文档库 最新最全的文档下载
当前位置:文档库 › 电子陶瓷材料纳米钛酸钡制备工艺的研究进展

电子陶瓷材料纳米钛酸钡制备工艺的研究进展

电子陶瓷材料纳米钛酸钡制备工艺的研究进展
电子陶瓷材料纳米钛酸钡制备工艺的研究进展

电子陶瓷材料纳米钛酸钡制备工艺的研究进展

2009-10-10 19:48:24| 分类:能源| 标签:|字号大中小订阅

来源:中国化工信息网2009年5月22日

1 前言

钛酸钡是电子陶瓷材料的基础原料,被称为电子陶瓷业的支柱。它具有高介电常数、低介电损耗、优良的铁电、压电、耐压和绝缘性能,被广泛的应用于制造陶瓷敏感元件,尤其是正温度系数热敏电阻(PTC)、多层陶瓷电容器(MLCCS)、热电元件、压电陶瓷、声纳、红外辐射探测元件、晶体陶瓷电容器、电光显示板、记忆材料、聚合物基复合材料以及涂层等。钛酸钡具有钙钛矿晶体结构,用于制造电子陶瓷材料的粉体粒径一般要求在100nm以内。因此BaTiO3粉体粒度、形貌的研究一直是国内外关注的焦点。钛酸钡粉体制备方法有很多,如固相法、化学沉淀法、溶胶—凝胶法、水热法、超声波合成法等。最近几年制备技术得到了快速发展,本文综述了国内外具有代表性的钛酸钡粉体的合成方法,并在此基础上提出了研究展望。

2 钛酸钡粉体的制备工艺

2.1 固相合成法

固相法是钛酸钡粉体的传统制备方法,典型的工艺是将等量碳酸钡和二氧化钛混合,在1 500℃温度下反应24h,反应式为:BaCO3+TiO2→BaTiO3+CO2↑。该法工艺简单,设备可靠。但由于是在高温下完成固相间的扩散传质,故所得BaTiO3粉体粒径比较大(微米),必须再次进行球磨。高温煅烧能耗较大,化学成分不均匀,影响烧结陶瓷的性能,团聚现象严重,较难得到纯BaTiO3晶相,粉体纯度低,原料成本较高。一般只用于制作技术性能要求较低的产品。

2.2化学沉淀法

2.2.1 直接沉淀法在金属盐溶液中加入适当的沉淀剂,控制适当的条件使沉淀剂与金属离子反应生成陶瓷粉体沉淀物团。如将Ba(OC3H7)2和Ti(OC5H11)4溶于异丙醇中,加水分解产物可得沉淀的BaTiO3粉体。该法工艺简单,在常压下进行,不需高温,反应条件温和,易控制,原料成本低,但容易引入BaCO3、TiO2等杂质,且粒度分布宽,需进行后处理。

2.2.2 草酸盐共沉淀法将精制的TiCl4和BaCl2的水溶液混合,在一定条件下以一定速度滴加到草酸溶液中,同时加入表面活性剂,不断搅拌即得到BaTiO3的前驱体草酸氧钛钡沉淀

BaTiO(C2O4)4·4H2O(BTO)。该沉淀物经陈化、过滤、洗涤、干燥和煅烧,可得到化学计量的烧结良好的BaTiO3微粒:

TiCl4+BaCl2+2H2C2O4+4H2O→BaTiO(C2O4)2·4H2O↓+6HCl,

BaTiO(C2O4)2·4H2O→BaTiO3+4H2O+2CO2↑+2CO↑。

该法工艺简单,但容易带人杂质,产品纯度偏低,粒度目前只能达到100nm左右,前驱体BTO煅烧温度较低,产物易掺杂,难控制前驱体BTO中Ba/Ti的物质的量比;微粒团聚较严重,反应过程中需要不断调节体系pH值。尽管有不同的改进方法,但仍难于实现工业化生产。

2.2.3 柠檬酸盐法柠檬酸盐法是制备优质BaTiO3微粉的方法之—。由于柠檬酸的络合作用,可以形成稳定的柠檬酸钡钛溶液,从而使得Ba/Ti的物质的量比等于1,化学均匀性高。同时由于取消了球磨工艺,BaTiO3粉体的纯度得到提高。实验中采用喷雾干燥法对柠檬酸钡钛溶液进行脱水处理,制得BaTiO3的前驱体,再在一定温度下处理即可获得BaTiO3粉体。但煅烧得到的BaTiO3粉体易团聚,成本高,难于实现工业化。

2.2.4 复合过氧化物法德国专利(DE-24332791)和日本专利(JP昭49-69399)分别提出了通过复合过氧化物前驱体制取BaTiO3粉体的方法,中国专利(CN1061776)也提出了一种改进方法,即在NH3·H2O 和H202混合溶液中加入等物质的量的TiO2-盐和Ba2+的混合水溶液,用氨水调节溶液pH,得到复合过氧化物沉淀。用水洗涤至无氯离子后,脱水并干燥。在400-600℃温度下煅烧,得到50-100nm的晶体。该法原料易得,产品纯度和粒度都能达到要求,但制得的BaTiO3粉体粒子结块严重,并使用过量的:H2O2。

2.2.5 碳酸盐沉淀法此法可分为液相悬浮碳酸盐沉淀法和碳酸盐共沉淀法。碳酸盐共沉淀法是在控制一定pH条件下,把沉淀剂(NH4)2CO3,溶液缓慢加入到等物质的量的BaCl2和TiCl4混合水溶液中,得到高分散BaCO3和TiO(OH)2沉淀。对沉淀物过滤、洗涤、干燥、煅烧(1 300℃),得到BaTiO3粉体。该法原料易得,操作简单适于大规模生产。但易掺杂,煅烧温度高,操作条件的微小变化对产物理化性能有较大影响。为克服上述不足,全学军等提出了较合理的改进方法。

2.2.6 超重力反应沉淀法超重力反应沉淀法(HGRP)是近年新兴的一种粉体制备技术。北京化工大学陈建峰教授利用此法,可制备出颗粒尺寸在30-100nm范围内的纳米钛酸钡粉体,而且所得粉体具有良好的烧结和介电性能。

2.3 水热合成法

水热合成法是指在密封高压釜中,以水为溶剂在一定的温度和蒸汽压力下,使原始混合物进行反应的合成方法。近年来用水热法制备高质量亚微细BaTiO3微粒受到了广泛关注,如通过高活性水合氧化钛与氢氧化钡水溶液反应,反应温度和压力大大降低,合成的钛酸钡粉体粒径在60-100am之间。清华大学研究出了一种从溶液中直接合成钛酸钡纳米粉体的方法,并申请了专利。Maclaren研究了水热法合成BaTiO3的反应机理,得到了形成BaTiO3的基本条件。水热法可在较低温度下直接从溶液中获得晶粒发育完好的粉体,且粒度小,化学成分均匀,纯度高,团聚较少。该法原料价格低,Ba/Ti物质的量比可准确地等于化学计量比,粉体具有高的烧结活性。但该法存在需要较高压力,氯盐易引起腐蚀,采用活性钛源时要控制活性钛源前驱体的水解速率,避免Ti-OH基团快速自身凝聚和Ba缺位等问题。

2.4溶胶-凝胶法

溶胶-凝胶法是指将金属醇盐或无机盐水解成溶胶,然后使溶胶凝胶化,再将凝胶干燥焙烧后制得纳米粉体。其基本原理是:Ba和Ti的醇盐或无机盐按化学计量比溶解在醇中,然后在一定条件下水解,使直接形成溶胶或经解凝形成溶胶。再将凝胶脱水干燥、焙烧去;除有机成分,得到BaTiO3粉体。根据使用的原料不同,溶胶—凝胶法可分为几种。

