文档库 最新最全的文档下载
当前位置:文档库 › 动力电池系统设计讲解

动力电池系统设计讲解

动力电池系统设计讲解
动力电池系统设计讲解

深入浅出史上最易懂的动力电池系统

设计讲解 2

[摘要]动力电池系统设计要以满足整车的动力要求和其他设计为前提,同时要考虑电池系统自身的内部结构和安全及管理设计等方面。

动力电池系统指用来给电动汽车的驱动提供能量的一种能量储存装置,由一个或多个电池包以及电池管理(控制)系统组成。动力电池系统设计要以满足整车的动力要求和其他设计为前提,同时要考虑电池系统自身的内部结构和安全及管理设计等方面。

比如整车厂会针对要设计的整车,在考虑安全设计、线束连接线设计、接插件设计等相关要求后,形成一个有限的动力电池系统空间大小。然后在有限的空间约束下,进行电池模组、电池管理系统、热管理系统、高压系统等布置,保证电池单体及模块均匀散热,保证电池的一致性,提高电池系统的寿命与安全。设计时要考虑到的一些整体和通用性原则包括安全性好、高比能量、高比功率、温度适应性强、使用寿命长、安装维护性强、综合成本低等。

一种典型的动力电池系统

由于不同种类电动汽车的结构和工作模式的不同,导致对动力电池的性能要求也不一样。纯电动汽车行驶完全依赖于动力电池系统的能量,电池系统容量越大,可以续航里程越长,但所需电池系统的体积和重量也越大。虽然混合动力汽车对动力电池系统的容量要求比纯电动汽车要低,但要能够在某些时候提供较大的瞬时功率。而串联式和并联式混合动力汽车对电池系统的要求又有所区别。

因此动力电池系统的设计流程一般如下:(1)先确定整车的设计要求;(2)然后确定车辆的功率及能量要求(3)选择所能匹配合适的电芯(4)确定电池模块的组合结构形式(5)确定电池管理系统设计及热管理系统设计要求(6)仿真模拟及具体试验验证。

动力电池系统作为电动汽车的重要组成部分,下文主要按其的具体结构及功能来谈谈设计要求。分为电池模组、电池管理系统、热管理系统、电气及机械系统这四个主要部分。

1.电池模组的结构及设计

动力电池模组是指动力电池单体经由串并联方式组合并加保护线路板及外壳后,能够直接提供电能的组合体,是组成动力电池系统的次级结构之一。动力电池单体即电芯,按正极材料来分,主要包括钴酸锂、锰酸锂、磷酸铁锂以及镍钴锰酸锂三元材料等。在查阅资料统计得到的不同材料电芯基本性质如下表所示。

按电芯的结构形状来分,主要分为圆柱电芯和方形电芯以及软包这三种,各自的优缺点也十分明显。在一定程度上,电芯的性能决定了电池模组的性能进而影响整个动力电池系统的性能。因此在进行动力电池系统设计,一定要根据整车的设计要求去选择电芯的材料及形状。

电池结构圆柱结构方形结构软包结构

优点工艺成熟度高、生产效率高、过程控制严格,成品率及电芯

一致性高。壳体结构成熟,工

艺制造成本低。对电芯的保护作用要高,可以

通过减少单体电池的厚度保证

内部热量的快速传导,电芯的

安全性能有较大的改善。

外部结构对电芯的影响小,电

芯性能能优良;封装采用的材

质质量要小,电池的能量密度

最高。

缺点集流体上电流密度分布不均

匀,造成内部各部分反应程度

不一致;电芯内部产生的热量壳体在电芯总重中所占的比重

较大,导致单体电池的能量密

度较低,内部结构复杂,自动

大容量电池密封工艺难度增

加、可靠性相对较差;所采用

的铝塑复合封装膜机械强度

那么首先要通过电动汽车的动力需求以及各种高电压机器配件等所需的消

耗电力、时间以及使用温度来确定电池系统的容量。然后在进行电池模块设计时要考虑到动力电池的特性。因为动力电池在不同温度下输出/输入会发生变化。容量、输出性能会随使用时间逐渐退化。电池的性能与选择一旦出现设计错误,将不能满足低温时的加速性能和爬坡性能,并且当电池老化时还会给系统性能造成影响。电池模组由多个动力电芯串并联组合而成,包括单体电芯、固定框架、电连接装置,还有温度传感器、电压检测线路等。

动力电池系统的结构设计流程(电芯→模块→系统)

在结合整车设计要求的前提下对电池模组进行设计时,电池模组设计需要考虑以下几个方面:

·电池成组的固定连接方式要根据动力电池系统设计的整体要求对选定好

的电芯结构形状进行。

·电池模块的装配要求松紧度适中,各结构部件具有足够的强度,防止因电池内外部力的作用而发生变形或破坏。

·电芯及电池模块要有专门的固定装置,结构紧凑且要根据电池箱体的散热情况设置通风散热通道。

·电池单体之间的导电连接距离尽量短,连接可靠,最好是柔性连接,各导电连接部位的导电能力要满足用电设备的最大过流能力。

·充分考虑电池串并联高压连接之间的绝缘保护问题,例如绝缘间隙和爬电距离等。

方形电芯和圆柱电芯的电池模组

2.电池管理系统的设计

电池管理系统(BMS),即Battery Management System,通过检测电池组中各单体电池的状态来确定整个电池系统的状态,并根据它们的状态对动力电池系统进行对应的控制调整和策略实施,实现对动力电池系统及各单体的充放电管理以保证动力电池系统安全稳定地运行。电池管理系统的基本功能可以分为检测、管理、保护这三大块。具体来看,包括数据采集、状态监测、均衡控制、热管理、安全保护、信息管理等功能。

电池管理系统

电池管理系统在硬件上可以分为主课模块和从控模块两大块。主要由数据采集单元(采集模块)、中央处理单元(主控模块)、显示单元、均衡单元检测模块(电流传感器、电压传感器、温度传感器、漏电检测)、控制部件(熔断装置、继电器)等组成。中央处理单元由高压控制回路、主控板等组成,数据采集单元有温度采集模块、电压采集模块等组成。一般采用CAN现场总线技术实现相互间的信息通讯。

在动力电池管理系统中的软件设计功能一般包括电压检测、温度采集、电流检测、绝缘检测、SOC 估算、CAN 通讯、放电均衡功能、系统自检功能、系统检测功能、充电管理、热管理等。整体的设计指标包括最高可测量总电压、最大可测量电流、SOC估算误差、单体电压测量精度、电流测量精度、温度测量精度、工作温度范围、CAN通讯、故障诊断、故障记忆功能、在线监测与调试功能等。

BMS通过通讯接口与整车控制器、电机控制器、能量管理系统、车载显示系统等进行通讯,整个工作过程大致为:首先利用数据采集模块采取电池的电流、电压和温度等数据→然后采集到的数据发送给主控模块→主控模块对数据进行分析和处理后,发出对应的程序控制和变更指令→最后对应的模块做出处理措施,对电池系统或电池进行调控,同时将实时数据发送到显示单元模块。

在电池管理系统的技术要求方面要满足相关标准,比如QC/T 897-2011:

·电池管理系统与动力电池相连的带电部件和其壳体之间的绝缘电阻值不

小于2MΩ。

·电池管理系统应能经受相关的绝缘耐压性能试验,在试验过程中应无击穿或闪络等破坏性放电现象。

·SOC的估算精度要求不大于10%。

·电池管理系统应能在相关规定条件下,比如过电压运行、欠电压运行、高低温运行情况下满足状态参数测量精度的要求。

3.热管理系统的设计

电池热管理系统是从使角度出发,用来确保电池系统工作在适宜温度范围内的一套管理系统,主要由电池箱、传热介质、监测设备等部件构成。电池热管理系统有如下几项主要功能:(1)电池温度的准确测量和监控;(2)电池组温度过高时的有效散热和通风;(3)低温条件下的快速加热,使电池组能够正常工作;(4)有害气体产生时的有效通风;(5)保证电池组温度场的均匀分布。

当车辆在不同运行工况下,电池系统由于其自身有一定的内阻,在输出功率、电能的同时产生一定的热量从而产生热量累积使电池温度升高,空间布置的不同使得各处电池温度并不一致。当电池温度超出其正常工作温度区间时,必须限功率工作,否则会影响电池的寿命。为了保证电池系统的电性能和寿命,车用动力电池系统一般设计具有热管理系统。

可以从动力电池系统本身结构组成看到,热管理系统设计时要考虑到电池单体和电池模块两个层次的结构。因此在电池系统的整体设计中就必须要考虑到电池单体和电池模块所在位置的温度环境的影响。在进行电池热管理系统设计时,一般设计要求有如下几个方面:

·电池满功率工作的温度区间定义及电池降功率工作区间定义。具备电池低温启动性能要求及电池隔热功能。

·电池制冷和制热功能:电池系统需要设计在低温下能够快速升温, 以达到整车大功率和能量的需求, 或者整车热管理系统采用空调系统或发动机冷却水来维持电池系统在最优的工作温度区间。而采用主动方式还是被动方式的加热和散热,效率会有很大差别。

·制冷和制热方案, 如风冷或液冷。风冷方案设计主要考虑电池系统结构的设计, 风道, 风扇的位置及功率的选择, 风扇的控制策略等。液冷方案设计主要考虑冷却管道, 流场, 进出口冷却剂的流量、温度、压降。水泵及整车空调压缩机的控制策略等。在采用风冷冷却系统与与液冷冷却系统时要考虑各自的优缺点。

方式风冷液冷

优点结构配置相对简单,系统重量相对较轻,工艺成本低。不会出现漏液的可能,能够及时通风

排除有害气体。与电池接触壁面之间的热交换系统相对较大,冷却或加热的速度要快。

缺点与电池接触壁面之间的热交换系统低,冷却或

加热速度相对液体较慢。系统重量相对较大,设计较复杂,零部件多。维修和包养成本高。存在漏液的可能性,

风冷冷却结构和液冷式冷却结构示意图

4.电气及机械系统的设计

电气及机械系统主要包括高压系统、电池箱体、连接线束、机械接插件等,其中高压系统主要由继电器、电流传感器、电阻和熔断器等器件组成。电气系统

能够保证设备运行的可靠与安全,实现某项控制功能。电池系统的箱体则要固定安装到整车上,是电动汽车的一个重要的零部件组成。因此,电池箱体必须具备一些基本功能,如与整车的信号通信,电源输出,增程器充电输入,维护开关设计等。

动力电池系统的电气系统设计主要涉及到高压部分,在设计高电压系统时,需要考虑电力供给端和输出端的平衡。电力供给端对于EV指的是驱动用电池;对于HEV和PHEV则指的是驱动用电池和发动机的发电电力。车辆则需要根据车辆状态和行驶状态随时改变供给端。输出端是指由高电压电力驱动的机器,如用于驱动的电机、空调设备、DC-DC电源转换器、电动转向助力器等。高压系统的安全设计尤为重要,在高压线路上配置手动维修开关,自动断路器、动力控制继电器、系统互锁和高压熔断器。整个箱体内采用电木和环氧板进行高压电绝缘;箱体外部与车底盘可靠连接;电池管理系统对系统绝缘电阻实施监控。

A123的动力电池系统及电池箱外观

电池箱作为电池模块的承载体,对电池模块的安全工作和防护起着关键作用。电池箱的外观设计主要从材质、表面防腐蚀、绝缘处理、产品标识等方面进行。电池箱体的设计目标要满足强度刚度要求和电气设备外壳防护等级IP67设计要求并且提供碰撞保护,箱内电池模块在底板生根,线束走向合理、美观且固定可靠。设计的通用要求要满足相关标准,比如QC/T 989-2014:

(1)一般要求

·具有维护的方便性。

·在车辆发生碰撞或电池发生自燃等意外情况下,宜考虑防止烟火、液体、气体等进入车厢的结构或防护措施。

·电池箱应留有铭牌与安全标志布置位置,给保险、动力线、采集线、各种传感元件的安装留有足够的空间和固定基础。

·所有无级基本绝缘的连接件、端子、电触头应采取加强防护。在连接件、端子、电触头接合后应符合GB 4208-2008防护等级为3的要求。

(2)外观与尺寸

·外表面无明显的划伤、变形等缺陷,表面涂镀层应均匀。

·零部件紧固可靠,无锈蚀、毛刺、裂纹等缺陷和损伤。

(3)机械强度

·耐振动强度和耐冲击强度,在试验后不应有机械损坏、变形和紧固部位的松动现象,锁止装置不应受到损坏。

·采取锁止装置固定的蓄电池箱,锁止装置应可靠,具有防误操作措施。

(4)安全要求

·在试验后,蓄电池箱防护等级不低于IP55。

·人员触电防护应符合相关要求。

5.相关规范标准要求

在完成整个动力电池系统的设计后,制作好的动力电池系统必须经过台架性能测试,验证是否符合设计要求,再经过装车试验,对系统进行改进和完善。整个动力电池系统的各个设计部分均需要符合相关规范标准要求,比如电池箱内所有连接线阻燃和耐火性能需满足GB/T 19666-2005的要求,其他一些在动力电池系统设计过程中涉及到的相关标准如表所示。

总结

从目前电动汽车的发展来看,最大的障碍就是动力电池系统的性能。虽然单体电池的技术在不断发展,性能与以前相比已有很大地提高,但是目前的充放电技术和电池管理技术相对不成熟先进,导致电池在成组后一致性降低、性能衰减。动力电池系统的设计优劣是关键影响因素之一,因此需要针对动力电池系统不断进行结构优化和设计分析。

本文简单地从整体上探讨了动力电池系统设计,并未深入,因为这是一门涉及面广、专业知识纵深度强的领域。动力电池系统是一个综合电池技术、电控技术、结构设计技术和热能分析技术的复杂体系,需要各个相关行业的技术人员通力合作来完成。

动力电池系统设计讲解

深入浅出史上最易懂的动力电池系统 设计讲解 2 [摘要]动力电池系统设计要以满足整车的动力要求和其他设计为前提,同时要考虑电池系统自身的内部结构和安全及管理设计等方面。 动力电池系统指用来给电动汽车的驱动提供能量的一种能量储存装置,由一个或多个电池包以及电池管理(控制)系统组成。动力电池系统设计要以满足整车的动力要求和其他设计为前提,同时要考虑电池系统自身的内部结构和安全及管理设计等方面。 比如整车厂会针对要设计的整车,在考虑安全设计、线束连接线设计、接插件设计等相关要求后,形成一个有限的动力电池系统空间大小。然后在有限的空间约束下,进行电池模组、电池管理系统、热管理系统、高压系统等布置,保证电池单体及模块均匀散热,保证电池的一致性,提高电池系统的寿命与安全。设计时要考虑到的一些整体和通用性原则包括安全性好、高比能量、高比功率、温度适应性强、使用寿命长、安装维护性强、综合成本低等。

