文档库 最新最全的文档下载
当前位置:文档库 › 硫磺回收系统的操作要求和工艺指标

硫磺回收系统的操作要求和工艺指标

硫磺回收系统的操作要求和工艺指标
硫磺回收系统的操作要求和工艺指标

一、制硫工艺原理

硫磺回收系统的操作要求和工艺指标

Claus制硫总的反应可以表示为:

2H2S+02/X S x+2H20

在反应炉内,上述反应是部分燃烧法的主要反应,反应比率随炉温变化而变化,炉温越高平衡转化率越高;除上述反应外,还进行以下主反应:

2H2S+3O2=2SO2+2H2O

在转化器中发生以下主反应:

2H2S+SO23/XS x+2H2O

由于复杂的酸性气组成,反应炉内可能发生以下副反应:

2S+2CO2COS+CO+SO2

2CO2+3S=2COS+SO2

CO+S=COS

在转化器中,在300摄氏度以上还发生CS2和COS的水解反应:

COS+H2O=H2S+CO2

二、流程描述

来自上游的酸性气进入制硫燃烧炉的火嘴;根据制硫反应需氧量,通过比值

调节严格控制进炉空气量,经燃烧,在制硫燃烧炉内约65%(v)的H2S进行高温克

劳斯反应转化为硫,余下的H2S中有1/3转化为SO2燃烧时所需空气由制硫炉鼓风机供给。制硫燃烧炉的配风量是关键,并根据分析数据调节供风管道上的调节阀,使过程气中的H2S/SO2比率始终趋近2:1,从而获得最高的Claus转化率。

自制硫炉排出的高温过程气,小部分通过高温掺合阀调节一、二级转化器的

入口温度,其余部分进入一级冷凝冷却器冷至160℃,在一级冷凝冷却器管程出

口,冷凝下来的液体硫磺与过程气分离,自底部流出进入硫封罐。

一级冷凝冷却器管程出口160℃的过程气,通过高温掺合阀与高温过程气混合后,温度达到261℃进入一级转化器,在催化剂的作用下,过程气中的H2S和SO2转化为元素硫。反应后的气体温度为323℃,进入二级冷凝冷却器;过程气冷却至160℃,二级冷凝冷却器冷凝下来的液体硫磺,在管程出口与过程气分离,自底部流出进入硫封罐。分离后的过程气通过高温掺合阀与高温过程气混合后温度达到225℃进入二级转化器。在催化剂作用下,过程气中剩余的H2S和SO2进一步转化为元素硫。

反应后的过程气进入三级冷凝冷却器,温度从246℃被冷却至1.60~C。三级

冷凝冷却器冷凝下来的液体硫磺,在管程出口与过程气分离,自底部流出进入硫

封罐。顶部出来的尾气自烟囱排放。

三、开车操作规程

1、系统升温

条件确认:制硫炉和一、二、三级冷凝冷却器达到使用条件:一、二、三级

冷凝冷却器内引入除氧水至正常液位;按程序对制硫炉点火;按升温曲线对制硫

炉升温;流程:制硫炉烘炉烟气一废热锅炉一一级冷凝冷却器一高温掺合阀一一

级转化器一二级冷凝冷却器一高温掺合阀一二级转化器一三级冷凝冷却器一为

其扑集器一烟囱;一、二级转化器升温至200~C,废热锅炉蒸汽压力0.04—0.045mpa,冷凝

器的蒸汽压力0.03—0.035mpa并保持。

2、系统升温过程中的检查和注意事项:

制定系统升温曲线,并绘制实际升温曲线与之对照,尽量减少两者之间的

偏差;系统升温过程中,应密切关注一、二、三级冷凝冷却器和蒸汽发生器的

压力和液位,严防超压和干锅;一、二级转化器升温速度5~15。C为宜,可以

根据开工实际进度调整;装置第一次开工,系统升温烟气的氧含量可以过量;

装置再次开工的系统升温应控制烟气中氧含量不大于2%(V),防止停工时系统

中残留的可燃物自燃。在控制氧含量的同时,应防止燃料气燃烧不完全析碳污

染催化剂,防止析碳的方法是根据燃料气用量,按比例投配低压蒸汽,投配蒸

汽的目的是当供氧量不足时,发生“水煤气”反应,生成C0而不析碳,投配

量约为1.5~2.5kg蒸汽/kg燃料气;当转化器出现异常升温(飞温)时,应立

即调整配风量,降低温度:系统升温过程中应每小时分析一次烟气中的氧含量,

并根据分析数据适时调节配风量;系统升温低温段(炉膛温度~400~C,产汽设

备产汽量很少,可以通过设备上的放空阀至消音器放空;系统升温的高温段(炉

膛温度>400℃),产汽量较大,可以根据具体情况将蒸汽并网;系统升温至制

硫燃烧炉炉膛温度>400℃,应联系保运工对高温部位(设备和管道)的净密封

点进行热紧,重点部位要做气密,确保正常开工后无泄漏。

3、硫回收部分开车

3.1硫回收部分投料条件确认:

制硫炉炉膛温度800℃以上;一、二级转化器床层温度约200℃;液硫管线

已经具备使用条件;一、二、三级冷凝冷却器液面控制和压力已经控制工艺要求

范围状态;确认正常生成流程已经打通,具备了投料条件;确认废热锅炉蒸汽压

力0.04—0.045mpa,冷凝器的蒸汽压力0.03—0.035mpa,水位正常,否则应通

蒸汽使废热锅炉蒸汽压力,冷凝器的蒸汽压力达到工艺要求。

3.2投料开车

l、接到高压排毒通知后,启动罗茨风机,罗茨风机运行正常后,调整风量

通知高压排毒。

2、打开克劳斯炉酸性气体的入口阀门;向制硫炉引入酸性气并按预设比值同步启动空气调节阀向炉内配风;通过炉体视镜观察燃烧情况,并根据操作经验做出判断调整气/风比;确认制硫炉已经进入稳定状态;制硫炉稳定燃烧30分钟后,依次打开一、二、三级冷凝冷却器液硫出口阀门,引出液体硫磺,注意防止过程气逸出;投料开车阶段,建议每隔1小时进行一次液硫管道排污操作,防止杂物堵塞液硫线。

3、运行过程中加强巡检,并做好记录;通过空气量调节H2S/S02数据,配风量控制是提高转化率的关键;经常检查炉壁温度,防止耐火衬里剥落,炉壁局部过热损坏设备;密切关注废热锅炉、冷凝器液位和压力,防止干锅;如果出现过程气温度下降/转化器温度下降等异常现象及时汇报,并停工处理。

4、注意控制转化器入口温度,保证一级转化器床层温度在260℃/320℃范围内;二级转化器床层温度在225~250℃范围内;注意转化器入口/出口的温差,如果出现温差太小,说明H2S/S02比例不合适,应减少空气量;注意观察床层温度变化规律,通常情况下,新装填的催化剂,上部温升较大,下部温升较小,装置运行末期,情况正好相反。如果出现床层温度异常下移,说明床层上部的催化剂活性下降,应计划更换;注意转化器进/出口压力变化,及时判断转化器床层是否出现堵塞,以便及时处理。

5、排毒完毕后,关闭克劳斯炉酸性气体的入口阀门,调整罗茨风机的风量

继续吹扫2—5分钟后,按停罗茨风机的按钮。等待下次排毒。

四、工艺指标

l、制硫燃烧炉

过程气出炉温度:950—1250℃

酸性气入炉压力:0.025—0.035MPa

气(酸性气)/风(空气)比值:0.4195(体积比)

2、冷凝器的蒸汽压力为0.030—0.035mpa

3、废热锅炉的蒸汽压力为0.04一0.050mpa

4、一级转化器

过程气进口:200--280℃

床承温度为:280--330℃

5、二级转化器

过程气进口:180℃/230℃

床承温度为:220--260℃

五、注意事项

1、穿戴好劳动防护用品。

2、严格按工艺要求进行操作,严格控制工艺指标。

3、加强巡检,确保设备正常运行

4、制硫炉点火时一定注意安全,点火不成功要长空气吹扫2…5分钟后在点火,确保炉膛内没有可燃气体后再进行点火操作,否则会造成炉膛内可燃混合气体闪爆,造成人员死伤、设备损毁;

5、废热锅炉和冷凝器的水液面要始终高于换热管束,确保没有换热管露出水面;

6、要注意进入制硫炉的空气量,确保空气不过量,否则多余的氧气易造成催化剂硫酸盐化,致使催化剂失活。

7、排毒时加强与高压岗位联系,确保根据排毒压力与配风适宜。

8、排毒期间一、二、三级冷凝器液体硫磺排放口阀门半小时排放一次,以防堵塞。

9、严格控制转化床的温度不能超过400℃,以防烧坏催化剂。

10、排完毒后,严格控制空气吹扫时间,以防催化剂中毒。

硫磺回收的要求

1.一种含二硫化碳和硫化氢的液硫回收方法,将所述液硫引进包括受硫器进行回收,其特征在于:将从所述受硫器出来的液硫直接引进Clause系统进一步回收;受硫器中的液硫组分为:液硫93.5%~96%、二硫化碳0.5%~4.0%、硫化氢1.0%~3.5%,以质量百分数计。