2.4.1 醇盐水解法一般以Ba和Ti的醇盐为原料。将两种醇盐按化学计量溶解在醇中,或用钡钛双金属醇盐溶解在醇中。然后在一定条件下水解,最后将水解产物经过热处理制得BaTiO3粉体。该法制得的粉体纯度高、分散性好、烧结活性好、粒度小,并且在制成溶液中一步加入掺杂剂,如镧、钕、钪、铌等元素,从而获得原子尺寸混合掺杂。该方法可以制备多组分钛酸钡基陶瓷粉体。但醇盐价格高,且容易吸潮水解,不适合大规模生产。

2.4.2 羧基醇盐法羧基醇盐法是指加热丙酸钡与乃醇盐的乙醇溶液而形成单一Ba-Ti凝胶的方法。因为T1醇盐在水溶液中水解,容易形成水合氢氧化钛沉淀,所以在应用n醇盐作为原料时,用醋酸进行改性,可形成更为稳定的酰基前驱体。钛酯和醋酸钡在水溶液中混合后形成Ba-Ti凝胶,不定型的Ba-Ti凝胶通常是由类似TiO2玻璃的网络组成,Ba离子杂乱地分布在TiO2骨架中,Ba和Ti离子间的扩散距离仅10-20nm,不定型Ba-Ti凝胶的煅烧温度低于700℃。不定型Ba-Ti凝胶到晶态钛酸钡的形成机理还不清楚,在煅烧过程中发现有BaCO3产生,说明钛酸钡的形成有一部分是由BaCO3和TiO2经固相反应生成。此法合成的钛酸钡晶粒形貌不利于成形烧结。

2.4.3 氢氧化物醇盐法用氢氧化钡和异丙烷酸氧钛为原料合成陶瓷粉体,反应只能在pH为11-14的范围内进行,生成的阴离子团Ti(OH)2-6与Ba2+经缩合反应形成Ti(OH)6Ba络合物。若往溶液中快速添加Ba醇欺,则有利于Ti(OH)6Ba络合物的形成。但该过程中控制Ti-OH官能团的自缩合反应是非常困难的,容易得到富Ba相和Ti的混合物,控制反应过程的条件非常重要。

2.4.4 溶胶-凝胶自燃合成法溶胶-凝胶自燃合成(SAS)法和自蔓延低温燃烧合成(SI另)法是指有机

盐与金属硝酸盐在加热过程中发生氧化还原反应,燃烧产生大量气体,可自我维持并合成所需产物的一种材扭合成工艺。其主要特点是:燃烧体系的点火温度低(50-200℃);燃烧火焰温度低(1 000-1 400℃),可获得具有高比表面积的陶瓷粉体;各组份达到分子或原子水平的复合;反应迅速,一般在几分钟或几十分钟内完成;耗能低;所用设备和工艺简单、投资少;产品自净化;纯度易于提高;合成的粉体疏松多孔,分散性好,并获得多组元复合氧化物。

2.4.5 双金属醇盐法用金属钡棒和乙二醇甲醚为原料,在0℃水浴和氮气保护下充分反应形成混浊状溶液,然后将溶液在130℃温度下回流至溶液呈褐色透明,冷却到室温,合成钡先驱体和化学纯钛酸丁酯。二者按钡钛物质的量比为1:1配料混合后,在130℃下回流1 h,获得钡钛复合醇盐,然后加入一定量的去离子水,溶液迅速成胶。将湿凝胶陈化7d后,干燥成干凝胶,再进行热处理,得到钛酸钡陶瓷粉体。此反应可在150℃下合成BaTiO3;纳米粉体,晶粒尺寸在14-16nm范围内。

2.4.6 钛酸丁酯钡盐汝钛酸丁酯和钡盐经水解形成溶胶,溶胶经干燥、煅烧制得纳米钛酸钡。李青莲等采用硼脂酸钡与钛酸丁酯反应(SAG法)制备出了粒径约20nm的BaTiO3;粉体。李东升等以化学纯钛酸丁酯和分析纯醋酸钡、正丁醇和冰醋酸为原料制得平均粒径约35nm、外貌近似球形的PTCR钛酸钡粉体。

2.5气相反应法

此法采用金属氯化物或金属醇盐为原料,通过电弧、燃烧、激光诱导等方式加热,气相反应后得BaTiO3粉体。金属醇盐燃烧制取BaTiO3粉体,是把钡、钛醇盐以等物质的量混合并溶于有机溶剂,再与助燃气体一起通人雾化器中,经燃烧、分解,使游离的钡、钛离子直接反应,生成高纯、微细、均匀的钛酸钡粉体。产品粒径小、组分均匀,但设备复杂、成本高,目前尚无工业应用价值。

2.6微乳液法

微乳液通常是由表面活性剂、油相和水相组成的热力学稳定体系。Beck等将钡盐和钛盐的混合水溶液分散在一种有机相中形成微乳液,将此微乳液与共沉淀剂或与用共沉淀剂的水溶液制成的微乳液进行混合,形成钛酸钡的前驱体沉淀,经分离、洗涤、干燥、煅烧得纳米钛酸钡粉体。其优点是利用微乳液的微观环境,较好地控制了前驱体的粒子形状及分散性。但操作过程较复杂,成本较高。目前尚处探索阶段。

2.7低温直接合成法

S.Wada等提出了一种制备纳米钛酸钡晶体的低温直接合成法。将四氯化钛缓慢地滴人到温度低于10℃的硝酸中,以此溶液作耵源,将Ba(OH)2·8H2O溶解在无CO2的离子交换水中,并用KOH调节使其pH大于13,此溶液作为Ba源。将pH小于1的冰钛液缓慢滴人到钡液中,很快生成白色沉淀。将沉淀过滤、洗涤,在70℃下干燥16h,可以制得粒径约为10nm的钛酸钡晶体。

2.8机械活化法

机械活化法是用来改善原始物料的反应性,使所要求的陶瓷相在较低的煅烧温度下合成。JuminXue

等以BaO和TiO2为原料,在氮气氛中,不附加热处理条件下,合成钙钛矿相的BaTiO3粉体。X-射线衍射表明,该粉体具有很好的纳米晶体结构,粒子直径为20-30nm。

2.9溶剂热法

Dairong Chen等提出了一种溶剂热合成钛酸钡粉体的新方法。将BaTiO3前驱体凝胶粉末在醇溶液中热处理,得到的钛酸钡粉体具有低程度的团聚和规则的形状。与水热过程相比,该法合成BaTiO3粉体要困难得多,粒子直径在20-60nm范围内,成本较高,安全性低。

2.10溶剂蒸发法

2.10.1 冰冻干燥法冰冻干燥法是先按化学计量配制一定浓度的金属盐溶液,在低温下(-40℃以下)使其以离子态迅速凝结成冻珠,1

3.3Pa下减压升华除去水份,然后将金属盐分解即得到所需粉体。

P.Pradeep等将邻二苯酚、四氯化钛和碳酸钡反应生成的Ba[Ti(C6H4O2)·4H2O冰冻干燥分离后,在高温下分解获得BaTiO3粉体。因为含水物料在结冰时可以使固相颗粒保持其在水中的均匀状态,冰升华后固相颗粒之间不会过分靠近,故该方法较好地消除粉料干燥过程中的团聚现象,得到松散、粒径小且分布窄的粉体。但选择适宜的化学溶剂和控制溶液的稳定性比较困难,工业生产时投资也较高。

