文档库 最新最全的文档下载
当前位置:文档库 › 壳多糖及其衍生物的应用

壳多糖及其衍生物的应用

壳多糖及其衍生物的应用
壳多糖及其衍生物的应用

壳多糖及其衍生物的应用

[摘要]综述了近年来甲壳素及其衍生物的研究和应用。甲壳素及其衍生物作为絮凝剂可以有效地保留药液中的有效成分,保持制剂的稳定性;降低药液中的重金属离子含量;甲壳素及其衍生物可生物降解,有良好的生物相容性和成膜性,是中药辅料的理想材质;对壳聚糖进行结构修饰和改性,大大提高其在中药制药中的应用范围并促进了药剂药理学的发展。

[关键词]壳多糖及其衍生物中药辅料微球细胞培养

[引言]甲壳素又名甲壳质,壳多糖,是一种胺基多糖,大量存在于海洋节肢动物(虾、蟹)的甲壳中,也存在于低等动物菌类、昆虫、藻类细胞膜中,分布很广泛[1]。壳聚糖是甲壳素的脱乙酰产物,又名甲壳胺或可溶性甲壳质,是生物界唯一的碱性多糖,甲壳素及其衍生物是一种丰富的自然资源,存储量仅次于维生素,地球上每年生成量达100亿吨。甲壳素及其衍生物是一种阳离子型天然高分子聚合物,有良好的成膜、絮凝、生物相容、可生物降解和无毒等特性,且本身具有抗菌、抗癌、抗病毒等药理作用,因此,甲壳素及其衍生物被广泛地应用于化工、纺织、食品、化妆品、生物医学、污水处理及功能高分子材料等领域。本综述对近年来甲壳素及其衍生物在中药制药工业中的应用和研究作简要概述。

[结构]

甲壳素是一种天然高分子化合物,其学名是β—(1→4) —2—乙酰胺基—2—脱氧—D—葡萄糖,是由N—乙酰胺基葡萄糖以及β—1,4糖苷键缩合而成[4]。如果把此结构中糖基上的N—乙酰基大部分去掉的话,就成为甲壳素最为重要的脱乙酰化衍生物壳聚糖。壳聚糖是由D—氨基葡萄糖和适量的N—乙酰—D—氨基葡萄糖以—β(1,4)糖苷键连接而组成的。

其化学名是(1,4)—2—氨基—2—脱氧—β—D—葡萄糖,结构类似于纤维素[1,2]。

[理化性质]

甲壳素呈灰白色或白色片状、半透明、略有珍珠光泽的无定性固体,相对分子量因原料和制备方法的差异而从数十万到数百万不等。不溶于水、稀碱、稀酸及一般的有机溶剂,可溶于浓的盐酸、硫酸、硝酸等无机酸和大量的有机酸[1]。

壳聚糖是葡糖胺和N —乙酰葡萄糖胺的复合物,由于聚合程度的不同其分子量在50~1000kda之间[1]。壳聚糖的外观呈半晶体状态,晶体化程度与去乙酰化相关,50%去乙酰化时,其晶体化程度最低。甲壳素和壳聚糖均具有非常复杂的螺旋结构,且甲壳素和壳聚糖的结构单元不是单胺(N—乙酰胺基葡萄糖或者氨基葡萄糖),而是二胺。甲壳素和壳聚糖分子中含有—OH基、—NH2基、吡喃环、氧桥等动能基,因此在一定的条件可以发生生物降解、水解、烷基化、酰基化、缩合等化学反应。作为氨基多糖,壳聚糖(pKa=6.5)溶解性与pH

值紧密相关,在酸性条件下,由于氨基质子化而溶于水。在pH<5时,壳聚糖完全溶于水形成十分粘稠的液体(其特性黏度受pH和离子强度的影响),经碱化处理后,可以形凝胶而沉淀。

壳聚糖是一种带正电荷的阳离子聚合物[3],在酸性水溶液中可与聚阴离子化合物如:肝素、海藻酸钠、梭甲基甲壳素等相互作用,形成聚电解质配合物。

壳聚糖分子链吡喃糖环C2上有氨基,C6上有羧基,因此能在较温和的条件下发生化学反映,制备出具有新特性的衍生物。并且可以通过改造修饰其侧链基团而赋予新的化学衍生物以新的生物活性。因为从自然界中获取的甲壳素脱乙酰化而得到的壳聚糖只溶于酸性环境中,使得它在体内的应用受到很大的限制。现在我们可以通过在其分子上加上水溶性基团而使之溶于生理盐水中,从而减少酸性溶液对人体组织的刺激。

[应用]

1. 甲壳素及其衍生物在中药辅料中的应用

1.1用作片剂的崩解剂

中药片剂具有疗效确切、使用方便、患者易接受等优点。但是由于崩解慢,溶出差,生物利用度较低,使用受到一定限制。王中彦等[29]以甲壳素作为崩解剂,制备肝炎宁和穿心莲浸膏片,并与以淀粉、羧甲淀粉钠、低取代羟丙基纤维素及微晶纤维素为崩解剂的片剂进行比较,结果表明,甲壳素的崩解性能优于上述4种崩解剂。壳聚糖还有良好的粘性和润滑性,可作为直接压片的赋型剂。

1.2 用作缓控释材料

壳聚糖的安全和低毒,可生物降解,生物相容性好,使得壳聚糖成为理想的缓控释材料成为可能。吴海珊等[30]以交联壳聚糖为载体,制备了绞股蓝总皂苷缓释微球,此壳聚糖微球在水和人工胃液中均具有显著的缓释作用。

王凯等[31]研究以壳聚糖为基质,以丹参为主药制备的丹参药膜的体外释药特性,以HPLC测定药膜中丹参酮ⅡA和隐丹参酮在37 5℃释放动力学,结果表明,丹参酮ⅡA的释放符合Higuchi方程,该药膜对丹参酮ⅡA有缓释作用,而对隐丹参酮无缓释作用。

对壳聚糖进行改性合成羧甲基壳聚糖[32],作为植入环丙沙星微球的缓释辅料,采用乳化交联技术制备微球,研究体外释放特性时发现,环丙沙星微球的体外释放时间可达7d以上,释放行为符合Higuchi方程。因此,对甲壳素和壳聚糖进行各种修饰,引入多功能基团,改善其在水中的溶解性能,将进一步扩大其作为控释辅料的应用范围。

1.3 用作复合药膜材料

甲壳素及其衍生物有较好的成膜性,成膜后有一定的抗拉性、柔软性、吸湿性,生物相容性好,无毒性。当植入生物体内或覆盖在创伤表面,引起的生物组织反应小,且可被组织中的酶降解。在强酸性介质中壳聚糖膜不稳定,在弱酸性及中性介质中膜较稳定,溶菌酶对膜的生物降解有促进作用[33]。

用高科技手段,将壳聚糖和紫草、白芷、血竭、珍珠等中药有效成分

相结合,制成壳聚糖复合药膜[34],治疗大鼠体表溃疡的机理研究表明,壳聚糖中药复合药膜可以通过刺激机体分泌大量的吞噬细胞及促进毛细血管内皮生长因子、增值细胞核抗原释放,促进肉芽组织生长,减少纤维组织的增生,加快溃疡愈合的过程。并且在临床治疗83例难治性溃疡病人中,痊愈79例,好转4例,全部有效[35]。

沈静等[36]以丹参为主药,以壳聚糖和明胶为基质,制备丹参药膜,研究对消化道吻合口愈合机制表明,丹参药膜局部应用促进炎症反应、毛细血管增生和胶原合成的作用均优于丹参全身用药。丹参药膜在消化道器官吻合口愈合的过程中具有促进正常细胞再生的积极作用,且作用强于丹参注射液。

2 .壳聚糖在微球制备中的应用

壳聚糖是甲壳素的部分脱乙酰基产物,是自然界中唯一的碱性多糖。作为甲壳素的脱乙酰化衍生物,CS有良好的生物相容性、生物可降解性、粘合性和无毒性,因而被广泛用于医学等领域[4]。

