文档库 最新最全的文档下载
当前位置:文档库 › Z-N引发剂与丙烯配位聚合机理

Z-N引发剂与丙烯配位聚合机理

Z-N引发剂与丙烯配位聚合机理
Z-N引发剂与丙烯配位聚合机理

炼油装置丙烯产量低的原因分析及措施

炼油装置丙烯产量低的原因分析及措施 发表时间:2017-10-16T10:44:29.437Z 来源:《基层建设》2017年第18期作者:刘健[导读] 摘要:近年来,全球聚丙烯的生产能力以及市场需求呈现出持续快速增长的态势,日渐成为增长速度最快的聚合物材料之一。 吉林省松原石油化工股份有限公司138000 摘要:近年来,全球聚丙烯的生产能力以及市场需求呈现出持续快速增长的态势,日渐成为增长速度最快的聚合物材料之一。聚丙烯是以丙烯为单体,在催化剂作用下,通过聚合反应而成的高分子聚合物,是通用塑料的一个重要品种。聚丙烯是目前世界上最重要的合成树脂之一,具有相对密度小、来源广泛、质量轻、易回收、机械性能优越的特点,且耐高温、耐腐蚀,有优异的电性能和化学性能,因而被广泛的应用于工业制品、日用品、包装薄膜、纤维、涂料等领域。文章结合某炼油企业实际,就炼油装置丙烯产量低的原因分析及措施展开分析。 关键词:炼油装置;丙烯产量;原因 近年来,聚丙烯市场需求旺盛,产能快速增长。随着市场竞争的加剧,国内聚烯烃行业面临包括来自中东产品低价冲击、产品结构不合理等重大挑战。传统石油化学工业的发展也正面临着前所未有的挑战,其赖以生存的原料石油和天然气属于不可再生资源,随着不断的开发,储量不断减少,原料面临短缺。而原料短缺将会导致其价格上涨,使得石油和天然气加工的综合效益下降。聚丙烯与通用热塑料相比,具有良好的综合性能,其热性能、透明度和机械性能的优异结合,为其他塑料制品所不及。其性能应用方面有很多优势,在热塑性塑料中密度最低,约为 0.9g/cm3,并具有良好的电性能和化学稳定性,易于成型,其熔体流动速率范围为0.3~1000g/10min,适合吹塑、注射、挤出、热成型、流延及双向拉伸等多种成型加工工艺,满足不同产品的生产需要,同时还用于工具、共混、填充增强、发泡和添加特殊性能的助剂以及拉伸、复合等二次加工等改性技术的发展,是应用最广泛的合成树脂之一。 一、聚丙烯生产工艺 (一)溶液法 溶液法是早期采用的方法,是采用常规催化剂,用溶剂做稀释剂,将丙烯和催化剂加入到几个串联的反应器中,丙烯在 160~170℃的温度和 2.8~7.0MPa 的压力下进行聚合,所得到的 PP 全部溶解在溶剂中,聚合物溶液经闪蒸脱除未反应的丙烯单体、再加入溶剂稀释过滤脱除催化剂残渣、冷却后析出等规聚合物、然后经离心机分离出等规聚合物和无规物溶液、脱除无规物等工序。这种方法可以迅速测定其聚合物黏度,易于控制分子量和分子量分布,但所生成的聚合物分子量低,特别是工艺流程长,无规物达 25~30%,生产成本高。 (二)浆液法 溶剂法,也称浆液法或淤浆法。早期的溶剂法是采用的是常规催化剂,将常规催化剂和丙烯单体分别加入到以庚烷或己烷溶剂做为稀释剂的反应器里的溶液中,在 1~2MPa 和 50~80℃下进行聚合反应,几个反应器串联操作,生成的聚合物在溶剂中成粉粒状悬浮着。生成的聚合物随溶剂出反应器进行闪蒸使没有反应的丙烯和溶剂气化脱除、在进行气蒸去除无规物和催化剂残渣,然后再干燥和挤压造粒处理后得到可出售的成品。 (三)本体法 本体法聚合工艺以液态丙烯作为聚合介质,将丙烯单体和催化剂加入到液态丙烯作稀释剂的反应器溶液中,在 60~80℃、2.5~4.0MPa 下进行聚合反应,几个反应器串联操作,生成的聚合物成粉粒状悬浮在液态丙烯中。反应后的浆液,经闪蒸脱除未反应的丙烯单体、脱除催化剂残渣和脱除无规物等工序,然后经干燥、造粒得到成品。液相本体聚合反应速率远高于溶剂聚合反应速率。本体法由于没有使用溶剂而减少了溶剂回收工序,流程短,易操作。 (四)气相法 聚丙烯气相法聚合工艺是将丙烯单体和催化剂加入到气相床反应器中,在 70~90℃、2.5~3.5MPa 下进行聚合反应,生成的聚合物在脱气罐中与单体分离处理,工艺流拌床工艺和气相流化床工艺,前者又分为立式搅拌床和卧式搅拌床。 (五)本体-气相法组合工艺 本体–气相法组合工艺是 20 世纪 80 年代初,随着研制成功的第三、四代载体高活性/ 高等规度(HY–HS)催化剂的发展起来的,Montedison 公司开发出新工艺本体法—Spheripol 工艺,其采用了独特的环管反应器具有重要的意义的,MPC 公司研发了本体法工艺—Hypol 工艺,采用的是釜式反应器。Spheripol 工艺和 Hypol 工艺都采用的是液相本体聚合反应生成无规共聚物和均聚物,抗冲共聚物是用气相流化床反应器。这种气相法和本体法相结合的聚丙烯生产工艺技术,现在是应用最广的聚丙烯生产工艺技术,迄今全球一半以上的聚丙烯生产能力采用这类工艺技术。 二、炼油装置丙烯产量低的原因及应对措施 (一)基本概况 某石化企业催化装置是双提升管反应器催化裂解装置,主提升管加工新鲜原料油和回炼油浆,次提升管加工C4组分。现有工况油浆回炼比较大,油浆:原料油=1:1.2。装置原料油性质已经较重,再大比例回炼塔底油浆,催化装置实际进料非常重。两种进料组分中,可裂化组分饱和烃占比也较低,丙烯产量变化较大。 (二)丙烯产量低的原因 1.提升管进料组成变重,液态烃中丙烯产量下降。 (1)新鲜原料量降低。按照操作调整要求,装置逐渐提高原料油经油浆下返塔入分馏塔流量,相应地,回炼油浆入提升管流量由 35T/h 提高至 45T/h,回炼炼化公司油浆后,降至 41T/h,外来原料油流量由 58T/h 降至 50T/h,入提升管原料油流量由50T/h降至43T/h。(2)原料组分变重。由于回炼油浆量的增大提升管进料组成中回炼比发生变化(油浆:原料油=35:50调整至油浆:原料油=41:43),进料组成变重,链烷烃少是液态烃中丙烯产量下降的原因之一。 2.回炼碳四组成中烷烃含量增加,液态烃中丙烯产量下降 回炼碳四组成中,设计值为丁烷:丁烯=40.09:59.91(V%),回炼碳四实际组成为丁烷:丁烯=54.32:45.5(V%),丁烯易发生二聚反应生成2个丙烯和1个乙烯,所以,组成中丁烯含量降低也是液态烃中丙烯产量下降的原因之一。 3.液态烃中丙烯潜含量受回炼影响有所下降,致使产量下降

