文档库 最新最全的文档下载
当前位置:文档库 › 第四讲 全等三角形与角平分线

第四讲 全等三角形与角平分线

第四讲 全等三角形与角平分线
第四讲 全等三角形与角平分线

全等三角形与角平分线-第四讲.

第四讲全等三角形与角平分线

一.【知识回顾】角平分线 2、1、全等三角形的性质与判定

的性质与判定【讲解与练习】

二.

中,∠.如图,四边形ABCD1°,BAD=∠BCD=90的面积ABCDAB=AD,若四边形cm.为24cm,则AC长是2

的.如图,在平面直角坐标系中,矩形OABC2,轴上,OA=10cm两边分别在x轴和y出发,

O是线段OA上的动点,从点OC=6cm.FQ

方向作匀速运动,点1cm/s的速度沿OA以、Q两点间的距离是O在线段AB上.已知A、)表示经过时,tF两点间距离的a倍.若用(a中有两FAQ、△、△CBQs间t()时,△OCF)的所有可能情,t个三角形全等.请写出(a .况

2第页

三个内角的平分线交于点3.如图,已知△ABC,若,连接DO,延长OBA到点D,使AD=AO的度数BCABD=BC,∠ABC=54°,则∠

为°.

4.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=24°,∠2=36°,

则∠3=.

5.如图,AC=DB,∠1=∠2,则△ABC≌

ABC=,∠△

.∠

BCD在6.如图,点,AC于点F交,⊥上,DEAB于点EDF⊥BC°,则∠AFD=145.若∠BD=CF,BE=CD .EDF=

第3页

图,已知五7.如

中,边形ABCDE

∠∠ABC=,则五边形

+AB=CD=AE=BCDE=2°,AED=90 ABCDE.的面积为

的正方形网络,在网格中画出58.如图,在5×全等,这样的格点F,使得△DEF与

△ABC点个.三角最多可以画出

、到三边ABO是△如图,9.OABC内一点,且°,若∠,BAC=70OF=OD=OECABC、的距离 BOC=∠.

4第页

分别的周长是12,OB、OC10.如图,△ABC,于D,且OD=3平分∠ABC和∠ACB,OD⊥BC .则△ABC的面积是

全等三角形中常见辅助线的添加方法

全等三角形中常见辅助线的添加方法举例 一. 有角平分线时,通常在角的两边截取相等的线段,构造全等三角形。 例:如图1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 。 二、有以线段中点为端点的线段时,常延长加倍 此线段,构造全等三角形。 例::如图2:AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 三、有三角形中线时,常延长加倍中线,构造 全等三角形。 例:如图3:AD 为 △ABC 的中线,求证:AB +AC >2AD 。 图3 练习:已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图4, 求证EF =2AD 。 A B C D E F N 1 图1234 2 图A B C D E F M 123 4A B C D E A B C D E F 4 图

四、截长补短法作辅助线。 例如:已知如图5:在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任一点。 求证:AB -AC >PB -PC 。 五、延长已知边构造三角形: 例如:如图6:已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B , 求证:AD =BC 六、有和角平分线垂直的线段时,通常把这条线段延长。 例如:如图8:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。求证:BD =2CE 7 七、连接已知点,构造全等三角形。 例如:已知:如图9;AC 、BD 相交于O 点,且AB =DC ,AC =BD ,求证:∠A =∠D 。 八、取线段中点构造全等三有形。 例如:如图10:AB =DC ,∠A =∠D 求证:∠ABC =∠DCB 。 A B C D N M P 5图12A B C D E 6 图O D B A 110 图O 10图D C B A M N

全等三角形与角平分线经典题型

全等三角形与角平分线 一、知识概述 1、角的平分线的作法 (1)在∠AOB的两边OA、OB上分别截取OD、OE,使OD=OE. (2)分别以D、E为圆心,以大于1/2DE长为半径画弧,两弧交于∠AOB 内一点C. (3)作射线OC,则OC为∠AOB的平分线(如图) 指出:(1)作角的平分线的依据是三角形全等的条件——“SSS”. (2)角的平分线是一条射线,不能简单地叙述为连接. 2、角平分线的性质 在角的平分线上的点到角的两边的距离相等. 指出:(1)这里的距离是指点到角两边垂线段的长. (2)该结论的证明是通过三角形全等得到的,它可以独立作为证明两条线段相等的依据.即不需再用老方法——全等三角形. (3)使用该结论的前提条件是有角的平分线,关键是图中有“垂直”. 3、角平分线的判定 到角的两边的距离相等的点在角的平分线上. 指出:(1)此结论是角平分线的判定,它与角平分线的性质是互逆的. (2)此结论的条件是指在角的内部有点满足到角的两边的距离相等,那么