一种典型的动力电池系统 由于不同种类电动汽车的结构和工作模式的不同,导致对动力电池的性能要求也不一样。纯电动汽车行驶完全依赖于动力电池系统的能量,电池系统容量越大,可以续航里程越长,但所需电池系统的体积和重量也越大。虽然混合动力汽车对动力电池系统的容量要求比纯电动汽车要低,但要能够在某些时候提供较大的瞬时功率。而串联式和并联式混合动力汽车对电池系统的要求又有所区别。 因此动力电池系统的设计流程一般如下:(1)先确定整车的设计要求;(2)然后确定车辆的功率及能量要求(3)选择所能匹配合适的电芯(4)确定电池模块的组合结构形式(5)确定电池管理系统设计及热管理系统设计要求(6)仿真模拟及具体试验验证。

电动汽车动力电池系统总体方案设计

电动汽车动力电池系统总体方案设计 1.1 额定电压及电压应用范围 对于高速电动车辆动力电池系统的额定电压等级,参照《GB/T31466-2015 电动车辆高压系统电压等级》可选择144V、288V、320V、346V、400V、576V等。对于微型低速电动车动力电池系统的电压等级,100V以下主要以48V、60V、72V和96V为主。 动力电池系统的额定电压及电压范围必须与整车所选用的 电机和电机控制器工作电压相匹配,因此为保证整车动力系统的可靠运行,需要根据电动整车电机的电压等级及工作电压范围要求,选择合适的单体电池规格(化学体系、额定电压、容量规格等)并确定单体电池的串联数量、系统额定电压及工作电压范围。通常允许使用的电压范围上限为系统额定电压的115%~120%,下限为系统额定电压的75%~80%。

1.2 动力电池系统容量 整车概念设计阶段,从整车车重和设定的典型工况出发,续驶里程、整车性能(最高车速、爬坡度、加速时间等)要求,可以计算出汽车行驶所需搭载的总能量需求。动力电池系统容量主要基于总能量和额定电压来进行计算。 1.3 功率和工作电流 整车在急加速情况下,动力电池系统需要提供短时脉冲放电功率,对应的工作电流为峰值放电电流;在紧急刹车情况下,需要提供短时能量回收功率,对应的回馈电流为峰值充电电流。

整车在平路持续加速或长坡道时,动力电池系统需要提供稳定的持续放电功率,此时要求能够长时间稳定输出一定额度的电流,即持续放电工作电流。 1.4 可用SOC范围 在动力电池系统产品设计上,由于SOC可用范围会直接影响总能量的设计,直接体现到单体电池的选型及数量要求,因此,也会对电池箱体的包络尺寸设计、内部布置及安装空间间隙以及对总体成本等方面产生最直接的影响。动力电池系统SOC应用范围的选择首先考虑整车对充放电功率和可用能量等方面的需求,同时结合单体电池在不同温度条件下的充放电能力(功率和能量)、存储性能(自放电率)、寿命、安全特性,以及电池管理系统的SOC估算精度等影响因素来确定。

特斯拉电动汽车动力电池管理系统解析(苍松书屋)

特斯拉电动汽车动力电池管理系统解析 1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster 的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统 (Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。

动力电池管理系统硬件设计电路图

动力电池管理系统硬件设计电路图 电动汽车是指全部或部分由电机驱动的汽车。目前主要有纯电动汽车、混合电动车和燃料电池汽车3种类型。电动汽车目前常用的动力来自于铅酸电池、锂电池、镍氢电池等。 锂电池具有高电池单体电压、高比能量和高能量密度,是当前比能量最高的电池。但正是因为锂电池的能量密度比较高,当发生误用或滥用时,将会引起安全事故。而电池管理系统能够解决这一问题。当电池处在充电过压或者是放电欠压的情况下,管理系统能够自动切断充放电回路,其电量均衡的功能能够保证单节电池的压差维持在一个很小的范围内。此外,还具有过温、过流、剩余电量估测等功能。本文所设计的就是一种基于单片机的电池管理系统。 1电池管理系统硬件构成 针对系统的硬件电路,可分为MCU模块、检测模块、均衡模块。 1.1MCU模块 MCU是系统控制的核心。本文采用的MCU是M68HC08系列的GZ16型号的单片机。该系列所有的MCU均采用增强型M68HC08中央处理器(CP08)。该单片机具有以下特性: (1)8MHz内部总线频率;(2)16KB的内置FLASH存储器;(3)2个16位定时器接口模块;(4)支持1MHz~8MHz晶振的时钟发生器;(5)增强型串行通信接口(ESCI)模块。 1.2检测模块 检测模块中将对电压检测、电流检测和温度检测模块分别进行介绍。 1.2.1电压检测模块 本系统中,单片机将对电池组的整体电压和单节电压进行检测。对于电池组整体电压的检测有2种方法:(1)采用专用的电压检测模块,如霍尔电压传感器;(2)采用精密电阻构建电阻分压电路。采用专用的电压检测模块成本较高,而且还需要特定的电源,过程比较复杂。所以采用分压的电路进行检测。10串锰酸锂电池组电压变化的范围是28V~42V。采用3.9M?赘和300k?赘的电阻进行分压,采集出来的电压信号的变化范围是2V~3V,所对应的AD 转换结果为409和*。 对于单体电池的检测,主要采用飞电容技术。飞电容技术的原理图如图1所示[2],为电池组后4节的保护电路图,通过四通道的开关阵列可以将后4节电池的任意1节电池的电压采集到单片机中,单片机输出驱动信号,控制MOS管的导通和关断,从而对电池组的充电放电起到保护作用。

电动汽车用动力电池系统安全性设计-0901..

电动汽车用动力锂离子电池系统 安全性设计 拟稿:张建华 2014、7、31

目录 1、序言 2、锂离子电芯安全特性 3、几种锂离子电芯安全特性分析 4、由锂离子电芯组成的电池PACK的安全性特性分析 5、锂离子电池PACK安全性设计 6、结论

一、序言 1、特斯拉电动汽车六次碰触起火事件 7月4日,在一起离奇的盗窃事件中,特斯拉意外成为了主角。一名身份未明的男子7月4日早间盗窃ModelS汽车后,引发警方的高速追逐。该男子随后在西好莱坞撞上多辆汽车,并在撞击路灯后解体成两半,引发电池着火。7月7日,特斯拉表示,该公司将调查在高速追逐中因碰撞而解体成两半,并着火的ModelS汽车残骸。 从2013年下半年开始,特斯拉已经发生了六起起火事件。其中两起是行驶中车辆自燃,两起是碰撞起火,原因是车主驶过路面上的残骸致使电池箱被刺穿后起火,有一起在充电时发生,还有一起原因不明。 1)11月6日,据海外网站报道,一辆特斯拉Model S电动车在美国田纳西州纳什维尔附近再度遭遇起火事故,车头几乎全部烧毁。 2)10月1日,一辆Model S撞上了路中的金属残片引发事故着火燃烧,车辆前部的一块电池包起火。 3)10月18日中旬,在墨西哥,一辆高速行驶特斯拉Model S撞到了一堵混凝土墙,紧接着又撞上了一棵大树,随后起火燃烧。 结论:汽车底盘在受到猛烈冲击变形后会产生着火事故; 底盘受到猛烈冲击类似于挤压和针刺的综合测试。