2.10.2 喷雾水解法喷雾水解法的实质是在一个液滴“微反应器”环境中,利用均相沉淀反应原理,实现草酸盐共沉淀。用超声雾化器将含有四氯化钛、氯化钡和草酸二甲酯的前驱体雾化为细小的液滴,在特定设备中,液滴与水蒸气反应生成草酸氧钛钡。液滴内部为无数草酸氧钛钡构成的网状结构,所以得到的是单个粉体内钡钛物质的量比完全均匀的粉末,然后在700-1200℃温度下煅烧得到粉体。

2.11 微波水热法

微波水热法是美国宾州大学R.Roy于1992年提出的,引起了国内外的广泛重视。其特点是所得粉体粒径分布比较窄、分散性好、晶粒完整、结晶性好、平均粒径在50nm左右。同时微波水热法可将反应时间缩短到30min,与传统水热法相比大大提高了反应效率,可明显降低能耗。

2.12掺杂

BaTiO3经过掺杂改性可成为无机非金属功能材料的基体和主晶相,不仅居里点可改变,而且介电常数及电导率等性能亦发生显著变化。目前纳米掺杂BaTi03的制备主要采用固相烧结法、溶胶-凝胶法闽、水热法及化学沉淀法等,其中溶胶-凝胶法是目前最好的方法。

3 结束语

为了满足电子陶瓷工业上的要求,如何制备出颗粒尺度小、粒度均匀且分散性好的高纯钛酸钡粉体是当今材料学领域的一个热点问题。随着对钛酸钡微粉尺寸、均匀性、纯度等各方面的要求越来越高,各种制备技术得到了前所未有的发展。但同时制备技术还缺乏对合成反应机理的深入研究,现有超细BaTiO3

制备技术的研究大多停留在实验室阶段,分析测试和表征方法还需改进,在工业化扩大生产过程中的工艺和装置的可行性和经济性等诸多问题还有待研究。但是由于超细钛酸钡粉体具有的卓越性能,其在材料领域的研究必将有更加广阔的空间。

功能陶瓷材料研究进展综述

功能陶瓷材料的应用 研究 姓名:刘军堂___________ 学号: 23122837________ 班级: 机械1201_________ 任课老师:张志坚__________

功能陶瓷材料的应用研究 1.选择一个课题进行相关检索,要求对课题作简要分析,并在分析的基础上确定检索词,准确描述检索过程。(10分)(可选择其他课程中以论文方式考核的科目,如无此类题目,可自选或用备选题目) 功能陶瓷 功能陶瓷材料是具有特殊优越性能的新型材料,各国在基础与应用研究以及工程化方面,均给予了特殊重视,特别是在信息、国防、现代交通与能源产业中均将其置于重要地位。根据功能陶瓷材料的应用前景,本文介绍了功能陶瓷新材料的性能、应用范围,市场的开发应用现状和开发应用新领域,以及正在研发的高性能陶瓷材料;同时介绍了功能陶瓷材料今后的发展趋势。 关键词:功能陶瓷材料;应用现状;趋势 检索过程 第一步:进入“中国知网”主页,网址是“https://www.wendangku.net/doc/154743532.html, 第三步:登录成功后会进入操作界面, 第四步:选择要检索的文献数据库。在操作界面上,中国知网将其文献分成了不同的库,我们根据自己的文献范围属性进行选择。 第五步:检索参数设置。在操作界面的上部,有搜索参数设置对话框。最好逐一填写。(1)检索项,系统对文献进行了检索编码,每一个文献都有一一对应的编码,一个编码就是一种检索项。点击检索项框右边的向下箭头,就能弹出所有检索项,选中一个就好。(2)检索词,填入要求系统搜索的内容。没有明确严格要求,不一定是词语。但是需要考虑到它应当与你选中的检索项相一致。如检索项用了“关键词”,就不能用一个长句等作检索词了。(3)文献时间选择,根据文献可能出现的年代,点击对话框右边的小三角就可以选了。需要说明的是,中国知网建立时间是1994年,所以1994年及其后的数据才是最全的。现在他们在逐渐补充1994年以前的文献数据,但是,全面性可能要差些。(4)排序,提示系统将找到的文献按什么顺序呈现。(5)匹配,即要求系统按自己的检索要求进行哪种精确程度的检索。如果你确定你的文献参数,那么选择“精确”,如果不确定,就选择“模糊”。 第六步:点击“搜索”就完成了第一阶段的操作了。然后就进入检索结果呈现的界面:中国知网2.rar(点击打开查看),中国知网的结果呈现表中,对文献的基本信息:文献题目、文献的载体、发表时间及在中国知网中的收藏库名进行了说明。

制备纳米钛酸钡粉体

化学共沉淀法 ——制备纳米钛酸钡粉体 目录 (1) 成绩考评表 (2) 中文摘要 (3) 英文摘要 (4) 1前言 (5) 1 .1制备方法介绍 (6) 1.2所制备的材料介绍 (9) 1.3本实验主要研究内容 (12) 2.实验实施阶段 2.1方案介绍 (13) 2.2方案具体实施 (15) 3实验结果分析与讨论 (17) 参考文献 (22)

综合实验感想 (23) 3Ba TiO 纳米粉体的制备 摘要 以4TiCl 为钛源,2BaCl 为钡源,采用草酸共沉淀法制备batio3粉体, 研究了前驱体的煅烧温度对产物的影响,实验结果表明当煅烧温度控制在800度以上时,可制的纯度高结晶好的batio3超细粉体。 关键词:钛酸钡,草酸共沉淀,前驱体,温度

English abstract Thought of 4TiCl for titanium source 2BaCl for barium source, using oxalate coprecipitation preparation of batio3 powders, studied the precursor of the influence of calcining temperature on the product, the experimental results show that when the calcination temperature control over 800 degrees, can be made of high purity crystal good batio3 ultrafine powders. Key words: barium titanate, oxalate coprecipitation, precursor , temperature

固相烧结法制备钛酸钡陶瓷材料

固相烧结法制备BaTiO3 (BTO陶瓷材料 钛酸钡是电子陶瓷材料的基础原料,被称为电子陶瓷业的支柱。它具有高介电常数、低介电损耗、优良的铁电、压电、耐压和绝缘性能,被广泛的应用于制造陶瓷敏感元件,尤其是正温度系数热敏电阻(ptc)、多层陶瓷电容器(MLccs)、热电元件、压电陶瓷、声纳、红外辐射探测元件、晶体陶瓷电容器、电光显示板、记忆材料、聚合物基复合材料以及涂层等。钛酸钡具有钙钛矿晶体结构,用于制造电子陶瓷材料的粉体粒径一般要求在100nm以内。因此BaTiO3粉体粒度、形貌的研究一在此温度以下,1460C以上结晶出来的钛酸钡属于非铁电的六 方晶系6/mmn直是国内外关注的焦点之一。 1材料结构 钛酸钡是一致 性熔融化合物,其 熔点为1618C。点 群。此时,六方晶 系是稳定的。在 1460~130C之间钛 酸钡转变为立方钙

钛矿型结构。在此结构中Ti4+(钛离子)居于02-(氧离子)构成的氧八面体中央,Ba2+(钡离子)则处于八个氧八面体围成的空隙中(见右图)。此时的钛酸钡晶体结构对称性极高,因此无偶极矩产生,晶体无铁电性,也无压电性。 随着温度下降,晶体的对称性下降。当温度下降到130C 时,钛酸钡发生顺电-铁电相变。在130~5C的温区内,钛酸钡为四方晶系4mn点群,具有显著地铁电性,其自发极化强度沿c轴方向,即[001]方向。钛酸钡从立方晶系转变为四方晶系时,结构变化较小。从晶胞来看,只是晶胞沿原立方晶系的一轴(c轴)拉长,而沿另两轴缩短。 当温度下降到5C以下,在5~-90C温区内,钛酸钡晶体 转变成正交晶系mm庶群,此时晶体仍具有铁电性,其自发极化强度沿原立方晶胞的面对角线[011]方向。为了方便起见, 通常采用单斜晶系的参数来描述正交晶系的单胞。这样处理的 好处是使我们很容易地从单胞中看出自发极化的情况。钛酸钡从四方晶系转变为正交晶系,其结构变化也不大。从晶胞来看, 相当于原立方晶系的一根面对角线伸长了,另一根面对角线缩短了,c轴不变。