过角的顶点和该点的射线必平分这个角. 4、三角形的角平分线的性质 三角形的三条角平分线相交于一点,且这点到三角形三边的距离相等. 指出:(1)该结论的证明揭示了证明三线共点的证明思路:先设其中的两线交于一点,再证明该交点在第三线上. (2)该结论多应用于几何作图,特别是涉及到实际问题的作图题. 二、典型例题剖析 例1、如图所示,四边形ABCD中,AB=AD,AC平分∠BCD,AE⊥BC,AF⊥CD.求证:△ABE≌△ADF. 例2、如图所示,BE、CF是△ABC的高,BE、CF相交于O,且OA平分∠BAC.求证:OB=OC. 例3、如图,D为BC的中点,DE⊥DF,E、F分别在AB、AC边上,则BE+CF ()

角平分线和全等三角形证明分类

精锐教育学科教师辅导讲义 学员编号:年级:初二课时数:3 学员姓名:辅导科目:数学学科教师: 授课类型T 角平分线C专题精讲 授课日期时段 教学内容 1. 角平分线的作法(尺规作图) ①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点; ②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P; ③过点P作射线OP,射线OP即为所求. 2. 角平分线的性质及判定 (1)角平分线的性质:角的平分线上的点到角的两边的距离相等. 几何表达:(角的平分线上的点到角的两边的距离相等) 如图所示,∵OP平分∠MON(∠1=∠2),PA⊥OM,PB⊥ON,∴PA=PB。 (2)角平分线的判定:到角的两边的距离相等的点在角的平分线上. 几何表达:(到角的两边的距离相等的点在角的平分线上.) 如图所示,∵PA⊥OM,PB⊥ON,PA=PB,∴∠1=∠2(OP平分∠MON) (3)三角形三个内角平分线的性质:三角形三条内角平分线交于一点,且这一点到三角形三边的距离相等。 3. 角平分线性质及判定的应用

①为推导线段相等、角相等提供依据和思路; ②实际生活中的应用. 例:一个工厂,在公路西侧,到公路的距离与到河岸的距离相等,并且到河上公路桥头的距离为300米.在下图中标出工厂的位置,并说明理由. 【例题讲解】 1.在△ABC 中,AC ⊥BC ,AD 为∠BAC 的平分线,DE ⊥AB ,AB =7㎝,AC =3㎝,求BE 的长。 2.如图:在△ABC 中,∠C=90° AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC 上,BD=DF ; 求证:CF=EB 3.如图,P 为∠AOB 内一点,OA=OB ,且△OPA 与△OPB 面积相等,求证∠AOP=∠BOP . 4.如图,AB=AC ,AD=AE ,BD 、CE 交于O ,求证AO 平分∠BAC. E D C B A E A B C D F

八年级数学学案28 全等三角形的复习(3)--一线三等角

期中考试复习——全等三角形的复习(3) 一线三等角 班级: 姓名: 一. 学习目标 1. 掌握“一线三等角”的基本图形. 2. 能在复杂图形中找出“”的基本图形,并能利用其解决问题. 二. 自学指导 【基本图形】一线三等角 如图1,在△ABC 中,∠ACB =90°,AC =BC ,直线l 经过顶点C ,过A 、B 两点分别作l 的垂线AE 、BF ,E 、F 为垂足. (1)求证:△AEC ≌△CFB . (2)还能得到EF 、AE 、BF 三者之间怎样的关系? 【变式1】如图,将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α. C B A C B A C B A C B A

(1)求证:△AEC≌△CFB. (2)还能得到EF、AE、BF三者之间怎样的关系? 【变式2】如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状. 【变式3】如图,过△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I,求证:I是EG的中点.

编号28 全等三角形的复习(2)当堂训练 班级: 姓名: 1.如图所示,Rt △ABE ≌Rt △ECD ,点B 、E 、C 在同一直线上,则结论:①AE =ED ;②AE ⊥DE ; ③BC =AB +CD ; ④AB ∥DC 中成立的是 . 2.如图,等边三角形ABC 中,ED =DF ,∠EDF =60°,求证:BC =BE +CF . 3.如图,AE ⊥AB ,且AE =AB ,BC ⊥CD ,且BC =CD ,请按照图中所标注的数据计算图中实线所围成的图形的面积S 是 . E D C B A F E D C B A 436 H C B G A F D E

全等三角形中常用辅助线(经典)

三角形中的常用辅助线 课程解读 一、学习目标: 归纳、掌握三角形中的常见辅助线 二、重点、难点: 1、全等三角形的常见辅助线的添加方法。 2、掌握全等三角形的辅助线的添加方法并提高解决实际问题的能力。 三、考点分析: 全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。判断三角形全等的公理有SAS、ASA、AAS、SSS和HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。 典型例题 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。