2、比亚迪e6着火事件 2012年5月26日凌晨3时08分,深圳滨海大道西行侨城东路段发生的一起重大交通事故,让电动汽车的安全问题成为了全世界关注的焦点。当时,一男子载三女驾驶一辆红色日产GT-R跑车,高速撞上两辆同方向行驶的出租车。其中一辆比亚迪E6电动出租车起火燃烧,一名男性出租车司机连同两名女性乘客被困火中当场死亡。 涉及各领域的13名知名专家,包括电动汽车整车及动力系统、部件安全、结构安全、汽车碰撞、电子电气安全、动力电池、汽车交通事故鉴定、火灾调查、材料燃烧特性等专业领域。专家分别来自中国汽车技术研究中心、交通运输部、科学研究院、公安部天津消防研究所、广东省消防总队、北方车辆研究所、S MG等,进行为期70天的调查。 专家组得到的结论是:电池没爆炸,着火起因是e6受到两次严重碰撞,车身后部及电池托盘严重变形、动力电池组和高压配电箱受到严重挤压,导致部分动力电池破损短路、高压配电箱内的高压线路与车体之间形成短路,产生电弧,引燃内饰材料及部分动力电池等可燃物质。e6的动力电池系统在整车上的安装布局、绝缘防护及高压系统等方面设计合理,“整车安全未见设计缺陷”。 结论: 汽车底盘在受到猛烈冲击变形后会产生着火事故; 底盘受到猛烈冲击类似于挤压和针刺的综合测试。

动力电池系统设计输入地要求

纯电动大巴车用动力电池系统设计输入要求 一.设计输入--项目可行性报告 1、车辆技术参数: 车辆尺寸(车辆三维模型) 总质量 kg 轴荷分配 kg 主传动比 最大车速 km/h 常规车速 km/h 爬坡车速 km/h 最大爬坡度 % 迎风面积 m2 风阻系数 车轮的滚动半径 m 2、车辆性能: 车速、加速性、行驶距离、车速变化曲线 3、使用环境: 路面、全年早晚温度变化与负荷变化关系曲线、全年雨量分布、湿度范围、 4、运行工况:

负荷变化曲线、每天运行时间 实际路测数据输入: 1)行驶里程(平路里程和坡道里程)按满备质量计算 2)运行的最高车速 3)运行的平均车速 4)爬坡车速 5)满载质量波动 5、驱动电机参数: 电机结构、工作电压范围、工作温度范围 电动机的额定功率、扭矩、转速、尺寸、重量等基本参数 电动机的瞬时最大功率、扭矩、转速等参数 变速箱的主减速比、传动比等基本参数 电机制动参数 6、控制器参数 7、充电机参数 二.根据需求输入及汽车改装的实际情况,编制技术协议--项目设计任务书,需要提供的参数: 1.提出电池箱最大包络; 2.确定电池箱体固定安装方式、固定点及定位销位置(三维模型);

3.明确接插件及管脚定义; 4.提出电性能指标(电压等级﹑能量密度﹑功率密度﹑寿命等)及试验工况要求; 5.提出环境适应性能指标(防腐等级﹑冲击振动﹑高低温等);6.提出安全性能指标(过充﹑过放﹑短路﹑挤压﹑针刺﹑跌落等; 高压安全,碰撞与高压安全,绝缘安全,防水安全等); 7.提出上下电及相关逻辑; 8.确定通信协议(和VCU﹑CHARGER); 9.确定故障定义及故障分类,并设置合理的阀值; 10.对售后服务提出一定的要求。 三.动力电池组设计输入要求 纯电动电池pack性能

动力电池智能制造技术【全面解析】

动力电池智能制造技术 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 1新能源汽车动力电池的智能制造 我国已成为名副其实的全球最大的新能源汽车市场。动力电池作为最为核心的 关键零部件,它的相关技术必须与电动汽车的发展相适应。新能源汽车能走多远, 最终取决于动力电池能走多远。综合各类电池的技术优势及发展趋势,锂离子电池 在混合动力汽车、插电式混合动力汽车和纯电动汽车领域,将会有越来越广泛的应 用。该类电池技术对新能源汽车产业发展的意义重大。 当前国内生产动力电池的企业约有上百家,但由于自动化程度低,不少企业呈 现出生产效率低、产品良品率低和运营信息互联互通效率低的“三低”特点。这使 得动力电池在技术以及一致性问题上一直很难有实质性突破,严重影响了动力电池 的整体性能,也制约了我国新能源汽车产业的发展。 基于此,动力电池的智能制造应运而生。什么是动力电池的智能制造?它是指, 动力电池生产智能工厂综合运用ERP系统、MES系统等软件,并实现全周期生产的 可视化、自动化、智能化。未来,包括动力电池在内的新能源汽车制造,未来必然 走向大规模和智能化,呈现高精度、高速度和高可靠性的“三高”特点。而以无人 化、可视化和信息化为代表的“三化”是实现“三高”的利器,亦是智能制造的范 畴。 2动力电池工艺装备智能制造技术的发展水平

作为动力电池制造环节必需的工具,动力电池生产工艺装备对动力电池规模化生产条件下的技术发展起着极为关键的作用,近年来动力电池装备产业发展势头迅猛。结合动力电池生产工艺流程,我们将从动力电池电芯生产的前、中、后各段工序以及电池组模组及系统装配工序对动力电池装备产业的智能制造技术发展现状进行分析。 1.动力电池电芯生产前段工序的技术水平 作为动力电池整条产线最为关键的环节,生产前段工序对动力电池产品品质一致性和性能稳定性产生直接影响。动力电池电芯生产前段工序是指实现锂离子动力电池从原材料输送到模切的极片加工成型的过程。自动加料系统、搅拌机、涂布机、辊压机和模切机等是动力电池制造过程的核心工艺装备。 由于前段工艺装备对动力电池性能影响较大,各项技术指标要求高,且设备技术复杂程度高,前几年国产装备技术相对较为落后,在效率、精度、稳定性等方面与国外还存在一定差距,尤其是涂布机。近年来随着行业技术日趋成熟,国内装备行业快速发展,自动加料系统、大容积自动搅拌机、高速涂布机、高速模切机等高端设备逐步实现国产化,并在实际应用中产生了较好效果。 表1. 国内电池电芯前段工序设备情况 2.动力电池电芯生产中段工序的技术水平 传统工艺主要以手工作业和单机自动化为主,近年来随着大规模生产对生产效率和过程控制的要求,动力电池生产中段装配工序已逐步实现整线自动化控制。通过对自动化工作站、上下料机构、自动传输机构、多轴机器人等部件的连接整合,采用高精度传感器技术实现对过程数据数据的自动采集、监控和反馈,并结合设备MES系统的应用,实现动力电池中段工序智能化生产。

