文档库 最新最全的文档下载
当前位置:文档库 › 第二章 平稳随机过程的谱分析

第二章 平稳随机过程的谱分析

第二章 平稳随机过程的谱分析
第二章 平稳随机过程的谱分析

第二章平稳随机过程的谱分析

本章要解决的问题:

●随机信号是否也可以应用频域分析方法?

●傅里叶变换能否应用于随机信号?

●相关函数与功率谱的关系

●功率谱的应用

●采样定理

●白噪声的定义

2.1 随机过程的谱分析

2.1.1 预备知识

1、付氏变换:

对于一个确定性时间信号x(t),设x(t)是时间t的非周期实函数,且x(t) 满足狄利赫利条件(有限个极值,有限个断点,断点为有限值)且绝对可积,能量有限,则x(t)傅里叶变换存在。即:

满足上述三个条件的x(t)的傅里叶变换为:

其反变换为:

2、帕赛瓦等式

由上面式子可以得到:

——称为非周期性时间函数的帕塞瓦(Parseval)等式。

物理意义:若x(t)表示的是电压(或电流),则上式左边代表x(t)在时间(-∞,∞)区间的总能量(单位阻抗)。因此,等式右边的被积函数

2

)(ωX

X

表示了信号x(t)能量按频率分布的情况,故称2

)(ωX

X

能量谱密度。

2.1.2、随机过程的功率谱密度

一个信号的付氏变换是否存在,需要满足三个条件,那么随机信号是否满足这三个条件从而存在付氏变换呢?

随机信号持续时间无限长,因此,对于非0的样本函数,它的能量

一般也是无限的,因此,其付氏变换不存在。

但是注意到它的平均功率是有限的,在特定的条件下,仍然可以利用博里叶变换这一工具。

为了将傅里叶变换方法应用于随机过程,必须对过程的样本函数做某些限制,最简单的一种方法是应用截取函数。

x(t):

截取函数T

图2.1 x(t)及其截取函数

x(t)满足绝对可积条件。因此,当x(t)为有限值时,裁取函数T

x(t)的傅里叶变换存在,有

T

x(t)也应满足帕塞瓦等式,即:(注意积分区间和表达很明显,T

式的变化)

用2T 除上式等号的两端,可以得到

等号两边取集合平均,可以得到:

令∞→T ,再取极限,便可得到随机过程的平均功率。 交换求数学期望和积分的次序,可以得到:(注意这里由一条样本函数推广到更一般的随机过程,即下面式子对所有的样本函数均适用)

ω

ωπ

d T

T X E dt t X

E T

X T T

T T 2]

),([lim 21

)]([21lim

2

2

??∞

∞-∞→-∞

→=

上式等号的左边表示的正是随机过程消耗在单位电阻上的平均功率(包含时间平均和统计平均),以后我们将简称它为随机过程的功率并记为Q 。再看等式的右边,它当然也存在,并且等于Q 。

又因为2

),(ωT X

X

非负,所以极限T

T X

E X

T 2]),([lim

2

ω∞

→必定

存在,记为)(

ωX S :

ωωπ

d S dt t X

E T

Q X T

T T ??∞

∞--∞

→=

=)(21)]([21lim

2

注意:(1)Q 为确定性值,不是随机变量

(2))(ωX S 为确定性实函数。(见式)

● 两个结论: 1.><=)]([2

t X E A Q 式中,><>=<∞

→.21lim

.T

A T

表示时间平均。它说明,随机过

程的平均功率可以通过对过程的均方值求时间平均来得到,即对于一般的随机过程(例如,非平稳随机过程)求平均功率,需要既求时间平均,又求统计平均。显然, Q 不是随机变量。

若随机过程为平稳的,则

)0()]([)]([2

2X R t X E t X E A Q =>=<=

这是因为均方值与时间t 无关,其时间平均为它自身。

由于已经对2

),(ωT X

X

求了数学期望,所以)(ωX S 不再具有

随机性,它是ω的确定性函数。

● 功率谱密度:)(ωX S 描述了随机过程X(t)的功率

在各个不同频率上的分布——称)(ωX S 为随机过程X(t)的功

率谱密度。

● 对)(ωX S 在X(t)的整个频率范围内积分,便可得

到X(t)的功率。

● 对于平稳随机过程,则有:

?∞

∞-=

ωωπ

d S t X E X )(21)]([2

2.1.3、功率谱密度的性质

证明:

证明:

因为2

),(ωT X

X

进行了取模运算,这是ω的实函数,所以

)(ωX S 也是ω的实函数,且为确定性实函数。

证明:

因此:

即:

得:

证明:对于平稳随机过程,有:

?∞

∞-=

ωωπ

d S t X E X )(21

)]([2

2.2 联合平稳随机过程的互功率谱密度

2.2.1、互谱密度

可由单个随机过程的功率谱密度的概念,以及相应的分析方法

推广而来。

考虑两个平稳实随机过程X(t)、Y(t), 它们的样本函数分别为

)(t x 和)(t y ,定义两个截取函数()t x T 、()t y T 为:

因为()t x T 、()t y T 都满足绝对可积的条件,所以它们的傅里叶变换存在。

在时间范围(-T ,T)内,两个随机过程的互功率)(T Q XY 为:(注意

()t x T 、()t y T 为确定性函数,所以求平均功率只需取时间平均)

由于()t x T 、()t y T 的傅里叶变换存在,故帕塞瓦定理对它们也适用,即:

注意到上式中,)(t x 和)(t y 是任一样本函数,因此,具

有随机性,取数学期望,并令∞→T ,得:

])()(21[

lim )]([lim dt t y t x T

E Q T Q E T

T T XY XY T ?-∞

→∞

→==

=]),(21[

lim dt t t R T

T

T XY

T ?-∞

ωωωπ

d T

T X T X

E Y X

T 2)]

,(),([lim 21*

?∞

∞-∞

定义互功率谱密度为:

得:

同理,有:

又知

以上定义了互功率和互功率谱密度,并且导出了它们之间的关系。

2.2.2、互谱密度和互相关函数的关系

平稳随机过程的自相关函数与其功率谱密度之间互为傅里叶变换,互相关函数与互谱密度之间也存在着类似关系。

定义:对于两个实随机过程X(t)、Y(t),其互谱密度)(ωXY S 与互相关函数),(τ+t t R XY 之间的关系为

若X(t)、Y(t)各自平稳且联合平稳,则有

即:

式中,><.A 表示时间平均。 显然:

证明:略,参见自相关函数和功率谱密度关系的证明。

结论:对于两个联合平稳(至少是广义联合平稳)的实随机过程,它们的

互谱密度与其互相关函数互为傅里叶变换。

2.3.3、互谱密度的性质

互功率谱密度和功率谱密度不同,它不再是频率ω的正

的、实的和偶函数。

性质1:)()()(*

ωωωYX YX XY S S S =-= 证明:?∞

--=ττωωτ

d e

R S j XY XY )()(

=?∞∞---ττωτ

d e R j YX )( 令ττ-=

=?

∞∞

-ττωτ

d e

R j YX )(=)(*

ωYX

S

=?∞∞

---τττ

ωd e

R j YX )()(=)(ω-YX S

2

)

(Re[)](Re[ωω-=XY XY S S ;

)(Re[)](Re[ωω-=YX YX S S

证明:式中Re[·]表示实部。亦即互谱密度的实部为ω的偶函

数。

ττωωτ

d e

R S j XY XY ?∞

--=

)()(

=τωτωττd j R XY )]sin()[cos (?

--+

所以:τωττωd R S XY

XY ?∞

∞-=

cos )()](Re[ 令

ττ-=

τ

ωττd R XY

?∞

∞--cos )(=

)](Re[ω-XY S

其它同理可证。 性质3:

证明:类似性质2证明。

性质4:若X(t)与Y(t)正交,则有

证明:若X(t)与Y(t)正交,则0),(),(2121==t t R t t R YX XY 所以,0)()(==ωωYX XY S S

性质5:若X(t)与Y(t)不相关,X(t)、Y(t)分别具有常数均值X

m 和Y m ,则

证明:因为

X(t)与

Y(t)不相关,所以

Y X m m t Y t X E =)]()([21

ττωωτ

d e

R S j XY XY ?∞

--=

)()(=τωτ

d e

m m j Y

X ?∞

--

=)(2ωδπY X m m (注意)(21ωπδ?) 性质6:

式中,A表示时间平均。

这给出了一般的随机过程(包含平稳)的互谱密度与互相关函数的关系式。

[例2.2] 设两个随机过程X(t)和Y(t)联合平稳,其互相关

函数)(τXY R 为:

求互谱密度)(ωXY S ,)(ωYX S 解:先求)(ωXY S :

再求)(ωYX S

2.3 功率谱密度与自相关函数之间的关系

确定信号:x(t)? )(ωj X 。

随机信号:平稳随机过程的自相关函数?功率谱密度。

1.定义:

若随机过程X(t)是平稳的,自相关函数绝对可积,则自相关函数与功率谱密度构成一对付氏变换,即:

这一关系就是著名的维纳—辛钦定理、或称为维纳—辛钦公式。

2. 证明:

下面就来推导这一关系式。证明方法类似式的证明。

因为:由(3.1.14)式 2

[(,)]()lim

2X

X T E X

T S T

ωω→∞

= *

1lim

[(,)(,)]2X

X

T E X

T X

T T

ωω→∞

=

=1lim

2T T

→∞

1

2

1122[()()]T T j t j t T

T

E X t e

dt X t e dt ωω---?

?

交换积分和数学期望顺序

=21()

12121lim

[()()]2T T j t t T

T

T E X t X t e

dt dt T

ω----→∞

??

=??----∞

→-T T T

T t t j X T dt dt e

t t R T

21)

(12

12)(21lim

ω

设12t t -=τ,12t t u +=,则22

u

t τ+=

,2

1τ-=

u t

所以:212

12

1212

1

)

,()

,(21=-=??=u t t J τ t1

t2-T

T

2T

2T

u -2T τ

-=T u 2τ

+-=T u 2τ

+=T u 2τ

--=T u 2τ

图2.2

则du e R d T

S j X T

T T T X ωτ

τ

τ

ττ

ω--+-∞

→?

?=)(2

1{21lim

)(2022 })(2

10

222du e

R d j X T

T T ωτ

τ

τ

ττ

--+--??+

=})(2

121{

lim 2222du e

R d T j X T

T T T T ωτ

τ

τ

ττ

---+-∞

→??

=τ

ττωτ

d e

R T T

j X T

T

T --∞

→?-)()2(21

lim

22

=τττ

ωτ

d e

R T

j X T

T

T --∞→?-

)()21(lim

22 (1)

=?

∞∞

--ττωτ

d e

R j X )(-22lim

)()2T j X T

T R e

d T

ωτ

τ

ττ--→∞

?