初二数学上全等三角形知识点总结汇编

全等三角形 知识梳理 一、知识网络 ???? ?? ????→??????? ?? ?? ???? ? ?对应角相等 性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理 二、基础知识梳理 (一)、基本概念 1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形; 即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。 2、全等三角形的性质 (1)全等三角形对应边相等;(2)全等三角形对应角相等; 3、全等三角形的判定方法 (1)三边对应相等的两个三角形全等。 (2)两角和它们的夹边对应相等的两个三角形全等。 (3)两角和其中一角的对边对应相等的两个三角形全等。 (4)两边和它们的夹角对应相等的两个三角形全等。 (5)斜边和一条直角边对应相等的两个直角三角形全等。 4、角平分线的性质及判定 性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上

(二)灵活运用定理 1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等, 因此在寻找全等的条件时,总是先寻找边相等的可能性。 2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。 3、要善于灵活选择适当的方法判定两个三角形全等。 (1)已知条件中有两角对应相等,可找: ①夹边相等(ASA)②任一组等角的对边相等(AAS) (2)已知条件中有两边对应相等,可找 ①夹角相等(SAS)②第三组边也相等(SSS) (3)已知条件中有一边一角对应相等,可找 ①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS) 证明两三角形全等或利用它证明线段或角的相等的基本方法步骤: 1.确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系); 2.回顾三角形判定公理,搞清还需要什么; 3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。 常见考法 (1)利用全等三角形的性质:①证明线段(或角)相等;②证明两条线段的和差等于另一条线段;③证明面积相等; (2)利用判定公理来证明两个三角形全等; (3)题目开放性问题,补全条件,使两个三角形全等。 误区提醒 (1)忽略题目中的隐含条件;

用角平分线构造全等三角形

善于构造 活用性质 几何问题中,若出现角平分线这一条件时,可联想角平分线的特性,灵活利用角平分线的特性来解决问题. 1.显“距离”, 用性质 很多时候,题意中只给角平分线这个条件,图上并没有出现“距离”,而角平分线性质的运用又离不开这个“距离”,所以同学们应大胆地让“距离”现身(过角平分线上的一点向角的两边作垂线段) 例1 三角形的三条角平分线交于一点,你知道这是为什么吗 分析:我们知道两条直线是交于一点的,因此可以想办法证明第三条角平分线通过前两条角平分线的交点. 已知:如图,△ABC 的角平分线AD 与BE 交于点I ,求证:点I 在∠ACB 的平分线上. 证明:过点I 作IH ⊥AB ,IG ⊥AC ,IF ⊥BC ,垂足分别是点H 、G 、F . ∵点I 在∠BAC 的角平分线AD 上,且IH ⊥AB 、IG ⊥AC ∴IH =IG (角平分线上的点到角的两边距离相等) 同理 IH =IF ∴IG =IF (等量代换) 又IG ⊥AC 、IF ⊥BC ∴点I 在∠ACB 的平分线上(到一个角的两边的距离相等的点,在这个角的平分线上).即:三角形的三条角平分线交于一点. 例2 已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,?它们交于点P , PD ⊥BM 于D ,PF ⊥BN 于F . 求证:BP 为∠MBN 的平分线. D C B A E H I F G

【分析】要证BP为∠MBN的平分线,只需证PD=PF,而PA、PC为外角平分线,?故可过P作PE⊥AC于E.根据角平分线性质定理有PD=PE,PF=PE,则有PD=PF,故问题得证.【证明】过P作PE⊥AC于E. ∵PA,PC分别为∠MAC与∠NCA的平分线.且PD⊥BM,PF⊥BN ∴PD=PE,PF=PE,∴PD=PF 又∵PD⊥BM,PF⊥BN,∴点P在∠MBN的平分线上, 即BP是∠MBN的平分线. 2.构距离,造全等 有角平分线时常过角平分线上的点向角两边引垂线,根据角平分线上的点到角两边距离相等,可构造处相应的全等三角形而巧妙解决问题. 例3 △ABC中,∠C=90°,AC=BC,DA平分∠CAB交BC于D点,问能否在AB?上确定一点E使△BDE的周长等于AB的长.请说明理由. 解:过D作DE⊥AB,交AB于E点,则E点即可满足要求. 因为∠C=90°,AC=BC,又DE⊥AB,∴DE=EB. ∵AD平分∠CAB且CD⊥AC、ED⊥AB,∴CD=DE. 由“H L”可证Rt△ACD≌Rt△AED.∴AC=AE. ∴L△BDE=BD+DE+EB =BD+DC+EB =BC+EB=AC+EB =AE+EB =AB. 例4 如图,∠B=∠C=90°,M是BC上一点,且DM平分∠ADC,AM平分∠DAB. 求证:AD=CD+AB.