电动汽车动力电池系统五大国标最详解读

电动汽车动力电池系统五大国标最详解读 [导读]国标针对动力电池系统,建立了常规性能和功能要求,范围覆盖了电芯、模组、动力电池包、动力电池系统这4个层级,产品类型包括混合动力、插电式/增程式混合动力、纯电动乘用车和商用车,已基本上了构成了一个完整的体系。 关键词:电池系统电动汽车 国标针对动力电池系统,建立了常规性能和功能要求——容量、能量、功率、效率、标准循环寿命、工况循环寿命、存储、荷电保持、容量恢复、倍率性能、高低温性能等,建立了安全防护要求——操作安全、故障防护、人员触电防护、滥用防护、环境适应性、事故防护、用户手册和特殊说明等,范围覆盖了电芯、模组、动力电池包、动力电池系统这4个层级,产品类型包括混合动力、插电式/增程式混合动力、纯电动乘用车和商用车,已基本上了构成了一个完整的体系。 一、构建标准体系 电动汽车早期的发展过程中,GB或GB/T国家标准的缺失在一定程度上造成了行业的良莠不齐和鱼龙混杂。仅依靠汽车行业的QC/T推荐标准作为一种参考,并不具有权威性和广泛性,整车企业和电池企业要么茫无头绪,要么各行其是、各执一词,缺乏一个统一的衡量标准。 随着2015年新版GB/T国家推荐标准的陆续发布,我国电动汽车产业围绕动力电池系统已基本上构建了完整的标准体系,形成了行业的准入门槛,有利于行业的规范发展和优胜劣汰。 新国标在2015年5月颁布(部分标准将在10月份或年底颁布),与旧标准之间有一年的过渡期,从2016年开始,相关企业都将遵循新的标准进行相关检测。新国标与工信部2015年3月发布的《汽车动力蓄电池行业规范条件》一起,将加速动力电池行业的洗牌,提高行业集中度水平。

动力电池系统方案书

管理编号: 项目编号:EVPS(JS)ZZYF150609 项目名称:PL151V220电池系统文档版本:V0.01 技术部 2013年 8 月 1 日

版本履历

目录 一、前言 (4) 二、概述 (4) 三、系统部件清单 (5) 四、电池组性能指标 (5) 五、电池系统结构规格 (6) 六、蓄电池控制单元技术要求 (7) 6.1 蓄电池控制单元基本功能 (7) 6.2 电池管理系统技术指标 (7) 6.3蓄电池控制单元策略及动作参数 (8) 6.4 控制方式 (9) 6.5 充电方式 (10) 七、国家标准 (10)

一、前言 本方案采用的主要技术符号和术语: C1:1小时率额定容量(Ah); I1:1小时率放电电流,其数值等于C1(A); Cn1:1小时率实际放电容量(Ah); In1:1小时率实际放电电流,其数值等于Cn1(A); BCU(BMS):蓄电池控制单元,控制、管理、检测或计算蓄电池电和热相关参数,并提供蓄电池系统和其他车辆控制器通讯的电子装置; 单体蓄电池:直接将化学能转换为电能的基本单元装置,包括电极、隔膜、电解质、外壳和端子,并被设计成可充电; 蓄电池包:通常包括蓄电池组,蓄电池管理模块(不含BCU),蓄电池箱及相应附件,具有从外部获得电能并可对外输出电能的单元, 亦称之为电池包; 蓄电池系统:一个或一个以上蓄电池包及相应附件(管理系统、高压电路、低压电路、热管理设备以及机械总成等)构成的能量存储装置; 高压盒:用来集中放置高压接触器、继电器、汇流排、保险丝、BMS等部件,实现蓄电池系统电能集中管理和分配的部件; 二、概述 本方案约定的电池系统(以下可简称本系统或系统)名称为PL151V220锂离子电池系统,型号为:PL151V220,额定电压为151.2V,额定容量为 220 Ah,额定能量33.2度。电池系统由100并42串,合计4200只规格为 18650 的单体蓄电池成组,在部件上包含1个蓄电池包以及配套的高、低压线束线缆。

车用动力电池系统设计与开发

All Value In Creation CALB 车用动力电池系统设计与开发 谢秋 2017年3月31日

目录 CONTENTS 第一部分:车用动力电池系统概述 第二部分:结构技术 第三部分:电池管理系统 第四部分:系统开发的工具和方法 第五部分:车用动力电池系统开发模式

第一部分:车用动力电池系统概述

● 2014年,公司金属壳电池、软包电池生产线建成并投入使用,公司产品实现转型升级与技术跨越。 ● 2015年,中航工业与江苏省政府签署战略合作协议,建设中航绿色电源科技园。 ● 2009年,中航工业集团做出大力发展动力电池产业的决定,分三期完成36亿投资规模。 ● 2011年,中航锂电洛阳产业园新建1.2亿安时自动化生产线投产。 ● 2016年,中航锂电洛阳三期、江苏一期建成投产,公司迎来跨越式发展新阶段。 车辆类型: -EV 用 -HEV 用: -弱混(12V\48V ) -中混、强混(144V\~288V) -PHEV 用 安装结构形式: -吊挂式 -盛放式 布置方式 -集中式:系统由一个电池包组成 -分步式:系统由多个电池包组成 车用动力电池系统定义: 一种为车辆提供双向能量转换和能量存储功能的装置。即向外界提供功率和能量,也可以从外界吸收功率和能量。

车用动力电池系统构成

电芯结构路线 方形铝壳软包圆柱 优势: 单体容量大,成组简单,尺寸控 制容易 弱势: 壳体成本 优势: 散热好,成本低,质量能量密度高 弱势: 尺寸控制复杂,日历寿命有待验证 优势: 标准化程度高,成本低,生产效率 高 弱势: 成组复杂

电动汽车动力电池管理系统设计

电动汽车动力电池管理系统设计 第一章磷酸铁锂电池用作电动汽车动力电池 1.1 电动汽车 1.2 动力电池 1.3 磷酸铁锂动力电池 第二章电动汽车电池管理系统的基本功能 2.1 电池状态监测 2.2 电池状态分析 2 3 电池安全保护 2.4 能量控制管理 2 5 电池信息管理 2.6 基本功能定义难以统一原因分析 第三章动力电池管理系统开发的基本问题 3.1 动力电池管理系统的拓扑结构 3.2 通用的电池管理系统与定制的电池管理系统 3.3 动力电池管理系统开发的一般流程 第四章动力电池的特性测试 4.1 针对电池管理系统开发的电池测试 4.2 容量及充放电效率测试 4.3 放电倍率特性测试 4.4 充放电平衡电势曲线及等效内阻测试 4.5 动力电池的循环测试 4.6 循环过程中的阶段性评估 第五章动力电池状态的实时监测 5.1 关于实时与同步的讨论 5.2 电池电压监测 5.3 电池电流监测 5.4 温度监测 第六章动力电池的建模与仿真 6.1 面向电池管理系统的动力电池建模 6.2 现有模型的不足 6 3 磷酸铁锂动力电池的外特性及分析 6.4 一种针对磷酸铁锂动力电池的新型模型 6.5 模型的实现及仿真 第七章电池剩余电量(soc)评估 7.1 剩余电量的一些相关概念及其理解 7 2 几种经典的评估方法 7.3 剩余电量评估的困难 7.4 剩余容量评估需要考虑的实际问题 7.5 基于电池模型及扩展Kalman滤波器的评估方法 第八章动力电池的均衡控制 8.1 均衡控制管理及其意义 8.2 均衡控制管理的分类

8.3 两种耗散型的均衡控制管理8.4 基于能量转移的均衡控制管理第九章动力电池的信息管理 9.1 电池信息的显示 9.2 系统内外信息的交互 9.3 电池历史信息存储与分析 第十章总结与展望

动力电池系统结构分析及优化设计方案

电池包结构分析及优化设计方案 (电池包结构分析及优化设计方案) 项目编号: 项目名称: 文档版本: 批准审核校对设计 . . . . . . . .