载药微球由于对特定器官和组织具有靶向性及对包裹在微球中的药物具有缓释和控释效应,因此载药微球的制备已经成为目前的研究热点。而CS微球作为一种具有广泛前景的新型药物载体,除了具有亲水性能可以延长药物微球在体内循环的时间和减少巨噬细胞捕获,从而提高药物生物利用度以外;它还可以提高药物的包封率和载药量。根据CS微球应用目的的不同,可以用CS制成不同大小的微球。现在,利用CS制备化疗药物、消炎药、胰岛素、抗生素等药物的缓释制剂已取得了良好的效果,并已用于临床。

壳聚糖微球的制备方法有乳化交联法、蒸发溶剂、喷雾干燥、液中干燥、沉淀/凝聚以及复凝聚法等。复凝聚法是指利用两种聚合物在不同的pH值下电荷的变化,即一种带负电荷的胶体溶液与一种带正电荷的胶体溶液相混,由于异种电荷之间的相互作用形成聚电解质复合物而发生分离,沉积在囊芯周围而得到微胶囊。海藻酸钠、聚丙基酸钠等高分子材料均能分别与壳聚糖起复凝聚作用。目前,壳聚糖微球已经应用于包封多种药物[5-8]、蛋白质(多肽)[9-11]、激素类物质[12]、氨基酸[13,14]等等。募容等[15]采用反相悬浮交联法合成了直径为100nm,粒度分布均匀,磁响应强,有吸附能力的,具有核壳结构的磁性壳聚糖纳米微球(magnetic chitosan nanoparticls,MCNP),考察了MCNP的吸附和释放药物的性能。

虽然壳聚糖具有一些良好的特性可用于载药微球的制备优良特性,但是在微球制备过程中,壳聚糖一般需要两次脱乙酰化反应。由于制备条件的不同和原料来源的差异,分子量、脱乙酰化的程度波动较大;此外,在制备微球时,壳聚糖须用酸溶液溶解,制备水溶性的壳聚糖衍生物的技术有待进一步完善。

3.壳聚糖在药理学中的应用

3.1抑制肿瘤

小分子甲壳素衍生物具有优良的抗肿瘤活性和多方面的生理功能,特别是壳聚六糖具有很强的抑制肿瘤的作用。日本爱嫒大学医学部奥田教授,从C3H/Hei白鼠的脾脏中采取淋巴球,观察壳聚糖的存

在是否增加杀死YAC-1癌细胞的能力。实验用癌细胞预先注入放射性镉,癌细胞若受破坏,可由测定流出在细胞外的放射性的量判定。根据实验结果,他确认,壳聚糖在64微克/毫升的浓度时就能增强淋巴球细胞杀死癌细胞的作用。铃木茂生报道,壳聚糖能直接抑制艾氏腹水癌细胞的作用。在含有1×105的癌细胞溶液中,加入0.5毫克/毫升的壳聚糖,24小时后癌细胞完全死亡。Saiki I报道,6-O-硫酸甲壳素和6-O-硫酸羧甲基甲壳素对黑色素瘤肿瘤细胞有明显的抑制作用,且作用呈量效关系。据报道,体外试验发现壳聚糖在一定浓度范围内对L1210白血病癌细胞有选择性凝集作用。6-O-羧甲基甲壳素可与5-氟尿嘧啶结合,注入P388白血病小鼠的腹腔中,显示明显的抗癌作用。N-羧丁基-1-β-D-阿拉伯呋喃糖基胞嘧啶与壳聚糖可产生共轭结合,此共轭物对患有P388淋巴性白血病的小鼠有明显的抑制作用。

3.2抗心律失常

目前认为心律失常的发生与离子通道电流异常有关,而钾电流的异常是心律失常的主要原因。中国医科大学张沈丽、王丽娟等研究脱乙酰羧甲基甲壳素对豚鼠单一心室肌细胞延迟外向电流(Ik)的作用,从离子通道角度,探讨其作用机理。结果表明,该化合物以浓度依赖方式抑制Ik,阻断细胞内K+的堆积,从而延长心肌细胞的APD和ERP,发挥抗心律失常作用。她们认为脱乙酰羧甲基甲壳素在抗心律失常等心血管疾病方面具有广泛的应用前景。沈阳铁路总医院高凤兰应用脱

乙酰羧甲基甲壳素口服治疗心绞痛5人,心律失常4人,顽固性心衰4人,均收到满意疗效。

4 .作为药物吸收促进因子

许多研究都证实壳多糖可用做药物跨粘膜运输释放的增强因子.Dodane V等[54]通过实验研究了壳多糖对上皮细胞通透性的影响.证明壳多糖是通过影响上皮细胞胞内及胞外通道来提高细胞的通透性 Kotze AF等[55]也利用两种壳多糖衍生物做了肠上皮细胞(Caco 一2)细胞通透性及跨膜运输的实验研究,壳多糖盐酸盐、壳多糖谷氨酸盐(W/V0.5% ~ 1.5% )在酸性条件下均可增进肠上皮细胞(Caco 一2)的通透性且提高跨膜运输的能力。

Schipper NG等[56]在细胞水平做了不同分子量、不同乙酰度的壳多糖对促进药物吸收及细胞毒性实验.他们培养单层肠上皮细胞(Caco一2),分子量为31KD.乙酰度为1% 的壳多糖显示剂量依赖性的吸收促进作用.但显示细胞毒性。而分子量为170KD.乙酰度为35% 的壳多糖不显示剂量依赖性的吸收促进作用,也不显示细胞毒性N一三甲基壳多糖可打开肠上皮细胞的粘连而促进物质的跨膜转运Kotze AF等[57-59]研究不同季铵化度的N一三甲基壳多糖氯化物对肠上皮细胞(Caco一2)渗透性的影响。结果发现高季铵化度的产品(19.9% )比低季铵化度的产品(12.6 %)在同样浓度下(1.5 %~2.5% W /V)能更强刺激物质跨上皮转运.季铵化度是影响跨肠上皮细胞转运吸收增强因子能力的1个非常重要因素。

[参考文献]

[1] 吕福堂,甲壳素及其应用,生物学通报,2003,3(12):21-22。

[2] 孙冀平,壳聚糖及其应用,《中国食品添加剂》,2005,5:83- 86。

[3] 陈耀华,人类第6生命要素,锦州医学院学报,1999,20(5):48-53

[4] 郎亚军,张苓花,王运吉,甲壳素研究和应用,《中国食品添加剂》,2004(1):83- 86

[5] 李柱来,王津,陈莉敏等,头袍曲松钠壳聚糖微球制备工艺初探,海峡药学,2006,18(4):28-31。

[6] 刘海弟,陈运法,曾冬冬等,用于肺部给药的壳聚糖空心微球的制备,功能材料,2005,4(361):616-618。

[7] 宋益民,陈西广,唐学玺等,卡托普利/壳聚糖明胶网络多聚物缓释微球制备工艺的研究,海洋水产研究,2005,26(4):53-58。[8] 沈宏亮,王强,钱方等,左氧氟沙星梭甲基壳聚糖缓释微球的制备及其体外释放研究,第二军医大学学报,2004,5(25):482-484。

[9] Wang LY,Gu YH, Zhou QZ et al, Preparation and characterization of uniform-sized chitosan microspheres containing insulin by membrane emulsification and a two-step solidification process. Colloids and Surfaces B: Biointerfaces, 2006, 50:126–135.

[10] 古永红,王连艳,谭天伟等,尺寸均一的壳聚糖微球的制备及其作为胰岛素控释载体的研究,生物工程学报,2006,1,22(1):150-155。

[11] 覃昱,斐国献,甲壳素及其衍生物在组织工程研究中的应用,中

国海洋药物,2002(3):54-56。

[12] Xue ZX, Yang GP, Zhang ZP, et al, Application of chitosan microspheres as carriers of LH-RH analogue TX46. Reactive & Functional Polymers,2006,66:893–901。

[13] Wang LY,Gu YH, Su ZG, et al, Preparation and improvement of release behavior of chitosan microspheres containing insulin,International Journal of Pharmaceutics,2006,311:187–195.