配位聚合

1. 写出下列催化剂组份的分子结构式和缩写式 (1)三乙酰丙酮钴; (2)二π-烯丁基镍;(π-C4H7)2Ni (3)二甲基硅桥联苯并茚基茂基二氯化锆 (4)π-烯丙基三氟乙酸镍; π-C3H5NiOOCCF3 (5)环烷酸镍; C22H14NiO4 (6)异丙基(茂基-1-芴基)二氯化铪 (7)亚乙基双(1-茚基)二氯化钛; (8)倍半铝Al2Et3Cl3 2. 在Ziegler-Natta聚合中产品的分子量控制重要手段是什么,为什么不用温度控制?写出其反应式。乳液聚合中若温度一定,聚合物的分子量调节靠什么手段,能否用引发剂用量?试从动力学方程解释。 常用H2来调节分子量, 添加分子量调节剂,高活性活泼H顺式含量 3. 试举一例说明立构规整聚合物的合成方法和路线,并讨论这种聚合物与性能的相互关系。全同聚丙烯:α-TiCl3/AlEt3/P 30-70℃ 间同聚丙烯:α-TiCl3/AlEt3/P -70℃ 间规聚丙烯的抗冲击强度为等规聚丙烯的两倍,但刚性和硬度则仅及后者的一半 间规PP的分子链间距较大,分子链活动能力较好,排列规整性赶不上等规PP,所以结晶度也小,导致冲击韧性好,受冲击时分子链滑移和断裂能吸收更多的能量,结晶度低也就导致刚性下降,模量下降。 4. 活性中心浓度的测定有几种方法,活性中心是否缔合,如何判定 活性中心浓度:动力学法,猝灭法,同位素标记法 动力学法:依据聚合物分子量或聚合物的分子数随聚合时间的变化 猝灭法:聚合反应加入猝灭剂(QL),增长链立即与猝灭剂发生反应,测定L的含量 同位素标记法:14C标记助催化剂,测定标记基团数目 聚合速率方程,通过对活性中心的指数可以确定 测定活性链增长前后的浓度变化,死的连段粘度无变化;通过光散射法测定终止前后的分子量变化。 通过带帽封端法,在测量聚合前后的粘度变化

潘祖仁《高分子化学》(第5版)【章节题库】-第7~9章【圣才出品】

第7章配位聚合 一、填空题 1.Ziegler-Natta引发剂至少由两种组分,即______和______构成。 【答案】主引发剂;共引发剂 【解析】Ziegler-Natta引发剂由由ⅣB~ⅧB族过渡金属化合物和ⅠA~ⅢA族金属有机化合物两大组分配合而成。Ziegler-Natta引发体系可分成不溶于烃类(非均相)和可溶(均相)两大类,溶解与否与过渡金属组分和反应条件有关。 2.在丙烯的配位聚合反应中常需要加入第三组分如六甲基磷酸三酰胺,其目的是______和______。 【答案】增加等规度;增大相对分子质量 【解析】引发剂是α-烯烃配位聚合的核心问题,为了提高聚合活性、提高立构规整度、使聚合度分布和组成分布均一等目标,关键措施有:添加给电子体(加入第三组分)和负载。加入六甲基磷酸胺(HMPTA),能够使丙烯聚合活性增加10倍。 3.对Ziegler-Natta催化剂而言,第一代典型的Ziegler催化剂组成为______,属______相催化剂,而典型的Natta催化剂组成为______,属______相催化剂;第二代催化剂是______;第三代催化剂是______;近年发展较快的是______。 【答案】TiCl4+AlEt3;均;TiCl3+AlEt3;非均;加入适量带有孤对电子的第三组分——Lewis碱;将TiCl4负载在载体,如MgCl2上,同时在制备过程中引入第三组分作为内电

子给体,聚合时加入外电子给体;茂金属引发剂 【解析】第一代α-TiCl3-AIEt3两组分引发剂对丙烯的聚合活性只有5×103gPP/gTi。第二代曾添加六甲基磷酸胺(HMPTA),使丙烯聚合活性提高了l0倍。第三代,添加酯类给电子体并负载,活性进一步提高。活性提高后,引发剂用量减少,残留引发剂不必脱除,后处理简化。茂金属引发剂可用于多种烯类单体的聚合,包括氯乙烯。 4.二烯烃配位聚合的引发剂大致分为______、______和______三类。 【答案】Ziegler-Natta型;π-烯丙基型;烷基锂型 【解析】①Ziegler-Natta引发体系数量最多,可用于α-烯烃、二烯烃、环烯烃的定向聚合。②π-烯丙基镍(π-C3H5NiX)限用于共轭二烯烃聚合,不能使α-烯烃聚合。③烷基锂类可引发共轭二烯烃和部分极性单体定向聚合。 5.配位聚合的概念最初是______解释α-烯烃聚合(用Ziegler-Natta引发剂)时提出的,配位聚合是指单位分子首先在______的空位上配位,形成某种形式的______,常称______,随后单体分子相继插入______中增长。 【答案】Natta;活性种;络合物;σ-π络合物;金属-烷基键 【解析】配位聚合过程可以归纳为:形成活性中心(或空位),吸附单体定向配位,络合活化,插入增长,类似模板地进行定向聚合,形成立构规整聚合物。 二、名词解释 1.配位聚合和插入聚合 答:配位聚合是指单体分子首先在活性种的空位处配位,形成某些形式(σ-π)的配位

