔形成的原因及解决的措施(二) 三、产生气孔的原因前面叙述的是气体的主要来源和部分形成气孔的经过。其实在具体生产作业过程中,形成气孔的原因还很多,为了便于在实践中直接操作应用,把各工序在操作中易产生气孔的具体因素归纳如下:(1)冶炼过程中,金属液氧化,溶解有大量气体。金属液溶解的气体量与所熔炉料的质量,以及熔化设备,炉工操作技术有很大的关系。如炉料氧化,锈蚀严重,带有油污和焦炭带有水、雨、雪潮湿。熔化操作不当,底焦太高,过热区越大,铁水氧化越严重,风压风量太大,使金属液大量吸气而过分氧化。(2)浇注时或金属液凝固过程中,由外界侵入的气体。需要说明的是,由这种气体形成的气孔往往是单独存在的,气体来源型(芯)中的水分,附加材料燃烧挥发产生的气体,浇注中金属液形成涡流,将气体旋入而产生的气孔。由经验可知这种气孔大部呈梨形状,如果梨形孔的尖部指向泥芯(图1),那么这种气孔有可能是因芯子而造成的。如果尖部指向外型(图2),则有可能是因外型而造成的。如果通过气孔形状判断不出气体来源,就只有根据气孔所在的位置来决定,如果气孔在芯子附近,该气孔则有可能是由芯子而造成的。如果发生在外型附近,这种气体则有可能是由外型而造成的。但气孔发生在中部就难以判断了。在这种情况下,就必须从铸

造全部工艺过程来分析和判断了。(实践中常遇到这样的情况,在分析废品原因时,找到了一个认为可能是产生废品的原因,马上就被自己又否认掉,甚至找到几个可能的原因,但又都被推翻,确定不下来。可见废品分析的困难度。某工厂生产HT250汽车制动鼓,造型工艺没有改变,化学成分 和以前的一样,但是有一段时间生产出的铸件却白口,找不出真正原因,只能认为可能是废钢中含有微量反石墨化元素。许昌一位老板,铸造专业毕业二十多年了,现办有两个铸造工厂,他说:下辈子说啥也不搞铸造了,太难,正干的好好的,说出废品就是一批,原因就不好找。)(3)所用的原砂 过细。山西晋城一铸造厂,因型砂过细,衬板上表面出现丛生气孔,在不能及时更换型砂的情况下,只有采用多扎气眼,型砂适当干点的措施来解决。(4)型砂透气性不好,含水分太大,或型砂中发气物质如煤粉及有机物太多或质量不好;粘结剂及附加物用量太大;舂箱太紧,起模、修型时局部刷水过多,至使浇注时产生了大量的气体而又不能顺利排出。(5)砂型或砂芯子的烘烤时间短,烘烤温度低,保温时间短,型(芯)烘烤的不干,或外干内湿没有烘透(烘烤不 透的型(芯)拉出烘干窑后,上面冒烟;用手指弹铸型,是否烘透声音不一样)。(6)砂型或砂芯上的涂料质量不好, 涂料方法不正确(涂料过稀,涂量过大,厚深不均),涂后 没有烘干。(7)使用的芯撑或芯铁不干净,上面有锈或者潮