[14] 肖玲,贲伟伟,壳聚糖靛粉共混微球的制备及其吸附性能,武汉人学学报(理学版),2006,52(2):189-192。

[15] 慕蓉,载阿霉素磁性壳聚糖毫微移植性肝癌的研究,西北大学硕士学位论文,2005。

54 .Dodne V .Amin Khan M .Merwin JR.Effect of

Chitosan on epithelval permeability and structure

. Pkam,Jg99,l 0.182(1):2l

55. Kate AF.Luessn HL. a1.Chitosan for enha—

need intestina1 perm eability : prospects for

derlvatjves soluble j/i rleutral and basic

envlronm ent. J PkormEci.1999.7(2):145

56 Schipper NG .Olsson S-et a1.Chltosan as absor-

ption enhancers for poorly absorbabl drugs

meeham ism of absoption enhaneem erit. Pkam Res,1997.14(7):923

57 Kotze AF.Lossen HL. a1.N-trimethyl Chit-

osan ohio ride as a porential absorption enharicer

across m ucosal su rfaces . in vitro evaluation in intestinal eplthe]val ceils (Caco一2). Parm Res.

1997.14(9):1197

58 Kotze.Than0u M M .et a1.Effect of the degree

of quarter nization of N trim ehyl Chltosan chloride

on the perm eab Jl JtY of intestinal epithelval cells (Caco 2),P.1999,47(3):269

59 Thanon M M .VetbeeJc .et al.Effect of N —

tr Jm ethy] Chitosan chloride . a rlovel absorption enhancer on Caco一2 intestinal epithelva and the

ciliary beat frequency of chicken em bryo trachea- Int Jrm,1999.5.185(5):73

[小结]甲壳素是一种胺基多糖,在自然界大量存在。壳聚糖是甲壳素的脱乙酰产物,其毒性低可生物降解,可被体内组织中酶降解,具有良好生物相容性。因此甲壳素及其衍生物用于中药水提液、辅料中是安全的,但是,壳聚糖本身有一定药理功效,在中药制药中或多或少会有一些残留,故使用过程中应对其残留量作一定探讨和说明。

由于甲壳素及其衍生物的化学修饰方法不同,其分子质量大小也不同,故具有不同的作用和用途;对其研究的深度和广度还远远不能适应日益发展的中药事业。总之,随着科学技术的不断进步以及对甲壳素及

其衍生物的研究的进一步深入,这一类具有独特性能的高分子化合物,必将在中药制药工业、药理药剂学中有光明的前途和应用前景。

发酵工程在环境保护中的应用探讨

发酵工程在环境保护中的应用探讨 环境工程专业李双 自然界存在着丰富的微生物种群,在生物圈物质循环中着重充当分解者的角色。微生物通过发酵作用,可以对物质进行降解与转化。因此,利用微生物发酵工程的原理与技术,净化和处理环境污染物,可以实现废物资源化,提高整体工艺的效益,降低运行成本,同时达到减轻环境污染,保护环境的目的。 发酵工程是生物技术的瓶颈,固态发酵作为发酵工程一个重要的部分,在资源环境应用研究方面取得了重要进展。 1、发酵的概念 发酵是微生物分解有机物,产生乳酸或乙醇和二氧化碳的过程,发酵必须依靠微生物酶的参与,并为微生物提供细胞生命活动所需的能量和各种细胞结构物质。工业上的发酵是泛指一切依靠微生物的生命活动而实现的工业生产过程。 2、发酵的特点 2.1发酵条件温和 发酵过程一般来说都是微生物及其酶作用下的生物化学反应,通常在常温常压下进行,其反应条件也比较简单温和,因此发酵的过程要素条件一般比较容易控制。 2.2发酵原料广泛 发酵所用的原料通常以淀粉、糖蜜或其他农副产品为主,还可以用许多环境中的废弃物,因此发酵原料来源广泛。可以充分利用废水和废物中的有机物作为发酵的原料进行污染物的降解利用和资源化,达到废物资源化和环境保护的目的。 2.3发酵专一性强 发酵过程是通过生物体的自动调节方式来完成的,更确切地讲,是通过微生物的酶来调节的,由于微生物的遗传特性及其酶的专一性,因此,发酵反应的专一性强,因而可以得到较为单—的发酵代谢产物。 2.4发酵的高效性

微生物优良菌种是进行发酵的根本因素,是发酵取得良好效益的关键。通过微生物诱变和菌种筛选,可以获得高产的优良菌株并使生产设备得到充分利用,也可以因此获得按常规方法难以生产的产品,因此发酵具有高效性。 2.5发酵的创新性 随着科学技术的发展和人们对生物技术研究的深入,现代发酵工程除了使用微生物外,还可以用动植物细胞和酶,也可以用人工构建的“工程菌”来进行反应;反应设备也不只是常规的发酵罐,而是以各种各样的生物反应器取而代之,自动化、连续化程度高,使发酵水平在原有基础上有所提高和和创新。 3、发酵工程的原理 发酵的基本原理是单一菌种在培养基中的纯培养,因此优良菌种的选育和发酵过程中对杂菌污染的防治至关重要。优良菌种的选育是发酵取得良好效益的关键,因此必须采取合理的菌种选育方法,获得性能优良稳定的菌种。此外,发酵过程杂菌防治是生产成败的关键,除了必须对设备进行严格消毒处理和空气过滤外,反应必须在无菌条件下进行。无菌操作和无菌概念要贯穿整个发酵过程的始终。 4、发酵工程的应用 微生物发酵技术已经广泛运用于环境保护的多方面,以下重点介绍几项经多年开发,已接近产业化的微生物发酵技术。 4.1亚硫酸盐纸浆废液乙醇发酵 亚硫酸盐纸浆废液中含有较多的木质素和相当数量的糖类,亚硫酸盐纸浆废液经过预处理后,添加N、P,在发酵罐中加入絮状酵母,通入空气搅拌,进行乙醇发酵,可生产乙醇。 4.2酵母循环系统 酵母循环系统是一种利用酵母的新式食品废水处理系统,能有效地处理废水并能回收大量的酵母菌体,从而解决了活性污泥法剩余的污泥问题。与细菌活性污泥系统相比,酵母废水系统的性能大大提高。酵母废水处理系统日处理能力达到10-15BODkg/m3,是细菌法的5-7倍,酵母污泥可在常压下脱水,无需添加药剂。 4.3废纤维素的资源化

枸杞多糖功效研究及应用状况

枸杞多糖功效研究及应用状况 (作者:___________单位:___________ 邮编:___________ ) 【摘要】枸杞多糖是传统药食两用的枸杞子的主要功效成分,近年来研究表明其具有增加免疫能力、抗氧化和延缓衰老、抗肿瘤、神经保护、抗辐射、保护生殖系统等功能,作者对其功效研究、安全性和应用的研究进展进行了综述,并对今后的研究方向进行展望。 【关键词】枸杞多糖;功效;安全性;应用;综述 [Abstract] Lycium barbarum polysaccharide(LBP) is the main functional ingredient extracted from the Lycium barbarum, which is both tranditional food and medicine. Recent studies indicated that the LBPhad effects of elevating immuneability, anti ftioxidation and anti ftiaging, antitumour, neuroprotection, protecti on to gen ital system and etc. This paper reviewed the studies on the fun cti ons, sefety and applicati on of LBP in recent yeares, and further gave the predictive studying directi ons. [Key words] Lycium barbarum polysaccharide; function; safety; applicati on; review