2016年丙烯市场报告

【丙烯】 一、物化性质 丙烯propylene,CAS No.115-07-1、结构式CH2=CHCH3、无色气体、带有甜味。气体的相对密度1.46、液体的相对密度0.5139、熔点-185.2℃、沸点-47.7℃、自燃温度460℃、临界温度91.4~92.3℃、临界压力4.5~4.56MPa。化学性质很活泼,与空气形成爆炸性混合物,爆炸极限2.0%~11.1%(体积)。 丙烯是一种无色可燃气体,蒸气比空气重,能长距离移动到一个明火源并产生回火。工业上它通常以液体形式装卸,因此当皮肤和眼睛接触到液体丙烯时会造成冷灼伤。高浓度丙烯是一种窒息性气体。 二、技术进展 丙烯的生产工艺可分为联产/副产工艺和专门工艺两大类,目前丙烯生产以乙烯装置联产品和炼厂副产品路线为主,世界上约70%的丙烯来自于蒸汽裂解装置的联产品和炼油厂的常规催化裂化装置,丙烷脱氢等专门技术的比例正逐步提高。全球丙烯的来源如表1: 表1 全球丙烯的来源(单位:%) 2005年2010年2015年 蒸汽裂解65 58 43 催化裂化30 34 33 专用装置 5 8 24 合计100 100 100 IHS化学在2014世界石化大会上表示,2000年世界专产丙烯产量仅占丙烯总供应量的3%,但2013年专产丙烯产量已占丙烯总供应量的14%,预计到2018年将增加至总供应量的29%。 蒸汽裂解产品丙烯收率如表2: 表2 蒸汽裂解产品丙烯收率 裂解原料丙烯收率% 乙烷 2.6 丙烷16.2 正丁烷17.2 石脑油16.1 瓦斯油15.1

乙烯裂解装置联产丙烯是全球丙烯资源最传统和最主要的来源,占全球丙烯产能的40%以上,蒸汽裂解装置生产的丙烯纯度达99.6%,通常是聚合级丙烯。炼油厂常规催化裂化装置回收是丙烯的第二大来源,目前约占全球丙烯产能的30%以上,炼油厂生产的丙烯纯度约在70%左右,通常是炼厂级丙烯。 随着聚丙烯等下游产品需求的快速增长,以及以乙烷为原料的新建乙烯生产装置比例的增加,丙烯资源供应逐渐呈现出紧张态势。相应地,以丙烯为目的产物的生产技术研究越来越活跃,丙烯生产技术已成为当前炼油和化工重点研究方向之一。甲醇制烯烃(MTO)、甲醇制丙烯(MTP)、丙烷脱氢(PDH)生产丙烯、烯烃转化(易位转化)生产丙烯等专门生产丙烯的技术取得了较大发展,特别是在亚洲、中东和北美等具有资源优势的地区。目前增产丙烯的新技术主要集中在下列几个方面: 1.改进FCC(流化催化裂化)技术 全球FCC装置通过调整原料品种、催化剂、工况和操作条件来增产丙烯的发展潜力非常大,国内外许多公司都在积极开展这方面的研究。 典型的催化裂化(FCC)装置每生产1吨汽油大约副产0.03~0.06 吨丙烯。经过升级改造和采用合适的催化剂助剂之后,丙烯的产率可达到18%~20%。近年针对FCC装置发展了多种增产丙烯的工艺技术,主要有:中国石化石油化工科学研究院(RIPP)的深度催化裂化工艺(DCC)、凯洛格一布朗路特(KBR)公司的Maxofin工艺和Superflex工艺、UOP公司的催化裂化(Petro FCC)工艺、鲁姆斯公司的选择组分催化裂化(SCC)工艺。 与传统的FCC相比,这类技术操作条件更为苛刻,要求反应温度、剂油比更高,催化时间更短。 表3 主要改进FCC炼油技术比较表 技术所有者UOP公司Lummus公司中石化石科院KBR/美孚公司工艺Petro FCC SCC DCC Maxofin 催化剂ZSM-5加合物ZZSM-5加合物ZSM-5 ZSM-5 起始温度(℃)560 -- 530-590 565-620 压力(MpaG)0.1-0.2 -- 0.1-0.2 0.1 催化剂/油(wt/wt)-- -- 10-15 10-16 反应时间(秒)-- -- 5-10 1-2 丙烯收率(wt%)22 18-20 18-25 20 工业化装置有-- 有--

第七章 配位聚合

第七章配位聚合 思考题7.1如何判断乙烯、丙烯在热力学上能否聚合?采用哪一类引发剂和条件,才能聚合成功? 答可根据聚合自由能差?G=?H—T?S<0,作出判断。大部分烯类单体的?S近于定值,约-100~120J·mol-1,在一般聚合温度下(50~100℃),-T/?S=30~42kJ·mol-1,因此当-?H≥30kJ·mol-1时,聚合就有可能。乙烯和丙烯的-?H分别为950kJ·mol-1、858kJ·mo1-1,所以在热力学上很有聚合倾向。 在100~350MPa的高压和160-270℃高温下,采用氧气或有机过氧化物作引发剂,乙烯按自由基机理进行聚合,得到低密度的聚乙烯(LDPE);若采用TiCl4—Al(C2H5)3,为催化剂,在汽油溶剂中,进行配位聚合,则得高密度的聚乙烯(HDPE)。采用。A-TiCl3-Al(C2H5)3为催化剂,于60~70℃下和常压或稍高于常压的条件下,丙烯进行配位聚合可制得等规聚丙烯。 思考题7.2 解释和区别下列诸名词:配位聚合、络合聚合、插入聚合、定向聚合、有规立构聚合。 答配位聚合:是指单体分子首先在活性种的空位处配位,形成某些形式的配位络合物。随后单体分子插入过渡金属(Mt)-碳(C)键中增长形成大分子的过程,所以也可称作插入聚合。 络合聚合:与配位聚合的含义相同,可以互用。络合聚合着眼于引发剂有络合配位能力,一般认为配位聚合比络合聚合意义更明确。 插入聚合:烯类单体与络合引发剂配位后,插入Mt-R链增长聚合,故称为插入聚合。 定向聚合:也称有规立构聚合,指形成有规立构聚合物的聚合反应,配位络合引发剂是重要的条件。 有规立构聚合:是指形成有规立构聚合物为主的聚合反应。任何聚合过程或聚合方法,只要是形成有规立构聚合物为主,都是有规立构聚合。 思考题7.3区别聚合物构型和构象。简述光学异构和几何异构。聚丙烯和聚丁二烯有几种立体异构体? 答构型:指分子中原子由化学键固定在空间排布的结构,固定不变。要改变构型,必须经化学键的断裂和重组。 构象:由于。单键的内旋转而产生的分子在空间的不同形态,处于不稳定状态,随分子的热运动而随机改变。 光学异构:即分子中含有手性原子(如手性C‘),使物体与其镜像不能叠合,从而具有不同旋光性,这种空间排布不同的对映体称为光学异构体。 几何异构:又称顺、反异构,是指分子中存在双键或环,使某些原子在空间的位置不同而产生的立体结构。 聚丙烯可聚合成等规聚丙烯、间规聚丙烯和无规聚丙烯三种立体异构体。 聚丁二烯有顺式-1,4-结构、反式-1,4-结构和全同-1,2-结构、间同-1,2-结构四种立体异构。 思考题7.4什么是聚丙烯的等规度? 答聚丙烯的等规度是指全同聚丙烯占聚合物总量的百分数。聚丙烯的等规度或全同指数IIP(isotactic index)可用红外光谱的特征吸收谱带来测定。波数为975cm-1是全同螺旋链段的特征吸收峰,而1460cm-1是与CH3基团振动有关、对结构不敏感的参比吸收峰,取两者吸收强度(或峰面积)之比乘以仪器常数K即为等规度。

