文档库 最新最全的文档下载
当前位置:文档库 › 间歇萃取精馏分离碳酸二甲酯与甲醇恒沸物

间歇萃取精馏分离碳酸二甲酯与甲醇恒沸物

间歇萃取精馏分离碳酸二甲酯与甲醇恒沸物
间歇萃取精馏分离碳酸二甲酯与甲醇恒沸物

萃取精馏综述

摘要 萃取精馏是一种特殊精馏方法,适用于近沸点物系和共沸物的分离。萃取精馏按操作方式可分为连续萃取精馏和间歇萃取精馏,间歇萃取精馏是近年发展起来的新的萃取精馏方法。萃取剂的选择是萃取精馏的关键,因此,萃取剂的选择方法很重要。 关键词:萃取精馏;间歇萃取精馏;萃取剂选择

Abstract Extractive distillation is a kind of special rectification method, applicable to almost boiling point system and the separation of azeotrope. Extractive distillation according to the operation mode can be divided into continuous batch extractive distillation, extractive distillation and batch extractive distillation is a new extraction distillation method developed in recent years. The selection of extraction agent is the key of extractive distillation, therefore, the selection of extraction agent method is very important. Key words: extractive distillation; The batch extractive distillation; Extracting agent selection

精馏工艺流程简述

2.3.1 精馏工序2.3.1.1 脱气系统(回收乙炔) 合成粗醋酸乙烯(反应液:醋酸乙烯39.5%醋酸57.8%乙醛1%水0.2%乙炔1%高沸物0.2%丙酮0.02%其他0.18%)经预热器(E055301)粗分(T055303)塔气相预热后进入脱气塔(T055301)顶部,通过进料调节阀(LRC055301)控制塔液位,通过蒸汽调节阀(TRC055302)控制中温,使乙炔、部分高级炔烃、CO从塔顶排出,并带了部分乙醛和醋2酸乙烯,经脱气塔馏出冷凝器(E055302)12℃冷却水冷凝后液相回流至脱气塔顶部,气相从第一洗涤塔(T055310)底部进入,该塔用经过循环冷却水32℃冷却器(E055304)和从V055301来的回收液作为冷剂(E055305)冷却后的粗HAC35℃(T055303釜液)喷淋,以吸收脱气塔排出CH气(62%)中的乙醛(5.5%)和VAC(32.5%)。第一洗涤22塔釜液流回脱气塔顶,第一洗涤塔(T055310)顶排出的CH气带有少22量醋酸蒸汽(10%),进入第二洗涤塔(T055311),用二级脱盐水吸收醋酸,釜出至醋酸精制塔回收醋酸(18%),塔顶排出乙炔气(98%)水(1.6%)经第二洗涤塔气液分离器(Y055301)除液滴后进入乙炔气缓冲槽(V055318)经鼓风机(C055301)送乙炔净化处理。 2.3.1.2 粗馏系统(脱除乙醛) 脱气后的粗醋酸乙烯(醋酸乙烯39%醋酸59%乙醛1%水0.2%乙炔1%高沸物0.2%丙酮0.02%其他0.18%)由脱气塔釜液泵(P055302)通过流量调节(FRC055303)控制送到脱乙醛塔(T055302);

煤制甲醇工艺设计

煤制甲醇工艺流程化设计 主反应为:C + O 2 → C O + C O 2 + H 2 → C H 3O 副反应为: 1 造气工段 (1)原料:由于甲醇生产工艺成熟,市场竞争激烈,选用合适的原料就成为项目的关键,以天然气和重油为原料合成工艺简单,投资相对较少,得到大多数国家的青睐,但从我国资源背景看,煤炭储量远大于石油、天然气储量,随着石油资源紧缺、油价上涨,在大力发展煤炭洁净利用技术的形势下,应该优先考虑以煤为原料,所以本设计选用煤作原料。 图1-1 甲醇生产工艺示意图 (2)工艺概述:反应器选择流化床,采用水煤浆气化激冷流程。原料煤通过粉碎制成65%的水煤浆与99.6%的高压氧通过烧嘴进入气化炉进行气化反应,产生的粗煤气主要成分为CO ,CO 2,H 2等。 2423CO H CH H O +?+2492483CO H C H OH H O +?+222CO H CO H O +?+

2 净化工段 由于水煤浆气化工序制得粗煤气的水汽比高达1.4可以直接进行CO变换不需加入其他水蒸气,故先进行部分耐硫变换,将CO转化为CO2,变换气与未变换气汇合进入低温甲醇洗工序,脱除H2S和过量的CO2,最终达到合适的碳氢比,得到合成甲醇的新鲜气。 CO反应式: CO+H O=CO+H 222 3 合成工段 合成工段工艺流程图如图1。 合成反应要点在于合成塔反应温度的控制,另外,一般甲醇合成反应10~15Mpa的高压需要高标准的设备,这一项增加了很大的设备投资,在设计时,选择目前先进的林达均温合成塔,操作压力仅5.2MPa,由于这种管壳式塔的催化剂床层温度平稳均匀,反应的转化率很高。在合成工段充分利用自动化控制方法,实行连锁机制,通过控制壳程的中压蒸汽的压力,能及时有效的掌控反应条件,从而确保合成产品的质量。 合成主反应: CO+2H=CH OH 23 主要副反应: CO+3H=CH OH+H O 2232 4 精馏工段 精馏工段工艺流程图见图2。 合成反应的副产主要为醚、酮和多元醇类,本设计要求产品达质量到国家一级标准,因此对精馏工艺的合理设计关系重大,是该设计的重点工作。设计中选用双塔流程,对各物料的进出量和回流比进行了优化,另外,为了进一步提高精甲醇质量,从主塔回流量中采出低沸点物继续进预塔精馏,这一循环流程能有效的提高甲醇的质量。