发酵工程在食品领域中的应用

发酵工程在食品领域的应用 摘要:传统的发酵工程是以非纯种微生物进行的自然发酵,或以纯种微生物进行的工业化发酵。现代发酵工程作为现代生物技术的重要组成部分,具有广阔应用前景。本文以下将介绍微生物发酵在新食品的配料、食品添加剂、功能性食品的开发等相关的食品领域中的应用以及对发酵工程在食品领域的应用做了展望。 关键词:发酵工程;食品领域;应用 发酵工程在食品领域的应用广泛。如啤酒是用大麦芽和酒花经啤酒酵母发酵而成。酒类饮料生产中常以谷物或水果味原料经不同的微生物(酵母菌、曲霉等)发酵,加工制成不同的酒。酸奶是在鲜奶里加入了乳酸菌经发酵而成。醋是利用米、麦、高粱等淀粉原料或直接用酒精接入醋酸杆菌发酵加工而成。酱是利用麦、麸皮、大豆等原料经多种微生物(曲霉、酵母菌和细菌)的协同作用制成。现代发酵工程包括微生物资源开发利用;微生物菌种的选育、培养;固定化细胞技术;生物反应器设计;发酵条件的利用及自动化控制;产品的分离提纯等技术。 1、生产传统的发酵产品 传统的发酵产品是指传统食品发展中一直存在的应用发酵技术的食品,如料酒、酱油、酒精等。在传统食品的生产中,发酵技术是生产过程中的核心部分。发酵技术的是否成熟,时刻关系到产品的好坏[1]。 1.1酒类酿造 酒类主要是酿造酒和蒸馏酒。原料经发酵后,不需再蒸馏而可直接饮用的酒称为酿造酒,如啤酒、葡萄酒、黄酒、日本清酒、果酒等。将发酵液或酒酿经过蒸馏得到蒸馏酒,如白酒、白兰地、威士忌、朗姆、伏特加等。传统的发酵方法在时间上较长,无法有效地满足啤酒厂家在现阶段啤酒生产的实际需求。但利用固定化酵母的连续发酵工艺,可有效地减少啤酒所需要发酵的实际时间。 1.2调味品生产 运用发酵工艺可以生产酱油、酱品、豆腐乳、豆豉、醋等调味品[2]。现阶段,发酵工艺也有很大提高,发酵工程在我国的酱油、酱类、豆腐乳等传统的制造行业中得到广泛应用。发酵工程最大的一个优点是可有效地缩短发酵的周期,大大地提升原料的利用率,并在一定程度上提高相关产品的品质[3]。 2、食品添加剂的生产 发酵工程在食品的发酵过程中能生产出天然色素和天然香味型剂,这些天然色素和天然香味型剂可以取代人工合成色素与味精,是未来食品添加剂发展的方向。现在市面上常见的各种食用色素以及香料等都是通过发酵工程技术而生产的食品添加剂[4]。江苏化工学院全易等[5]自制得选择性优良且价廉的糖化酶和异淀粉酶,生产出低甜度、低热量、高粘度、不被微生物发酵的甜味麦芽糖醇。食品防腐剂枯草芽孢杆菌是一种非致病型细菌,在生产代谢过程中产生的抗菌肽,可抑制食品中真菌、细菌、酵母菌的生长,且无毒、无残留、抑菌效果显著、无耐药性[6]。 3、功能性食品的开发 我们不仅需要将药用的天然真菌直接作用至功能性食品的开发上,而且还需要批量的生

枸杞多糖功效研究及应用状况

枸杞多糖功效研究及应用状况 (作者:___________单位: ___________邮编: ___________) 【摘要】枸杞多糖是传统药食两用的枸杞子的主要功效成分,近年来研究表明其具有增加免疫能力、抗氧化和延缓衰老、抗肿瘤、神经保护、抗辐射、保护生殖系统等功能,作者对其功效研究、安全性和应用的研究进展进行了综述,并对今后的研究方向进行展望。 【关键词】枸杞多糖; 功效; 安全性; 应用; 综述 [Abstract] Lycium barbarum polysaccharide(LBP) is the main functional ingredient extracted from the Lycium barbarum, which is both tranditional food and medicine. Recent studies indicated that the LBP had effects of elevating immune ability, anti oxidation and anti aging, antitumour, neuroprotection, protection to genital system and etc. This paper reviewed the studies on the functions, sefety and application of LBP in recent yeares, and further gave the predictive studying directions. [Key words] Lycium barbarum polysaccharide; function;

微生物多糖的研究进展样本

微生物多糖的研究进展 生命科学技术学院08级2班杜长蔓 摘要: 就微生物多糖的种类, 生物合成、提取与纯化、实现了工业化的微生物多糖及其应用进行了综述, 展望了微生物多糖开发利用的前景。微生物多糖主要指大部分细菌、少量的真菌和藻类产生的多糖。微生物多糖由于具有安全性高、副作用小、理化特性独特等优点而使其在食品和非食品工业备受关注,特别在医药领域具有巨大的应用潜力。微生物多糖在细胞内主要有三种存在形式: ①黏附在细胞表面上,即胞壁多糖; ②分泌到培养基中,即胞外多糖; ③构成微 生物细胞的成分,即胞内多糖。而其中的胞外多糖具有产生量大、易于与菌体分离、可经过深层发酵实现工业化生产。一般微生物多糖的生产主要是利用淀粉为碳源,经过微生物的发酵进行生产,也有经过利用微生物产生的酶作用制成的。能够产生微生物胞外多糖的微生物种类较多,可是真正有应用价值并已进行或接近工业化生产的仅十几种。近几年,随着对微生物多糖研究的深入,世界上微生物多糖的产量和年增长量在10 %以上,而一些新兴多糖年增长量在30 %以上。到当前为止,已大量投产的微生物胞外多糖有黄原胶(Xant han gum) 、结冷胶 ( Gellan gum) 、小核菌葡聚糖(Scleeroglucan) 、短梗霉多糖( Pullulan) 、热凝多糖(Curdlan) 等。微生物多糖和植物多糖相比较具有以下优势:①生产周期短,不受季节、地域、病虫害等条件的限制; ②具有较强的市场竞争力和广阔的发展前景; ③ 应用广泛,例如已作为胶凝剂、成膜剂、保鲜剂、乳化剂等广泛应用于食品、制药、石油、化工等多个领域。据估计,当前全世界微生物多糖年加工业产值可达80 亿左右。 关键词: 微生物多糖; 生物合成; 提取与纯化;开发应用 0引言

多糖生物活性及其发展状况的研究【文献综述】

文献综述 食品科学与工程 多糖生物活性及其发展状况的研究 [摘要]多糖是一类重要的生物活性物质,广泛存在于动物、植物、微生物等有机体中.它是自然界中储量丰富的生物聚合物,具有免疫调节、抗肿瘤、降血糖、降血脂、抗辐射、抗菌抗病毒、保护肝脏等功能。本文就国内外目前对多糖的来源、生物活性及提取方法进行了综述。 [关键字] 多糖;来源;生物活性;提取方法 1 概述 多糖(polysaccharide, PS)是由单糖之间脱水形成糖苷键,并由糖苷键线性或者分枝连接组成的链状聚合物,广泛地分布于动物、植物、微生物、海藻等几乎所有的有机体中。多糖除了作为生物体的能量资源和构成材料外,还是一种生物效应调节剂,能控制细胞的分裂与分化,调节细胞的生长与衰老,增强机体的免疫功能。1943年,多糖作为广谱免疫促进剂被首次应用于临床,此后应用越来越广。多糖作为药物始于1943年[1],随着化学和生物学的快速发展和分离技术的提高,多糖的生物学功能,特别是多糖作为生命物质参与生命的全部时间和空间功能,如受精、着床、分化、发育、免疫、感染、癌变、衰变等等[2],突破了多糖作为支持组织和能量来源的传统观念。20世纪70年代发现多糖类物质具有抗病毒、抗凝血、诱导干扰素产生、促进蛋白质、核酸生物合成等功能。 2 多糖的来源 糖类物质是所有生命有机体的重要组成部分,广泛存在于动物、植物、和微生物细胞壁中,是生物体内除核酸和蛋白质以外的又一类重要的生物分子。多糖按照来源可分为植物多糖、微生物多糖、藻类多糖和动物多糖等。 植物多糖来源于植物的根、茎、叶、皮、种子和花。我国今年来对植物多糖,特别是具有中国特色的中草药多糖的药物活性已有广泛和深入的研究,例如免疫调节功能是植物多糖最主要和最重要的生物活性,药用植物中存在着广泛的免疫活性多糖。植物多糖研究的比较深入的有黄氏多糖、当归多糖、刺五茄多糖、芦荟多糖等[3]。目前在中草药中的某些品种,特别是生物活性明确的中草药来源的多糖,如何能较快达到符合国际规范的新药是很迫切的