气孔的结构及运动

气孔的结构及运动 气孔是植物叶表皮组织上的小孔,为气体出入的门户,气孔在叶的上下表皮都有,但一般在下表皮分布较多,花序,果实,尚未木质化的茎,叶柄等也有气孔存在。气孔的大小随植物的种类和器官而异,一般长约20~40um,宽约5~10um.每平方厘米叶面上约有气孔2000~4000个。 气孔是由两个保卫细胞围绕而成的缝隙,保卫细胞有两种类型:一类存在于大多数植物中,呈肾形;另一类存在于禾本科与莎草科等单子叶植物中,呈哑铃形,与其他表皮细胞不同,保卫细胞中有叶绿体和磷酸化酶,保卫细胞与叶肉细胞也不同,前者叶绿体较小,数目较少,片层结构发育不良,且无基粒存在,但能进行光合作用,保卫细胞内外壁厚度不同,内壁厚,外壁薄,当液泡内溶质增多,细胞水势下降,吸收邻近细胞的水分而膨胀,这时较薄的外壁易于伸长;细胞向外弯曲,气孔就张开。反之,当溶质减少,保卫细胞水势上升而失水缩小,内壁伸长互相靠拢,导致气孔关闭。这种自主运动可以根据体内水分的多少自动控制气孔的开闭,以调节气体交换和蒸腾作用。 气孔总面积只占叶面积的1%~2%,但当气孔全部开放时,其失水量可高达与叶面积同样大小的自由水面蒸发量的80%~90%,为什么气孔散失水分有这样高的效率呢?当水分从较大的面积上蒸发时,其蒸发速率与蒸发面积成正比;但从很小的面积上蒸发时,其蒸发速率与周长成正比,而不与小孔的面积成正比。这是因为气体分子穿过小孔时,边缘的分子比中央的分子扩散速度较大,由于气孔很小,符合小孔扩散原理,所以气孔蒸腾散失的水量比同面积的自由水面蒸发的水量大得多。 如上所述,气孔运动是保卫细胞内膨压改变的结果。这是通过改变保卫细胞的水是而造成的。人们早知道气孔的开闭与昼夜交替有关。在温度合适和水分充足的条件下,把植物从黑暗移到光照下,保卫细胞的水势下降而吸水膨胀,气孔就张开。日间蒸腾过多,供水不足或在黑夜时,保卫细胞因水势上升而失水缩小,使气孔关闭。 是什么原因引起保卫细胞水势的下降与上升呢?目前存在以下学说: 1,淀粉—糖转化学说, 光合作用是气孔开放所必需的。黄化叶的保卫细胞没有叶绿素,不能进行光合作用,在光的影响下,气孔运动不发生。很早以前已观察到,pH影响磷酸化酶反应(在pH6.1~7.3时,促进淀粉水解;在pH2.9~6.1时,促进淀粉合成):淀粉-糖转化学说认为,植物在光下,保卫细胞的叶绿体进行光合作用,导致CO2浓度的下降,引起pH升高(约由5变为7),淀粉磷酸化酶促使淀粉转化为葡萄糖-1-P,细胞里葡萄糖浓度高,水势下降,副卫细胞(或周围表皮细胞)的水分通过渗透作用进入保卫细胞,气孔便开放。黑暗时,光合作用停止,由于呼吸积累CO2和H2CO3,使pH降低,淀粉磷酸化酶促使糖转化为淀粉,保卫细胞里葡萄糖浓度低,于是水势升高,水分从保卫细胞排出,气孔关闭。试验证明,叶片浮在pH值高的溶液中,可引起气孔张开;反之,则引起气孔关闭。但是,事实上保卫细胞中淀粉与糖的转化是相当缓慢的,因而难以解释气孔的快速开闭。试验表明,早上气孔刚开放时,淀粉明显消失而葡萄糖并没有相应增多;傍晚,气孔关闭后,淀粉确实重新增多,但葡萄糖含量也相当高。另外,有的植物(如葱)保卫细胞中没有淀粉。因此,用淀粉-糖转化学说解释气孔的开关在某些方面未能令人信服。