钛酸钡制法汇总

电子陶瓷材料纳米钛酸钡制备工艺的研究进展 1 前言 钛酸钡是电子陶瓷材料的基础原料,被称为电子陶瓷业的支柱。它具有高介电常数、低介电损耗、优良的铁电、压电、耐压和绝缘性能,被广泛的应用于制造陶瓷敏感元件,尤其是正温度系数热敏电阻(PTC)、多层陶瓷电容器(MLCCS)、热电元件、压电陶瓷、声纳、红外辐射探测元件、晶体陶瓷电容器、电光显示板、记忆材料、聚合物基复合材料以及涂层等。钛酸钡具有钙钛矿晶体结构,用于制 粉体粒度、形造电子陶瓷材料的粉体粒径一般要求在100nm以内。因此BaTiO 3 貌的研究一直是国内外关注的焦点。 钛酸钡粉体制备方法有很多,如固相法、化学沉淀法、溶胶—凝胶法、水热法、超声波合成法等。最近几年制备技术得到了快速发展,本文综述了国内外具有代表性的钛酸钡粉体的合成方法,并在此基础上提出了研究展望。 2 钛酸钡粉体的制备工艺 2.1 固相合成法 固相法是钛酸钡粉体的传统制备方法,典型的工艺是将等量碳酸钡和二氧化钛混合,在1 500℃温度下反应24h,反应式为:BaCO3+TiO2→BaTiO3+CO2↑。该法工艺简单,设备可靠。但由于是在高温下完成固相间的扩散传质,故所得BaTiO3粉体粒径比较大(微米),必须再次进行球磨。高温煅烧能耗较大,化学成分不均匀,影响烧结陶瓷的性能,团聚现象严重,较难得到纯BaTiO3晶相,粉体纯度低,原料成本较高。一般只用于制作技术性能要求较低的产品。 2.2化学沉淀法 2.2.1 直接沉淀法 在金属盐溶液中加入适当的沉淀剂,控制适当的条件使沉淀剂与金属离子反应生成陶瓷粉体沉淀物团。如将Ba(OC3H7)2和Ti(OC5H11)4溶于异丙醇中,加水分解产物可得沉淀的BaTiO3粉体。该法工艺简单,在常压下进行,不需高温,反应条件温和,易控制,原料成本低,但容易引入BaCO3、TiO2等杂质,且粒度分布宽,需进行后处理。 2.2.2 草酸盐共沉淀法 将精制的TiCl4和BaCl2的水溶液混合,在一定条件下以一定速度滴加到草酸溶液中,同时加入表面活性剂,不断搅拌即得到BaTiO3的前驱体草酸氧钛钡沉淀BaTiO(C2O4)4·4H2O(BTO)。该沉淀物经陈化、过滤、洗涤、干燥和煅烧,可得到化学计量的烧结良好的BaTiO3微粒: TiCl4+BaCl2+2H2C2O4+4H2O→BaTiO(C2O4)2·4H2O↓+6HCl, BaTiO(C2O4)2·4H2O→BaTiO3+4H2O+2CO2↑+2CO↑。 该法工艺简单,但容易带人杂质,产品纯度偏低,粒度目前只能达到100nm 左右,前驱体BTO煅烧温度较低,产物易掺杂,难控制前驱体BTO中Ba/Ti的物质的量比;微粒团聚较严重,反应过程中需要不断调节体系pH值。尽管有不同的改进方法,但仍难于实现工业化生产。 2.2.3 柠檬酸盐法 柠檬酸盐法是制备优质BaTiO3微粉的方法之—。由于柠檬酸的络合作用,可以形成稳定的柠檬酸钡钛溶液,从而使得Ba/Ti的物质的量比等于1,化学均匀性高。同时由于取消了球磨工艺,BaTiO3粉体的纯度得到提高。实验中采用喷雾干燥法对柠檬酸钡钛溶液进行脱水处理,制得BaTiO3的前驱体,再在一定温度下处理即可获得BaTiO3粉体。但煅烧得到的BaTiO3粉体易团聚,成本高,难于实现工业化。

现代陶瓷研究进展

材料与化工学院 2012级材料科学与工程二班 课程作业:无机非金属材料工艺学学生姓名:刘健 学生学号: 授课老师:

目录 1.传统陶瓷材料------------------------------------------------------------------------------------------------3 2.新型陶瓷材料------------------------------------------------------------------------------------------------3 2.1生物陶瓷材料------------------------------------------------------------------------------------------4 2.1.1生物陶瓷研究背景------------------------------------------------------------------------------4 2.1.2生物陶瓷研究的一些成果---------------------------------------------------------------------4 2.1.3生物陶瓷在国外的研究动态和发展趋势-------------------------------------------------4 2.1.4我国生物陶瓷材料研究设想与展望--------------------------------------------------------5 2.2高温压电陶瓷材料-------------------------------------------------------------------------------------5 2.2.1改性钛酸铅压电陶瓷----------------------------------------------------------------------------5 2.2.2 PZT基多元系压电陶瓷--------------------------------------------------------------------------6 2.3超级亲水易洁陶瓷材料-------------------------------------------------------------------------------6 2.4热障涂层陶瓷材料--------------------------------------------------------------------------------------7 2.4.1几类热障陶瓷涂料研究近况-------------------------------------------------------------------7 2.4.1.1氧化物稳定的ZrO2---------------------------------------------------------------------------7 2.4.1.2焦绿石或萤石结构A2B2O7陶瓷----------------------------------------------------------7 2.4.2需要达到的目标------------------------------------------------------------------------------------8 3.结语----------------------------------------------------------------------------------------------------------------8

钛酸钡的性质 制备方法 以及用途

1钛酸钡晶体有这样的特性 当它受压力而改变形状的时候,会产生电流,一通电又会改变形状。于是,人们把钛酸钡放在超声波中,它受压便产生电流,由它所产生的电流的大小可以测知超声波的强弱。相反,用高频电流通过它,则可以产生超声波。现在,几乎所有的超声波仪器中,都要用到钛酸钡。除此之外,钛酸钡还有许多用途。例如:铁路工人把它放在铁轨下面,来测量火车通过时候的压力;医生用它制成脉搏记录器。用钛酸钡做的水底探测器,是锐利的水下眼睛,它不只能够看到鱼群,而且还可以看到水底下的暗礁、冰山和敌人的潜水艇等。 电子陶瓷用钛酸钡粉体超细粉体技术是当今高科技材料领域方兴未艾的新兴产业之一。由于其具有的高科技含量,粉体细化后产生的材料功能的特异性,使之成为新技术革命的基础产业。钛酸钡粉体是电子陶瓷元器件的重要基础原料,高纯超细钛酸钡粉体主要用于介质陶瓷、敏感陶瓷的制造,其中的多层陶瓷电容器、PTC热敏电阻器件与我们的日常生活密切相关,如PTC热敏电阻在冰箱启动器、彩电消磁器、程控电话机、节能灯、加热器等领域有着广泛的应用;MLC多层陶瓷电容在大规模集成电路方面应用广泛。 2钛酸钡的性质 钛酸钡(BaTiO3)单晶具有优异的光折变性能,具有高的自泵浦相位共轭反射率和二波混频(光放大)效率,在光信息存储方面有巨大的潜在应用前景;同时它也是重要的衬底基片材料。 钛酸钡具有强铁电、压电和介电等特性,是一种非常重要的电子陶瓷