2020年(生物科技行业)微生物工程

(生物科技行业)微生物工 程

微生物工程 壹.名词解释 微生物工程:指采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的壹种技术。 拮抗作用:当多种物质联合作用时,其中的壹种物质会通过壹定渠道降低另壹种物质的作用(通常是有害作用),使机体维持平衡状态。例如当人体血糖含量较高时,胰岛素分泌增加,胰高血糖素分泌减少,俩种激素桔抗作用使血糖的含量降低。当血糖含量较低时,胰岛素分泌减少,胰高血糖素分泌增加,结果是使血糖的含量升高。 生物测定:利用某些生物对某些物质(如维生素、氨基酸)的特殊需要,或对某些物质(如激素、抗生素、药物等)的特殊反应来定性、定量测定这些物质的方法。载体:能够插入核酸片段、能携带外源核酸进入宿主细胞,且在其中进行独立和稳定的自我复制的核酸分子。 质粒:细胞中独立于染色体之外,能够独立复制的共价闭合环状DNA. 菌落原位杂交:是将细菌从培养平板转移到硝酸纤维素滤膜上,然后将滤膜上的菌落裂菌以释出DNA。将DNA烘干固定于膜上和放射性同位素标记过的探针杂交,放射自显影检测菌落杂交信号,且和平板上的菌落对位。 效价:抗生素的计量单位,是抗生素等生物制品有效成分含量高低的指标,能够通过仪器的方法测得。 复制起始位点:指在DNA转录时RNA聚合酶和之结合,起始转录的特定核苷酸序列,决定转录起始位点和转录频率。 BOD(生物需氧量):通常表示水中有机物等需氧污染物质含量的壹个综合指示。水中有机物由于微生物的生化作用进行氧化分解,使之无机化或气体化时所

消耗水中溶解氧的总数量。 半连续发酵:指在发酵过程的后期周期性地放出部分含有产物的发酵液,然后再补加相同体积的新鲜培养基的发酵方法。这种发酵能够重复多次。 半连续发酵semi-continuousfermentation:是指在补料-分批发酵的基础上,间歇地放掉部分发酵液的培养方法。 补充发酵:指在发酵过程中以壹定的速率排出成熟的发酵液,同时以相同的速率加入新鲜培养基,使整个发酵过程基本维持在稳定期的发酵方法。 抗生素:是由微生物(包括细菌、真菌、放线菌属)或高等动植物在生活过程中所产生的具有抗病原体或其它活性的壹类次级代谢产物,能干扰其他生活细胞发育功能的化学物质。 下游处理:特指生物工程产品生产程序中的后期加工。指的是生物产品特别是发酵液的分离、纯化、加工、剂型制备等,直至达到产品质量要求的整个处理过程。 二.简答题 1.基因工程在微生物工程的应用表当下哪些方面?每壹方面举例1-2个说明。答:①生产药物疫苗中的引用:这类基因工程药物的生产是当前基因工程最重要的应用领域,发展迅速。例如:有抗肿瘤.抗病毒功能干扰素.白细胞等;用于生理调节的胰岛素和其他生长激素等。 ②改造传统工业发酵菌种:例如生产抗生素.氨基酸.有机酸.酶制剂等,这类菌种基本上都要经过长期的诱变或重组育种,生产性能很难再大幅度的提高。要打破这壹局面,必须使用基因工程的手段才能解决。目前在氨基酸.酶制剂等领域已有大量成功的例子。 ③环境保护:在环境保护方面,利用基因工程可培育同时能分解多种有毒物质

极端环境微生物的研究进展

[摘要]极端微生物通常分为六个类群:嗜热微生物、嗜冷微生物、嗜酸微生物、嗜碱微生物、嗜盐微生物、嗜压微生物。极端环境中的微生物为了适应生存,逐步形成了独特的结构和生理机能,以适应环境。因此,研究适应机理并利用其特殊生理机能具有重要的理论和实际意义,极端微生物能产生多种极端酶和其他生物活性物质,极端微生物资源的开发利用有着广阔的前景。 极端环境(extreme environment) 泛指存在某些特殊物理和化学状态的自然环境,包括高温、低温、强酸、强碱、高盐、高压、高辐射和极端缺氧环境等,适合在极端环境中生活的微生物称为极端微生物(extremophiles)( Margesin and Schinner,2001【1】; Rothschild and Mancinelli,2001【2】;骏等,2006【3】;敏和东秀珠,2006【4】).海洋极端环境一般是指与正常海洋环境绝然不同的物理化学环境,主要包括海底热泉、海底冷泉和泥火山环境,其次还包括高盐度(卤水)、强酸化、缺氧和滞流等海洋环境。海洋极端微生物通常为化能自养生物(chemoautotroph),在分类体系上属于细菌和古细菌类,生活在无光、无氧或少氧环境,能利用一些海底热催化反应过程中产生的还原性小分子(H2、H2S和CH4 等)合成能量进行有机碳固定和新代,具有独特的基因类型、特殊生态群落、特殊生理机理和特殊代产物,有些属于共生生物(endosymbiont)。 一、极端微生物的种类及其生理特点 1.1 极端嗜热菌(Thermophiles) 一般最适生长温度在90℃以上的微生物,被称做极端嗜热菌【5,6】。已发现的极端嗜热菌有20多个属,大多是古细菌,生活在深海火山喷口附近或其周围区域【7】。如斯坦福大学科学家发现的古细菌,最适生长温度为100℃,8O℃以下即失活;德国的斯梯特(K Stette)研究组在意大利海底发现的一族古细菌,能生活在110℃以上高温中,最适生长温度为98℃,降至84℃即停止生长;美国的巴罗斯(J.Baroos)发现一些从火山喷口中分离出的细菌可以生活在250℃的环境中,嗜热菌的营养围很广。多为异养菌,其中许多能将硫氧化以取得能量。 1.2 极端嗜酸菌(Acidophiles) 一般指生活环境pH值在1以下的微生物,往往生长在火山区或含硫量极为丰富的地区。多为古细菌,其体环境保持pH值7左右。能氧化硫,硫酸作为代产物排出体外。嗜酸菌往往也是嗜高温菌。 1.3 极端嗜盐菌(Extremehalophiles)