蒸腾作用资料气孔的形态结构及生理特点

《蒸腾作用》资料 气孔的形态结构及生理特点 1.气孔数目多、分布广气孔的大小、数目和分布因植物种类和生长环境而异.一般单子叶植物叶的上下表皮都有气孔分布,而双子叶植物主要分布在下表皮.浮水植物气孔都分布在上表皮. 2.气孔的面积小,蒸腾速率高气孔一般长约7~30μm,宽约1~6μm.而进出气孔的CO2和H2O分子的直径分别只有0.46nm和0.54nm,因而气体交换畅通.气孔在叶面上所占面积百分比,一般不到1%,气孔完全张开也只占1%~2%,但气孔的蒸腾量却相当于所在叶面积蒸发量的10%~50%,甚至达到100%.也就是说,经过气孔的蒸腾速率要比同面积的自由水面快几十倍,甚至100倍.这是因为气体通过多孔表面扩散的速率,不与小孔的面积成正相关,而与小孔的周长成正相关.这就是所谓的小孔扩散律(small pore diffusion law).这是因为在任何蒸发面上,气体分子除经过表面向外扩散外,还沿边缘向外扩散.在边缘处,扩散分子相互碰撞的机会少,因此扩散速率就比在中间部分的要快些.扩散表面的面积较大时(例如大孔),边缘周长与面积的比值小,扩散主要在表面上进行,经过大孔的扩散速率与孔的面积成正比.然而当扩散表面减小时,边缘周长与面积的比值即增大,经边缘的扩散量就占较大的比例,且孔越小,所占的比例越大,扩散的速度就越快.3.保卫细胞体积小,膨压变化迅速保卫细胞比表皮细胞小得多.一片叶子上所有保卫细胞的体积仅为表皮细胞总体积的1/13或更小.因此,只要有少量溶质进出保卫细胞,便会引起保卫细胞膨压(turgor pressure)迅速变化,调节气孔开闭. 4.保卫细胞具有多种细胞器保卫细胞中细胞器的种类比其他表皮细胞中的多,特别是含有较多的叶绿体.保卫细胞中的叶绿体具有光化学活性,能进行光合磷酸化合成ATP,只是缺少固定CO2的关键酶Rubisco,但是保卫细胞的细胞质中含有PEP羧化酶,能进行PEP 的羧化反应,其产物为苹果酸(PEP+HCO3-→苹果酸).叶绿体内含有淀粉体,在白天光照下淀粉会减少,而暗中淀粉则积累.这和正常的光合组织中恰好相反.此外,保卫细胞中还含有异常丰富的线粒体,为叶肉细胞的5~10倍,推测其呼吸旺盛,能为开孔时的离子转运提供能量. 5.保卫细胞具有不均匀加厚的细胞壁及微纤丝结构高等植物保卫细胞的细胞壁具有不均匀加厚的特点.例如水稻、小麦等禾本科植物的保卫细胞呈哑铃形(dumbbell shape),中间部分细胞壁厚,两端薄,吸水膨胀时,两端薄壁部分膨大,使气孔张开;棉花、大豆等双

co2气孔产生原因

CO2电弧焊时,由于熔池表面没有熔渣盖覆,CO2气流又有较强的冷却作用,因而熔池金属凝固比较快,但其中气体来不及逸出时,就容易在焊缝中产生气孔。 可能产生的气孔主要有3种:一氧化碳气孔、氢气孔和氮气孔。 1、一氧化碳气孔 产生CO气孔的原因,主要是熔池中的FeO和C发生如下的还原反应: FeO+C==Fe+CO 该反应在熔池处于结晶温度时,进行得比较剧烈,由于这时熔池已开始凝固,CO气体不易逸出,于是在焊缝中形成CO气孔。 如果焊丝中含有足够的脱氧元素Si和Mn,以及限制焊丝中的含碳量,就可以抑制上述的还原反应,有效地防止CO气孔的产生。所以CO2电弧焊中,只要焊丝选择适当,产生CO 气孔的可能性是很小的。 2、氢气孔 如果熔池在高温时溶入了大量氢气,在结晶过程中又不能充分排出,则留在焊缝金属中形成气孔。 电弧区的氢主要来自焊丝、工件表面的油污及铁锈,以及CO2气体中所含的水分。油污为碳氢化合物,铁锈中含有结晶水,它们在电弧高温下都能分解出氢气。减少熔池中氢的溶解量,不仅可防止氢气孔,而且可提高焊缝金属的塑性。所以,一方面焊前要适当清除工件和焊丝表面的油污及铁锈,另一方面应尽可能使用含水分低的CO2气体。CO2气体中的水分常常是引起氢气孔的主要原因。 另外,氢是以离子形态溶解于熔池的。直流反极性时,熔池为负极,它发射大量电子,使熔池表面的氢离子又复合为原子,因而减少了进入熔池的氢离子的数量。所以直流反极性时,焊缝中含氢量为正极性时的1/3~1/5,产生氢气孔的倾向也比正极性时小。