(注意T ∞→,

02→T

τ

;且∞→τ时,0)(→τX R 。

因此,通常情况下,第二项为0

=?∞∞

--ττωτ

d e

R j X )(

证毕。

推论:对于一般的随机过程X(t),有:

功率为:

ω

ωπ

d S dt t X

E T

X T

T T ??∞

∞--∞

→=

)(21)]([21lim

2

(0=τ)——时

间平均加统计平均。

利用自相关函数和功率谱密度皆为偶函数的性质,又可将维纳—辛钦定理表示成:

3.单边功率谱

由于实平稳过程x(t)的自相关函数)(τX R 是实偶函数,

功率谱密度也一定是实偶函数。有时我们经常利用只有正频率部分的单边功率谱。

(常见的几种付氏变换关系需要记住)

[例 3.3] 平稳随机过程的自相关函数为τ

βτ-=Ae

R X )(,A>0,

0>β,求过程的功率谱密度。

解:应将积分按+τ和-τ分成两部分进行。

解:注意此时ττd R X ?

∞∞

-)(不是有限值,即不可积,因此

)(τX R 的付氏变换不存在,需要引入δ函数。

??∞

--∞

--=

=

τ

τωττωωτ

ωτ

d e

A

d e

R S i i X X )cos(2

)()(02

?∞

---+τωτ

τ

ωτ

ωd e e e

A

j j j 2

2

002

(注意:2

)cos(000τ

ωτ

ωτωj j e e

-+=

?∞

---+τωτ

τ

ωτ

ωd e e

e

A j j j )(004

2

)]()(

[2

002

ωωδωωδ

π++-A

(注意:)(200ωωπδτ

ω-?j e )

显然,它与时间t 有关,所以Y(t)为非平稳随机过程,

(一定要注意一般随机过程与平稳随机过程的平均功率和谱

密度的求法区别)

2.4 离散时间随机过程的功率谱度

2.4.1、离散时间随机过程的功率谱密度

1.平稳离散时间随机过程的相关函数

设X(n)为广义平稳离散时间随机过程,或简称为广义平稳随机序列,具有零均值,其自相关函数为:

简写为:

2.平稳离散时间随机过程的功率谱密度

式中,T 是随机序列相邻各值的时间间隔。)(ωX S 是频率为ω的周期性连续函数,其周期为

q T

ωπ22记为

=。)(ωX S 的傅里叶级数的

第3章 平稳随机过程的谱分析

第3章 平稳随机过程的谱分析 付里叶变换是处理确定性信号的有效工具,它信号的频域内分析处理信号,常常使分析工作大为简化。 对于随机信号,是否也可以应用频域分析方法?付里叶变换是否可引入随机信号中? 3.1 随机过程的谱分析 3.1.1 回顾:确定性信号的谱分析 )(t f 是非周期实函数, )(t f 的付里叶变换存在的充要条件是: 1.)(t f 在),(∞-∞上满足狄利赫利条件; 2.)(t f 绝对可积: +∞

3.1.2 随机过程的功率谱密度 一、样本函数的平均功率 问题1:由于付里叶变换是针对确定性函数进行的,在处理随机过程)(t X 时,取 )(t X 的一个样本函数)(t x (在曲线族中取某一曲线)来进行付里叶分 析。 问题2:随机过程)(t X 的样本函数)(t x 一般不满足付里叶变换的条件,它的总能 量是无限的,需考虑平均功率。 若随机过程)(t X 的样本函数)(t x 满足 +∞<=? -∞→T T T dt t x T W 2 )(21 lim W 称为样本函数)(t x 的平均功率。 对于平稳过程,其样本函数的平均功率是有限的。 二、截取函数 对于)(t X 的一个样本函数)(t x ,在)(t x 中截取长为T 2的一段,记为)(t x T , 它满足: ???? ?≥<=T t T t t x t x T 0 ) ()( 称)(t x T 为)(t x 的截取函数。 三、截取函数的付里叶变换 0>T ,取定后,)(t x T 的付里叶变换一定存在: ??--+∞ ∞--==T T t j t j T T dt e t x dt e t x X ωωω)()()( 其付里叶逆变换为: ? +∞ ∞ -= ωωπ ωd e X t x t j T T )(21 )( 其帕塞瓦(Parseval )等式为 ? ? ? +∞ ∞ --+∞ ∞ -= =ωωπ d X dt t x dt t x T T T T 2 2 2 )(21 )()(

功率谱和功率谱密度的区别

谱让人联想到的Fourier变换,是一个时间平均(time average)概念,对能量就是能量谱,对功率就是功率谱。 功率谱的概念是针对功率有限信号的,所表现的是单位频带内信号功率随频率的变化情况。保留了频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。 有两点需要注意: 1. 功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。(随机的频域序列) 2. 功率概念和幅度概念的差别。此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶矩是否存在并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。 频谱分析: 对动态信号在频率域内进行分析,分析的结果是以频率为坐标的各种物理量的谱线和曲线,可得到各种幅值以频率为变量的频谱函数F(ω)。频谱分析中可求得幅值谱、相位谱、功率谱和各种谱密度等等。频谱分析过程较为复杂,它是以傅里叶级数和傅里叶积分为基础的。 功率谱密度: 功率谱密度(PSD),它定义了信号或者时间序列的功率如何随频率分布。这里功率可能是实际物理上的功率,或者更经常便于表示抽象的信号被定义为信号数值的平方,也就是当信号的负载为1欧姆(ohm)时的实际功率。