灵芝多糖的研究进展_张卫国

中图分类号:R979.1 R730.53;文献标识号:A ;文章篇号:1007-2764(2003)03-0036-85  灵芝多糖的研究进展 张卫国1 刘欣2 陈永泉2  (1韶关大学英东生物工程学院 韶关 512005)(2华南农业大学食品学院 广州510642) 摘 要: 灵芝多糖是灵芝中含有的一种高分子活性多糖,具有多种生理功能,国内外对此开展了广泛的研究。本文对其生理功能、结构特点、发酵生产等方面的研究进行了综述。  关键词:多糖;生理功能;结构;发酵    Research advance of G.japonicum polysaccharide Zhang Weiguo1, Liuxin 2, Chen Yongquan2 (1 Food Department , Shaoguan University, Shaoguan ,512005) (2 Food college, South-China Agricultural University, Guangzhou 510642) Abtract: G.japonicum Polysaccharide is a high-molecule active material that has many functions. Its research has done widely at home and abroad. The paper reviews its function, structure and fermenting production.。 Key words: polysaccharide; function; structure; fermentation   1 灵芝及其医疗保健作用  灵芝是一种营养、保健价值极高的大型担子菌。目前已知灵芝属约有100多种,其中以赤芝和紫芝的药理价值最高,临床上主要也是使用这两种灵芝[1]。我国是灵芝真菌资源丰富的国家,它们多生长在浙江、江西、湖南、广西、云南、贵州、福建、海南等地区,紫芝是中国特有的灵芝种类[2]。灵芝含有有机锗、高分子多糖、灵芝酸及腺嘌呤核苷等生物活性成分。 灵芝与人类健康有极其密切的关系。关于灵芝的药效作用,历代本草学家都有所论述,早在2千多年前的春秋战国时期,《列子、汤问》列御寇中云“朽壤之一,有菌之者”,并总结当时利于灵芝治病保健的经验:“煮百沸其味清芳,饮之明目,脑清、心静、肾坚,其宝物也”[3]。 最早的药学著作《专著神农本草经》把灵芝列为上品,谓其“久味苦平,主治胸中结,益心气,补中,增智慧,不忘,久服轻身不老”。 李时珍在《本草纲目》中对灵芝药性和功效作了详尽的记述:赤芝,苦平无毒,主治胸中结、益心收稿日期:2003-5-2 气、补中、增智慧、不忘;紫芝,甘温无毒,好颜色、治虚劳、治痔[4]。 现代医学药理研究和临床上都已证明:灵芝可增强机体对自由基的清除能力,故能减少自由基对机体的损伤,有延缓衰老之功效,还可以提高免疫力、抗炎症、降低血液中胆固醇含量、降血脂、降血糖等药效[6]。 2 活性多糖的研究概述 活性多糖是一种具有某些特殊生理功能的多糖类高分子化合物,广泛存在于植物、动物和微生物组织中。按照来源分类,活性多糖分为植物多糖、动物多糖、微生物多糖等,还可以进一步细分,如微生物多糖再分为细菌多糖和真菌多糖等。按照化学结构分类,多糖分为均多糖和杂多糖[7]。活性多糖作为药物始于1943年,六十年代后,活性多糖作为广谱免疫促进剂引起了人们极大的兴趣[8]。八十年代又发现活性多糖的糖链在分子生物学中具有决定性的作用,能控制细胞分裂和分化,调节细胞的生长和衰老[9]。近年来,多糖结构与功能的关系以及多糖复合物疫苗等研究在国际上受到了较多的关注。 85

微生物发酵工程的应用范围

微生物发酵工程的应用范围 酒类:包括果酒、啤酒、白酒及其他酒均是利用酿酒酵母,在厌氧条件下进行发酵,将葡萄糖转化为酒精生产的。白酒经过蒸馏,因此酒的主要成分是水和酒精,以及一些加热后易挥发物质,如各种酯类、其他醇类和少量低碳醛酮类化合物。果酒和啤酒是非蒸馏酒,发酵时酵母将果汁中或发酵液中的葡萄糖,转化为酒精,而其他营养成分会部分被酵母利用,产生一些代谢产物,如氨基酸、维生素等,也会进入发酵的酒液中。因此,果酒和啤酒营养价值较高。 醋:食品店或超市出售的醋中,除了白醋是由化学合成的食品级醋酸勾兑的外,其他的则是由醋酸菌在好氧条件下发酵,将固体发酵产生的酒精转化为醋酸生产的。由于使用的微生物菌种或曲种的差异,在葡萄糖发酵过程中会产生乳酸或其他有机酸,因而使醋有不同的风味。 酱油:酱油生产以大豆为主要原料,其他有麦麸、小麦、玉米等,将上述原料经粉碎制成固体培养基,在好氧条件下,利用产生蛋白酶的霉菌,如黑曲霉进行发酵。微生物在生长过程中会产生大量的蛋白酶,将培养基中的蛋白质水解成小分子的肽和氨基酸,然后淋洗、调制成酱油产品。酱油富含氨基酸和肽,具有特殊香味。 酸奶:牛奶在厌氧条件下,由乳酸菌发酵,将乳糖分解,并进一步发酵产生乳酸和其他有机酸,以及一些芳香物质和维生素等;同时蛋白质也部分水解。因此,酸奶是营养丰富、易消化,少含乳糖,是适合于有乳糖不适应症者的优良食品。 醪糟:又称酒酿,是大米经蒸煮后,接种根霉,在好氧条件下,发酵生产的含低浓度酒精和不同糖分的食品。根霉在生长时会产生大量的淀粉酶,将大米中的淀粉水解成葡萄糖,同时利用部分葡萄糖发酵产生酒精。由于使用的根霉菌种不同,可以生产不同酒精度、不同甜度和不同香味的醪糟。

枸杞多糖的生化分析和降血糖活性

枸杞多糖的生化分析和降血糖活性 摘要:本实验研究了枸杞多糖的纯化,表性特征和降血糖活性。通过超滤膜分离获得水溶性多糖(LBP),并通过DEAE纤维素柱和Sephadex的色谱法进一步纯化G-150得到LBP3a和LBP3b。分析表明LBP3b的平均分子量(Mw)为4.92kDa。单糖组成分析显示,LBP3b由摩尔比为5.52:5.11:28.06:1.00:1.70的甘露糖,鼠李糖,葡萄糖,半乳糖和木糖组成。并通过UV,FTIR,NMR和SEM研究了LBP3b的初步结构特征。体外细胞实验显示,LBP3b以剂量依赖的方式显著抑制葡萄糖的吸收。研究表明LBP3b具有作为抗糖尿病药物的潜在用途。 1.引言 糖尿病(DM)是指具有异常高水平的血糖的慢性代谢病,已经成为世界上主要的健康问题。它是由胰岛素分泌缺乏或器官对胰岛素的反应减弱引起的。包括1型和2型在内的DM在全球发病率急剧增加,到2030年估计超过4亿。许多口服降糖药,如双胍类和磺酰脲类可用于治疗糖尿病,但这些药物是化学合成的,缺乏多剂量方案,且高成本,具有不良副作用和毒性。因此,研究和发现新型更安全和更有效的替代品是至关重要的,其中传统的食用和药用资源已成为研究低血糖活性的焦点]。 枸杞,属于茄科,是中国著名的草药,已使用了2300多年。目前,枸杞受欢迎的功能食品已被广泛使用,其具有很大功效,如减少血糖和血清脂质,滋养眼睛,肾脏和肝脏,抗辐射,提高免疫力,抗衰老,抗癌,抗疲劳,增强血细胞生成,改善男性不育。据报道,枸杞果干中有胡萝卜素,氨基酸,微量矿物质,维生素,脂肪酸,多糖和甜菜碱与健康相关的生物活性成分。 在枸杞的这些化学成分中,最好研究的组分是水溶性的多糖(LBP)估计占干果的5-8%。许多关于药理学和光化学的研究已经证明LBP是以上的生物活性的主要成分之一[15-17]。然而,由于LBP的结构复杂性,不同的提取和纯化方法得到的LBP具有不同组分,结构和功能。而每种LBP的结构和功能从未进行过全面和深入的讨论。