3、氮气孔 氮气的来源:一是空气侵入焊接区;二是CO2气体不纯。试验表明:在短路过渡时CO2 气体中加入φ(N2)=3%的氮气,射流过渡时CO2气体中加入φ(N2)=4%的氮气,仍不会产生氮气孔。而正常气体中含氮气很少,φ(N2)≤1%。由上述可推断,由于CO2气体不纯引起氮气孔的可能性不大,焊缝中产生氮气孔的主要原因是保护气层遭到破坏,大量空气侵入焊接区所致。 造成保护气层失效的因素有:过小的CO2气体流量;喷嘴被飞溅物部分堵塞;喷嘴与工件的距离过大,以及焊接场地有侧向风等。 因此,适当增加CO2保护气体流量,保证气路畅通和气层的稳定、可靠,是防止焊缝中氮气孔的关键。 另外,工艺因素对气孔的产生也有影响。电弧电压越高,空气侵入的可能性越大,就越可能产生气孔。焊接速度主要影响熔池的结晶速度。焊接速度慢,熔池结晶也慢,气体容易逸出;焊接速度快,熔池结晶快,则气体不易排出,易产生气孔。

焊接气孔产生的主要原因

焊接气孔产生的主要原因: 1、电弧焊接中所产生的气体里含有过量的氢气及一氧化碳所造成的; 2、母材钢材中含硫量过多; 3、焊剂的性质和烘赔温度不够高; 4、焊接部位冷却速度过快; 5、焊接区域有油污、油漆、铁锈、水或镀锌层等造成; 6、空气中潮气太大、有风; 7、电弧发生偏吹。 CO2电弧焊时,由于熔池表面没有熔渣盖覆,CO2气流又有较强的冷却作用,因而熔池金属凝固比较快,但其中气体来不及逸出时,就容易在焊缝中产生气孔。 可能产生的气孔主要有3种:一氧化碳气孔、氢气孔和氮气孔。 1、一氧化碳气孔 产生CO气孔的原因,主要是熔池中的FeO和C发生如下的还原反应: FeO+C==Fe+CO 该反应在熔池处于结晶温度时,进行得比较剧烈,由于这时熔池已开始凝固,CO气体不易逸出,于是在焊缝中形成CO气孔。

如果焊丝中含有足够的脱氧元素Si和Mn,以及限制焊丝中的含碳量,就可以抑制上述的还原反应,有效地防止CO气孔的产生。所以CO2电弧焊中,只要焊丝选择适当,产生CO气孔的可能性是很小的。 2、氢气孔 如果熔池在高温时溶入了大量氢气,在结晶过程中又不能充分排出,则留在焊缝金属中形成气孔。 电弧区的氢主要来自焊丝、工件表面的油污及铁锈,以及CO2气体中所含的水分。油污为碳氢化合物,铁锈中含有结晶水,它们在电弧高温下都能分解出氢气。减少熔池中氢的溶解量,不仅可防止氢气孔,而且可提高焊缝金属的塑性。所以,一方面焊前要适当清除工件和焊丝表面的油污及铁锈,另一方面应尽可能使用含水分低的CO2气体。CO2气体中的水分常常是引起氢气孔的主要原因。 另外,氢是以离子形态溶解于熔池的。直流反极性时,熔池为负极,它发射大量电子,使熔池表面的氢离子又复合为原子,因而减少了进入熔池的氢离子的数量。所以直流反极性时,焊缝中含氢量为正极性时的1/3~1/5,产生氢气孔的倾向也比正极性时小。 3、氮气孔 氮气的来源:一是空气侵入焊接区;二是CO2气体不纯。试验表明:在短路过渡时CO2气体中加入φ(N2)=3%的氮气,射流过渡时CO2气体中加入φ(N2)=4%的氮气,仍不会产生氮气孔。而正常气体中含氮气很少,φ(N2)≤1%。由上述可推断,由于CO2气体不纯引起氮气孔的可能性不大,焊缝中产生氮气孔的主要原因是保护气层遭到破坏,大量空气侵入焊接区所致。