间歇精馏技术及其模拟优化进展

2012年第15期广东化工 第39卷总第239期https://www.wendangku.net/doc/1d4811816.html, · 5 · 间歇精馏技术及其模拟优化研究进展 周年忠1,田文广2,顾宇昕1,李雁2*,陶红秀2,解新安2 (1.中国电器科学研究院,广东广州 510000;2.华南农业大学,广东广州 510642) [摘要]间歇精馏技术是一种重要的化工分离手段。文章综述了国内外间歇精馏技术及其常用的数学模型,其中主要阐述了严格模型和简捷模型,简要讨论了降价模型、半严格模型,同时探讨了间歇精馏优化的发展及其应用,并展望了间歇精馏系统的发展趋势。 [关键词]间歇精馏;操作方式;数学模型;优化 [中图分类号]TQ [文献标识码]A [文章编号]1007-1865(2012)15-0005-02 Development in Batch Distillation Technology and it’s Simulation and Optimization Zhou Nianzhong1, Tian Wenguang2, Gu Yuxin1, LI Yan2*, Tao Hongxiu2, Xie Xinan2 (1. China National Electric Apparatus Research Institute, Guangzhou 510000;2. South China Agricultural University, Guangzhou 510642, China) Abstract: Batch distillation is an important unit operation. The research progress on operation model of batch distillation at home and abroad was particularly introduced. Several kinds of mathematical models that are usually used, such as rigorous model and short-cut model, price reduction model, semi-rigorous model were reviewed. And development of batch distillation optimization and its application were discussed; the computer simulation and multi-objective optimization will become a trend. Keyword: batch distillation;operation model;mathematical model;optimization 在石油和化工行业生产中,间歇精馏也是较重要的化工分离手段之一[1]。间歇精馏也叫分批反应精馏,一般用于小规模生产。与连续精馏相比,间歇精馏是一个动态的过程,其单个塔就可以完成多个组分的分离,能够适应进料组分浓度在较大范围的变化,设计和操作过程非常灵活[2]。但同时也存在两大问题,一是由于处理原料量较小,使得生产的周期较长;二是操作过程中各参数变化较大,使操作过程的控制比较困难,很难实现自动化管理[3]。 目前,间歇精馏的研究主要集中在两个方面,一方面是关于间歇精馏的数学模型及其计算方法的研究。由于间歇精馏是一个动态的过程,数学模型中含有复杂的微分方程组,求解比较困难,因此,模拟难度大[4]。另一方面是关于操作过程的优化研究。从不同的目标出发,采用不同的方法,得到优化方案和新的操作模式和新的塔结构,虽然缩短了操作时间,但操作起来比较困难,在实际生产中很难得到广泛应用。因此,对间歇精馏的综合优化问题的研究势在必行[5]。 1 间歇精馏技术的发展 1.1 间歇精馏全回流操作 1967年,Barb和Block等[6]最早提出了塔顶累积全回流操作。随着研究的不断发展,Sφrensen等[7]研究了塔顶累积全回流操作的优化问题,与传统的恒回流比和恒塔顶浓度操作方式对比可知,这种操作在分离含有少量轻组分的原料时,可节省大量的操作时间。白鹏等[8]提出了动态累积全回流操作,目标是使全回流浓缩和无回流内部迁移操作交替进行,并在2000年对间歇精馏的动态累积操作方式进行了改进,提出了无返混动态累积操作,有效降低了塔顶累积罐中组分的返混,极大地缩短了操作时间,提高了间歇精馏的分离效率。白鹏等[9]在2006年提出了采用塔顶和塔中温度进行控制操作状态转换的全回流间歇精馏控制方法,并以异丙醇-正丙醇为实验物系验证了该方法的可行性,进一步提高了塔的分离效率。2011年,黄丽丽等[10]人研究发现了通过塔顶、塔中上以及塔中3个温度控制进行操作状态转换的无累积罐循环全回流间歇精馏控制方法,并以理想物系—乙醇-正丙醇混合物为分离物系进行了实验验证。结果表明,在相同条件下,三温控制方式与双温控制方式相比,前者所用操作时间短、分离效率提高。1.2 反向间歇精馏塔操作 反向间歇精馏又称为提馏式间歇精馏。1950年,Robinson和Gilliland发现此种操作的最大优点是能在塔顶冷凝器中获得高浓度组分,并简要讨论了利用正常精馏塔去除轻组分,然后利用反向间歇精馏塔去除重组分的可能性。1991年,Chiotti等[11]在准稳态的基础上建立了数学模型,利用此模型对一般间歇精馏操作和反向间歇精馏操作分离两组分混合物的过程进行了模拟计算;2008年,王超[12]使用塔身分散式加热,对热敏物系的间歇提馏过程进行了操作方式的改进,该方法通过在塔身进行加热,减少了再沸器的加热功率和时间,能有效缩短受热时间,减少热敏物质的损耗。1.3 中间罐间歇精馏塔操作 中间罐间歇精馏塔也叫复合式间歇精馏塔,被认为是常规间歇精馏塔和反向间歇精馏塔的复合体。1950年,Robinson等[13]提出了中间罐间歇精馏塔操作。2006年,Thomas A等[14]在前人研究的基础上,将中间罐间歇精馏应用于一个可逆的化学反应过程,即中间罐发生反应的半连续间歇精馏,进一步提高了精馏的分离效率。2009年,Leipold等[15]对中间储罐间歇精馏多目标的优化建立了模型,并利用进化算法求解,结果显示,中间储罐方法的经济效益更好。 1.4 多罐间歇精馏塔操作 多罐间歇精馏塔又叫多效间歇精馏塔,Hasebe和Skogestad 于1995年提出了这种新型的精馏塔。2005年,Low等[16]对多储罐操作以经济效益最大化为目标进行优化,采用自适应搜索技术,对关键设计和操作参数进行优化。结果发现,待分离混合物中组分越多,多储罐精馏塔较常规间歇塔就越高效。2008年,Mahmud 等[17]在特定产量和产品纯度基础上对多储罐间歇精馏进行了优化,对于特定的分离任务,多储罐间歇精馏塔更加节能、环保。 2 间歇精馏的模拟、优化研究 2.1 间歇精馏的数学模型 间歇精馏过程的数学模拟开始于20世纪60年代,主要包括严格模型、降阶模型、简捷模型、半严格模型。 2.1.1 严格模型 1963年,Meadows等[18]提出了第一个严格的多组元间歇精馏模型,它基于两个假设,一是各塔板上液体全混和,二是塔身绝热,恒体积持液量,忽略塔板汽相持汽量。1981年,Boston等在Meadows模型的基础上,引入了中间加料、中间换热以及汽液相侧线采出,将先前用于求解稳态精馏问题的“由内而外”技术应用到求解间歇精馏问题中来,并证明了该技术是一种有效的的方法,使模型得到进一步完善。1999年,Furlonge等人[19]提出了更为严格的数学模型,此模型与实际塔非常接近,但计算时所消耗的时间较多。2007年,美国科学研究者对严格模型做进一步研究,它可以灵活的建立单元模拟流程,也可以自动生成矢量。 2.1.2 降价模型 1983年,Cho和Joseph[20]提出了降价模型,间歇精馏分离的模拟过程中,难度较大的就是利用数学模型对多元函数进行模拟分离,而他们两个将原料组成及流量函数近似成塔的高度的连续函数,并采用多项式的形式来表示,而理论板数是离散的整数。这样,描述系统的微分方程数将大大减少。在此模型中,配置点的位置及个数直接影响结果的精确度,由于配置点的个数比精馏塔的级数少得多,再加上理论板数不再是离散的整数,又通过多组分系统的分离的间歇精馏装置应用,因此,此模型可较好的应用于填料塔。 2.1.3 简捷模型 1991年,Diwekar等[21]在恒塔顶组成和回流比不变的操作条 [收稿日期] 2012-09-18 [作者简介] 周年忠(1965-),男,高级工程师,华南农业大学兼职研究生导师,主要从事精细化工产品开发与新工艺研究。*为通讯作者。