材料,广泛应用于制造各种电子元器件,如高容量电容器、独石电容器、热敏元件、压敏元件和其它敏感元件等领域。目前,在中国钛酸钡年需求在2000吨以上,且正以20%的年增长速度发展,主要依赖进口,或采用固相合成法生产的钛酸钡,前者成本高,后者性能差、能耗大。该院稀有冶金材料研究所采用液化学共沉淀法生产的钛酸钡粉料,具有高纯超细及质量稳定等特点。 高纯电子级钛酸钡是重要的电子元器件原料使用符合要求的高纯原料,按特定的反应顺序,先以四氯化钛和草酸络合形成草酸氧钛阴离子,再与氯化钡进行沉淀反应,然后通过洗涤和控制钡钛比的后处理过程,煅烧后得到高纯电子级的钛酸钡粉体。钛酸钡在直流电场的作用下,在居里点120℃以下会产生持续的极度化效应,极化的钛酸钡具有铁电性能和压电性能。 美国咸斯康星大学研究人员设计出一种复合材料。该材料由钛酸钡晶体与基质锡构成,据说这种材料比金刚石还硬。实验表明,将钛酸钡颗粒植入锡中,所得材料的硬度接近于金刚石的10倍。 研究人员发现,当锡中嵌入钛酸钡颗粒时,相变受到抑制,从而使能量得以贮存。情况有些类似于水在零度时相变成冰,钛酸钡的相变也受温度影响,因此这种材料在温度10度范围内可显示出特高的硬度。但温度范围仅限于40~65℃之间。这比常温要高,研究人员正在努力降低这一温度区间。 地球上蕴藏着极为丰富的钛资源,在构成地球的元素中,钛的丰度占第九位。钛传统的最重要的工业制品是:二氧化钛颜料(俗称钛

钛酸钡粉体制备

钛酸钡纳米粉体的制备方法 摘要:钛酸钡粉体是陶瓷工业的重要原料,本文将简要介绍钛酸钡纳米粉体的一些制备工业,如固相法、水热法、溶胶-凝胶法、沉淀法等。 关键词:钛酸钡;粉体;制备方法; 1.引言 钛酸钡是制备陶瓷电容器和热敏电阻器等许多介电材料和压电材料的主要原料, 近几年来, 随着陶瓷工业和电子工业的快速发展,BaTiO3 的需求量将不断增加,对其质量要求也越来越高。制备高纯、超细粉体材料是提高电子陶瓷材料性能的主要途径。所以高纯、均匀、超细乃至纳米化钛酸钡的制备研究一直 是各国科学家的研究重点。钛酸钡的应用越来越广泛。目前制备钛酸钡的方法主要有:共沉淀法、溶胶- 凝胶法、固相法、反相微乳液法、水热法。 2.钛酸钡粉体的制备工艺 2.1固相研磨-低温煅烧法 传统钛酸钡的制备主要采用高温煅烧碳酸钡和二氧化钛的混合物或高温煅 烧草酸氧钛钡的方法, 它是我国目前工业制备钛酸钡的主要方法, 但由于煅烧 温度高达1000~ 1200℃, 因而制得的粉体硬团聚严重、颗粒大而粒度分布不均匀, 纯度低, 烧结性能差。 朱启安[1]等采用室温下将氢氧化钡与钛酸丁酯混合研磨, 再在较低温度( < 300 ℃) 下煅烧的方法制得了钡钛物质的量比约为1. 0、颗粒大小分布均匀、粒径在15~ 20nm 的钛酸钡纳米粉体, 既克服了高温固相煅烧法反应温度高、产品质量低的缺点, 又克服了液相法在水溶液中制备易引入杂质、粒子易团聚等缺点其煅烧温度比传统的固相反应法降低了约700 ~900℃ 2.2水热法合成 水热合成是指在密封体系如高压釜中, 以水为溶剂, 在一定的温度和水的 自生压力下, 原始混合物进行反应的一种合成方法。由于在高温、高压水热条件下, 能提供一个在常压条件下无法得到的特殊的物理化学环境, 使前驱物在反 应系统中得到充分的溶解, 并达到一定的过饱和度, 从而形成原子或分子生长 基元, 进行成核结晶生成粉体或纳米晶[2]。 水热法制备的粉体, 晶粒发育完整、粒度分布均匀、颗粒之间少团聚, 可以得到理想化学计量组成的材料, 其颗粒度可控, 原料较便宜, 生成成本低。而且粉体无须煅烧, 可以直接用于加工成型, 这就可以避免在煅烧过程中晶粒的 团聚、长大和容易混入杂质等缺点[2]。 2.3 溶胶凝胶法 钛酸钡( BaTiO3 ) 在当今科技领域里占有重要地位, 它是电子陶瓷领域应用最广泛的材料之一。钛酸钡是钛酸盐系电子陶瓷的主要原料, 是一种具有高介电常数和低介电损耗的铁电材料,被广泛应用于制作热敏电阻器( PTCR) 、多层陶瓷电容器(MLCC) 、电光器件和DRAM 器件。现代技术要求BaTiO3 粉料具有高纯、

钛酸钡的制备工艺以及制备方法

1 前言 钛酸钡是电子陶瓷材料的基础原料,被称为电子陶瓷业的支柱。它具有高介电常数、低介电损耗、优良的铁电、压电、耐压和绝缘性能,被广泛的应用于制造陶瓷敏感元件,尤其是正温度系数热敏电阻(PTC)、多层陶瓷电容器(MLCCS)、热电元件、压电陶瓷、声纳、红外辐射探测元件、晶体陶瓷电容器、电光显示板、记忆材料、聚合物基复合材料以及涂层等。钛酸钡具有钙钛矿晶体结构,用于制造电子陶瓷材料的粉体粒径一般要求在100nm以内。因此BaTiO3粉体粒度、形貌的研究一直是国内外关注的焦点。钛酸钡粉体制备方法有很多,如固相法、化学沉淀法、溶胶—凝胶法、水热法、超声波合成法等。最近几年制备技术得到了快速发展,本文综述了国内外具有代表性的钛酸钡粉体的合成方法,并在此基础上提出了研究展望。 2 钛酸钡粉体的制备工艺 2.1 固相合成法 固相法是钛酸钡粉体的传统制备方法,典型的工艺是将等量碳酸钡和二氧化钛混合,在1 500℃温度下反应24h,反应式为:BaCO3+TiO2→BaTiO3+CO2↑。该法工艺简单,设备可靠。但由于是在高温下完成固相间的扩散传质,故所得BaTiO3粉体粒径比较大(微米),必须再次进行球磨。高温煅烧能耗较大,化学成分不均匀,影响烧结陶瓷的性能,团聚现象严重,较难得到纯BaTiO3晶相,粉体纯度低,原料成本较高。一般只用于制作技术性能要求较低的产品。 2.2化学沉淀法 2.2.1 直接沉淀法在金属盐溶液中加入适当的沉淀剂,控制适当的条件使沉淀剂与金属离子反应生成陶瓷粉体沉淀物团。如将Ba(OC3H7)2和Ti(OC5H11)4溶于异丙醇中,加水分解产物可得沉淀的BaTiO3粉体。该法工艺简单,在常压下进行,不需高温,反应条件温和,易控制,原料成本低,但容易引入BaCO3、TiO2等杂质,且粒度分布宽,需进行后处理。 2.2.2 草酸盐共沉淀法将精制的TiCl4和BaCl2的水溶液混合,在一定条件下以一定速度滴加到草酸溶液中,同时加入表面活性剂,不断搅拌即得到BaTiO3的前驱体草酸氧钛钡沉淀 BaTiO(C2O4)4·4H2O(BTO)。该沉淀物经陈化、过滤、洗涤、干燥和煅烧,可得到化学计量的烧结良好的BaTiO3微粒: TiCl4+BaCl2+2H2C2O4+4H2O→BaTiO(C2O4)2·4H2O↓+6HCl, BaTiO(C2O4)2·4H2O→BaTiO3+4H2O+2CO2↑+2CO↑。 该法工艺简单,但容易带人杂质,产品纯度偏低,粒度目前只能达到100nm左右,前驱体BTO煅烧温度较低,产物易掺杂,难控制前驱体BTO中Ba/Ti的物质的量比;微粒团聚较严重,反应过程中需要不断调节体系pH值。尽管有不同的改进方法,但仍难于实现工业化生产。 2.2.3 柠檬酸盐法柠檬酸盐法是制备优质BaTiO3微粉的方法之—。由于柠檬酸的络合作用,可以形成稳定的柠檬酸钡钛溶液,从而使得Ba/Ti的物质的量比等于1,化学均匀性高。同时由于取消了球磨工艺,BaTiO3粉体的纯度得到提高。实验中采用喷雾干燥法对柠檬酸钡钛溶液进行脱水处理,制得BaTiO3的前驱体,再在一定温度下处理即可获得BaTiO3粉体。但煅烧得到的BaTiO3粉体易团聚,成本高,难于实现工业化。