由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。维纳-辛钦定理(Wiener-Khinchin theorem)提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。 信号的功率谱密度当且仅当信号是广义的平稳过程的时候才存在。如果信号不是平稳过程,那么自相关函数一定是两个变量的函数,这样就不存在功率谱密度,但是可以使用类似的技术估计时变谱密度。 随机信号是时域无限信号,不具备可积分条件,因此不能直接进行傅氏变换。一般用具有统计特性的功率谱来作为谱分析的依据。 功率谱与自相关函数是一个傅氏变换对。 功率谱具有单位频率的平均功率量纲。所以标准叫法是功率谱密度。从名字分解来看就是说,观察对象是功率,观察域是谱域。 通过功率谱密度函数,可以看出随机信号的能量随着频率的分布情况。像白噪声就是平行于一条直线。 一般我们讲的功率谱密度都是针对平稳随机过程的,由于平稳随机过程的样本函数一般不是绝对可积的,因此不能直接对它进行傅立叶分析。可以有三种办法来重新定义谱密度,来克服上述困难。 1. 用相关函数的傅立叶变换来定义谱密度; 2. 用随机过程的有限时间傅立叶变换来定义谱密度; 3. 用平稳随机过程的谱分解来定义谱密度。 三种定义方式对应于不同的用处,首先第一种方式前提是平稳随机过程不包含周

平稳随机过程的谱分析

第二章平稳随机过程的谱分析 本章要解决的问题: ●随机信号是否也可以应用频域分析方法? ●傅里叶变换能否应用于随机信号? ●相关函数与功率谱的关系 ●功率谱的应用 ●采样定理 ●白噪声的定义 2.1 随机过程的谱分析 2.1.1 预备知识 1、付氏变换: 对于一个确定性时间信号x(t),设x(t)是时间t的非周期实函数,且x(t) 满足狄利赫利条件(有限个极值,有限个断点,断点为有限值)且绝对可积,能量有限,则x(t)傅里叶变换存在。即: 满足上述三个条件的x(t)的傅里叶变换为:

其反变换为: 2、帕赛瓦等式 由上面式子可以得到: ——称为非周期性时间函数的帕塞瓦(Parseval)等式。 物理意义:若x(t)表示的是电压(或电流),则上式左边代表x(t)在时间(-∞,∞)区间的总能量(单位阻抗)。因此,等式右边的被积函数 2 ) (ωX X 表示了信号x(t)能量按频率分布的情况,故称 2 ) (ωX X 为 能量谱密度。 2.1.2、随机过程的功率谱密度 一个信号的付氏变换是否存在,需要满足三个条件,那么随机信号是否满足这三个条件从而存在付氏变换呢? 随机信号持续时间无限长,因此,对于非0的样本函数,它的能量

一般也是无限的,因此,其付氏变换不存在。 但是注意到它的平均功率是有限的,在特定的条件下,仍然可以利用博里叶变换这一工具。 为了将傅里叶变换方法应用于随机过程,必须对过程的样本函数做 某些限制,最简单的一种方法是应用截取函数。 x(t): 截取函数T 图2.1 x(t)及其截取函数 x(t)满足绝对可积条件。因此,当x(t)为有限值时,裁取函数T x(t)的傅里叶变换存在,有 T x(t)也应满足帕塞瓦等式,即:(注意积分区间和表达很明显,T 式的变化)

平稳随机过程

平稳随机过程 ?严格平稳随机过程 ?广义平稳随机过程 ?平稳随机过程自相关函数性质?各态历经过程

1. 严格平稳(Strict Sense Stationary, SSS)随机过程定义: 随机过程X (t )的任意N 维统计特性与时间起点无关。 1111(,,,,,)(,,,,,) X N N X N N p x x t t t t p x x t t +?+?=如果X (t ) 是严格平稳的,则与t 无关。 (,)()X X p x t p x =即X(t)与X(t+?t)具有相同的统计特性。

二维概率密度 只依赖于τ,与t 1和t 2的具体取值无关。 12121212121221212 (,,,)(,,,) (,,,0)(,,) X X X X p x x t t p x x t t t t p x x t t t t p x x t t =+?+?=-?=-=ττ=-

如果X (t )是严格平稳随机过程, 则 121212121212 (,)(,,,)() X X X R t t x x p x x t t dx dx R t t ∞ -∞ ==ττ=-?()()X X X m t xp x dx m ∞ -∞==?22 2()()()X X X X t x m p x dx ∞ -∞σ=-=σ ?

100200300400500 -4-3-2-101234Stationay Gaussian Noise 0100200300400500 -4 -3 -2-101234Non-stationay Gaussian Noise

平稳随机过程及其数字特征

平稳随机过程及其数字特征

平稳随机过程 粗略的说——随机过程的统计特征不随时间的推移而变化。一.严平稳随机过程 1. 定义设有随机过程{ X(t) , t ∈T},若对于任意n 和任意t1

因此:严平稳过程的二维数字特征仅是(时间差τ)的函数 综上所述:要按上述严平稳过程的定义来判断一个过程是否平稳?是很困难的。 a):一般在实用中,只要产生随机过程的主要物理条件,在时间 进程中不变化。则此过程就可以认为是平稳的。 例如:在电子管中由器件的颗粒效应引起的“散弹噪声”,由于产生此噪声的主要物理条件与时间无关,所以此噪声可以认为是平稳过程。 12121212 12 1 21212 2 2 2 (,)(,;)() (,)()()(,;)()()(0)(0)[()] X X X X X X X X X X X X X X R t t x x f x x dx dx R C t t x m x m f x x dx dx C R m C R m D X t τττττσ=?==??==?=?==∫∫∫∫

∞<)]([2 t X E b):另一方面,对有些非平稳过程,可以根据需要,如果它在所观测的时间段内是平稳的,就可以视作这一时间段上的平稳过程来处理。即在观测的有限时间段内,认为是平稳过程。 因此,工程中平稳过程的定义如下: 二、宽平稳过程1、定义 若二阶矩过程( )X(t) 满足: E[X(t)]=m x ←常数 R x (t 1,t 2)=R x (τ) ←只与时间间隔(τ=t 2-t 1)有关 则称过程X(t)为“宽平稳随机过程”(广义平稳过程)。 可见:一个均方值有限的严平稳过程,一定是宽平稳过程。反之:一个宽平稳过程,则不一定是严平稳过程。 c):一般在工程中,通常只在相关理论的范围内讨论过程的平稳问题。即:讨论与过程的一、二阶矩有关的问题。