版本履历 版本日期变更者变更章节变更内容变更理由

目录 1 电池包设计原则 (4) 2 研究目标 (5) 3 研究内容 (6) 3.1电池包有限元模型 (6) 3.2 仿真计算条件 (7) 3.3 计算结果分析 (7) 3.3.1 静力学结构仿真 (7) 3.3.2 振动仿真 (9) 3.3.3 动态仿真 (11) 3.4 电池包结构优化设计 (12) 4.技术能力与效益预测 (13) 5.发布单位 (14)

1 电池包设计原则 蓄电池包为由一个或多个蓄电池模块组成的单一机械总成。通常每套电动车用动力电源系统由多个电池包组成。电池包包括电池模块、箱体、连接线束、管理板等。 电池包的设计需满足以下要求: (1)满足整车安装条件,包括尺寸、安装接口等; (2)电池箱体与电池模块之间的绝缘,电池箱体与整车之间绝缘; (3)防水、防尘满足IP67或以上要求; (4)减少电池包内部使电池产生自放电的可能性; (5)各种接口(通信、电气、维护、机械)等完全、合理; (6)模块在电池箱体内的固定、电池包在整车上的固定满足振动、侧翻、碰撞等要求; (7)温度场设计合理,要求电池箱体内部电池温差不超过5摄氏度; (8)禁止有害或危险性气体在电池包内累积,更不能进入乘客舱; (9)部分应用(纯电动汽车)要求快速更换。 电池包的最大外形要满足整车安装空间的要求,设计时注意考虑电池包的安装与维护。电池包的安装位置要考虑冲击、振动、侧翻等情况,箱体应能承受一定程度的冲击力(可以参照电池模块的冲击性能测试要求进行设计)。车型不同,留给电池包的空间不一样,电池包的设计必须与整车设计相结合。

电动汽车动力电池系统设计规范03

安徽天康特种车辆装备有限公司 动力电池系统设计规范 编制: 审核: 批准: 日期: 2015年8月21日发布2015年10月22日实施安徽天康特种车辆装备有限公司发布

目录 前言.................................................................................................................................... I I 电动汽车动力系统设计规范 . (1) 1.概述 (1) 2.设计原则 (1) 3.参考引用标准 (1) 4.术语和定义 (2) 5.设计要求 (4) 6.设计验证 (24)

前言 本规范规定山东省普天新能源汽车(山东)有限公司开发的专用车辆时的线束设计规范。 本规范由安徽天康特种车辆装备有限公司产品开发部提出。。 本规范由安徽天康特种车辆装备有限公司批准。 本规范主要起草人:李劲松 本规范于2015年8月首次发布。

电动汽车动力系统设计规范 1.概述 动力电池系统是电动汽车的重要组成部分,为电动汽车驱动提供能量来源。由于电池系统是高电压高能量密度产品,在设计电池系统时,主要从箱体设计、电池成组设计、电池安全、以及电池管理系统设计等方面进行。 2.设计原则 动力电池系统设计以满足车辆动力要求为前提,同时从电池系统自身内部结构和安全设计、电池管理等方面进行设计,主要包括以下几个部分: (1)电池箱外观尺寸:电池箱体尺寸主要根据车辆提供的电池安装空间进行设计,并且要考虑到接插件和机械连接部位的尺寸影响。电池箱内部尺寸,主要从整体设计考虑,从电池的排布、线束的排布以及电池管理系统尺寸位置、热管理系统尺寸及位置等方面进行设计。电池箱的外观设计主要从材质、表面防腐蚀、绝缘处理、产品标识等方面进行设计。 (2)电池性能参数:电池系统参数,比如电压平台、额定容量、额定能量、最大可持续放电电流、瞬间峰值放电电流、瞬间峰值充电电流等,在设计时要根据车辆的动力参数和要求进行匹配。 (3)电池管理:动力电池系统管理主要通过电池管理系统完成。通过制定电池的充放电策略、温度管理策略、报警策略等实现对电池系统的管理。 (4)整车对电池系统的管理:通过整车控制器与电池管理系统的通信进行电池系统的管理。具体通过制定通信协议完成 3.参考引用标准 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版 1

最新动力电池系统设计输入要求

纯电动大巴车用动力电池系统设计输入要求1 一.设计输入--项目可行性报告 2 3 1、车辆技术参数: 车辆尺寸(车辆三维模型) 4 5 总质量 kg 6 轴荷分配 kg 7 主传动比 8 最大车速 km/h 9 常规车速 km/h 爬坡车速 km/h 10 11 最大爬坡度 % 12 迎风面积 m2 13 风阻系数 14 车轮的滚动半径 m 15 2、车辆性能: 16 车速、加速性、行驶距离、车速变化曲线 17 3、使用环境:

路面、全年早晚温度变化与负荷变化关系曲线、全年雨量分布、湿度范围、 18 19 4、运行工况: 20 负荷变化曲线、每天运行时间 21 实际路测数据输入: 22 1)行驶里程(平路里程和坡道里程)按满备质量计算 23 2)运行的最高车速 3)运行的平均车速 24 25 4)爬坡车速 26 5)满载质量波动 27 5、驱动电机参数: 28 电机结构、工作电压范围、工作温度范围 29 电动机的额定功率、扭矩、转速、尺寸、重量等基本参数 电动机的瞬时最大功率、扭矩、转速等参数 30 31 变速箱的主减速比、传动比等基本参数

32 电机制动参数 33 6、控制器参数 34 7、充电机参数 二.根据需求输入及汽车改装的实际情况,编制技术协议--项目设35 36 计任务书,需要提供的参数: 1.提出电池箱最大包络; 37 2.确定电池箱体固定安装方式、固定点及定位销位置(三维模型); 38 3.明确接插件及管脚定义; 39 4.提出电性能指标(电压等级﹑能量密度﹑功率密度﹑寿命等)及试 40 41 验工况要求; 5.提出环境适应性能指标(防腐等级﹑冲击振动﹑高低温等); 42 6.提出安全性能指标(过充﹑过放﹑短路﹑挤压﹑针刺﹑跌落等;高 43 44 压安全,碰撞与高压安全,绝缘安全,防水安全等);