食用菌多糖研究进展

微生物专题报告——食用菌多糖功能的研究概况 141201019 微生物学魏华 食用菌作为天然食药资源,营养丰富,含蛋白质、必需氨基酸、多糖、维生素等多种成分。食用菌多糖虽然含量比例仅占0.48-0.87%,却具特异的生物学功能活性。如具有抗肿瘤活性;可显著提高巨噬细胞吞噬量,刺激抗体产生,增强人体免疫功能;可降血糖、降血脂;可显著增加脑和肝脏组织中的过氧化物歧化酶SOD酶活力,抗氧化、抗衰老;保肝、抗辐射等等。 1971 年,Maeda 等从香菇中分离出一种具有抗肿瘤活性的多糖,这个研究发现影响重大,使更多的科学家开始研究真菌中的活性多糖[14]。截至目前,国内外已从食用菌中筛选出200 种有生物活性的多糖。同时,对于多糖的研究不仅只是研究其的生物学活性,更多的是利用生物学手段研究多糖分子的化学结构及结构与功能之间的关系[13]。国内对多糖的研究起步较晚,但在研究糖类的作用机理时,紧密与中医药的理论相结合,进展甚快。70 年代以来,我国在云芝、银耳、灵芝、黑木耳、裂褶菌、冬虫夏草、猴头菌和竹荪等中分离得到具有显著生理活性的、单一成分的多糖物质。目前,我国对药用多糖的研究仍多偏重于提取、分离、纯化、和研究药理活性等方面。虽然已有用于治疗癌症的商业化产品,但积累的临床资料仍很缺乏,大部分多糖产品尚处于实验阶段或仅用于保健品,还需重视新兴的糖生物学及工程学,提高研究水平。 1.食用菌多糖的种类 近年来研究报道的真菌多糖,主要有四类,葡聚糖、甘露聚糖、杂多糖、糖蛋白。 1.1葡聚糖 葡聚糖(Glucan),尤其是β(1-3)连接的葡聚糖具有多种活性[15-20]。如从金顶侧耳(Pleurotus citrinopileatus)子实体中分离的多糖,分子量为1.89×104,可能的结构是主链为β(1-3)连接的葡聚糖,支链为β(1-6)连接的葡萄糖[21]。从黑石耳(Dermatocarpon miniatum)子实体中分离的具有抗氧化功能的多糖,主要结构为α(1-4)(1-6)连接的葡聚糖,分子量为1.80×106[22]。从栓菌(Trametes suareclens)中分离的多糖分子量5.0×10 4,主链为β(1-3)-D-Glucan,支链为β(1—6)连接的葡萄糖。从斜顶菌(Clitopilus caepitosus))多糖分子量1.32×106,主链为β(1-3)连接的葡聚糖,支链有较多的β(1-6)连接的葡聚糖链和较少的β(1-4)连接的葡聚糖链,分别连在主链的O-6 位和O-4 位。 1.2甘露聚糖

多糖类功能性食品生物活性的研究进展

多糖类功能性食品生物活性的研究进展 The research progress of bioactive polysaccharide functional food

摘要 随着社会的进步和人们生活水平的提高,人们越来越注意饮食健康。但随着生活结构的改变和环境恶化因素的影响,导致人们的身体出现各种各样的慢性疾病,影响了人们身体健康,降低了人们生活质量,从而对于供能食品来调节机体有了确切的渴望。本文通过阐述功能性食品的概念,功能性食品现状,多糖的功能特性以及发展趋势等几个方面介绍了功能性食品。 关键词:多糖;功能性食品;前景

ABSTRACT Along with the social progress and people living standard rise,people more and more attention to healthy diet. But with the change of the structure,and the influence of environmental factors,lead to people's body appear all sorts of chronic disease,affected the people healthy body,the lower the quality of life,thus to supply food to regulate the body had a definite desire. This paper explains the concept of functional food and functional food current situation,features and development trend of polysaccharides are introduced in several aspects,such as functional food. Key words:Polysaccharide;Functional food;Outlook

多糖的研究应用与发展

多糖的研究应用与发展 [摘要]本文通过查阅大量文献,对多糖的研究进展作一综述,为临床应用及日常保健提供帮助。多糖能够提高机体免疫力,具有抗肿瘤、抗衰老、抗病毒、降血糖、降血脂、防辐射、抗菌、抗寄生虫等作用,对治疗肝脏、肾脏、胃肠道以及中枢神经系统疾病疗效显著。多糖在中国有丰富的资源,发展潜力极大。 [关键词]多糖;药理作用;发展 1.前言 糖类是自然界中蕴藏最多,与人类生活最密切相关的一类化合物。多糖又称多聚糖,有的是构成动植物骨架的组成成分,有的具有特殊的生物活性,还有的具有储存和转化食物能量的功效。现代药理学研究表明,多糖具有多方面的功能,包括提高机体免疫力,具有抗肿瘤、抗衰老、抗病毒、抗氧化、降血糖、降血脂、防辐射、抗菌、抗寄生虫、抗风湿性关节炎等作用。现将对近些年来多糖的功能研究进行综述,为进一步研究多糖的功能做基础,为人类的健康保健提供帮助。 2.多糖的药理作用 2.1免疫调节功能 有的活性多糖能促进T细胞、B细胞增殖,激活LAK细胞,提高巨吞噬细胞的吞噬功能,改善机体的免疫功能;某些活性多糖(如茯苓多糖、酵母多糖、当归多糖等)还能通过不同的途径激活补体系统,这是其发挥免疫调节作用的重要机制之一[1]。张庭廷[2]等研究黄精多糖的生物活性时发现,其可促进小鼠溶血素的生成,增强体液免疫功能;提高巨噬细胞吞噬鸡红细胞的能力,促进非特异性免疫作用。陈冠敏[3]等研究发现龙眼多糖口服液能够提高正常小鼠的机体免疫功能,积极维持机体的正常运行,可作为一种理想的免疫保健品食用。 2.2抗肿瘤作用 多糖主要通过直接抑制肿瘤细胞的生长,改变肿瘤细胞膜的生长特性,抗氧化、清除自由基,影响癌基因的表达,抑制肿瘤细胞增殖、诱导分化以及提高机体免疫力等途径表达抗肿瘤作用。姬松茸多糖(AB01-P)[4]可极显著地提高S180荷瘤小鼠的胸腺指数和脾脏指数,有一定的诱导MG/63细胞凋亡作用,抗肿瘤作用显著。陈留勇[5]等从黄桃中提取的水溶性多糖HTP1和HTP2,在提高免疫力、清除自由基、抗肿瘤方面有显著作用。在治疗肿瘤疾病方面还用人参多糖、灵芝多糖、蘑菇多糖、补骨脂多糖、怀牛膝多糖、海洋生物多糖等等。 2.3抗病毒作用 人们很早就已经认识到多糖的抗病毒作用,应用于药物中。王学兵[6]等研究发现板蓝根多糖体外对PRRSV具有较好的阻断和抑制作用。盐藻多糖[7]具有良好的抗副流感病毒的作用,其不仅能阻止病毒的吸附与穿入,而且在一定程度上能够灭活病毒。多种海洋贝类中含有大量结构新颖的活性多糖,这些多糖也有望成为新的抗病毒药物[8]。 2.4降血糖作用 目前用于降血糖多糖有黄芪多糖、桑黄菌丝体多糖、茶多糖、人参多糖、茉莉花渣多糖、苦瓜多糖、青钱柳多糖等等,但是各种多糖的降血糖机理有所不同。百合多糖[9]通过降低肾上腺皮质激素分泌,增强分泌胰岛素和促进肝脏血糖转化为糖元来降低血糖,治疗糖尿病效果显著。 2.5降血脂作用