(完整版)利用角平分线构造全等三角形

善于构造 活用性质 安徽 张雷 几何问题中,若出现角平分线这一条件时,可联想角平分线的特性,灵活利用角平分线的特性来解决问题. 1.显“距离”, 用性质 很多时候,题意中只给角平分线这个条件,图上并没有出现“距离”,而角平分线性质的运用又离不开这个“距离”,所以同学们应大胆地让“距离”现身(过角平分线上的一点向角的两边作垂线段) 例:三角形的三条角平分线交于一点,你知道这是为什么吗? 分析:我们知道两条直线是交于一点的,因此可以想办法证 明第三条角平分线通过前两条角平分线的交点. 已知:如图,△ABC 的角平分线AD 与BE 交于点I ,求证:点I 在∠ACB 的平分线上. 证明:过点I 作IH ⊥AB 、IG ⊥AC 、IF ⊥BC ,垂足分别是点 H 、G 、F . ∵点I 在∠BAC 的角平分线AD 上,且IH ⊥AB 、IG ⊥AC ∴IH=IG (角平分线上的点到角的两边距离相等) 同理 IH=IF ∴IG=IF (等量代换) 又IG ⊥AC 、IF ⊥BC ∴点I 在∠ACB 的平分线上(到一个角的两边的距离相等的点,在这个角的平分线上).即:三角形的三条角平分线交于一点. 【例2】已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,?它们交于点P ,PD ⊥BM 于D ,PF ⊥BN 于F . 求证:BP 为∠MBN 的平分线. 【分析】要证BP 为∠MBN 的平分线,只需证PD=PF ,而PA 、PC 为外角平分线,?故可过P 作PE ⊥AC 于E .根据角平分线性质定理有PD=PE ,PF=PE ,则有PD=PF ,故问题得证. 【证明】过P 作PE ⊥AC 于E . ∵PA 、PC 分别为∠MAC 与∠NCA 的平分线.且PD ⊥BM ,PF ⊥BN ∴PD=PE ,PF=PE,∴PD=PF 又∵PD ⊥BM ,PF ⊥BN,∴点P 在∠MBN 的平分线上, D C A E H I F G

一线三角与全等

一线三角与全等三角形 探究: 在ABC Rt ?中,?=∠90ACB ,BC AC =,直线l 经过点C ,且l AE ⊥于点E , l BF ⊥于点F . (1)当直线l 绕点C 旋转到如图1的位置时, ○图中有几对相等的锐角 ○求证:AEC ?≌CFB ?; ○试探究AE 、BF 、EF 之间的数量关系,并说明理由; (2)当直线l 绕点C 旋转到如图2的位置时,试探究AE 、BF 、EF 之间的数量关系,并说明理由; 、 结论: 巩固提高: 1.如图,ABC ?是等腰三角形,DE 过直角顶点A ,?=∠=∠90E D ,则下列结论正确的个数有( ) ○AE CD =;○21∠=∠;○?=∠+∠9043;○BE AD =.

(A )1个 (B )2个 (C )3个 (D )4个 (第1题图) (第2题图) 2.如图,在ABC Rt ?中,?=∠90ACB ,BC AC =,直线l 经过点C ,且l AE ⊥于点 E ,l B F ⊥于点F .若25=AB ,4=AE ,则=EF _______________. 3.如图,在ABC Rt ?中,?=∠90ACB ,BC AC =,点D 为斜边AB 上一点,且 CD AE ⊥于点E ,CD BF ⊥交CD 的延长线于点F .若2:1:=AE BF ,4=AE , 则=AB _______________. 4.如图,在ABC Rt ?中,?=∠90ACB ,BC AC =,点D 为斜边AB 上一点,连接CD ,过点A 作CD AE ⊥于点E .若?=∠45BED ,4=AE ,则=AB _______________. (第3题图) (第4题图) 5.在ABC Rt ?中,?=∠90ACB ,BC AC =,直线l 经过点C ,且l AE ⊥于点E , l BF ⊥于点F .若25=AB ,4=AE ,则=EF _______________. 6.在ABC Rt ?中,?=∠90ACB ,25==BC AC ,直线l 经过斜边AB 的中点D ,且l AE ⊥于点E ,l CF ⊥于点F .若4=AE ,则=EF _______________. F

一线三等角在全等三角形中的应用

线三等角在全等三角形中的应用一图形特征:一条直线上有三个相等的角,三个角可以是锐角,直角,钝角。二解题方法:利用两角一边证三角形全等找到边之间的关系。 三例题讲解 图形一,三等角为锐角