动力电池热管理系统组成及设计流程

动力电池热管理系统组成及设计流程 动力电池是电动汽车的能量来源,在充放电过程中电池本身会伴随产生一定热量,从而导致温度上升,而温度升高会影响电池的很多工作特性参数,如内阻、电压、SOC、可用容量、充放电效率和电池寿命。 电池热效应问题也会影响到整车的性能和循环寿命,因此,做好热管理对电池的性能、寿命至整车行驶里程都十分重要。接下来,就从电池热管理系统及设计流程、零部件类型及选型、热管理系统性能及验证等几个方面来和大家聊一聊: 动力电池热管理必要性 1、电池热量的产生 由于电池阻抗的存在,在电池充放电过程中,电流通过电池导致电池内部产生热量。另外,由于电池内部的电化学反应也会造成一定的生热量。 2、温度升高对电池寿命的影响 温度的升高对电池的日历寿命和循环寿命都有影响。 从上面两个图可以看出,温度对电池的日历寿命有很大的影响。同样的电芯,在环境温度23℃,6238天后电池的剩余容量为80%,但是电池在55℃的环境下,272天后电池的剩余容量已经达到80%。温度升高32℃,电芯的日历寿命下降了95%以上。因此,温度对日历寿命的影响极大,温度越高日历寿命衰退越严重。

从上面两个图可以看出,温度对电池的循环寿命也有很大的影响。同一款电芯,当剩余容量为90%,25℃温度下输出容量为300kWh,而35℃温度下的输出容量仅为163kWh。温度上升10℃,电芯的循环寿命下降了近50%。由此可见,温度对电池的循环寿命有很大的影响。 因此,为了电池包性能的最优化,需要设计热管理系统确保各电芯工作在一个合理的温度范围内。 02 热管理系统的分类及介绍 不同的热管理系统,零部件类型的结构不同、重量不同以及系统的成本不同和控制方式不同,使得系统所达到的性能也不相同。主要有如下五大类:

干货--动力电池系统设计电连接技术路线——中国新能源汽车动力电池系统先进电连接技术论坛...

干货--动力电池系统设计电连接技术路线——中国新能源汽车动力电池系统先进电连接技术论坛...

————————————————————————————————作者:————————————————————————————————日期:

[干货] 动力电池系统设计电连接技术路线——2017中国新能源汽车动力电池系统先进电连接技术论坛... 12.2号,2017中国新能源汽车动力电池系统先进电连接技术论坛在上海成功举办,吸引了400余名行业精英参与,60+动力电池/pack企业、30+新能源汽车整车企业、150余名电连接技术专家;8个精选电连接主题以及一场6位行业电连接专家同台对话沙龙,这是一场知识盛宴,更是一次思维的碰撞一次行业的进步。首位分享嘉宾是来自杭州捷能科技的陈敏陈老师,做“动力电池系统设计电连接技术路线”主题分享。以下是分享内容: 各位业界的专家、同仁大家上午好,非常感谢咱们大家这么早来参加这个论坛。我是来自杭州捷能科技有限公司的陈敏,我今天跟大家一起分享交流的内容是关于动力电车系统的电连接技术路线,讨论这个题目比较大,但是我会在后面缩小一点。我今天的一个方向内容主要分为四个部分,上面三个部分是技术相关的,最后一个部分大概介绍一下我们公司的情况,我们直接进入正题。 我们来看看动力电池系统电连接的概念,什么是动力电池电连接,包含了哪些内容,在设计的时候需要关注哪些?从广义上来讲,电连接不是一个新东西,只是前面加了一个前缀,所以它就变成了一个看起来比较专业的东西。电连接从广义

上来讲是电器产品中所有电器回路的集合。从狭义来讲,是指产品内部不同导体连接起来的连接方式;在动力电池系统中,从广义上来讲包含的内容比较多,今天介绍的话,我会讨论比较多是狭义上的这一块。 在设计的时候我们关注哪些地方?既然是电连接,肯定对过电流能力是一个基本的要求,而电连接是动力电池系统中很重要的一环,需要高安全、高可靠性的,所以我们对它的可靠性和安全性是比较关注的;我们再来看一下电连接在动力电池系统有什么样的定位,这页PPT借鉴了一位老领导的图片。电连接在动力电池系统中有一个什么样的地位?我们要做一个安全、可靠、耐用的动力电池系统,其中一块就是硬件基础,硬件基础是我们设计出来的,首先我们要有一个健壮体魄,要有一个长寿基因,还有一个智慧的大脑。在前面的成组中,电连接在健壮的体魄里面发挥的作用相当于一个人体的神经网络和血管网络的作用,这是一个非常重要的部件。这是从技术层面来讲,我们所说的重要性没有必要用一些事故多危险来说明;我们说一些高兴,一个是技术层面很重要。还有一个从成本层面的占比,电连接在动力系统中,从设计端、工艺端、设备投入端成本占比很大。物料成本将近占了50%,当然我们把电芯除外;从工艺难度和节拍来讲,电连接占比非常高,将近占到50%,而在设备投入是一个非常大的一块。如果是动力电池企业或者PACK企业做这一快,

电动汽车动力电池系统国标最详细讲解读

电动汽车动力电池系统国标最详解读 来源:第一电动网发布时间:2015-08-28 09:56 设置字体:大中小 关注度:4791 次 分享到: 摘要:国标针对动力电池系统,建立了常规性能和功能要求——容量、能量、功率、效率、标准循环寿命、工况循环寿命、存储、荷电保持、容量恢复、倍率性能、高低温性能等。 【高工锂电综合报道】国标针对动力电池系统,建立了常规性能和功能要求--容量、能量、功率、效率、标准循环寿命、工况循环寿命、存储、荷电保持、容量恢复、倍率性能、高低温性能等,建立了安全防护要求--操作安全、故障防护、人员触电防护、滥用防护、环境适应性、事故防护、用户手册和特殊说明等,范围覆盖了电芯、模组、动力电池包、动力电池系统这4个层级,产品类型包括混合动力、插电式/增程式混合动力、纯电动乘用车和商用车,已基本上了构成了一个完整的体系。 一、构建标准体系 电动汽车早期的发展过程中,GB或GB/T国家标准的缺失在一定程度上造成了行业的良莠不齐和鱼龙混杂。仅依靠汽车行业的QC/T推荐标准作为一种参考,并不具有权威性和广泛性,整车企业和电池企业要么茫无头绪,要么各行其是、各执一词,缺乏一个统一的衡量标准。 随着2015年新版GB/T国家推荐标准的陆续发布,我国电动汽车产业围绕动力电池系统已基本上构建了完整的标准体系,形成了行业的准入门槛,有利于行业的规范发展和优胜劣汰。 新国标在2015年5月颁布(部分标准将在10月份或年底颁布),与旧标准之间有一年的过渡期,从2016年开始,相关企业都将遵循新的标准进行相关检测。新国标与工信部2015年3月发布的《汽车动力蓄电池行业规范条件》一起,将加速动力电池行业的洗牌,提高行业集中度水平。