皮下气孔的形成原因及其预防解决措施

皮下气孔的形成原因及其预防解决措施 一、皮下气孔的产生可能与充型过程中铁液表层氧化结皮有关:氧化所产生的氧化物成为气泡的气核和部分气源,而氧化皮则使气泡被阻留在铸件表层,因而形成皮下气孔。高温铁液要冷却到一定温度才会氧化结皮,结皮温度取决于其化学成分,因而与原铁液成分、球化剂、孕育剂的成分和加入量有关。提高浇注温度,使铁液温度在充型过程中始终高于结皮温度,是防止铁液氧化结皮引起皮下气孔的有效方法;而在铁液成分和温度相同的情况下,铁液外层是否容易氧化结皮,取决于它与型壁和型腔气体的接触时间长短,也取决于型壁和型腔气体的激冷作用大小。快速大流量浇注有利于缩短上述接触时间和减小液流温度降低,恰当的紊流能使表层铁液不断更新并且有利于铁液内部气体的排除,而降低型砂水分和型腔湿度不但减少发气量,减少气源,而且还可以降低型壁和型腔气体的激冷作用,使铁液表层温度不容易降低到结皮温度,因而都有利于防止皮下气孔。 二、有些因素对皮下气孔的影响是双重性的。如镁的影响。有利影响是:(1)加镁处理可以清除铁液中的气体;(2)加镁球化处理后铁液表面张力明显提高(从800~900erg/cm2提高到1240~1350erg/cm2),而试验表明,铁液表面张力低容易产生皮下气孔,铁液表面张力高就不会有皮下气孔。不利影响是:(1)在高温下析出镁蒸气,成为皮下气孔的气源;(2)增大铁液从潮湿的浇包、砂型等吸收氢气的倾向;(3)提高铁液结皮温度,使铁液容易氧化结皮,阻碍气泡溢出,等等。这些不利影响比有利影响更强烈,因而最终还是促进皮下气孔形成。 有些因素虽然会增大皮下气孔倾向,但并不能单独引起皮下气孔。例如,硫提高铁液氧化结皮温度,因而被认为是增大皮下气孔倾向的元素,但是在呋喃树脂砂铸造厂生产过程中,皮下气孔却很少。这可能是因为:(1)MgS要与水分反应,产生烟状MgO气体,才会引起皮下气孔,而呋喃树脂砂型基本上不含水分,由于没有水分参与反应,未能形成气源,也就不会引起皮下气孔;(2)呋喃树脂砂导热性较低,激冷作用较小,铁液表层降温速度缓慢,不容易达到结皮温度,因而皮下气孔倾向较轻。 三、引起皮下气孔的气体来源是多方面的:上世纪80年代初发现,灰铁气缸体由于包内孕育硅铁加入量过多,产生了严重的表面气孔;静压造型线投产后,