自由基聚合机理以及四种常见共聚物

自由基聚合机理 烯类单体的加聚反应多属连锁聚合,连锁聚合反应由链引发、链增长、链终止等基元反应组成,各步的反应速率和活化能相差很大。连锁聚合链引发形成活性中心(或称活性种),活性中心不断与单体加成而使链增长(单体之间并不反应),活性中心的破坏就是链终止。自由基、阳离子、阴离子都可能成为活性中心引发聚合,故连锁聚合又可分为自由基聚合、阳离子聚合、阴离子聚合和配位聚合等,其中自由基聚合产物约占聚合物总产量的60%。 热力学上能够聚合的单体对聚合机理的选择是有差异的,如氯乙烯只能自由基聚合、异丁烯只能阳离子聚合、MMA 可以进行自由基聚合和阴离子聚合、苯乙烯则可按各种连锁机理聚合。 自由基聚合产物约占聚合物总产量60%以上,其重要性可想而知。高压聚乙烯、聚氯乙烯、聚苯乙烯、聚四氟乙烯、聚醋酸乙烯酯、聚丙烯酸酯类、聚丙烯腈、丁苯橡胶、丁腈橡胶、氯丁橡胶、ABS 树脂等聚合物都通过自由基聚合来生产。本节将对自由基链式聚合反应作较详细的讨论。 自由基聚合的基元反应 烯类单体的自由基聚合反应一般由链引发、链增长、链终止等基元反应组成。此外,还可能伴有链转移反应。现将各基元反应及其主要特征分述如下。 1 链引发链引发反应是形成单体自由基活性种的反应。用引发剂引发时,将由下列两步组成: (1)引发剂I 分解,形成初级自由基R?; (2)初级自由基与单体加成,形成单体自由基。单体自由基形成以后,继续与其他单体加聚,而使链增长。 比较上述两步反应,引发剂分解是吸热反应,活化能高,约 105?150kJ/mol,反应速 率小,分解速率常数约10-4?10 —6s—1。初级自由基与单体结合成单体自由基这一步是 放热反应,活化能低,约20?34kJ/mo1,反应速率大,与后继的链增长反应相似。但链引 发必须包括这一步,因为一些副反应可以使初级自由基不参与单体自由基的形成,也就无法

高分子化学_余木火_第五章 配位聚合习题

返回 第五章配位聚合_习题 1.画出下列单体可能得到的立构规整聚合物的结构式并命名: (1)CH2=CH-CH3 (2)CH2=C(CH3)2 (3)CH2=CH-CH=CH2 (4)CH3-CH=CH-CH=CH2 (5)CH2=C(CH3)-CH=CH2 (6)CH3CHO (7)CH3-CO-CCl3 2.解释下列概念或名词: (1)配位聚合与定向聚合(2)全同立构、间同立构和无规立构 (3)光学异构、几何异构和构象异构(4)有规立构聚合和选择聚合(5)引发剂(6)Kaminsky聚合 (7)IIP (8)单金属机理与双金属机理 (9)淤浆聚合 3.说明负离子聚合与配位负离子聚合中链增长反应的不同? 4.工业上生产高密度聚乙烯(HDPE)全同聚丙烯常用的Ziegler-Natta引发剂各是什么?说明其原因。说明这两种聚合物的产业用途和生活用途。 5.举出两个用Ziegler-Natta引发剂引发聚合的弹性体的工业例子,说明选用的引发剂体系,产物的用途。 6.解释下列问题: (1)在配位负离子聚合中氢降低聚乙烯或聚丙烯的分子量; (2)由配位聚合而得的聚合物中有时含有聚合物-金属键。 7.从配位聚合的机理说明得到全同立构聚合物的成因。

8.在丙烯的本体气相聚合中,得聚丙烯98g,产物用沸腾正庚烷萃取后得不溶物90g,试求该聚丙烯的全同聚合指数。这种鉴定方法可否用于其它立构规整聚合物的鉴定中? 9.在Ziegler-Natta催化剂引发а-烯烃聚合的理论研究中曾提出过自由基、阳离子、络合阳离子和阴离子机理,但均未获得公认。试对其依据和不足之处加以讨论。 10.聚乙烯有几种分类方法?这几种聚乙烯在结构和性能上有何不同?它们分别是由何种聚合方法生产的? 11.乙烯、丙烯以TiCl4/Al(C6H13)3在己烷中进行共聚合。已知r E=3.36,r P=0.032,若预制得等摩尔比的乙丙橡胶,初始配料比应是多少? 12.为改善а-TiCl3/AlEtCl2体系催化丙烯聚合的引发活性和提高聚丙烯的立构规整度,常添加哪些第三组份?如何确定这种第三组份的用量和加料顺序? 返回