萃取精馏综述

萃取精馏综述 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

摘要 萃取精馏是一种特殊精馏方法,适用于近沸点物系和共沸物的分离。萃取精馏按操作方式可分为连续萃取精馏和间歇萃取精馏,间歇萃取精馏是近年发展起来的新的萃取精馏方法。萃取剂的选择是萃取精馏的关键,因此,萃取剂的选择方法很重要。 关键词:萃取精馏;间歇萃取精馏;萃取剂选择

Abstract Extractive distillation is a kind of special rectification method, applicable to almost boiling point system and the separation of azeotrope. Extractive distillation according to the operation mode can be divided into continuous batch extractive distillation, extractive distillation and batch extractive distillation is a new extraction distillation method developed in recent years. The selection of extraction agent is the key of extractive distillation, therefore, the selection of extraction agent method is very important. Key words: extractive distillation; The batch extractive distillation; Extracting agent selection

生产甲醇的工艺流程

生产甲醇的工艺流程 (一)生产工序 合成气合成甲醇的生产过程,不论采用怎样的原料和技术路线,大致可以分为以下几个工序 1.原料气的制备 合成甲醇,首先是制备原料氢和碳的氧化物。一般以含碳氢或含碳的资源如天然气、石油气、石脑油、重质油、煤和乙炔尾气等,用蒸汽转化或部分氧化加以转化,使其生成主要由氢、一氧化碳、二氧化碳组成的混合气体,甲醇合成气要求(H2-CO2)/(CO+CO2)=2.1左右。合成气中还含有未经转化的甲烷和少量氮,显然,甲烷和氮不参加甲醇合成反应,其含量越低越好,但这与制备原料气的方法有关;另外,根据原料不同,原料气中还可能含有少量有机和无机硫的化合物。 为了满足氢碳比例,如果原料气中氢碳不平衡,当氢多碳少时(如以甲烷为原料),则在制造原料气时,还要补碳,一般采用二氧化碳,与原料同时进入设备;反之,如果碳多,则在以后工序要脱去多余的碳(以CO2形式)。 2.净化 一是脱除对甲醇合成催化剂有毒害作用的杂质,如含硫的化合物。原料气中硫的含量即使降至1ppm,对铜系催化剂也有明显的毒害作用,因而缩短其使用寿命,对锌系催化剂也有一定的毒害。经过脱硫,要求进入合成塔气体中的硫含量降至小于0.2ppm。脱硫的方法一般有湿法和干法两种。脱硫工序在整个制甲醇工艺流程中的位置,要根据原料气的制备方法而定。如以管式炉蒸汽转化的方法,因硫对转化用镍催化剂也有严重的毒害作用,脱硫工序需设置在原料气设备之前;其它制原料气方法,则脱硫工序设置在后面。 二是调节原料气的组成,使氢碳比例达到前述甲醇合成的比例要求,其方法有两种。 (1)变换。如果原料气中一氧化碳含量过高(如水煤气、重质油部分氧化气),则采取蒸汽部分转换的方法,使其形成如下变化反应:CO+H2O==H2+CO2。这样增加了有效组分氢气,提高了系统中能的利用效率。若造成CO2多余,也比较容易脱除。 (2)脱碳。如果原料气中二氧化碳含量过多,使氢碳比例过小,可以采用脱碳方法除去部分二氧化碳。脱碳方法一般采用溶液吸收,有物理吸收和化学吸收两种方法。(如:低温甲醇洗)