压铸件气孔的成因和解决方法2

压铸件气孔的成因和解决方法2 一. 人的因素: 1. 脱模剂是否噴得太多? 因脱模济发气量大,用量过多时,浇注前未燃尽,使挥发气体被包在铸件表层。所以在同一条件下,某些工人操作时会产生较多的气孔的原因之一。选用发气量小的脱模济,用量薄而均匀,燃净后合模。 2 未经常清理溢流槽和排气道? 3 开模是否过早? 是否对模具进行了预热?各部位是否慢慢均匀升温,使型腔、型芯表面温度为150℃~200℃。 4 刚开始模温低时生产的产品有无隔离? 5 如果无预热装置时是否使用铝合金料慢速推入型腔预热或用其它方法加热? 6 是否取干净的铝液,有无将氧化层注入压室? 7 倒料时,是否将勺子靠近压室注入口,避免飞溅、氧化或卷入空气降温等。 8 金属液一倒入压室,是否即进行压射,温度有无降低了?。 9 冷却与开模,是否根据不同的产品选择开模时间? 10 有无因怕铝液飞出(飞水),不敢采用正常压铸压力?更不敢偿试当增加比压。? 11 操作员有无严格遵守压铸工艺? 12 有无采用定量浇注?如何确定浇注量? 二. 机(设备、模具、工装)的因素: 主要是指模具质量、设备性能。 1 压铸模具设计是否合理,会否导致有气孔? 压铸模具方面的原因: 1.浇口位置的选择和导流形状是否不当,导致金属液进入型腔产生正面撞击和产生旋涡。(降低压射速度,避免涡流包气) 2.浇道形状有无设计不良? 3.内浇口速度有无太高,产生湍流? 4.排气是否不畅? 5.模具型腔位置是否太深? 6.机械加工余量是否太大?穿透了表面致密层,露出皮下气孔?压铸件的机械切削加工余量应取得小一些,一般在0.5mm左右,既可减轻铸件重量、减少切削加工量以降低成本,又可避免皮下气孔露出。余量最好不要大于0.5mm,这样加工出来的面基本看不到气孔的,因为有硬质层的保护。 2 排气孔是否被堵死,气排不出来? 3 冲头润滑剂是否太多,或被烧焦?这也是产生气体的来源之一。 4 浇口位置和导流形状,有无金属液先封闭分型面上的排溢系统? 5 内浇口位置是否不合理,通过内浇口后的金属立即撞击型壁、产生涡流,气体被卷入金属流中? 6 排气道位置不对,造成排气条件不良? 7 溢气道面积是否够大,是否被阻塞,位置是否位於最后充填的地方?模具排气部位是否经常清理?避免因脱模剂堵塞而失去排气作用。 8 模温是否太低? 9 流道转弯是否圆滑?适当加大内浇口? 10 有无在深腔处开设排气塞,或采用镶拼形式增加排气? 11 有无因压铸设计不合理,形成有难以排气的部位?

(新)混凝土表面气孔形成原因分析

所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执。 混凝土表面气孔形成原因分析 作者:刘保瑞 摘要:本文从混凝土施工过程中经常遇见的结构表面气孔现象着手进行具体分析,综合施工和现场条件等外部影响因素,同时结合混凝土组分材料中砂、石、外加剂等可能产生影响的材料自身因素来探讨混凝土表面常出现气孔的原因,并相应给出控制措施建议。 关键词:混凝土表面气孔;振捣工艺;混凝土拌合物;混凝土硬化;现场养护 前言 当前建筑结构实体在安全、适用、经济、美观等方面都有着越来越高的要求,很多工程对一次性成型的混凝土结构已经不仅仅着眼于结构安全和质量保障方面,在混凝土成型结构实体的外观方面也要求甚高,大量的镜面混凝土、清水混凝土都应用到了工程中。然而,由于现场施工技术条件以及原材料品质的波动影响,常常会出现比较明显的混凝土表面气孔现象。针对这一现象,本人结合工程现场积累的经验和试验研究进行原因分析,发现引起混凝土外观气孔过多的因素有很多:如外加剂与水泥匹配性、砂石的级配质量、施工时振捣工艺、浇筑坯层厚度、模板质量、现场养护条件、脱模剂使用等等。从总体来说现场气孔问题的影响因素无外乎两方面,一是现场施工技术环境,二是现场材料的综合性能。下面就各项因素进行具体分析。 1砂、石等地材因素的影响 混凝土含气量过高时会有气孔现象出现。而砂、石的级配、模数、粒径等技术指标不能符合混凝土性能要求时不仅会影响到混凝土硬化后的强度,更会影响混凝土拌和物的流动性、和易性等性能,同时还会影响到本身骨料在拌和物中的含气量。这些都是与混凝土硬化后的表观质量有着密切联系的影响因素。从理论上讲,砂石的级配和粒形对混凝土拌合物的和易性影响很大,级配和粒形好的砂石有利于改善混凝土拌合物的和易性。一般要求砂的细度模数宜控制在2.6以上。细度模数小于2.5时,拌制的混凝土拌和物显得太粘稠,施工中难于振捣,且由于砂细,在满足相同和易性要求时,会增大水泥用量。这样不仅增加了成本,而且影响混凝土的技术性能,如混凝土的耐久性、收缩裂缝等。砂也不宜太粗,细度模数大于3.3时,容易引起新拌混凝土在运输浇筑过程中离析及保水性差,从而影响混凝土的内在质量与外观质量。另外当砂石中的含泥量和泥块含量,含泥量大将会影响混凝土的颜色。在工程现场进行的试验室留样对比发现,抽检砂石的级配合模数不合理情况下含气量检测值往往偏高,拌合出来的混凝土成型后存在气孔现象较几率较大。因此砂、石等地材的品质是影响混凝土拌合物性能并导致产生表面气孔的一个重要因素,在工程施工选料和配合设计时应引起重视。 2外加剂的影响 外加剂种类很多,其掺量虽少,但对改善混凝土的性能起着关键作用。当前工程现场常使用的外加剂主要是减水剂和膨胀剂两类。其中以泵送混凝土中使用的减水剂使用较多。下面从两个方面分析其影响。 (1)外加剂减水性能对混凝土的性能质量的影响。 外加剂的品质对混凝土拌合物的和易性、坍落度影响非常明显。效果不好的情况下会出现泌水、离析和坍落度损失的现象。若减水效果不好时,会产生因游离水较多引起的气孔。尤其是泵送混凝土,要求混凝土具有良好的和易性、流动性。其坍落度一般要求在80-180mm 左右,另外由于输送泵管径的限制,混凝土骨料粒径一般在10-30mm之间,因此泵送混凝土较非泵送混凝土每立方米要多用水25Kg左右。这些水分在混凝土中以游离的小水珠形式存在,蒸发后在混凝土内留下许多毛细孔,在施工振捣的过程中,一部分游离水在振动力的影 同是寒窗苦读,怎愿甘拜下风! 1