功率谱密度

功率谱密度谱是一种概率统计方法,是对随机变量均方值的量度。一般用于随机振动分析,连续瞬态响应只能通过概率分布函数进行描述,即出现某水平响应所对应的概率。 功率谱密度是结构在随机动态载荷激励下响应的统计结果,是一条功率谱密度值—频率值的关系曲线,其中功率谱密度可以是位移功率谱密度、速度功率谱密度、加速度功率谱密度、力功率谱密度等形式。数学上,功率谱密度值—频率值的关系曲线下的面积就是方差,即响应标准偏差的平方值。 谱是个很不严格的东西,常常指信号的Fourier变换,是一个时间平均(time average)概念功率谱的概念是针对功率有限信号的(能量有限信号可用能量谱分析),所表现的是单位频带内信号功率随频率的变换情况。保留频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。有两个重要区别:1。功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。(随机的频域序列)2。功率概念和幅度概念的差别。此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶局是否存在并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。热心网友回答提问者对于答案的评价:谢谢解答。 频谱分析(也称频率分析),是对动态信号在频率域内进行分析,分析的 结果是以频率为坐标的各种物理量的谱线和曲线,可得到各种幅值以频率为变 量的频谱函数F(ω)。频谱分析中可求得幅值谱、相位谱、功率谱和各种谱密 度等等。频谱分析过程较为复杂,它是以傅里叶级数和傅里叶积分为基础的。 功率谱是个什么概念?它有单位吗? 随机信号是时域无限信号,不具备可积分条件,因此不能直接进行傅氏变换。一般用具有统计特性的功率谱来作为谱分析的依据。功率谱与自相关函数是一个傅氏变换对。功率谱具有单位频率的平均功率量纲。所以标准叫法是功率谱密度。通过功率谱密度函数,可以看出随机信号的能量随着频率的分布情况。像白噪声就是平行于w轴,在w轴上方的一条直线。 功率谱密度,从名字分解来看就是说,观察对象是功率,观察域是谱域,通常指频域,密度,就是指观察对象在观察域上的分布情况。一般我们讲的功率谱密度都是针对平稳随机过程的,由于平稳随机过程的样本函数一般不是绝对可积的,因此不能直接对它进行傅立叶分析。可以有三种办法来重新定义谱密度,来克服上述困难。 一是用相关函数的傅立叶变换来定义谱密度;二是用随机过程的有限时间傅立叶变换来定义谱密度;三是用平稳随机过程的谱分解来定义谱密度。三种定义方式对应于不同的用处,首先第一种方式前提是平稳随机过程不包含周期分量并且均值为零,这样才能保证相关函数在时差趋向于无穷时衰减,所以lonelystar说的不全对,光靠相关函数解决不了许多问题,要求太严格了;对于第二种方式,虽然一个平稳随机过程在无限时间上不能进行傅立叶变换,但是对于有限区间,傅立叶变换总是存在的,可以先架构有限时间区间上的变换,在对时间区间取极限,这个定义方式就是当前快速傅立叶变换(FFT)估计谱密度的依据;第三种方式是根据维纳的广义谐和分析理论:Generalized harmonic analysis, Acta Math, 55(1930),117-258,利用傅立叶-斯蒂吉斯积分,对均方连续的零均值平稳随机过程进行重构,在依靠正交性来建立的。 另外,对于非平稳随机过程,也有三种谱密度建立方法,由于字数限制,功率谱密度的单位

2.9 严平稳随机过程

随机信号分析

目录 CONTENTS CONTENTS 严平稳随机过程平稳随机过程的基本概念

-2.5-2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 t1t2t3t4t5t6t7t8快艇航行噪声随时间变化的观测实验第1次观测第2次观测第3次观测 ()()x m t E X t =????随机过程的数学期望()1x m t ()4x m t () 5x m t 如果数学期望与时间无关,将简化分析和计算! ()x x m t m =

-2.5-2 -1.5-1 -0.5 0.5 1 1.5 2 2.5 3 t1t2t3t4t5t6t7t8快艇航行噪声随时间变化的观测实验第1次观测第2次观测第3次观测 随机过程的自相关函数????=?R t t E X t X t X ,1212)()()(R t t X ,23) (?=τt t 320R t t X ,56)(?=τt t 650如果自相关函数与观察起始时刻无关,只和观察的两个随机变量的时间差有关? ==?ττR t t R t t X X ,,1221)()(有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)

严平稳随机过程 随机过程X t ,若它的n 维概率密度(或n 维分布函数) 不随时间起点选择的不同而改变 就是说,对任何n 和ε,随机过程X t 的n 维概率密度满足: +++=εεεf x x x t t f x x x t t X n n X n n ,,,;,,,t ,,,;,,,t 12121212)()(f x x x t t n n ,,,;,,,t 1212) (则称X t 为严(格)平稳过程,或称X t 为狭义平稳过程。 有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)