多糖的研究进展

多糖的研究进展 摘要:对活性多糖的生物活性及化学结构与构效方面的研究进行了综述分析,并对其发展前景作了介绍。 关键词:活性多糖;生物活性;构效关系 1多糖的生物活性 1.1活性多糖的抗肿瘤作用 在活性多糖的抗肿瘤研究中,人们发现不同生物材料中可以得到多种具有抗肿瘤活性多糖,如从香蕈中得到的香菇多糖(Lentinan)。Ikekawa 等人发现腔腹注射香菇水溶提取物在很大程度对小鼠皮下移植的内瘤S-180 的生长有强抑制作用。但其效果不是直接作用移植 性癌细胞,而是通过宿主调节而发行作用。接着人们又在灵芝、云芝、茯苓、银耳等真菌中得到对小白鼠硬肉瘤和艾氏癌肿有不同抑制作用的活性多糖。 1.2活性多糖的免疫功能 在一般情况下,多糖对机体特异性免疫与非特异免疫,细胞免疫与体液免疫皆有影响。 免疫多糖作为生物效应调节剂,主要影响机体的网状内皮系统(RES)、巨噬细胞、淋巴细胞、白细胞、NK细胞、补体系统以及RNA、DNA、蛋白质的合成,体内cAMP与cGMP的含量,结果是抗体的生成,淋巴因子及干扰素的诱生增强。现已证实不同的多糖具有不同的免疫促进作用。 1.3多糖的抗病毒活性及其作用机制 Goultet 等人(1960)首次指出,在蘑菇中存在抗病毒物质。Tsunoda 和Ishida(1969)发现从香菇的菌丝体和孢子中水溶液的提取物对病毒A/SW15 所引起的感冒有一定的疗效。Tochilura等人发现香菇多糖与3-叠氮-3-脱氧胸嘧啶(AZT)的联合使用对抑制HIV抗原表达比单独使用AZT更强。近年来,对于多糖衍生物的抗病毒活性的研究,主要集中硫酸脂多糖(Sulfacted polysaccharide)或称硫酸多糖,在研究中发现硫酸酯多糖在抗HIV病毒方面有着特殊的功能,香菇多糖硫酸盐当通过被HIV-III 感染的MT-4 细胞验证时表现出了对HIV 的活跃的抗性。从海洋海藻(Aghadhiella tenera)分离的硫酸半乳聚糖能在体外抑制

微生物胞外多糖及其生物合成途径研究现状

Advances in Microbiology 微生物前沿, 2017, 6(2), 27-34 Published Online June 2017 in Hans. https://www.wendangku.net/doc/124727271.html,/journal/amb https://https://www.wendangku.net/doc/124727271.html,/10.12677/amb.2017.62004 Research Status of Microbial Exopolysaccharide and Its Metabolic Pathway Ning Pang1,2, Jiaqi Zhang1, Jin Qi3, Binhui Jiang1* 1School of Resources and Civil Engineering, Northeastern University, Shenyang Liaoning 2Beijing Yingherui Environmental Technology Co. Ltd., Beijing 3Fushun Entry-Exit Inspection and Quarantine Bureau, Fushun Liaoning Received: May 22rd, 2017; accepted: Jun. 9th, 2017; published: Jun. 12th, 2017 Abstract Due to their unique physical and chemical properties, rheological properties and biological safety, microbial polysaccharides have been widely used in many fields, such as industrial production and life. But due to high production costs and less production limit its wide application. The screening, isolating and culturing of microbial strains of extracellular polysaccharides were in-troduced in this paper, and the optimization of production of flocculant conditions and the sepa-ration and purification of extracellular polysaccharides were also discussed. Furthermore, the re-search status of the microbial exopolysaccharide metabolic pathway was focused. The method of improving the production of extracellular polysaccharides can be found by the study of metabolic pathways of microbial exopolysaccharides, which lays the foundation for the industrial applica-tion of microbial extracellular polysaccharide. Keywords Microbial Flocculant, Glycobacter, Biosynthetic Pathway 微生物胞外多糖及其生物合成途径研究现状 庞宁1,2,张佳琪1,齐进3,姜彬慧1* 1东北大学,资源与土木工程学院,辽宁沈阳 2北京盈和瑞环境科技股份有限公司,北京 3抚顺出入境检验检疫局,辽宁抚顺 *通讯作者。 文章引用: 庞宁, 张佳琪, 齐进, 姜彬慧. 微生物胞外多糖及其生物合成途径研究现状[J]. 微生物前沿,2017, 6(2):

多糖的生物修饰及调控研究进展

多糖的生物修饰及调控研究进展(转糖苷) 摘要:多糖作为一种重要的生物活性成分,由于具有抗肿瘤、抗凝血和免疫调节活性等多种功能,被引起了广泛关注。大量研究表明,多糖生物修饰和调控后可以显著提高原有的活性或增加新的活性。文章详细阐述了多糖生物修饰的方法及调控改造对多糖生物活性的影响,并对多糖生物修饰的调控应用前景进行了展望。 关键词:生物修饰酶法修饰基因调控转糖苷 Abstract:Polysaccharide as an important bioactive components, is causing widespread concern, as having anti-tumor, anti-clotting and immune modulating activity and other functions, Numerous studies show that biological polysaccharide modification and regulation can significantly improve the activity of the original or new activity. This article examines the impact of regulation methods and biological transformation of polysaccharides modified polysaccharide biological activity and the regulation of the modified polysaccharide biological application prospected. Key words: Biological modification Enzymatic modification Gene Regulation Transglycosidase 多糖(polysaccharides)在自然界蕴藏丰富,种类繁多,主要有植物多糖、动物多糖、海藻多糖和微生物多糖.多糖是一种重要的生物活性成分,具有重要的医疗价值,有抗肿瘤、抗凝血和免疫调节等多种的药理作用.随着糖生物学和糖化学的发展,多糖的生物活性越来越受到人们的重视,有关多糖生物活性的研究有了长足的进步和发展.海带多糖(LaminriaJaponicapolysaccharides)是海带中提取的一种具有生物活性的海藻多糖,经初步鉴定海带多糖具有抗突变活性[1].壳聚糖(chitosan)具有生物粘附性和多种生物活性,且能有效地增强亲水性药物在鼻腔和肠上皮的吸收,作为缓释辅料有着广阔的应用前景[2].据研究,团核褐孔菌(Xanthochrousrheades)液的粗多糖对大鼠有抗胃溃疡活性[3].灵芝(Ganodermalucidum)胞外多糖有抗肿瘤活性,且能明显提高小鼠的免疫力[4].香菇多糖(Lentinan,LNT)是香菇(lentinusedodes)为适应外界环境,在生长过程中形成的一种具有独特生理活性的物质,其化学结构属于吡喃葡聚糖,现代药理学研究证明,香菇多糖具有抗肿瘤,抗凝血和免疫调节活性的重要药理作用,是优良的天然药用活性成分,具有重要的学术价值和广阔的应用前景,也成为了人们研究的重点之一。 近年来多糖的分子修饰研究受到高度重视。多糖的分子修饰是指通过物理、化学生物学等手段对多糖分子进行结构改造,以期获得理化性质改变或产生新的生物学功能的多糖衍生物[5]。 已完成的研究证实,多糖的活性直接或间接地受到其分子结构的影响.多糖的结构包括一级结构、二级结构、三级结构和四级结构.采取一定的方法对多糖分子结构进行适当修饰可以改变多糖的活性.目前对多糖进行修饰的常见方法有硫酸化、磷酸化、乙酰化、烷基化、磺酰化、羧甲基化等.此外,其它修饰方法,如酶法、超声波、酸降解等在多糖分子修饰中也有较好的运用[6,7].多糖经过分子修饰后,其生物活性有一定的提高[8],甚至还增加了新的功能,如天然香菇多糖具有抑制肿瘤的作用,而硫酸化后显示出较高的抗HIV的活性[9].随着对多糖构效关系研究的不断深入,针对多糖的化学修饰也显得越来越重要,本文就近年来多糖分子生物修饰及调控的方法和修饰后的生物活性的变化进行了简单综述 1 多糖分子的生物修饰及调控 多糖生物修饰及调控的方法有很多,主要有酶法修饰、基因调控和转糖苷修饰等方法。 酶法修饰因其专一性强、选择性好、反应条件温和、无副反应、工艺较易控制等优点,已经成为多糖分子修饰的最优方法之一[10]。目前,针对多糖的酶法修饰主要有酶法降解、酶法合成等类型,每种类型的修饰机制各不相同,实际应用也各有特点。如藻酸盐是一种多聚糖

相关文档
相关文档 最新文档