埋弧焊焊缝产生气孔的主要原因及防止措施如下

埋弧焊焊缝产生气孔的主要原因及防止措施如下: 1)焊剂吸潮或不干净焊剂中的水分、污物和氧化铁屑等都会使焊缝产生气孔,在回收使用的焊剂中这个问题更为突出。水分可通过烘干消除,烘干温度与肘间由焊剂生产厂家规定。防止焊剂吸收水分的最好方法是正确肋储存和保管6 采用真空式焊剂回、收器可以较有效地分离焊剂与尘土,从而减少回收焊剂在使用中产生气孔的可能性。 2)焊接时焊剂覆盖不充分由于电弧外露并卷入空气而造成气孔。焊接环缝时,特别是小直径的环缝,容易出现这种现象,应采取适当措施,防止焊剂散落。 3)熔渣粘度过大焊接时溶入高温液态金属中的气体在冷却过程中将以气泡形式溢出。如果熔渣粘度过大,气泡无法通过熔渣,被阻挡在焊缝金属表面附近而造成气孔。通过调整焊剂的化学成分,改变熔渣的粘度即可解决。 4)电弧磁偏吹焊接时经常发生电弧磁偏吹现象,特别是在用直流电焊接时更为严重。电弧磁偏吹会在焊缝中造成气孔。磁偏吹的方向、受很多因素的影响,例如工件上焊接电缆的联接位置:电缆接线处接触不良、部分焊接电缆环绕接头造成的二次磁场等。在同一条焊缝的不同部位,磁偏吹的方向也不相同。在接近端部的一段焊缝上,磁偏吹更经常发生,因此这段焊缝气孔也较多。为了减少磁偏吹的影响,应尽可能采用交流电源;工件上焊接电缆的联接位置尽可能远离焊缝终端;避免部分焊接电缆在工件上产生二次磁场等。 5)工件焊接部位被污染焊接坡口及其附近的铁锈、油污或其他污物在焊接时将产生大量气体,促使气孔生成,焊接之前应予清除。 油污要清理干净去掉氧化皮子焊剂干燥铁锈预热问题 再有就是停弧的时候先停速度在停弧这样可以减少缩孔裂纹等 再有就是清根要彻底

相关文档