第十二章 平稳随机过程

第十二章平稳随机过程 平稳随机过程是一类应用相当广泛的随机过程.本章在介绍平稳过程概念之后,着重在二阶矩过程的范围内讨论平稳过程的各态历经性、相关函数的性质以及功率谱密度函数和它的性质. §1 平稳随机过程的概念 在实际中,有相当多的随机过程,不仅它现在的状态,而且它过去的状态,都对未来状态的发生有着很强的影响.有这样重要的一类随机过程,即所谓平稳随机过程,它的特点是:过程的统计特性不随时间的推移而变化.严格地说,如果对于任意的 和任意实数A,当时,n维随机变量 具有相同的分布函数,则称随机过程具有平稳性,并同时称此过程为平稳随机过程,或简称平稳过程. 平稳过程的参数集T,一般为 .当定义在离散参数集上时,也称过程为平稳随机序列或平稳时间序列.以下若无特殊声明,均认为参数集. 在实际问题中,确定过程的分布函敷,并用它来判定其平稳性,一般是很难办到的.但是,对于一个被研究的随机过程,如果前后的环境和主要条件都不随时间的推移而变化,则一般就可以认为是平稳的. .376. 恒温条件下的热噪声电压过程以及第十章§1例2、例3都是平稳过程的例子.强震阶段的地震波幅、船舶的颠簸过程、照明电网中电压的波动过程以及各种噪声和干扰等等在工程上都被认为是平稳的. 与平稳过程相反的是非平稳过程.一般,随机过程处于过渡阶段时总是非平稳的.例如,飞机控制在高度为丸的水平面上飞行,由于受到大气湍流的影响,实际飞行高度H(他)应在A水平面上下随机波动,H(他)可看作是平稳过程,但论及的时间范围必须排除飞机的升降阶段(过渡阶段),因为在升降阶段内由于飞行的主要条件随时间而发生变化,因而H(t)的主要特征也随时间而变化着,也就是说在升降阶段内过程II(t)是非平稳的.不过在实际问题中,当仅仅考虑过程的平稳阶段时,为了数学处理的方便,我们通常把平稳阶段的时间范围取为一oo<他<+oo.

随机过程分析

随机过程分析 摘要随着科学的发展,数学在我们日常的通信体系中有着越来越重的地位,因为在科学研究中,只有借助于数学才能精确地描述一个现象的不同量之间的关系,从最简单的加减乘除,到复杂的建模思想等等。其中,随机过程作为数学的一个重要分支,更是在整个通信过程中发挥着不可小觑的作用。如何全面的对随机信号进行系统和理论的分析是现在通信的关键,也是今后通信业能否取得巨大进步的关 键。 关键字通信系统随机过程噪声 通信中很多需要进行分析的信号都是随机信号。随机变量、随机过程是随机分析的两个基本概念。实际上很多通信中需要处理或者需要分析的信号都可以看成是一个随机变量,利用在系统中每次需要传送的信源数据流,就可以看成是一个随机变量。例如,在一定时间内电话交换台收到的呼叫次数是一个随机变量。也就是说把随某个参量而变化的随机变量统称为随机函数;把以时间t为参变量的随机函数称为随机过程。随机过程包括随机信号和随进噪声。如果信号的某个或某几个参数不能预知或不能完全预知,这种信号就称为随机信号;在通信系统中不能预测的噪声就称为随机噪声。下面对随机过程进行分析。 一、随机过程的统计特性 1、数学期望:表示随机过程的n个样本函数曲线的摆动中心,

?∞ ∞-==11);()]([)(dx t x xp t X E t a 2、方差:表示随机过程在时刻t 对于均值a(t)的偏离程度。 即均方值与均值平方之差。 {}?∞∞--=-=-==112222);()]([)]()([))](()([)]([)(dx t x p t a x t a t X E t X E t X E t X D t δ 3、自协方差函数和相关函数: 衡量随机过程任意两个时刻上获得的随机变量的统计相关特性时,常用协方差函数和相关函数来表示。 (1)自协方差函数定义 {} )]()()][()([);(221121t a t X t a t X E t t C x --=??∞∞-∞ ∞---=2121212211),;,()]()][([dx dx t t x x p t a x t a x 式中t1与t2是任意的两个时刻;a (t1)与a(t2)为在t1及t2得到的数学期望; 用途:用协方差来判断同一随机过程的两个变量是否相关。 (2)自相关函数 ??∞∞-∞ ∞-==2121212212121),;,()]()([),(dx dx t t x x p x x t X t X E t t R X 用途:a 用来判断广义平稳; b 用来求解随机过程的功率谱密度及平均功率。 二、平稳随机过程 1、定义(广义与狭义): 则称X(t)是平稳随机过程。该平稳称为严格平稳,狭义平稳或

平稳随机过程

第2章 平稳随机过程 2.1 平稳随机过程的基本概念 引言 “平稳”的中文含意:平坦、稳定。不大起大落。 随机过程)(t X ,当t 变化时,得一系列随机变量:)(1t X ,)(2t X ,……)(n t X 。 )(t X 具有“平稳”性,是指)(i t X 的变化稳定,不“大起大落”,各)(i t X 具有相同的分布规律、或具有相同的数字特征、或具有相同的概率密度。 在统计学中,)(1t X ,)(2t X ,……)(n t X 往往假设满足“独立同分布”(iid )。“独立”性不太容易满足,“同分布”就包含了“平稳性”。 2.1.1 严平稳过程及其数字特征 一、定义 随机过程)(t X 的n 维概率密度(或n 维分布函数)),,,(2121n n X t t t x x x p 不随时间起点选择不同而改变。即:对任何n 和ε,过程)(t X 的概率密度满足: ),,,(),,,(21212121εεε+++=n n X n n X t t t x x x p t t t x x x p 则称)(t X 为严平稳过程。 二、严平稳过程的一、二维概率密度 结论:严平稳过程)(t X 的一维概率密度与时间无关;严平稳过程)(t X 的二维概率密度只与 1t 、2t 时间间隔12t t -=τ有关。 证明:当n =1时,对任何ε,有),(),(1111ε+=t x p t x p X X 。 取1t -=ε,则有)()0,(),(),(),(111111111x p x p t t x p t x p t x p X X X X X ==-=+=ε。 当n =2时,对任何ε,有),,,(),,,(21212121εε++=t t x x p t t x x p X X 。 取1t -=ε,12t t -=τ,则),,(),0,,(),,,(2112212121τx x p t t x x p t t x x p X X X =-=。 三、严平稳过程的数字特征 (1)若)(t X 是严平稳过程,则它的均值、均方值、方差皆为与时间无关的常数。