2.2 丙烯腈生产4合成反应器

4.合成反应器 氨氧化法合成丙烯腈是一个气固相催化放热反应,反应热效应较大,丙烯转化率和丙烯腈收率对温度的变化比较敏感,因此,反应器温度的控制就显得十分重要。要求反应器能及时移走反应生成的热量,使反应器的径向和轴向的温度尽可能保持一致,并保证气态物料和固态催化剂在反应器中充分接触。生产中常用的反应器是固定床反应器和流化床反应器。 (1)固定床反应器 合成丙烯腈所用的固定床反应器属于内循环列管式固定床反应器,结构示意图如图2—3l所示。反应器内的热载体是硝酸钾、亚硝酸钾和少量硝酸钠组成的熔盐,、采用螺旋桨式搅拌器强制熔盐在器内循环,使反应器的上下部温度均匀,其温差仅为4℃,熔盐充分吸收反应热并及时传递给器内的盘管式换热器,移出热量。盘管内通入饱和蒸气,吸收反应热后产生的副产高夺蒸气,可作为其它工艺设备的热源反应器内的列管长2.5~5m,内径25mm,一台反应器装有多达l万根列管。装填在列管内的圆柱体催化剂:直径为3~4mm.长3~6mm。原料气体由列管上部引入,为缓和进口段的 反应速率,防止催化剂与高浓度气体反应过快,造成 反应器上部区域温度过高,一般在列管上部填充一段 活性差的催化剂或住催化剂中掺入一些惰性物质以稀 释催化剂。物料的流向自上而下,可避免催化剂床层 因气速变化而受到冲击,发生催化剂破碎或被气流带 走。 在列管式固定床反应器中,催化剂被固定在列管 内,物料返混小,反应的转化率较高,且催化剂不易 磨损。但由于不能充分发挥各部分催化剂的作用,反 应器的生产能力较低,单台反应器生产能力一般只有 5 000吨/年,扩大生产能力使设备显得过于庞大,反 应温度难以控制;以熔盐作为热载体.不仅增加了辅 助设备,而且熔盐还对设备有一定的腐蚀作用;另外, 向列管中装填或更换催化剂都比较困难,这些问题限制了列管式固定床反应器的应用,因此, 工业上采用固定床反应器的并不多。 (2)流化床反应器 流化床反应器是丙烯腈生产中使用最广泛的反应器,如图 2—32所示。它由空气分布板、丙烯和氨混合气体分配管、U 形冷却管和旋风分离器等部分组成。空气分布板、丙烯和氮混 合气体分配管均为管式分布器,空气分布板上均匀开孔,起支 承催化剂、使气体在床层上分布均匀、改善流化条件的作用。 空气分布板与丙烯和氨混合气体分配管之间有一定的距离,在 此间氧气充足,形成催化剂再生区,使催化剂处于高活性的氧 化状态。流化床内装填的催化剂呈微球形,粒径平均55μm。 丙烯和氨与空气分别进料,可使原料混合气的配比不受爆炸极 限的限制,比较安全,对保持催化剂活性和延长寿命,以及对 后处理过程减少含氰污水的排放郁有好处。u形冷却管同多组 冷却管组成的,它不仅移走了反应热,维持适宜的反应温度而 且还起到破碎床内气泡、改善流化质量的作用.在反应器上部 设置的旋风分离器有分离气体夹带的小颗粒催化剂的作用。反应后气体中氧含量很少,催化剂从反应器的扩大段进入旋风分离器后,在流回反应器的过程中,与分布板通入的空气使催

第四章 离子聚合与配位聚合生产工艺

第四章离子聚合与配位聚合生产工艺 4.1离子聚合及其工业应用 定义:单体在阳离子或阴离子作用下,活化为带正电荷或带负电荷的活性离子,再与单体连锁聚合形成高聚物的化学反应,统称为离子型聚合反应。 离子型聚合反应:阳离子聚合;阴离子聚合;配位离子型聚合 应用: 丁基橡胶、聚异丁烯、聚甲醛、聚硅氧烷、聚环氧乙烷等;高密度聚乙烯、等规聚丙烯、顺丁橡胶等;活性高聚物、遥爪高聚物等。 4.1.1阳离子聚合反应 单体:具有强推电子取代基和共轭效应的烯烃类单体、羰基化合物、杂环。 工业化生产所用的主要单体有:异丁烯、苯乙烯、环醚、甲醛、乙烯基醚类、异戊二烯等。 引发剂 共性:阳离子聚合所用的引发剂为“亲电试剂”。 作用:提供氢质子或碳阳离子与单体作用完成链引发过程。 常用的引发剂 阳离子聚合反应机理 以异丁烯为单体,以三氟化硼为引发剂,水为助引发剂 ●链引发: 链增长: 链转移: (活性中心向单体转移):

另一情况 显然,以上一种方式为主。 向反离子转移,离子对重排: 向助引发剂转移 链转移结果又产生了新活性中心,它仍然可以进行反应。对于向单体转移终止的发生比自由基聚合时要快得多,同时,又是控制产物相对分子质量的主要因素。因此,阳离子聚合多采用低温聚合。 链终止 终止之一(与反离子中的阴离子作用而终止): 终止之二(与水、醇、酸等终止剂作用而终止) 阳离子可控聚合 根据:阳离子聚合反应难以控制的原因在于碳正离子非常活泼。通过亲核作用使碳正离子稳定则可以获得“活性”阳离子增长链。 方法:1.选择适当的亲核对应离子B-;2.外加路易士碱(X) 方法1:采用碘化氢/碘(HI/I2)引发体系。对应阴离子B-由被碘分子活化的碘阴离子(I-—I2)组成,它使碳正离子处于活性种状态。例如乙烯基醚的活性阳离子聚合反应:

第五章--配位聚合

第五章--配位聚合

第五章配位聚合习题参考答案 1.举例说明聚合物的异构现象,如何评价聚合物的立构规整性? 解答: (1)聚合物的异构现象: ①结构异构聚合物,如聚甲基丙烯酸甲酯与聚丙烯酸乙酯: CH3 | -[-CH2-C-]n- -[-CH2-CH-]n- | | CO2CH3 CO2C2H5 聚甲基丙烯酸甲酯聚丙烯酸乙酯 ②几何异构聚合物,汉分子链中由于双键或环形结构上取代基在空间排列方式不同造成的立体异构称为几何异构,也称顺-反异构。如丁二烯聚合所形成的1,4-聚丁二烯,其结构单元有顺式结构和反式结构两种: ~~~CH2 CH2~~~~~~CH2H C = C C = C