实验二 溶胶-凝胶法制备钛酸钡纳米陶瓷粉体

醋酸钡255.21、钛酸丁酯340.3 实验二溶胶-凝胶法制备纳米钛酸钡陶瓷粉体 一、实验目的 1、了解溶胶-凝胶制备纳米粉体的方法 2、制备纳米钛酸钡陶瓷粉体 二、实验背景和原理 1. 实验背景 钛酸钡(BaTiO )具有良好的介电性,是电子陶瓷领域应用最广的材料之一。传 3 制备方法是固相合成,这种方法生成的粉末颗粒粗且硬,不能满足高统的BaTiO 3 科技应用的要求。现代科技要求陶瓷粉体具有高纯、超细、粒径分布窄等特性,与粗晶材料相比在物理和机械性能方面有极大的差别:熔点降低,烧结温度降低、荧光谱峰向低波长移动、铁电和铁磁性能消失、电导增强等。溶液化学法是制备超细粉体的一种重要方法,其中以溶胶-凝胶法最为常用。 2. 溶胶-凝胶法合成BaTiO3纳米粉体的基本原理 溶胶—凝胶(简称Sol—Gel)法是以金属醇盐的水解和聚合反应为基础的。其反应过程通常用下列方程式表示: (1)水解反应: M(OR)4 + χ H2O = M(OR)4- χ OH χ + χ ROH (2)缩合-聚合反应: 失水缩合-M-OH + OH-M-=-M-O-M-+H2O 失醇缩合-M-OR + OH-M-=-M-O-M-+ROH 缩合产物不断发生水解、缩聚反应,溶液的粘度不断增加。最终形成凝胶——含金属—氧—金属键网络结构的无机聚合物。正是由于金属—氧—金属键的形成,使Sol—Gel法能在低温下合成材料。Sol—Gel技术关键就在控制条件发生水解、缩聚反应形成溶胶、凝胶。

本次实验使用的钛酸丁酯(亦称丁醇钛)是一种非常活泼的醇盐,遇水会发生剧烈的水解反应。在Sol—Gel工艺中,让溶液系统暴露在空气中从空气中吸收水分,使水解反应不充分(或不完全),其反应式可表示为 Ti(OR)4 + χ H2O = Ti(OR)4- χ OH χ + χ ROH (1) 式中,R=C 4H 9 为丁烷基,RO或OR为丁烷氧基。未完全水解反应的生成物 Ti(R) 4-χ (OH)χ中的(OH)-极易与丁烷基(R)或乙羰基(R′=CH3CO)结合,生成丁醇或乙酸,而使金属有机基团通过桥氧聚合成有机大分子。如本实验可能发生典型的聚合反应的结构反应式为 R′-O-Ba-O-R Ti OH+Ti O Ba O R'+ R'OH (2) 或 Ti OR Ti OH +Ti O Ti+ ROH (3)实验中的水解及聚合反应在缓慢吸收空气中水分的过程中不断地进行着,实际 上是金属有机化合物经过脱酸脱醇反应,金属Ti4+和Ba2+通过桥氧键聚合成了有机大分子团链,随着这种分子团链聚合度的增大,溶液粘度增加,溶胶特征明显,经过一定时间就会变成半固体透明的凝胶。凝胶经过烘干,煅烧得到钛酸钡粉末。三、主要仪器与药品 仪器:烧杯,机械搅拌、烘箱; 药品:醋酸钡,乙酸,钛酸丁酯,无水乙醇。 四、实验步骤 1.称取醋酸钡0.02mol (5g),量取36%的乙酸20ml,倒入烧杯中,搅拌使醋 酸钡完全溶解。 2.称取钛酸丁酯0.02mol (6.8g), 量取无水乙醇10ml,倒入锥形瓶中, 摇匀。 3.将上述两种溶液迅速混合,快速搅拌,溶液澄清后减慢搅拌速度,继续搅拌 2小时,停止搅拌,此时已经形成透明溶胶,使透明溶胶在空气中静置3-4小时,得到透明凝胶。 4.将凝胶取出,置于干燥皿中,在120°C下烘干。得到干凝胶,研磨得到淡 黄色粉末。