图形二,三等角为直角钝角

(1)已知,如图①’在^ABC中,ABAC = 90o I AB = 4C,直线m经过点A, BD丄直线m, CEA.直线m,垂足分别为点D、E,求证: DE = BD + CE. ⑵如图②将⑴中的条件改为:在AAEC Φ, AB = AC l O. A、E三点都在直线m上,并且有ABDA = ZAEC = ABAC =α,其中Q 为任意钝角,请问结论DE = ED + CE是否成立?若 成 立,请你给出证明:若不成立,请说明理由. m ①D AE^ 图②

.?ΛCAE= ΛABD, ?∕^±ΔADB 和 ACEA 中 AABD = ACAE ΔBDA = ΔCEA I AB = AC :AADB=^CEA{AAS^ 证明:(1) ??BD 丄直线g CEL 直线叽 90O l -.ABAC= 9()。, .??ZBW+∕C4E = 9() ?^BAD^ AABD =

四八年级期中期末考试题型 八年级期中考试卷,变形后的应用

如图①,在zMBC中,乙ACB= 90。MC = BC,过点C 在ZUBC外作直线I1AMLl于点M,BN丄2于点N. (1) 求证:MN=AM + BN?j (2) 如图②,若过点C作直线I与线段AB相交UM ■ 丄/于点M J BNlI于点7V(4Λf>BΛΓ),(l)? 的 结论是否仍然成立?说明理由. I

全等三角形与角平分线专题讲解

C E O D B A 2 1C E D B A 214 3 O A 全等三角形专题讲解 专题一 全等三角形判别方法的应用 专题概说:判定两个三角形全等的方法一般有以下4种: 1.三边对应相等的两个三角形全等(简写成“SSS ”,“边边边”) 2.两边和它们的夹角对应相等的两个三角形全等(简写成“SAS ”,“边角边”) 3.两角和它们的夹边对应相等的两个三角形全等(简写成“ASA ”,“角边角”) 4.两个角和其中一个角的对边对应相等的两个三角形全等(简写成“AAS ”,“角角边”) 而在判别两个直角三角形全等时,除了可以应用以上4种判别方法外,还可以应用“斜边、直角边”,即斜边和一条直角边对应相等的两个直角三角形全等(简写成“HL ”, “斜边、直角边”).也就是说“斜边、直角边”是判别两个直角三角形全等的特有的方法,它仅适用于判别两个直角三角形全等. 三角形全等是证明线段相等,角相等最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.那么我们应该怎样应用三角形全等的判别方法呢? (1)条件充足时直接应用 在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等,而从近年的中考题来看,这类试题难度不大,证明两个三角形的条件比较充分.只要同学们认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等. 例1 已知:如图,CE ⊥AB 于点E ,BD ⊥AC 于点D ,BD 、CE 交于点O ,且AO 平分∠BAC .那么图中全等的三角形有___对. 分析:由CE ⊥AB ,BD ⊥AC ,得∠AEO=∠ADO=90o.由AO 平分∠BAC ,得∠EAO=∠DAO .又AO 为公共边,所以△AEO ≌△ADO .所以EO=DO ,AE=AD .又∠BEO=∠CDO=90o, ∠BOE=∠COD ,所以△BOE ≌△COD .由 AE=AD ,∠AEO=∠ADO=90o,∠BAC 为公 共角,所以△EAC ≌DAO .所以AB=AC .又 ∠EAO=∠DAO , AO 为公共边,所以△ABO ≌△ACO . 所以图中全等的三角形一共有4对. (2)条件不足,会增加条件用判别方法 此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充使三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,逐步分析,探索结论成立的条件,从而得出答案. 例2 如图,已知AB=AD ,∠1=∠2,要使△ABC ≌△ADE ,还需添加的条件是(只需填一个)_____. 分析:要使△ABC ≌△ADE ,注意到∠1=∠2, 所以∠1+∠DAC=∠2+∠DAC ,即∠BAC=∠EAC . 要使△ABC ≌△ADE ,根据SAS 可知只需AC=AE 即可; 根据ASA 可知只需∠B=∠D ;根据AAS 可知只需∠C=∠E . 故可添加的条件是AC=AE 或∠B=∠D 或∠C=∠E . (3)条件比较隐蔽时,可通过添加辅助线用判别方法在证明两个三角形全等时, 当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系, 使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等. 例3 已知:如图,AB=AC ,∠1=∠2.