甲醇精馏的方法

1.4.2 甲醇精馏的典型工艺流程甲醇精馏产生工艺有多种,分为单塔精馏,双塔精馏,三塔精馏与四塔精馏(即三塔加回收塔) (1) 单塔流程描述 采用铜系催化剂低压法合成甲醇,由于粗甲醇中不仅还原性杂质的含量大大减少,而且二甲醚的含量几十倍地降低,因此在取消化学净化的同时,可将预精馏及甲醇-水-重组分的分离在一台主精馏塔内同时进行,即单塔流程,就能获得一般工业上所需要的精甲醇。单塔流程更适用于合成甲基燃料的分离,很容易获得燃料级甲醇。 单塔流程(见图1.1)为粗甲醇产品经过一个塔就可以采出产品。粗甲醇塔中部加料口送入,轻组分由塔顶排出,高沸点的重组分在进料板以下若塔板处引出,水从塔底排出,产品甲醇在塔顶以下若干块塔板引出。 (2) 双塔流程描述 双塔工艺是由脱醚塔,甲醇精馏塔或者主塔组成。主塔在工厂中产量在100万吨/年以下,仅仅能提供简单的过程,所以设备和投资较低。 传统的工艺流程,是最早用于30MPa压力下以锌铬催化剂合成粗甲醇的精制。主要步骤有:中和、脱醚、预精馏脱轻组分杂质、氧化净化、主精馏脱水和重组分,最终得到精甲醇产品。在传统工艺流程上,取消脱醚塔和高锰酸钾的化学净化,只剩下双塔精馏(预精馏塔和主精馏塔)。其高压法锌铬催化剂合成甲醇和中、低压法铜系催化剂合成甲醇都可适用。 从合成工序来的粗甲醇入预精馏塔,此塔为常压操作。为了提高预精馏塔后甲醇的稳定性,并尽可能回收甲醇,塔顶采用两级冷凝。塔顶经部分冷凝后的

大部分甲醇、水及少量杂质留在液相作为回流返回塔,二甲醚等轻组分(初馏分)及少量的甲醇、水由塔顶逸出,塔底含水甲醇则由泵送至主精馏塔。主精馏塔操作压力稍高于预精馏塔,但也可以认为是常压操作,塔顶得到精甲醇产品,塔底含微量甲醇及其它重组分的水送往水处理系统(见图1.2)。 (3) 三塔流程描述 三塔工艺是由脱醚塔,加压精馏塔和常压精馏塔组成,形成二效精馏与二甲醇精馏塔甲醇产品的镏出物的混合物。三塔流程(见图1.3)的主要特点是,加压塔塔顶冷凝潜热用作常压塔塔釜再沸器的热源,形成双效精馏二效精馏,因此热量交换在加压塔顶部和常压塔底部之间进行。这种形式节省大约30%~40%的能源,同时降低了循环冷却水的速度。 从合成工序来的粗甲醇入预精馏塔,在塔顶除去轻组分及不凝气,塔底含水甲醇由泵送加压塔。加压塔操作压力为57bar(G),塔顶甲醇蒸气全凝后,部分作为回流经回流泵返回塔顶,其余作为精甲醇产品送产品储槽,塔底含水甲醇则进常压塔。同样,常压塔塔顶出的精甲醇一部分作为回流,一部分与加压塔产品混合进入甲醇产品储槽。 (4) 四塔流程描述 四塔流程(见图1.4)包含预精馏塔、加压精馏塔、常压精馏塔和甲醇回收塔。粗甲醇经换热后进入预精馏塔,脱除轻组分后(主要为不凝气、二甲醚等),塔底甲醇及高沸点组分加压后进入加压精馏塔,加压精馏塔顶的气相进入冷凝蒸发器,利用加压精馏塔和常压精馏塔塔顶、塔底的温差,为常压塔塔底提供热源,同时对加压塔塔顶气相冷凝。冷凝后的精甲醇进入回流罐,一部分作为加压塔回流,一部分作为精甲醇产品出装置,加压塔塔底的甲醇、高沸组分、