纳米晶钛酸钡陶瓷铁电性能和介电性能的温度依赖性

硅酸盐学报 · 432 ·2013年 DOI:10.7521/j.issn.0454–5648.2013.04.02 纳米晶钛酸钡陶瓷铁电性能和介电性能的温度依赖性 刘佳1,杨仁波1,邓湘云1,2,谭忠文1,李德军1,王晓慧3,李龙土3 (1. 天津师范大学物理与电子信息学院,天津 300387;2. 热带岛屿资源先进材料教育部重点实验室,硅锆钛 资源综合开发与利用海南省重点实验室,海南大学材料与化工学院,海口 570228;3. 清华大学材料 科学与工程系,新型陶瓷与精细工艺国家重点实验室,北京 100084) 摘要:研究50nm BaTiO3陶瓷的铁电性能、介电性能的温度依赖性,其介温谱和介电损耗谱具有明显的弥散相变特征,当频率为1kHz时计算得到弥散指数γ为1.60。不同温度下的介电常数–电场强度(ε–E)曲线显示,介电异常发生在110~120℃的温度范围内,110℃时的介电可调性为20.2%,介电损耗小于0.02。压电位移曲线计算得到50nm BaTiO3陶瓷的压电系数d33为45pm/V。 关键词:纳米晶钛酸钡陶瓷;铁电性;弥散相变;压电系数 中图分类号:TN305 文献标志码:A 文章编号:0454–5648(2013)04–0432–05 网络出版时间:2013–03–02 9:39 网络出版地址:https://www.wendangku.net/doc/154743532.html,/kcms/detail/11.2310.TQ.20130302.0939.001.html Temperature Dependence on the Dielectric and Ferroelectric Properties of Nanocrystalline BaTiO3 Ceramics LIU Jia1,YANG Renbo1,DENG Xiangyun1,2,TAN Zhongwen1,LI Dejun1,WANG Xiaohui3,LI Longtu3 (1. College of Physics and Electronic Information, Tianjin Normal University, Tianjin 300387, China; 2. Key Lab of Advanced Materials of Tropical Island Resources, Ministry of Education, Hainan Provincial Key Laboratory of Research on Utilization of Si–Zr–Ti Resources, Materials and Chemical Engineering Institute, Hainan University, Haikou 570228, China; 3. Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China) Abstract: The temperature dependence on the dielectric and ferroelectric properties of dense BaTiO3 ceramic with the nanocrystalli-nes of 50nm was investigated. The relationship between the dielectric constant and loss tangent with respect to temperature effect was analyzed, and a significant diffuse phase transition was observed. The dispersion parameter was calculated to be 1.60 at 1kHz. The dielectric constant–electric field (ε–E) loops at different temperatures showed that the permittivity anomalies occurred in a tempera-ture range of 110–120. The dielectric constant tunability was 20.2% at 110 ℃, and the dielectric loss tangent was < ℃0.02. Moreover, the positive piezoelectric coefficient d33 of 45pm/V was determined from the slope of the loops. Key words: nanocrystalline barium titanate ceramic; ferroelectricity; diffuse phase transition; piezoelectric coefficient 1 Introduction Barium titanate (BaTiO3) with a perovskite structure has been widely used as a ferroelectric material for mul-tilayer ceramics capacitors, embedded capacitance in printed circuit boards, thermal imaging, actuators, piezo-electric transducers and ferroelectric memories, due to its high dielectric constant and low losses.[1–2] Some studies revealed that the grain size of BaTiO3 has an effect on the dielectric properties.[3–4] It is thus important to investigate the properties of BaTiO3 with respect to the effect of the grain size in order to find the possible limit of ferroelec-tricity and elucidate the dielectric property of the ferro-electrics components as well. Recently, Zhao, et al.[5] synthesized BaTiO3 ceramic with the grain size in the range from 50 to 1200nm by a spark plasma sintering 收稿日期:2012–06–08。修订日期:2012–07–20。 基金项目:国家“863”计划(2012AA03A610);国家“973”计划(2002- CB613301);国家自然科学基金(50872093)资助项目。 第一作者:刘佳(1987—),女,硕士研究生。 通信作者:邓湘云(1964—),女,博士,教授。Received date:2012–06–08. Revised date: 2012–07–20. First author: LIU Jia (1987–), female, Master candidate. E-mail: liujia0066@https://www.wendangku.net/doc/154743532.html, Correspondent author: DENG Xiangyun (1964–), female, Ph.D., Professor. E-mail: xiangyundtj@https://www.wendangku.net/doc/154743532.html, 第41卷第4期2013年4月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 41,No. 4 April,2013

钛酸钡

题目:关于压电陶瓷之钛酸钡的简单分析班级: 姓名: 学号:

摘要: 传统的压电陶瓷大多是含铅陶瓷,其中氧化铅(或四氧化三铅)约占原料总质量的70%左右,在制备、使用及废弃处理过程中,都会给环境和人类带来危害。从生态环境保护和社会可持续发展战略的实施来看,压电陶瓷的无铅化是其发展的必然趋势。ABO3型钙钛矿结构的BaTiO3(BT)是最早发现的无铅压电陶瓷,也是最先获得应用的压电陶瓷材料。 关键字:无铅陶瓷钛酸钡环保 一、压电陶瓷简介 压电材料是微机电系统(MEMS)常用的一种功能材料。压电材料的主要属性是,其弹性效应和电极化效应在机械应力或电场(电压)作用下将发生相互耦合,也就是应力-应变-电压之间存在内在联系。压电效应有正负之分,正压电效应在机械应力作用下,将机械能转换为电能;负压电效应则在电压作用下,将电能转换为机械能。利用正压电效应感知外界的机械能,可以制作微传感器;利用逆压电效应作为驱动力,可以制作压电微执行器。 陶瓷材料是以化学合成物质为原材料,经过精密的成型烧结而成。烧结前,严格控制合成物质的组份比,便可以研制成适合多种用途的功能陶瓷,如压电陶瓷(电致伸缩材料)、半导体陶瓷、导体陶瓷、磁性陶瓷及多孔陶瓷等。压电陶瓷是陶瓷经过电极化之后形成的,电极化之后的压电陶瓷为各向异性的多晶体。常用的压电陶瓷有钛酸钡(BT)、锆钛酸铅(BZT)、改性锆钛酸铅、偏铌酸铅(PN)、铌酸铅钡锂(PBLN)、改性钛酸铅等。 下面主要针对压电陶瓷常用的材料钛酸钡(BT)的机理及应用问题做简单分析 二、钛酸钡陶瓷特点及应用 自20世纪40年代年发现钛酸钡陶瓷的压电性以来,压电陶瓷的发展已有60余年。压电陶瓷作为一类重要的、国际竞争极为激烈的功能材料,其应用已遍及人类生产及生活的各个角落。然而,传统的压电陶瓷大多是含铅陶瓷,其中氧化铅(或四氧化三铅)约占原料总质量的70%左右,在制备、使用及废弃处理过程中,都会给环境和人类带来危害。从生态环境保护和社会可持续发展战略的实施来看,压电陶瓷的无铅化是其发展的必然趋势。ABO3型钙钛矿结构的BaTiO3(BT)是最早发现的无铅压电陶瓷,也是最先获得应用的压电陶瓷材料。 钛酸钡晶体有一般压电材料的共有特性:当它受压力而改变形状的时候,会产生电流,一通电又会改变形状。于是,人们把钛酸钡放在超声波中,它受压便产生电流,由它所产生的电流的大小可以测知超声波的强弱。相反,用高频电流通过它,则可以产生超声波。现在,几乎所有的超声波仪器中,都要用到钛酸钡。除此之外,钛酸钡还有许多用途。例如:铁路

特种陶瓷材料的研究进展[1]