全等三角形中考真题汇编[解析版]

全等三角形中考真题汇编[解析版] 一、八年级数学轴对称三角形填空题(难) 1.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为 ___________. 【答案】4 【解析】 【分析】 延长AC至E,使CE=BM,连接DE.证明△BDM≌△CDE(SAS),得出MD=ED, ∠MDB=∠EDC,证明△MDN≌△EDN(SAS),得出MN=EN=CN+CE,进而得出答案. 【详解】 延长AC至E,使CE=BM,连接DE. ∵BD=CD,且∠BDC=140°, ∴∠DBC=∠DCB=20°, ∵∠A=40°,AB=AC=2, ∴∠ABC=∠ACB=70°, ∴∠MBD=∠ABC+∠DBC=90°, 同理可得∠NCD=90°, ∴∠ECD=∠NCD=∠MBD=90°, 在△BDM和△CDE中,

BM CE MBD ECD BD CD ? ? ∠∠ ? ? ? = =, = ∴△BDM≌△CDE(SAS), ∴MD=ED,∠MDB=∠EDC, ∴∠MDE=∠BDC=140°, ∵∠MDN=70°, ∴∠EDN=70°=∠MDN, 在△MDN和△EDN中, MD ED MDN EDN DN DN ? ? ∠∠ ? ? ? = =, = ∴△MDN≌△EDN(SAS), ∴MN=EN=CN+CE, ∴△AMN的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4; 故答案为:4. 【点睛】 本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;证明三角形全等是解题的关键. 2.我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形 (1)如图,在ABC ?中,25,105 A ABC ∠=?∠=?,过B作一直线交AC于D,若BD 把ABC ?分割成两个等腰三角形,则BDA ∠的度数是______. (2)已知在ABC ?中,AB AC =,过顶点和顶点对边上一点的直线,把ABC ?分割成两个等腰三角形,则A ∠的最小度数为________. 【答案】130? 180 7 ? ?? ? ?? 【解析】 【分析】 (1)由题意得:DA=DB,结合25 A ∠=?,即可得到答案; (2)根据题意,分4种情况讨论,①当BD=AD,CD=AD,②当AD=BD,AC=CD,

一线三角与全等三角形B4

一线三角与全等三角形 探究: 在ABC Rt ?中,?=∠90ACB ,BC AC =,直线l 经过点C ,且l AE ⊥于点E ,l BF ⊥于点F . (1)当直线l 绕点C 旋转到如图1的位置时, ○ 1图中有几对相等的锐角? ○ 2求证:AEC ?≌CFB ?; ○ 3试探究AE 、BF 、EF 之间的数量关系,并说明理由; (2)当直线l 绕点C 旋转到如图2的位置时,试探究AE 、BF 、EF 之间的数量关系,并说明理由; 、 巩固提高: 1.如图,ABC ?是等腰三角形, DE 过直角顶点A ,?=∠=∠90E D ,则下列结论正确的个数有( ) ○1AE CD =;○2 21∠=∠;○ 3?=∠+∠9043;○4BE AD =. (A )1个 (B )2个 (C ) 3个 (D )4个 (第1题图) (第2题图) 2.如图,在ABC Rt ?中,?=∠90ACB ,BC AC =,直线l 经过点C ,且l AE ⊥于点E , l BF ⊥于点F .若25=AB ,4=AE ,则=EF _______________. 3.如图,在ABC Rt ?中,?=∠90ACB ,BC AC =,点D 为斜边AB 上一点,且CD AE ⊥于 点E ,CD BF ⊥交CD 的延长线于点F .若2:1:=AE BF ,4=AE ,则=AB _______________. 4.如图,在ABC Rt ?中,?=∠90ACB ,BC AC =,点D 为斜边AB 上一点,连接CD ,过点A 作CD AE ⊥于点E .若?=∠45BED ,4=AE ,则=AB _______________. (第3题图) (第4题图) 5.在ABC Rt ?中,?=∠90ACB ,BC AC =,直线l 经过点C ,且l AE ⊥于点E ,l BF ⊥于点F .若25=AB ,4=AE ,则=EF _______________. 6.在ABC Rt ?中,?=∠90ACB ,25==BC AC ,直线l 经过斜边AB 的中点D ,且l AE ⊥于点E ,l CF ⊥于点F .若4=AE ,则=EF _______________. (第6题图) 7.如图,在等边ABC ?中,点D 为边AB 上一点,连接CD ,点E 在CD 上,连接AE , ?=∠60AED ,过点B 作BF ∥AE 交CD 的延长线于点F . 求证:EF AE =. (第7题图) F

八年级数学上册 《全等三角形常考题型总结》

全等三角形题型总结 题型一、一线三垂直 1、如图,在△ABC中,∠BAC=90°,AB=AC,若MN是经过点A的直线,BD⊥MN于D,CE⊥MN于E,(1)求证:BD=AE。 (2)若将MN绕点A旋转,使MN与BC相交于点O,其他条件都不变,BD与AE边相等吗?为什么?(3)BD、CE与DE有何关系? 2、如图,两根旗杆间相距12m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆AC的高为3m,此人的运动速度为1m/s,求这个人运动了多长时间. 27、王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以 放进一个等腰直角三角板(AC=BC, ∠ABC=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵 木墙之间的距离.