萃取精馏

萃取精馏及其应用 摘要:萃取精馏在近沸点物系和共沸物的分离方面是很有潜力的操作过程。萃取精馏是一种特殊的精馏方法。以改变塔内需要分离组分的相对挥发度。选择合适的溶剂可以增强分离组分之间的相对挥发度, 从而可以使难分离物系转化为容易分离的物系。本文对萃取精馏的优缺点进行阐述以及提出对缺点的改进并对萃取精馏的前景进行展望。 Extractive distillation in nearly boiling material and separating azeotrope is very potential operation process. Extractive distillation is a kind of special rectification method. In order to change the tower requires the separation of components of the relative volatility of separation. This paper expounds the advantages and disadvantages of extract :extractive distillation extraction agent advantages and disadvantages application prospect Extractive distillation in nearly boiling material and separating azeotrope is very potential operation process. Extractive distillation is a kind of special rectification method. In order to change the tower requires the separation of components of the relative volatility of separation. This paper expounds the advantages and disadvantages of extractive distillation and put forward to the disadvantages of improvement and Prospect of extractive distillation. Abstracr :Extractive distillation in nearly boiling material and separating azeotrope is very potential operation process. Extractive distillation is a kind of special rectification method. In order to change the tower requires the separation of components of the relative volatility of separation. This paper expounds the advantages and disadvantages of extractive distillation and put forward to the disadvantages of improvement and Prospect of extractive distillation. Key words : extractive distillation extraction agent advantages and disadvantages application prospect 一、萃取精馏的简介 萃取精馏:向精馏塔顶连续加入高沸点添加剂,改变料液中被分离组分间的相对挥发度,使普通精馏难以分离的液体混合物变得易于分离的一种特殊精馏方法。 萃取精馏的原理:若采用普通精馏的方法进行分离,将很困难,或者不可能。对于这类物系,可以采用特殊精馏方法,向被分离物系中加入第三种组分,改变被分离组分的活度系数,增加组分之间的相对挥发度,达到分离的目的。如果加入的溶剂与原系统中的一些轻组分形成最低共沸物,溶剂与轻组分将以共沸物形式从塔顶蒸出,塔底得到重组分,这种操作称为共沸精馏;如果加入的溶剂不与原系统中的任一组分形成共沸物,其沸点又较任一组分的沸点高,溶剂与重组分将随釜液离开精馏塔,塔顶得到轻组分,这种操作称为萃取精馏。 萃取精馏的流程:由于溶剂的沸点高于原溶液各组分的沸点,所以它总是从塔釜排出的。为了在塔的绝大部分塔板上均能维持较高的溶剂浓度,溶剂加入口一定要在原料进入口以上。但一般情况下,它又不能从塔顶引入,因为溶剂入口以上必须还有若干块塔板,组成溶剂回收段,以便使馏出物从塔顶引出以前能将其中的溶剂浓度降到可忽略的程度。溶剂与重组分一起自萃取精馏塔底部引出后,送入溶剂回收装置。一般用蒸馏塔将重组分自溶剂中蒸出,并送回萃取精馏塔循环使用。一般,整个流程中溶剂的损失是不大的,只需添加少量新鲜溶剂补偿即可。

原油蒸馏的工艺流程精编WORD版

原油蒸馏的工艺流程精 编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

原油蒸馏的工艺流程 第一节石油及其产品的组成和性质 一、石油的一般性状、元素组成、馏分组成 (一)石油的一般性状 石油是一种主要由碳氢化合物组成的复杂混合物。世界各国所产石油的性质、外观都有不同程度的差异。大部分石油是暗色的,通常呈黑色、褐色或浅黄色。石油在常温下多为流动或半流动的粘稠液体。相对密度在0.8~0.98g/cm3之间,个别的如伊朗某石油密度达到1.016,美国加利福尼亚州的石油密度低到0.707。 (二)石油的元素组成 石油的组成虽然及其复杂,不同地区甚至不同油层不同油井所产石油,在组成和性质上也可能有很大的差别。但分析其元素,基本上是由碳、氢、硫、氧、氮五种元素所组成。其中碳、氢两中元素占96%~99%,碳占到83%~87%,氢占11%~14%。其余的硫、氧、氮和微量元素含量不超过1%~4%。石油中的微量元素包括氯、碘、磷、砷、硅等非金属元素和铁、钒、镍、铜、铅、钠、镁、钛、钴、锌等微量金属元素。 (三)石油的馏分组成 石油的沸点范围一般从常温一直到500℃以上,蒸馏也就是根据各组分的沸点差别,将石油切割成不同的馏分。一般把原油从常压蒸馏开始镏出的温度(初馏点)到180℃的轻馏分成为称为汽油馏分,180℃~350℃的中间馏分称为煤柴油馏分,大于350℃的馏分称为常压渣油馏分。 二、石油及石油馏分的烃类组成

石油中的烃类包括烷烃、环烷烃、芳烃。石油中一般不含烯烃和炔烃,二次加工产物中常含有一定数量的烯烃。各种烃类根据不同的沸点范围存在与对应的馏分中。 三、石油中的非烃化合物 石油的主要组成使烃类,但石油中还含有相当数量的非烃化合物,尤其在重质馏分油中含量更高。石油中的硫、氧、氮等杂元素总量一般占1%~4%,但石油中的硫、氧、氮不是以元素形态存在而是以化合物的形态存在,这些化合物称为非烃化合物,他们在石油中的含量非常可观,高达10%~20%。 (一)含硫化合物(石油中的含硫量一般低于0.5%) 含硫化合物在石油馏分中的分布一般是随着石油馏分的沸点升高而增加,其种类和复杂性也随着馏分沸点升高而增加。石油中的含硫化合物给石油加工过程和石油产品质量带来许多危害。 1、腐蚀设备 在石油炼制过程中,含硫化合物受热分解产生H 2 S、硫醇、元素硫等活性硫化物,对 金属设备造成严重的腐蚀。石油中通常还含有MgCl 2、CaCl 2 等盐类,含硫含盐化合物相互 作用,对金属设备造成的腐蚀将更为严重。石油产品中含有硫化物,在储存和使用过程中 同样腐蚀设备。含硫燃料燃烧产生的SO 2、SO 3 遇水后生成H 2 SO 3 、H 2 SO 4 会强烈的腐蚀金属 机件。 2、影响产品质量 硫化物的存在严重的影响油品的储存安定性,是储存和使用中的油品容易氧化变质,生成胶质,影响发动机的正常工作。