H H H CH2~~~ 顺式结构(顺-1,4聚丁二烯)反式结构(反-1,4聚丁二烯) ③光学异构聚合物,如聚环氧丙烷有一个真正的手性碳原子: H | ~~~O-C*-CH2~~~ | CH3 ④构象异构聚合物,当大分子链中原子或原子团绕单键自由旋转所占据的特殊空间位置或单键连接的分子链单元的相对位置的改变称构象异构。构象异构可以通过单键的旋转而互相转换。 (2)当大分子链上大部分结构单元(大于75%)是同一种立体构型时,称该大分子为有规立构聚合物,或立构规整聚合物、定向聚合物。反之,称为无规立构聚合物。 2.写出下列单体聚合后可能出现的立构规整聚合物的结构式及名称: (1)CH2=CH-CH3 (2)CH2-CH-CH3 O

(3)CH 2=CH-CH=CH 2 CH 3 | (4)CH 2 =C-CH=CH 2 解答: (1) 聚丙烯 全同聚丙烯(R 为甲基) 间同聚丙烯(R 为甲基) (2) 聚环氧丙烷 全规聚环氧丙烷 间规聚环氧丙烷 (3) 丁二烯 ~~~CH 2 CH 2~~~ ~~~CH 2 H C = C C = C H H H H H O O O O H CH 3 H CH 3 H H CH 3 H H H O O O O H H H CH 3 H H H H R H H H R H H H H R H H R H H H R H H R H H H H H R H H H R H H H H R H H H R H H H H R H H R H H

配位聚合

第七章配位聚合 1. 简要解释以下概念和名词: (1)配位聚合和插入聚合 (2)有规立构聚合和立构选择聚合 (3)定向聚合和Ziegler-Natta聚合 (4)光学异构、几何异构和构象异构 (5)全同聚合指数 答:(1)配位聚合是指单体分子首先在活性种的空位处配位,形成某些形式(σ-π)的配位络合物。随后单体分子插入过渡金属(M t)—碳(C)键中增长形成大分子的过程。这种聚合本质上是单体对增长链M t—R键的插入反应,所以又常称插入聚合。 (2)有规立构聚合。按照IUPAC(国际纯粹与应用化学联合会)的规定,有规立构聚合是指形成有规立构聚合物为主的聚合过程。因此任何聚合过程(包括自由基、阴离子、阳离子或配位聚合等)或任何聚合方法(如本体、悬浮、乳液和溶液聚合等),只要它是以形成有规立构聚合物为主,都是有规立构聚合。而引发剂能优先选择一种对映体进入聚合物链的聚合反应,则称为立构选择聚合。(3)定向聚合和有规立构聚合是同义语,二者都是指形成有规立构聚合物为主的聚合过程。Ziegler-Natta聚合通常是指采用Ziegler-Natta型引发剂的任何单体的聚合或共聚合,所得聚合物可以是有规立构聚合物,也可以是无规聚合物。它经常是配位聚合,但不一定都是定向聚合。 (4)分子式相同,但是原子相互联结的方式和顺序不同,或原子在空间的排布方式不用的化合物叫做异构体。异构体有两类:一是因结构不同而造成的异构现象叫结构异构(或称同分异构);二是由于原子或原子团的立体排布不同而导致的异构现象称为立体异构。根据导致立体异构的因素不同,立体异构又分为:光学异构,即分子中含有手性原子(如手性C*),使物体与其镜像不能叠合,从而使之有不同的旋光性,这种空间排布不同的对映体称为光学异构体;几何异构(或称顺、反异构)是指分子中存在双键或环,使某些原子在空间的位置不同,从而导致立体结构不同(例如聚丁二烯中丁二烯单元的顺式和反式构型);光学异构和几何异构均为构型异构。除非化学键断裂,这两种构型是不能相互转化的。构象异构:围绕单键旋转而产生的分子在空间不同的排列形式叫做构象。由单键内旋转造成的立体异构现象叫构象异构。和构型一样,构象也是表示分子中原子在空间的排布形式,不同的是构象可以通过单键的内旋转而相互转变。各种异构体一般不能分离开来,但当围绕单键的旋转受阻时也可以分离。 (5)根据IUPAC建议的命名法,光学异构体的对映体构型用R(右)或S(左)表示。即将手性中

丙烯中烃类杂质及CO-CO2分析

丙烯中烃类杂质及CO\CO2分析 摘要:采用一台色谱仪、两个氢火焰检定器、一个甲烷转化炉、一次进样同时测定聚合级丙烯中的烃类杂质及微量CO、CO2。 关键词:气相色谱;丙烯;烃类杂质;CO;CO2 Propylene hydrocarbon impurities and CO ,CO2 analysis Liu minYan jie Abstract: Using a chromatograph two hydrogen flame test device, a methane reformer, a single injection for simultaneous determination of polymer-grade propylene in the hydrocarbon impurities and trace CO, CO2. Keywords:GC;Propylene;Hydrocarbon impurities;CO;CO2 丙烯经聚合形成聚丙烯。聚丙烯材料是国民经济发展中的重要基础原材料。丙烯质量高低直接影响着聚丙烯产品的性能。丙烯中的烃类杂质直接影响着聚合用催化剂的反应活性; CO和CO2的含量过高会导致催化剂中毒,影响产品质量。因此,快速、准确测定聚合级丙烯中的烃类杂质、微量CO、CO2含量对工艺生产十分重要。 本文采用采用“两阀、双柱法”,通过一次进样,同时分析丙烯中微量烃类、微量CO、CO2杂质,为工艺生产提供高效、准确的分析数据,为工艺生产提供有力的分析数据保障。通过这种方法不仅可以缩短分析时间,而且可以大大节省人力、物力。这项技术对于工艺稳定生产具有很好的指导意义。 一、试验部分 1、仪器与试剂 美国PE Clarus 500气相色谱仪; TotalChrom 色谱工作站软件;弹性石英毛细管柱(30m×0.53mm)Alumina PLOT;不锈钢填充柱6.5m Resin;甲烷转化炉;FID检测器。标准气购于北京华元气体有限公司。 2、测定原理