题型二、角平分线与全等 1、如图所示,四边形ABCD中AB=AD,CA平分∠BCD,AE⊥BC,AF⊥CD,图中有无和△ABE全等的三角形?请说明理由。 2.如图,OC是∠AOB的角平分线,P是OC上一点,PD⊥OA于点D,PE⊥OB于点E,F是OC上除点P、O外的一点,连接DF,EF,则DF与EF的关系如何?证明你的结论. 图 题型三、旋转与全等 1、如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG,(1)观察猜想BE与DC之间的大小关系,并证明你的结论。(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请说出旋转过程,若不存在,说明理由。

B A C D E 2、图17,△ABC 和△ADE 都是等腰直角三角形,CE 与BD 相交于点M ,BD 交AC 于点N . 证明:(1)BD =CE ; (2)BD ⊥CE . 图17 3、如图,ABC ?为等边三角形,D 为边BA 延长线上一点,连接CD ,以CD 为一边作等边三角形 CDE ?,连接AE . (1)求证:CBD ?≌CAE ?. (2)判断AE 与BC 的位置关系,并说明理由. 4、如图,AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,具有BF=AC ,FD=CD ,试探究BE 与AC 的位置关 系. A B D C E F

20全等三角形中的角平分线-学生版

全等三角形中的角平 分线 中考要求 知识点睛 板块 考试要求 A 级要求 B 级要求 C级要求 全等三角形的性质及判定 会识别全等三角形 掌握全等三角形的概念、判定和 性质,会用全等三角形的性质和判定解决简单问题 会运用全等三角形的性质和判定解决有关问题 全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法: (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角. (6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角). 要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法: (1) 边角边定理(SA S):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(A SA):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(S SS ):三边对应相等的两个三角形全等. (4) 角角边定理(A AS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(H L):斜边和一条直角边对应相等的两个直角三角形全等. 全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 第十讲

例题精讲 奥数赛点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础. 与角平分线相关的问题 角平分线的两个性质: ⑴角平分线上的点到角的两边的距离相等; ⑵到角的两边距离相等的点在角的平分线上. 它们具有互逆性. 角平分线是天然的、涉及对称的模型,一般情况下,有下列三种作辅助线的方式: 1. 由角平分线上的一点向角的两边作垂线, 2. 过角平分线上的一点作角平分线的垂线,从而形成等腰三角形, 3. OA OB =,这种对称的图形应用得也较为普遍, A B O P P O B A A B O P 【例1】 如图,已知ABC ?的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于 D ,且3OD =,求ABC ?的面积. 【例2】 在ABC ?中,D 为BC 边上的点,已知BAD CAD ∠=∠,BD CD =,求证:AB AC =. 【例3】 如图所示:AB AC =,AD AE =,CD 、BE 相交于点O .求证:OA 平分DAE ∠. A D O C B D C B A

全等三角形中做辅助线总结(供参考)

全等三角形中做辅助线技巧要点大汇总 口诀: 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 一、由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a、对称性;b、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 如图1-1,∠AOC=∠BOC,如取OE=OF,并连接DE、DF,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。 例1.如图1-2,AB//CD,BE平分∠BCD,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。 例2.已知:如图1-3,AB=2AC,∠BAD=∠CAD,DA=DB,求证DC⊥AC B 图1-2 D B C 1文档来源为:从网络收集整理.word版本可编辑.

2文档来源为:从网络收集整理.word 版本可编辑. 例3. 已知:如图1-4,在△ABC 中,∠C=2∠B,AD 平分∠BAC ,求证:AB-AC=CD 分析:此题的条件中还有角的平分线,在证明中还要用到构造全等三角形,此题还是证明线段的和差倍分问题。用到的是截取法来证明的,在长的线段上截取短的线段,来证明。试试看可否把短的延长来证明呢? 练习 1. 已知在△ABC 中,AD 平分∠BAC ,∠B= 2∠C ,求证:AB+BD=AC 2. 已知:在△ABC 中,∠CAB=2∠B ,AE 平分∠CAB 交BC 于E ,AB=2AC , 求证:AE=2CE 3. 已知:在△ABC 中,AB>AC,AD 为∠BAC 的平分线,M 为AD 上任一点。 求证:BM-CM>AB-AC 4. 已知:D 是△ABC 的∠BAC 的外角的平分线AD 上的任一点,连接DB 、 DC 。求证:BD+CD>AB+AC 。 (二)、角分线上点向角两边作垂线构全等 过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。 例1. 如图2-1,已知AB>AD, ∠BAC=∠FAC,CD=BC 。 求证:∠ADC+∠B=180 分析:可由C 向∠BAD 的两边作垂线。近而证∠ADC 与∠B 之和为平角。 例2. 如图2-2,在△ABC 中,∠A=90 ,AB=AC ,∠ABD=∠CBD 。 求证:BC=AB+AD 图1-4 A B C 图2-1 B C 图 2-2 B C