一种间歇精馏连续化的工艺

万方数据

万方数据

万方数据

一种间歇精馏连续化的工艺 作者:梁坤, Liang Kun 作者单位:茂名市安全生产监督管理局,广东,茂名,525000 刊名: 广东化工 英文刊名:GUANGDONG CHEMICAL INDUSTRY 年,卷(期):2010,37(7) 被引用次数:0次 参考文献(3条) 1.黄少烈.邹华生化工原理 2006 2.钟理.伍钦.曾朝霞化工原理 2008 3.上海化工学院基础化学工程 1978 相似文献(7条) 1.期刊论文黄振旭.安明对苯酐间歇精馏装置的改进-河南化工2010,27(15) 针对当前苯酐间歇精馏装置中存在的主要工艺问题,通过改造设备和改变操作方法,可连续精馏13 d,精制苯酐收率达98.8%以上,改造后的装置生产稳定,系统能耗明显下降,从而有效地降低了生产成本,减轻了熟化处理过程中废气对空气的污染,经济效益和社会效益显著,具有很好的推广应用前景. 2.期刊论文王文江.吴剑华.WANG Wen-jiang.WU Jian-hua苯胺回收装置的开发及应用-沈阳化工学院学报2005,19(2) 叙述了对原苯胺回收装置的改造,改进了原装置的间歇精馏效果,原塔顶冷凝器管程走苯胺改为壳程走苯胺,解决了氯化铝催化剂堵塔问题.改造后的装置生产稳定,产品质量良好,苯胺得到回收,环境污染问题得到明显改善. 3.学位论文胡力焦化粗苯加氢精制萃取精馏工艺优化2009 本文在分析传统焦化粗苯加氢精制萃取精馏分离工艺基础上,系统研究了萃 取精馏工艺及其节能措施。针对目前焦化粗苯加氢精制萃取精馏工艺普遍存在着 工艺能耗较高,溶剂比较大的特点。本文在原有流程的基础上,对工艺进行优化 改进,提出了加氢精制分离新工艺,筛选出适宜的混和溶剂以减少溶剂比。 在常规流程的基础上,对萃取精馏塔、苯甲苯塔采用气相进料。利用ASPEN PLUS化工模拟软件,对改造前后的工艺进行模拟计算并且对气相进料工艺中的 萃取精馏塔和苯甲苯塔的回流比、进料位置、塔顶压力、理论板数进行了灵敏度 分析,确定了最佳操作参数。将改进前后的工艺进行能耗比较,表明采用气相进 料工艺比常规工艺节能27%以上。 混和溶剂的筛选,以N-甲酰吗啉作为主溶剂,DMF或DMAC作为副溶剂 选用修正的UNIFAC热力学模型预测和汽液平衡实验相结合的方法对其进行筛 选。通过使用MATLAB数学软件编程计算,研究发现在溶剂比为3∶1的条件下 当NFM/DMF=4或5(质量比)的时候,环己烷对苯的相对挥发度大于NFM和 DMF作为单一溶剂时环己烷对苯的相对挥发度。通过汽液平衡实验,结果表明 用DMF作为助溶剂优于DMAC,并且混和溶剂存在一个最佳的溶剂比,当 NFM/DMF=4(质量比)的时候分离效果最佳。进一步研究表明,溶剂比的增加可 以增加分离效果,但是当溶剂比大于一定值后,增加幅度趋于平缓。 建立起萃取精馏装置并对筛选出的萃取剂的分离效率进行了实验验证研究, 针对回流比和溶剂进料速率两个操作参数进行研究,发现在相同的操作条件下, 以NFM/DMF=4(质量)作为溶剂,塔顶馏分中环己烷的最高含量大于NFM或 DMF作为溶剂时塔顶馏分中环己烷的含量。表明筛选出来的混和溶剂的分离效 果确实优于单一溶剂。在常规间歇精馏过程中,通过对塔顶馏分中环己烷的最高 质量分数、塔顶馏分的产量、塔顶馏分中环己烷的质量分数以及环己烷的收率的 研究,表明溶剂流率对以上各参数的影响比回流比来得大。 关键词:萃取精馏 气相进料 混和溶剂 焦化粗苯加氢精制 ASPEN PLUS 4.学位论文何桃吉乙腈—水共沸物分离的模拟与实验研究2008 在制药工业中,乙腈因其对无机以及有机化合物的优良溶解性而被广泛使用,由此而产生大量含水的乙腈废液需要进行回收。由于乙腈与水形成共沸物,普通的精馏方法无法分离这一混合物,本课题研究了采用特殊精馏方法分离乙腈一水共沸物的工艺。 课题主要利用化工过程模拟软件Aspen Plus2004对乙腈-水共沸物系的萃取精馏、变压精馏稳态过程进行了模拟。对于萃取精馏稳态过程选取乙二醇作为萃取剂,采用WILSON方程计算液相活度系数,采用理想气体状态方程预测汽相逸度系数,对塔的工艺操作参数进行了优化,结果表明产品中乙腈浓度能够达到99.9wt%;对于变压精馏稳态过程,主要研究了变压精馏低压塔进料(包括常压塔回低压塔的循环物流进料和原料进料)位置,温度对分离过程的影响,得到了优化的工艺操作参数,产品中乙腈浓度能够达到99.9 wt%。 通过间歇精馏实验研究了乙腈-水共沸物的变压精馏以及加盐变压精馏分离过程。实验结果与模拟结果较为吻合,加盐变压精馏在常压塔回低压塔的循环物流进料中NaI试剂浓度达到0.2g/ml时,塔顶馏出液中乙腈含量差值可以增大到7.71 wt%,总能耗仅为原来的44.95%,对于同一生产装置原料处理能力提高70.26%。 通过模拟以及实验研究表明,加盐变压精馏技术能够有效解决变压精馏分离乙腈-水共沸体系时存在的塔间循环量大,处理量小,能耗高的问题,与萃取精馏的总能耗大体相当,可用于改造现有生产装置,或者直接应用于生产设计中。 5.学位论文石雪DMC生产过程自动控制系统2007 碳酸二甲酯(Dimethyl Carbonate,简称DMC)是近年来颇受重视的新型化工产品.它是无色透明液体,熔点4℃,沸点90.3℃,能以任意比例与醇、酮、酯等有机熔济混合,欧洲在1992年把它列为无毒化学品.DMC具有很好的反应活性,可取代剧毒的光气作羰基化剂,代替硫酸二甲酯(.DMS)作甲基化剂.因此它作为绿色中间体,对环保有着特殊的意义,被誉为有机合成中的新基石.