[干货] 电动汽车动力电池系统知识一次看个够

[干货] | 电动汽车动力电池系统知识一次 看个够!——《电动汽车动力电池系统安 全分析与设计》内容摘选... 2017-11-23 xmsun2007来源阅 12 转藏到我的图书馆 微信分享: QQ空间QQ好友新浪微博推荐给朋友 《电动汽车动力电池系统设计与制造技术》是继《电动汽车动力电池系统安全分析与设计》之后,系列丛书的第二本专著,由王芳、夏军等多位专家耗时一年联袂打造,内容涵盖动力电池系统的技术发展综述、系统设计、结构设计、BMS设计、热管理设计、结构仿真分析、测试验证,以及生产制造技术,全方位多角度为读者提供最佳的工程实践参考! 第1篇:动力电池系统在整车的安装位置 节选自《电动汽车动力电池系统设计与制造技术》第一章“电动汽车动力电池系统技术发展综述”,作者:夏军 电动汽车所增加的动力电池系统,由于体积大,重量重,很难在整车上找到非常完美的安装空间,在电池包的布置上,需要考虑以下几个方面: 首先,要尽可能的在有限的空间内,布置更多的电量,这样才能达到更大的续航里程,减少充电的频次,任何可以利用的空间,都有利于整车电量的提升。 其次,要充分考虑电池包的位置对整车安全性能的影响,尤其是在发生碰撞、翻滚、跌落等极端情况下,电池包是否会因为很大的加速度或严重的挤压变形,发生起火和爆炸,或者是否会有电池包的部件进入乘客舱,引起附加伤害。 第三,要充分考虑电池包的重量和形状对整车结构寿命的影响,因为电池包的重量通常达到数百公斤,给整车的底盘和悬挂带来很大的静态载荷和动态载荷,在长时间的振动、冲击条件下,很容易引起整车机械部分的疲劳损伤,降低寿命。 第四,要充分考虑电池包的散热条件,尤其是在高温工作条件和高电气载荷工作条件下,电池包会产生大量的热量,如果散热条

动力电池管理系统设计

动力电池管理系统设计在梯次利用市场,BMS的安全检测功能显得尤为重要。动力电池管理系统的设计一直是个世界级的难题,直到目前为止,也没有哪个公司在这个领域做到相当的成熟,最多只是实现了产业化而已。针对动力电池组的优化管理,尚无非常有效的解决方案,因为动力电池单体并不是一个特性比较明确的物理系统,而是一个在不断变化的化学系统,其各项参数都与运行工况、外部环境、内部劣化速度相关,随时间在不断变化。国外在算法和理论研究方面起步比较早,在工程方面也有深厚积累,所以产业相对成熟。国内在BMS软硬件研发方面,起步较晚(最近几年的事情),理论研究不足,工程应用是“小步快跑”,整体资源投入不足,各家企业都还没有非常稳定可靠的解决方案。 在梯次利用领域,BMS所要面对的情况比汽车领域更为复杂。面对各种化学体系、各种规格和批次、各个生产厂家、各种健康状态的退役动力电池模组,对退役动力电池模组的有效管理,是确保退役动力电池模组在新的应用中能安全可靠运行的必要手段。 在硬件方面,应确保BMS的硬件归一化设计,兼容各种不同的模组,而不必针对不同的模组和产品开发多种规格的硬件产品,这样可以简化BMS的硬件开发、升级和维护,降低产品的成本。在软件方面,需要做到底层软件模块化、标准化和固定化,应用层软件做到模块化、标准化和智能化,能够自适应各种类型的动力电池模组,并

能够自我学习,在运行过程中为动力电池模组和动力电池单体建立模型,做到智能化的监控、预测、诊断、报警和各类在线服务。软件的升级可在线进行,并可远程升级。 梯次利用的动力电池管理系统应采用分布式拓扑结构,系统由一个主控单元(Battery Control Unit,BCU)和多个检测单元 (Battery Measure Unit,BMU)构成,各个单元之间通过高速CAN 总线进行互联,完成数据的实时传输与控制。 主控单元作为动力电池管理系统的控制中心,负责系统运行过程的监控、数据处理、控制策略实现和外界通信控制、动力电池组工作电流测量、充放电量(A·h)累计、总电压检测、绝缘检测、SOC估算。主控单元通过CAN 总线收集动力电池系统的数据,并在线分析动力电池系统的工作状态,根据分析结果进行动力电池组故障报警、动力电池组最大允许充放电功率预测、动力电池组SOC估算、充放电管理。主控单元提供2 路独立的高速CAN,分别与功率控制系统(Power Control System,PCS)、监控系统等通信,以供外部设备更合理地管控动力电池组的充放电,优化电能的使用调度,提高动力电池组的整体性能;同时,在系统运行过程中,实时监控动力电池组的详细状态。 检测单元是获取动力电池状态最直接和最重要的部分,通常检测单元被安装在动力电池箱内部,靠近动力电池附近,负责该箱动力电池单体电压检测、温度检测、均衡控制、风机控制等,并将采集的动

[干货] 动力电池系统设计电连接技术路线——2017中国新能源汽车动力电池系统先进电连接技术论坛...

[干货] 动力电池系统设计电连接技术路线——2017中国新能源汽车动力电池系统先进电连接技术论坛... 12.2号,2017中国新能源汽车动力电池系统先进电连接技术论坛在上海成功举办,吸引了400余名行业精英参与,60+动力电池/pack企业、30+新能源汽车整车企业、150余名电连接技术专家;8个精选电连接主题以及一场6位行业电连接专家同台对话沙龙,这是一场知识盛宴,更是一次思维的碰撞一次行业的进步。首位分享嘉宾是来自杭州捷能科技的陈敏陈老师,做“动力电池系统设计电连接技术路线”主题分享。以下是分享内容: 各位业界的专家、同仁大家上午好,非常感谢咱们大家这么早来参加这个论坛。我是来自杭州捷能科技有限公司的陈敏,我今天跟大家一起分享交流的内容是关于动力电车系统的电连接技术路线,讨论这个题目比较大,但是我会在后面缩小一点。我今天的一个方向内容主要分为四个部分,上面三个部分是技术相关的,最后一个部分大概介绍一下我们公司的情况,我们直接进入正题。 我们来看看动力电池系统电连接的概念,什么是动力电池电连接,包含了哪些内容,在设计的时候需要关注哪些?从广义上来讲,电连接不是一个新东西,只是前面加了一个前缀,所以它就变成了一个看起来比较专业的东西。电连接从广义

上来讲是电器产品中所有电器回路的集合。从狭义来讲,是指产品内部不同导体连接起来的连接方式;在动力电池系统中,从广义上来讲包含的内容比较多,今天介绍的话,我会讨论比较多是狭义上的这一块。 在设计的时候我们关注哪些地方?既然是电连接,肯定对过电流能力是一个基本的要求,而电连接是动力电池系统中很重要的一环,需要高安全、高可靠性的,所以我们对它的可靠性和安全性是比较关注的;我们再来看一下电连接在动力电池系统有什么样的定位,这页PPT借鉴了一位老领导的图片。电连接在动力电池系统中有一个什么样的地位?我们要做一个安全、可靠、耐用的动力电池系统,其中一块就是硬件基础,硬件基础是我们设计出来的,首先我们要有一个健壮体魄,要有一个长寿基因,还有一个智慧的大脑。在前面的成组中,电连接在健壮的体魄里面发挥的作用相当于一个人体的神经网络和血管网络的作用,这是一个非常重要的部件。这是从技术层面来讲,我们所说的重要性没有必要用一些事故多危险来说明;我们说一些高兴,一个是技术层面很重要。还有一个从成本层面的占比,电连接在动力系统中,从设计端、工艺端、设备投入端成本占比很大。物料成本将近占了50%,当然我们把电芯除外;从工艺难度和节拍来讲,电连接占比非常高,将近占到50%,而在设备投入是一个非常大的一块。如果是动力电池企业或者PACK企业做这一快,

相关文档
相关文档 最新文档