专题复习:全等三角形与角平分线

专题全等三角形与角平分线?解读考点 知识点名师点晴 全等 三角 形 全等图形理解全等图形的定义,会识别全等图形 全等三角形的判定 理解并掌握全等三角形的判定方法:SSS、SAS、 ASA、AAS,并会判定两个三角形全等直角三角形的判定会利用HL判定两个三角形全等 角平 分线 角平分线的性质理解并掌握角平分线的性质 角平分线的判定利用角平分线的判定解决有关的实际问题 ?2年中考 【2015年题组】 1.(2015六盘水)如图,已知∠ABC=∠DCB,下列所给条件不能证 明△ABC≌△DCB的是() A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC =BD 【答案】D.

【解析】 试题分析:A.可利用AAS定理判定△ABC≌△DCB,故此选项不合题意; B.可利用SAS定理判定△ABC≌△DCB,故此选项不合题意; C.利用ASA判定△ABC≌△DCB,故此选项不符合题意; D.SSA不能判定△ABC≌△DCB,故此选项符合题意; 故选D. 考点:全等三角形的判定. 2.(2015贵阳)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是() A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE 【答案】B. 考点:全等三角形的判定与性质. 3.(2015义乌)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得

全等三角形辅助线系列之一---角平分线类辅助线作法大全说课讲解

全等三角形辅助线系列之一 与角平分线有关的辅助线作法大全 一、角平分线类辅助线作法 角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等?对于有角平分线的 辅助线的作法,一般有以下四种. 1、 角分线上点向角两边作垂线构全等: 过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题; 2、 截取构全等 利用对称性,在角的两边截取相等的线段,构造全等三角形; 3、 延长垂线段 题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交,构成等腰三角形; 4、 做平行线:以角分线上一点做角的另一边的平行线,构造等腰三角形 有角平分线时,常过角平分线上的一点作角的一边的平行线, 从而构造等腰三角形.或通过一边上 的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形. 通常情况下,出现了直角或是垂直等条件时, 一般考虑作垂线;其它情况下考虑构造对称图形. 至 于选取哪种方法,要结合题目图形和已知条件 . 图四 M B 图一 M 图 M B 图三

典型例题精讲 【例1】如图所示,BN平分/ ABC, P为BN上的一点,并且PD丄BC于D, AB+ BC 2BD . 求证:BAP+ BCP 180 . 【解析】过点P作PE丄AB于点E. VPE± AB, PD 丄BC, BN 平分/ABC,:PE PD . 在Rt APBE 和Rt APBC 中, BP BP PE PD ???Rt z2PBE 细t ^BC ( HL), BE BD . T AB BC 2BD , BC CD BD , AB BE AE , ? AE CD . ??PE丄AB, PD 丄BC ,? PEB PDB 90 . 在AFAE 和Rt APCD 中, PE PD PEB PDC , AE DC ? △AE织t A^CD , ? PCB EAP . ?/ BAP EAP 180 , ? BAP BCP 180 . 【答案】见解析.

全等三角形题型归类及解析

全等三角形题型归类及解析

全等三角形难题题型归类及解析 一、角平分线型 角平分线是轴对称图形,所以我们要充分的利用它的轴对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是经过平分线上一点作两边的垂线。另外掌握两个常用的结论:角平分线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。 1. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC , 连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。 2. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M , ?PN ⊥CD 于N ,判断PM 与PN 的关系. 3. 已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC 。 (1) 求证:∠ABE=∠C ; (2) 若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=5, AC=8,求DC 的长。 A B C D E P D A C B M N

二、中点型 由中点应产生以下联想: 1、想到中线,倍长中线 2、利用中心对称图形构造8字型全等三角形 3、在直角三角形中联想直角三角形斜边上的中线 4、三角形的中位线 2、已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G . (1)求证:BF AC =; (2)求证:1 2 CE BF =

D A E F C H G B 3、如图,△ABC中,D是BC的中点,DE⊥DF,试判断BE+CF与EF的大小关 系,并证明你的结论。 4、如图,已知在△ABC中,AD是BC边上的

相关文档
相关文档 最新文档