甲醇精馏工艺流程

甲醇精馏工艺流程 由合成工序闪蒸槽来的粗甲醇在正常情况下直接进入本工序的粗甲醇预热器(E11101)预热至65℃后进入预精馏塔(T11101)(在非正常情况下,粗甲醇来自甲醇罐区粗甲醇储槽,经粗甲醇泵加压后进粗甲醇预热器预热。粗甲醇预热器的热源来自常压塔再沸器出来的精甲醇冷凝液温度。)预精馏塔(T11101)作用是除去溶解在粗甲醇中的气体和沸点低于甲醇的含氧有机物,以及C10以下的烷烃。预精馏塔顶部出来的甲醇蒸汽温度为73.6℃,压力为0.0448MPa,塔顶出来进入预塔冷凝器Ⅰ(E11103),塔顶蒸汽中所含的大部分甲醇在第一冷凝器中被冷凝下来,流入预塔回流槽(V11103)经预塔回流泵(P11102AB)打回流。未冷凝的少部分甲醇蒸汽,低沸点的组分和不凝气进入塔顶冷凝器Ⅱ(E11104)继续冷凝,冷凝液可进入网流槽也可作为杂醇采出,不凝气经排放槽中的脱盐水吸收其中的甲醇后放空排放。用不凝气的排放量控制预精馏塔(T11101)塔顶压力,排放槽吸收液达到一定浓度后作为杂醇送入杂醇储槽或返回粗甲醇储槽重新精馏。预塔再沸器(E11102)的热源采用0.5MPa的低压饱和蒸汽。蒸汽冷凝液回冷凝液水槽(V11112)经冷凝水泵(P11110AB)送往动力站循环使用。为中和粗甲醇中的少量有机酸,在配碱槽中加入定量固体NaOH配置碱溶液储存在配碱槽(V11101)中。经碱液泵(P11101AB)进入扬碱器(V11110AB)再进入预塔回流槽(V11103)经过预塔回流泵(P11102AB)沿预精馏塔(T11101)进料管线加入预塔,控制预塔塔釜溶液PH值为9—10,预精馏塔(T11101)塔釜维持一定液位,塔釜甲醇溶液经加压塔进料泵(P11103AB)加压后进入加压塔进料预热器(E11105)预热后的甲醇进入加压塔(T11102)进料口,塔顶出来的甲醇气体温度121℃压力约0.574MPa 进过常压塔再沸器(E11107)将甲醇冷凝下来,冷凝后的甲醇液进入加压塔回流槽(V11111)。回流槽中的甲醇一部分经加压塔回流泵(P11104AB)后打回流入加压精馏塔(T11102),其余部分经粗甲醇预热器(E11101)与粗甲醇换热降温后再经精甲醇冷却器(E11110)冷却作为产品送往精甲醇中间槽(V11106)。加压塔再沸器的热源采用0.5MPa饱和蒸汽,蒸汽冷凝液回冷凝液水槽(V11112)经P11110AB冷凝水泵送往动力站循环使用。 常压塔部分:加压精馏塔(T11102)塔釜维持一定液位,甲醇溶液靠自压进入常压精馏塔(T11103)进料口,从常压精馏塔(T11103)塔顶出来的甲醇蒸汽温度气体温度为66℃,压力为0.008MPa,经常压塔冷凝器(E11108)冷凝,冷凝下来的甲醇进入常压塔回流槽(V11104),一部分经常压塔回流泵(P11105AB)打回流进入精馏塔(T11103),其余作为产品进入精甲醇冷却器(E11110)冷却到40℃送往精甲醇中间槽(V11106),另有一部分