文章编号:1006-2874(2010)05-0071-04 特种陶瓷材料的研究进展 葛伟青 (唐山学院,唐山:063000) 中图分类号:TQ174.75文献标识码:A 特种陶瓷也称为先进陶瓷、现代陶瓷、新型陶瓷、高性能陶瓷、高技术陶瓷和精细陶瓷,突破了传统陶瓷以黏土为主要原料的界限,主要以氧化物、炭化物、氮化物、硅化物等为主要原料,有时还可以与金属进行复合形成陶瓷金属复合材料,是一种采用现代材料工艺制备的、具有独特和优异性能的陶瓷材料。已成为现代高性能复合材料的一个研究热点。特种陶瓷于二十世纪发展起来,在近二、三十年内,新产品不断涌现,在现代工业技术,特别是在高技术、新技术领域中的地位日趋重要。许多科学家预言:特种陶瓷在二十一世纪的科学技术发展中,必将占据十分重要的地位。 特种陶瓷不同的化学组成和组织结构决定了它不同的特殊性质和功能,可作为工程结构材料和功能材料应用于机械、电子、化工、冶炼、能源、医学、激光、核反应、宇航等领域。一些经济发达国家,特别是日本、美国和西欧国家,为了加速新技术革命,为新型产业的发展奠定物质基础,投入大量人力、物力和财力研究开发特种陶瓷,因此,特种陶瓷的发展十分迅速,在技术上也有很大突破。 1概述 特种陶瓷通常包括结构陶瓷、功能陶瓷(电子陶瓷)和生物陶瓷等.结构陶瓷具有高强度、高硬度、高耐磨、耐高温、耐腐蚀等特性,功能陶瓷具有导电、半导性、绝缘、压电、透光、光电、电光、声光、磁光等性能,生物陶瓷具有医疗(人工关节.骨、牙齿等)和催化等功能,在现代工业技术,特别是在高新技术领域中的地位日趋重要。 中国科学院上海硅酸盐研究所所长罗宏杰在佛山市加快发展特种陶瓷推介会上发言说,特种陶瓷具备传统陶瓷不具备的多种特性,消耗低、利润高,应用前景十分广阔。预计2010年全国的市场规模将达到400亿元。世界的市场规模将达到1500亿美元。中国经济的高速发展,将为特种陶瓷制造业提供广阔的市场与发展空间。 目前,高温结构陶瓷研究的主要目标仍然是燃气轮机、活塞发动机和磁流体发电机用的材料。高温结构陶瓷的应用在汽车、飞机、火箭等领域获得了成功。福特公司研制的汽车用轮机的机头、定子和叶轮都是用氮化硅制作的,热交换器是用蜂窝状结构的结晶化玻璃制成的。超音速飞机发动机和火箭燃烧室内壁、隔热衬层等高温部位都利用到了陶瓷材料。美国研制成功了AGT100和AGT101型全陶瓷汽车发动机,其进口温度分别达到了1290℃和1370℃,比超合金高200 ~260℃。 2粉末制备技术进展情况 目前最引人注目的粉末制备技术是超高温技术。利用超高温技术可廉价地研制特种陶瓷。 超高温技术具有如下优点:能生产出用以往方法所不能生产的物质,能够获得纯度极高的物质,生产率会大幅度提高,可使作业程序简化、易行。目前,在超高温技术方面居领先地位的是日本。此外,溶解法制备粉末、化学气相沉积法制备陶瓷粉末、溶胶-凝胶法生产莫来石超细粉末以及等离子体气相反应法等也引起了人们的关注。 3特种陶瓷成形方法及特点 3.1干法成型 干法成型包括钢模压制成型、等静压成型、超高压成型、粉末电磁成型等方法。 3.1.1钢模压制成型(干压法) 将含有少量增塑剂、具有一定粒度配比的陶瓷粉末放在金属模内,在压机上受压,使之密实成型。钢模压制的优点是易于实现自动化,所以在工业生产中得到较大的应用。 3.1.2等静压成型 等静压成型是通过施加各项同性压力而使粉料一边压缩一边成型的方法。等静压力可达300MPa左右。在常温下成型时称为冷等静压成型,在几百摄氏度到2000℃温区内成型时称为热等静压成型。等静压有两种方式:干袋法和湿袋法。湿袋法是将粉末或颗粒密封于成型橡胶模型内,置于高压容器 收稿日期:2010-04-15 通讯联系人:葛伟青,E-mail:hbtsgwq@https://www.wendangku.net/doc/154743532.html, CHINACERAMICINDUSTRYOct.2010Vol.17,No.5 中国陶瓷工业 2010年10月第17卷第5期

纳米钛酸钡的研究

纳米钛酸钡的研究 摘要:钛酸钡具有高介电常数、低介质损耗等优异的性能,广泛地应用于多层陶瓷电容器、热敏电阻、光电器件等电子元件,是电子工业中应用最广泛的陶瓷材料之一。本文介绍了钛酸钡结构、性能、用途及制备方法。制备超细,高纯和粒径分布均匀的纳米BaTiO3粉体的制备成为了纳米材料制备领域的研究热点之一。 关键词:钛酸钡,结构,性能,制备方法,粉体 1. 引言 钛酸钡(BaTiO3)是最早发现的一种具有ABO3型钙钛矿晶体结构的典型铁电体,它具有高介电常数、低的介质损耗及铁电、压电和正温度系数效应等优异的电学性能,被广泛应用于制备高介陶瓷电容器、多层陶瓷电容器、PTC热敏电阻、动态随机存储器、谐振器、超声探测器、温控传感器等,被誉为“电子陶瓷工业的支柱”。 2. 钛酸钡晶体的结构 钛酸钡是一致性熔融化合物,其熔点为1618℃。在此温度以下,1460℃以上结晶出来的钛酸钡属于非铁电的六方晶系6/mmm点群。此时,六方晶系是稳定的。在1460~130℃之间钛酸钡转变为立方钙钛矿型结构。在此结构中Ti4+(钛离子)居于O2-(氧离子)构成的氧八面体中央,Ba2+(钡离子)则处于八个氧八面体围成的空隙中。此时的钛酸钡晶体结构对称性极高,因此无偶极矩产生,晶体无铁电性,也无压电性。 随着温度下降,晶体的对称性下降。当温度下降到130℃时,钛酸钡发生顺电-铁电相变。在130~5℃的温区内,钛酸钡为四方晶系4mm点群,具有显著地铁电性,其自发极化强度沿c轴方向,即[001]方向。钛酸钡从立方晶系转变为四方晶系时,结构变化较小。从晶胞来看,只是晶胞沿原立方晶系的一轴(c轴)拉长,而沿另两轴缩短。

钛酸钡的发展与趋势

钛酸钡的发展与趋势 于长海 (南京理工大学江苏南京 210094) 摘要:钛酸钡具有高的介电常数和低介电损耗特点,优良的铁电、压电和绝缘性能,广泛地应用于制造陶瓷敏感元件、多层陶瓷电容器、记忆材料等方面,本文就钛酸钡的合成方法及研究进展进行综述,并对其发展方向进行展望。 关键词::钛酸钡制备研究进展 1.前言 钛酸钡是钛酸盐系列电子陶瓷的基础母体原料,被称为电子陶瓷业的支柱。作为一种铁电材料,具有高的介电常数和低介电损耗特点,有优良的铁电、压电、耐压和绝缘性能,附加值高,发展前景广阔。广泛地应用于制造陶瓷敏感元件,尤其是正温度系数热敏电阻(PTC),多层陶瓷电容器(MLCCS),热电元件,压电陶瓷,声纳,红外辐射探测,晶体陶瓷电容器,电光显示板,记忆材料,聚合物基复合材料以及涂层等。钛酸钡具有钙钛矿晶体结构,最近作为手机电子器件的比重越来越大.要求钛酸钡微粒在100nm以内,以进~步制备高容量,高性能的多层陶瓷电容器。因此,对纳米BaTi03粉体的制备及其形貌的控制一直是纳米科技领域的一个研究热点,各项制备技术也得到了很大发展.如固相法、化学沉淀法、溶胶——凝胶法、水热法、超声波合成法等,而水热合成法是指在密封高压釜中,以水为溶剂,在一定的温度和仍有许多问题需要探索和研究,反应机理也有待近一步探讨。据报道,钛酸钡可以在水溶性大分子修饰下以较低温度条件下合成,得到形貌及尺寸可控的纳米结构,为了更好的了解钛酸钡的合成现状,本文就钛酸钡的合成方法及研究进展进行综述,并对其发展方向进行展望。 2.钛酸钡的合成法 2.1固相合成法 固相法是钛酸钡粉体的传统制备方法,典型的是将等tool的碳酸钡和二氧化钛混合,在1500°C反应24h制得[1]。其反应式: BaCO3+TiO2→BaTi03+CO2↑ 该方法工艺简单,设备可靠,但由于该方法依靠高温固相间扩散传质,故所得粉体BaTi03,粒径大(几个微米),必须再次进行球磨;高温煅烧,能耗较大;化学成分不均匀,影响烧结陶瓷的性能;团聚现象严重;较难得到纯BaTi03晶相,总有少量BaTi03或其它钡钛化合物残留在陶瓷中,粉体纯度低;原料成本较昂贵。由于固相法制取的BaTi03,粉体质量较低.一般只使用于制作技术性能要求低的产品。 2.2化学沉淀法 2.2.1直接沉淀法

相关文档