第七章配位聚合

第七章配位聚合 一、名称解释 配位聚合:指单体分子首先在活性种的空位处配位,形成某些形式(σ-π)的配位络合物。随后单体分子插入过渡金属(Mt)-碳(C)中增长形成大分子的过程,所以也可称作插 入聚合。 络合聚合:与配位聚合的含义相同,可以互用。络合聚合着眼于引发剂有络合配位能力,一般认为配位聚合比络合聚合意义更明确。 定向聚合:也称有规立构聚合,指形成有规立构聚合物的聚合反应,配位络合引发剂是重要的条件。 异构体:分子式相同,但原子相互联结的方式或顺序不同,或原子在空间的排布方式不同的化合物叫做异构体。 构象异构:由单键内旋转造成的立体异构现象。 立体构型异构:原子在大分子中不同空间排列所产生的异构现象。 对映异构:又称手性异构,由手性中心产生的光学异构体R型和S型。 顺反异构:由双键引起的顺式和反式的几何异构,两种构型不能互变。 全同立构:将碳-碳主链拉直成锯齿形,使处在同一平面上,取代基处于平面的同侧,或相邻手性中心的构型相同。 间同立构:若取代基交替地处在平面的两侧,或相邻手性中心的构型相反并交替排列,则称为间同立构聚合物。 全同聚合指数:一致立构规整度的表示方法,指全同立构聚合物占总聚合物的分数。 立构规整度:立构规整聚合物占聚合物总量的百分数。 二、选择题 1. 氯化钛是α-烯烃的阴离子配位聚合的主引发剂,其价态将影响其定向能力,试从下列3 种排列选出正确的次序( A ) A TiCl3(α,γ,δ) > α- TiCl3-AlEtCl2>TiCl4 B TiCl2>TiCl4>TiCl3(α,γ,δ) C TiCl4>TiCl3(α,γ,δ) > TiCl2 2. 下列聚合物中哪些属于热塑性弹性体(d和e) (a) ISI (b)BS (c) BSB (d)SBS (e) SIS 3. 下列哪一种引发剂可使乙烯、丙烯、丁二烯聚合成立构规整聚合物? (1)n-C4H9Li/正己烷(2)萘钠/四氢呋喃 (3) TiCl4-Al(C2H5)3(4) α- TiCl3-Al(C2H5) 2Cl (5)π-C3H5NiCl (6) (π-C4H7)2Ni 4. 下列哪一种引发剂可使丙烯聚合成立构规整聚合物?(D)

配位聚合反应

从聚合热力学上分析,乙烯、丙烯是很有聚合倾向的单体,但是在很长一段时间内,未能将该单体聚合成聚乙烯和聚丙烯,这主要是动力学上的原因。 1938~1939年,英国I.C.I.公司在高温(180~200℃)、高压(180~200MPa)下,以氧作引发剂,使乙烯经自由基聚合制得聚乙烯。在高温下聚合易发生链转移反应,所得聚乙烯带有在空间作无规排布的许多支链,致使其结晶度低、熔点低、密度也低,俗称低密度聚乙烯。根据过程特征,也叫做高压聚乙烯。 1953年德国K. Ziegler等从一次以AlEt3为引发剂从乙烯合成高级烯烃的失败实验出发,意外地发现以乙酰丙酮的锆盐和AlEt3引发时得到的是高分子量的乙烯聚合物,并在此基础上开发了的乙烯聚合的引发剂四氯化钛-三乙基铝(TiCl4-AlEt3),在较低的温度(50~70℃)和较低的压力下,聚合得无支链、高结晶度、高熔点的高密度聚乙烯。1954年,意大利G. Natta以四氯化钛-三乙基铝(TiCl4- AlEt3)作引发剂,使丙烯聚合得等规聚丙烯(熔点175℃),其中甲基侧基在空间等规定向排布。Ziegler-Natta所用的引发剂是金属有机化合物/过渡金属化合物的络合体系,单体配位而后聚合,聚合产物呈定向立构,从这三角度考虑,因而分别有络合聚合、配位聚合、定向聚合之称,但三者有所区别。根据聚合机理的特征,本节采用配位聚合一词。 随后,Goodrich-Gulf公司采用四氯化钛/三乙基铝体系使异戊二烯聚合成高顺式1,4(95%~97%)聚异戊二烯,成功地合成得天然橡胶。几乎同时,Firestone轮胎和橡胶公司用锂或烷基锂作引发剂,也聚合得高顺式1,4(90%~94%)聚异戊二烯。此外,先后来用钛、钴、镍或钨、钼络合引发体系,合成得高顺式1,4(94%~97%)聚丁二烯橡胶(简称顺丁橡胶)。 虽然早在1947年,C. E. Schildknecht以BF3(OC2H5)2作引发剂,于丙酮中-78℃下,已使丁基乙烯醚聚合成立构规整聚合物,但Ziegler-Natta在络合引发体系、配位聚合机理、有规立构聚合物的合成、微结构、性能等方而研究的成就,在高分子科学领域内起着里程碑的作用。因而获得了诺贝尔奖金。 过渡金属化合物/金属有机化合物的一系列络合体系可以统称为Ziegler-Natta引发剂,目前已用来生产多种塑料和橡胶,例如高密度聚乙烯、等规聚丙烯、全同聚1-丁烯、全同聚4-甲基-1-戊烯、反式l,4-聚异戊二烯等可用作塑料,顺式1,4-聚丁二烯、顺式1,4聚异戊二烯、乙丙共聚物、反式聚环戊烯等可用作橡胶。其总年产量高达几千万吨。因此,研究配位聚合具有重要的理论和实际意义。