甲醇工艺流程

甲醇的工艺流程 目前工业上几乎都是采用一氧化碳、二氧化碳加压催化氢化法合成甲醇.典型的流程包括原料气制造、原料气净化、甲醇合成、粗甲醇精馏等工序. 天然气、石脑油、重油、煤及其加工产品(焦炭、焦炉煤气)、乙炔尾气等均可作为生产甲醇合成气的原料.天然气与石脑油的蒸气转化需在结构复杂造价很高的转化炉中进行.转化炉设置有辐射室与对流室,在高温,催化剂存在下进行烃类蒸气转化反应.重油部分氧化需在高温气化炉中进行.以固体燃料为原料时,可用间歇气化或连续气化制水煤气.间歇气化法以空气、蒸汽为气化剂,将吹风、制气阶段分开进行,连续气化以氧气、蒸汽为气化剂,过程连续进行. 甲醇生产中所使用的多种催化剂,如天然气与石脑油蒸气转化催化剂、甲醇合成催化剂都易受硫化物毒害而失去活性,必须将硫化物除净.气体脱硫方法可分为两类,一类是干法脱硫,一类是湿法脱硫.干法脱硫设备简单,但由于反应速率较慢,设备比较庞大.湿法脱硫可分为物理吸收法、化学吸收法与直接氧化法三类. 甲醇的合成是在高温、高压、催化剂存在下进行的,是典型的复合气-固相催化反应过程.随着甲醇合成催化剂技术的不断发展,目前总的趋势是由高压向低、中压发展. 粗甲醇中存在水分、高级醇、醚、酮等杂质,需要精制.精制过程包括精馏与化学处理.化学处理主要用碱破坏在精馏过程中难以分离

的杂质,并调节PH.精馏主要是除去易挥发组分,如二甲醚、以及难以挥发的组分,如乙醇高级醇、水等. 甲醇生产的总流程长,工艺复杂,根据不同原料与不同的净化方法可以演变为多种生产流程. 下面简述高压法、中压法、低压法三种方法及区别 高压法 高压工艺流程一般指的是使用锌铬催化剂,在 300—400℃,30MPa高温高压下合成甲醇的过程.自从1923年第一次用这种方法合成甲醇成功后,差不多有50年的时间,世界上合成甲醇生产都沿用这种方法,仅在设计上有某些细节不同,例如甲醇合成塔内移热的方法有冷管型连续换热式和冷激型多段换热式两大类,反应气体流动的方式有轴向和径向或者二者兼有的混合型式,有副产蒸汽和不副产蒸汽的流程等.近几年来,我国开发了25-27MPa压力下在铜基催化剂上合成甲醇的技术,出口气体中甲醇含量4%左右,反应温度230-290℃. 中压法 中压法是在低压法研究基础上进一步发展起来的,由于低压法操作压力低,导致设备体积相当庞大,不利于甲醇生产的大型化.因此发展了压力为10MPa左右的甲醇合成中压法.它能更有效地降低建厂费用和甲醇生产成本.例如ICI公司研究成功了51-2型铜基催化剂,

间歇精馏讲义

3.4.1 间歇精馏工艺 一、间歇精馏流程 间歇精馏的一个操作周期: 加料、平衡(全回流),第一产品采出、中间馏分采出、第二产品采出等等,釜液排放和塔的清洗。 图3-42 典型的工业间歇精馏装置 间歇精馏塔的形式: ?①常规间歇精馏塔也称精馏式间歇精馏塔(图3-43 )。 ?②提馏式间歇精馏塔(图3-44 )。 ?③带有中间贮罐的间歇精馏塔或称复杂间歇精馏塔(图3-45 )。

图3-43 精馏式图3-44 提馏式图3-45 带有中间贮罐的间歇精馏塔 ?④其他类型的间歇精馏塔(图3-46 )。 图3-46 其他间歇精馏塔 (a) 双回流罐型; (b) 双加热釜型; (c) 双塔共用加热釜型 二、间歇精馏过程分析 不同回流方式: 1)恒回流比操作 回流比保持不变,而馏出物的浓度和流率随时间变化,产品组成为馏出时间内的平均组成。多元物系的间歇精馏,馏出不同的产品可采用不同的恒回流比,整个过程为分段恒回流。 2)恒塔顶浓度操作 回流比随过程的持续进行而逐渐增大,从而使塔顶馏出物的组成维持恒定。 不同精馏模式的能耗比较: 连续精馏模式最节能,随馏出量的增加,连续精馏能耗线性增加,而间歇精馏的能耗则急剧增大,特别当要求易挥发组分全部蒸出时,间歇精馏能耗太大,不能采用。间歇精馏中的恒馏出液浓度比恒回流比操作能耗低,对于高纯度精馏这种差别更甚。 各种参数对间歇精馏操作的影响: 1)持液量 塔内持液有如下三点影响: ?①沿塔身建立浓度梯度需要一定时间,即需要一定的开工时间,持液量越

大,开工时间越长; ?②分离难度加大。精馏过程开始馏出产品时,塔顶、塔身持液占有浓缩的易挥发组分,使釜液浓度比无持液情况降低,因此获得同样纯度产品所需浓缩倍数增加,分离难度加大; ?③延缓塔内浓度变化,有利于分离;但当间歇精馏过程进行到过渡馏分阶段后期,即将馏出下一合格产品时,持液的惯性作用而不断吐出残余的前一组分(即为该产品的易挥发杂质),而使馏出物呈现轻杂质的“拖尾”现象, 增加了过渡馏分的数量,减小了产品收率。 2)回流比和平衡级数 回流比越高,平衡级数越大,过渡区越小,分离效果越好。当平衡级数大到一定数目后,平衡级数对过渡区的影响不再明显,此时最有效的方法是增加回流比。 3)操作压力 操作压力取决于欲分离物系各组分的沸点和沸点范围。沸点范围较窄的物系宜采用恒定操作压力;沸点适中物系宜采用常压操作;沸点高或易分解的物系宜采用减压操作。

相关文档