随机过程关于平稳过程中的各态历经性的综述

关于平稳过程中的各态历经性的综述 首先要介绍一下什么是平稳过程,平稳过程是一类统计特性不随时间推移而变化的过程。在实际中,有相当多的随机过程,不仅它现在的状态,而且它过去的状态,都对未来状态的发生有着很强的影响。有这样重要的一类随机过程,即所谓平稳随机过程,它的特点是:过程的统计特性不随时间的推移而变化。严格地说,如果对于任意的n (=1,2…),12,,t t t T ∈n …,和任意实数h,当 12,,n t h t h t h T +++∈…,时,n 维随机变量 (X(1t ),X(2t ),…,X(t n )) 和 (X (1t h +),X (2t h +),…,X (n t h +)) 具有相同的分布函数,则称随机过程{}X ∈(t ),t T 具有平稳性,并同时称此过程为平稳随机过程,或简称平稳过程。 在实际工作中,确定随机过程的均值函数和相关函数是很重要的。而要确定随机过程的数字特征一般来说需要知道过程的一﹑二维分布,这在实际问题中往往不易办到,因为这时要求对一个过程进行大量重复的实验,以便得到很多的样本函数。 但是由于平稳过程的统计特性不随时间的推移而变化,就会提出这样一个问题:能否从一个时间范围内观察到的样本函数或一个样本函数在某些时刻的取值来提取过程的数字特征呢?所谓各态历经,是指可以从过程的一个样本函数中获得它的各种统计特性;具有这一特性的随机过程称为具有各态历经性的随机过程,只要有一个样本函数就可以表示出它的数字特征。 定义 设X (t )是均方连续平稳随机过程,如果它沿整个时间上的平均值即时间平均值〈X (t )〉存在,即 〈X (t )〉=1lim ()2T T T X t dt T -→∞? 存在,而且〈X (t )〉=E {X (t )}=X μ依概率1相等。即〈X (t )〉依概率1等于X μ= E {X (t )}, X μ代表随机过程的集平均(或称统计平均),则称该过程的均值具有各态历经性。 定义 设X (t )是一均方连续平稳随机过程,且对于固定的τ,()X t X t τ(+)也是连续平稳随机过程,〈()X t X t τ(+)〉 代表()X t X t τ(+)沿整个时间轴的平均值,即 ()X t X t τ(+)=1lim (+)()2T T T X t X t dt T τ-→∞? 若〈()X t X t τ(+)〉存在,称〈()X t X t τ(+)〉为X (τ)的时间相关函数。又

第六章 平稳随机过程

第六章 平稳随机过程 在自然科学与工程技术研究中遇到的随机过程有很多并不具有Markov 性,这就是说从随机过程本身随时间的变化和互相关联来看,不仅它当前的状况,而且它过去的状况都对未来的状况有着不可忽略的影响,并且其统计特征不随时间推移而变化,这类随机过程称为平稳过程. 例如,恒温条件下热噪声电压()X t 是由于电路中电子的热扰动引起的,这种热扰动不随时间推移而改变;又如,连续测量飞机飞行速度产生的测量误差()X t ,它有很多因素(如仪器振动,电磁波干扰与气候等)造成,但主要因素不随时间推移而改变. 平稳过程是一种特殊的二阶矩过程,其表现在过程的统计特性不随时间的推移而改变.用概率论语言来描述:相隔时间h 的两个时刻t 与t h +处随机过程所处的状态()X t 与 ()X t h +具有相同的概率分布.一般地,两个n 维随机向量()12(),(),,()n X t X t X t 与 ()12(),(),,()n X t h X t h X t h +++ 具有相同的概率分布. 这一思想抓住了没有固定时间 (空间)起点的物理系统中最自然现象的本质,因而平稳过程在通讯理论、天文学、生物学、生态学、和经济学个领域中有着十分广泛的应用. 6.1 随机微积分 在高等数学的微积分中,连续、导数和积分等概念都是建立在极限概念的基础上.对于随机过程的研究,也需要建立在随机过程的连续性、可导性和可积性等概念的基础上,这些内容形式上与高等数学极为相似,但实质不同,高等数学研究的对象是函数,随机微积分研究的对象是随机函数(即随机过程),有关这部分的内容统称为随机分析(stochastic analysis ). 在随机分析中,随机序列极限的定义有多种,下面我们简单介绍常用的定义.由于我们主要研究广义平稳过程(具体的定义将在第二节介绍),因此,以下的随机过程都假定为二阶矩过程.为了讨论的方便,我们约定:今后如不加说明,二阶矩过程{(),}X t t T ∈的均值函数()()0X m t EX t ==,自协方差函数(,)()()X C s t E X s X t ??=?? . 6.1.1 均方收敛 定义6.1 称二阶矩随机序列{()}n X ω以概率为1收敛于二阶矩随机变量()X ω,若使 lim ()()n n X X ωω→∞ =成立集合的概率为1,即 {} :lim ()()1n n P X X ωωω→∞ == 或称{()}n X ω几乎处处收敛(almost everywhere converge )于()X ω,记作n X ..a e ??→ X .