配位聚合物的应用与进展

配位聚合物的应用与进展 王雄化学化工与材料学院应用化学1班 20133443 摘要:配位聚合物是由金属和有机配体自组装而形成的, 具有独特的空间几何构型, 在非线性光学材料、气体吸附、手性拆分和催化、分子磁性材料、超导材料, 微孔材料等诸多方面都有广阔的应用前景。本文介绍了配位聚合物的分类,列举了金属-有机骨架(MOFs)等功能型配位聚合物的研究进展,并对配位聚合物的发展前景作了展望。 关键词:配位聚合物;有机配体;合成方法;应用;催化 引言:配位聚合物(coordination polymers)或金属-有机框架(metal-organic frameworks,简称MOFs)是指利用金属离子与有机桥联配体通过配位键合作用而形成的一类具有一维,二维或三维无限网络结构的配位化合物[1]。近年来,配位聚合物作为一种新型的功能化分子材料以其良好的结构可裁性和易功能化的特性引起了研究者浓厚的兴趣。配合物有无机的金属离子和有机配体,因此它兼有无机和有机化合物的特性,而且还有可能出现无机化合物和有机化合物均没有的新性质。配位聚合物分子材料的设计合成、结构及性能研究是近年来十分活跃的研究领域之一,它跨越了无机化学、配位化学、有机化学、物理化学、超分子化学、材料化学、生物化学、晶体工程学和拓扑学等多个学科领域,它的研究对于发展合成化学、结构化学和材料化学的基本概念及基础理论具有重要的学术意义,同时对开发新型高性能的功能分子材料具有重要的应用价值[2-7]。并对分子器件和分子机器的发展起着至关重要的作用。配位聚合物在新的分子材料中将发挥重要的作用。配位化学理论在材料的分子设计中也将起着重要的指导作用。 材料按其性能特征和用途大致可划分为结构材料和功能材料两大类。功能材料种类繁多,功能各异,其共同的特点和发展趋势是:(1) 性能优异;(2) 分子化; (3) 巨大的应用前景。金属有机光电磁材料综合了这几方面特点,将发展成为新一代材料,其结构和性能决定了它的应用越来越广泛。以下是金属有机化合物分别在光电磁材料中的应用。 1.配位聚合物的分类 1998年,R obson教授根据聚合物框架结构的不同将其分为三大类:一维链

配位聚合

第六章配位聚合 1.解释和区别下列诸名词:配位聚合、络合聚合、插入聚合、定向聚合、有规立构聚合。 2.区别聚合物构型和构象。简述光学异构和几何异构。聚丙烯和聚丁二烯有几种立体异构体? 3.丙烯进行自由基聚合、离子聚合及配位阴离子聚合,能否形成高分子量聚合物?分析其原因。 4.丙烯配位聚合时,提高引发剂的活性和等规度有何途径?简述添加给电子体和负载的方法和作用。 5.简述丙烯配位聚合时的双金属机理和单金属机理模型的基本论点。 6.下列引发剂何者能引发乙烯、丙烯或丁二烯的配位聚合?形成何种立构规整聚合物? (1)n-C4H9Li; (2)α-TiCl3/AlEt2Cl; (3)萘-Na; (4)(π-C4H7)2Ni; (5)(π-C3H5)NiCl; (6)TiCl4/AlR3。 7. α-烯烃和二烯烃的配位聚合,在选用Ziegler-Natta引发剂时有哪些不同?除过渡金属种类外,还需考虑哪些问题。 8.使用Ziegler-Natta引发剂时,为保证试验成功,需采取哪些必要的措施?用什么方法除去残存的引发剂?怎样分离和鉴定全同聚丙烯。 9.为改善α-TiCl3/AlEtCl2体系催化丙烯聚合的引发活性和提高聚丙烯的立构规整度,常添加哪些第三组分?如何确定这种第三组分的用量和加料顺序? 10.丙烯进行本体气相聚合,得聚丙烯98g,产物经沸腾庚烷萃取后得不溶物90g。试求该聚丙烯的全同聚合指数。这种鉴定方法可否用于其他立构规整聚合物? 答案 5. 答: 双金属机理模型的基本要点 ①主、共引发剂反应形成双金属碳桥(四员环)络合物活性中心; ②富电子的α-烯烃在钛的空轨道配位; ③配位单体插入Ti-C键之间,形成六员环过渡态;(Ti,C对M双键顺式加成) ④Al-C键断裂,链位移至插入单体的β碳上,插入M的α-C与Ti,Al形成碳桥。

Unipol聚丙烯工艺聚合反应活性扰因排查及处理

Unipol聚丙烯工艺聚合反应活性扰因排查及处理 本文主要阐述了Unipol气相流化床聚丙烯聚合反应过程中,反应活性由催化剂自身以及外部介质等条件影响下,造成催化剂活性受阻。使得聚合反应发生一系列变化的过程。文中作者结合自身实际生产经验与理论分析,重点讨论总结了聚合反应活性受到干扰波动时,及时从三剂(T2、SCA、CAT)、床层流化、反应温度与压力等方面查找原因,总结并给出解决方法。以期指导聚丙烯装置实际生产工作,保障生产安稳长满优运行。 标签:聚合反应活性床层流化催化剂毒物冷凝量处理 Unipol气相流化床聚丙烯工艺,该工艺的主催化剂为高效载体催化剂,经三乙基铝活化后,形成三价钛活性中心,引发丙烯聚合反应。但毒物能占据活性中心,使催化剂失活[1],从而引起聚合活性波动。另外反应器床层流化不好、反应器入口气相丙烯冷凝量波动、反應器床层温度波动频繁、T2/SCA(铝硅比)、T2/Ti(铝钛比)加入量不稳、C3分压或反应器总压达不到条件或波动等工况也能引起催化剂活性分布不均以至丙烯聚合活性波动。本文浅析了聚合活性波动的各种原因,及聚合活性波动时的处理方法。 一、聚合活性受影响的原因 1.原料携带的毒物 反应原料中可能携带催化剂毒物:微量的水分、氧气、一氧化碳、二氧化碳等。毒物进入反应器会使催化剂活性失去或减弱[2]。从而造成装置产能下降,聚丙烯细粉含量升高,反应器内静电指示报警,进而使聚合活性波动。严重时,会使反应器内产生片料,挂壁料等,造成分布板压差过高、聚丙烯粉料出料系统(PDS)堵塞,甚至使装置停车。 2.床层流化不均匀 床层流化均匀主要是由于(1)循环气速与床重匹配效果不佳,即循环气速过大或过小,导致床层流化不均匀。(2)反应器内产生块料或片料。片料及块料大多数存在于催化剂注入管附近,造成催化剂分布不均匀,使催化剂附着或包裹在片料里,当片料足够大时,片料因重力作用从反应器器壁脱落,在撞击下会破碎,包裹在其里面的催化剂在短时间释放出来,造成催化剂活性突然升高,引起剧烈反应,表现为床温及壁温突升突降,反应温度波动频繁,甚至报警超限。 3.反应器入口气相丙烯冷凝量 Unipol气相流化床聚丙烯工艺丙烯聚合反应热主要靠反应器入口液相丙烯的汽化潜热直接撤出,因此,反应器入口气相丙烯冷凝量波动将直接影响丙烯聚合反应热的撤出,导致反应器撤热不稳,从而引起床层温度波动,进而影响到整

相关文档