功率谱和功率谱密度的区别

谱让人联想到的Fourier变换, 是一个时间平均(time average)概念,对能量就是能量谱,对功率就是功率谱。 功率谱的概念是针对功率有限信号的,所表现的是单位频带内信号功率随频率的变化情况。保留了频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。 有两点需要注意:?1. 功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。(随机的频域序列)?2. 功率概念和幅度概念的差别。此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶矩是否存在并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。 频谱分析: 对动态信号在频率域内进行分析,分析的结果是以频率为坐标的各种物理量的谱线和曲线,可得到各种幅值以频率为变量的频谱函数F(ω)。频谱分析中可求得幅值谱、相位谱、功率谱和各种谱密度等等。频谱分析过程较为复杂,它是以傅里叶级数和傅里叶积分为基础的。 功率谱密度: 功率谱密度(PSD),它定义了信号或者时间序列的功率如何随频率分布。这里功率可能是实际物理上的功率,或者更经常便于表示抽象的信号被定义为信号数值的平方,也就是当信号的负载为1欧姆(ohm)时的实际功率。 由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。维纳-辛钦定理(Wiener-Khinchin theorem)提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。 信号的功率谱密度当且仅当信号是广义的平稳过程的时候才存在。如果信号不是平稳过程,那么自相关函数一定是两个变量的函数,这样就不存在功率谱密度,但是可以使用类似的技术估计时变谱密度。 随机信号是时域无限信号,不具备可积分条件,因此不能直接进行傅氏变换。一般用具有统计特性的功率谱来作为谱分析的依据。?功率谱与自相关函数是一个傅氏变换对。?功率谱具有单位频率的平均功率量纲。所以标准叫法是功率谱密度。从名字分解来看就是说,观察对象是功率,观察域是谱域。 通过功率谱密度函数,可以看出随机信号的能量随着频率的分布情况。像白噪声就是平行于一条直线。 一般我们讲的功率谱密度都是针对平稳随机过程的,由于平稳随机过程的样本函数一般不是绝对可积的,因此不能直接对它进行傅立叶分析。可以有三种办法来重新定义谱密度,来克服上述困难。?1. 用相关函数的傅立叶变换来定义谱密度;?2.用随机过程的有限时间傅立叶变换来定义谱密度;?3. 用平稳随机过程的谱分解来定义谱密度。?三种定义方式对应于不同的用处,首先第一种方

(完整)随机过程总结,推荐文档

第一章随机变量基础 1历史上哪些学者对随机过程学科的基础理论做出了突出贡献? 答:随机过程整个学科的理论基础是由柯尔莫哥洛夫和杜布奠定的。这一学科最早源于对物理学的研究,如吉布斯、玻尔兹曼、庞加莱等人对统计力学的研究,及后来爱因斯坦、维纳、莱维等人对布朗运动的开创性工作。1907年前后,马尔可夫研究了一系列有特定相依性的随机变量,后人称之为马尔可夫链。1923年维纳给出布朗运动的数学定义,直到今日这一过程仍是重要的研究课题。随机过程一般理论的研究通常认为开始于20世纪30年代。1931年,柯尔莫哥洛夫发表了《概率论的解析方法》,1934年A·辛饮发表了《平稳过程的相关理论》,这两篇著作奠定了马尔可夫过程与平稳过程的理论基础。1953年,杜布出版了名著《随机过程论》,系统且严格地叙述了随机过程基本理论。 2 全概率公式的含义? 答:全概率公式的含义就是各种可能发生的情况的概率之和为1。 3 概率空间有哪几个要素,其概念体现了对随机信号什么样的建模思想? 答:样本空间、事件集合、概率函数称为概率空间的三要素。概率函数建立了随机事件与可描述随机事件可能性大小的实数间的对应关系,因此,概率空间是在观测者观测前对随机事件发生的可能性大小进行了量化,其有效性是通过多次观测体现出来的,也即在多次观测中,某个随机事件发生的频率可直接认为与其发生的概率相等,所以,概率空间的建模思想实际是对大量观测中某随机事件发生频率的稳定性的描述。 4 可用哪些概率函数完全描述一个随机变量? 答:概率分布函数(cdf)、概率密度函数(pdf)、特征函数(cf)、概率生成函数(gf)。 5 可用哪些数字特征部分描述一个随机变量? 答:均值、方差、协方差、相关系数和高阶矩。 6 随机变量与通常意义上的变量有何区别与联系? 答:随机变量具有通常意义上的变量的所有性质和特征(即变量特性),还增加了变量取每个值的可能性大小的描述(即概率特性)。因此,描述或刻画一个随机变量时,还必须要特别考察其概率函数或各阶矩函数。 第二章随机过程的基本概念 1 什么是随机现象? 答:对于某个客观对象,在观测前能知道其可能的结果,但不能明确知道是可能结果中的哪一个,那么该客观对象称为随机现象。 2 如何理解随机过程? 答:一个理解:随机过程是一组样本函数的集合;根据这个理解,可用试验的方法研究随机过程,通过随机试验观测其各个样本函数,观测次数越多,所得样本函数的数目越多,就越能掌握该随机过程的统计规律。另一个理解:随机过程可看作是一簇随时间变化的随机变量的集合;随机过程可视为多维随机变量的推广,时间分割越细,多维随机变量的维数越大,对随机过程的统计描述也就越全面,因此,概率论中多维随机变量的理论也可作为随机过程分析的理论基础。 3 为什么完全描述一个随机过程需要用概率函数族? 答:随机过程是一簇随时间变化的随机变量的集合,对于每一个固定时刻,它们都是随机变量,可以用概率函数来描述。这些不同时刻的随机变量是相互联系的,要描述它们间的各阶关联特性就必须用各阶概率函数。因此,完全描述一个随机过程必须用概率函数族。 4 可用哪些数字特征部分描述随机过程?

相关文档
相关文档 最新文档