2.如权利要求1所述的方法,其特征在于:所述受硫器中的温度为145~170℃,压力为0.4~0.6MPa。

3.如权利要求1或2所述的方法,其特征在于:所述Clause系统包括冷凝器和反应器,液硫在冷凝器中的进口温度为320~350℃,压力为0.01~0.03MPa。

4.如权利要求3所述的方法,其特征在于:液硫在冷凝器中的出口温度为140~1 60℃,压力为0.01~0.03MPa。

5.如权利要求4所述的方法,其特征在于:所述Clause系统反应器中发生的反应为:H2S+02一~S02+H20 (1)H2S+S02一~S+H20 (2)C$2+02一C02+S02 (3)

6.如权利要求3所述的方法,其特征在于:所述Clause系统为三级Clause系统,所述受硫器出来的液硫直接进入所述Clause系统的一级冷凝器或二级冷凝器或三级冷凝器,或同时引入所述一、二、三级冷凝器中。

7.如权利要求4所述的方法,其特征在于:所述Clause系统为三级Clause系统,所述受硫器出来的液硫直接进入所述Clause系统的一级冷凝器或二级冷凝器或三级冷凝器,或同时引入所述一、二、三级冷凝器中。

8.如权利要求4所述的方法,其特征在于:所述Clause系统为三级Clause系统,所述受硫器出来的液硫直接进入所述Clause系统的二级冷凝器中。

9.如权利要求1所述的方法,其特征在于:a.将天然气法制备二硫化碳和硫化氢后的含二硫化碳和硫化氢的液硫先经过冷凝器、捕硫捕碳器和受硫器,受硫器中的液硫组分为:液硫94.5%~96%、二硫化碳2%~4.2%、硫化氢0.6%~1.5%,以质量百分数计;受硫器中的温度为145~170℃,压力为0.4~0.5Mpa;b.所述受硫器出来的液硫直接进入三级Clause系统,所述三级Clause系统包括一级冷凝器及反应器、二级冷凝器及反应器、三级冷凝器及反应器、四级冷凝器、捕硫器和液硫储槽;所述受硫器出来的液硫首先进入所述Clause系统的一级冷凝器或二级冷凝器或三级冷凝器或同时引入所述一、二、三级冷凝器中,再依次进入各级冷凝器及反应器,最后从捕硫器出来进入液硫储槽,其中冷凝器中冷凝下来的液硫直接进入液硫储槽,液硫进入一、二、三级冷凝器的进口温度为320~350℃,压力为0.01~0.03MPa,出口温度为140~160℃,压力为0.01~O.03MPa;四级冷凝器的进口温度为310~340℃,压力为0.01~O.03MPa,出口温度为1 30~1 50℃,压力为0.01~0.03MPa。

硫磺回收系统的操作要求和工艺指标

一、制硫工艺原理 硫磺回收系统的操作要求和工艺指标 Claus制硫总的反应可以表示为: 2H2S+02/X S x+2H20 在反应炉内,上述反应是部分燃烧法的主要反应,反应比率随炉温变化而变化,炉温越高平衡转化率越高;除上述反应外,还进行以下主反应: 2H2S+3O2=2SO2+2H2O 在转化器中发生以下主反应: 2H2S+SO23/XS x+2H2O 由于复杂的酸性气组成,反应炉内可能发生以下副反应: 2S+2CO2COS+CO+SO2 2CO2+3S=2COS+SO2 CO+S=COS 在转化器中,在300摄氏度以上还发生CS2和COS的水解反应: COS+H2O=H2S+CO2 二、流程描述 来自上游的酸性气进入制硫燃烧炉的火嘴;根据制硫反应需氧量,通过比值 调节严格控制进炉空气量,经燃烧,在制硫燃烧炉内约65%(v)的H2S进行高温克 劳斯反应转化为硫,余下的H2S中有1/3转化为SO2燃烧时所需空气由制硫炉鼓风机供给。制硫燃烧炉的配风量是关键,并根据分析数据调节供风管道上的调节阀,使过程气中的H2S/SO2比率始终趋近2:1,从而获得最高的Claus转化率。 自制硫炉排出的高温过程气,小部分通过高温掺合阀调节一、二级转化器的 入口温度,其余部分进入一级冷凝冷却器冷至160℃,在一级冷凝冷却器管程出 口,冷凝下来的液体硫磺与过程气分离,自底部流出进入硫封罐。 一级冷凝冷却器管程出口160℃的过程气,通过高温掺合阀与高温过程气混合后,温度达到261℃进入一级转化器,在催化剂的作用下,过程气中的H2S和SO2转化为元素硫。反应后的气体温度为323℃,进入二级冷凝冷却器;过程气冷却至160℃,二级冷凝冷却器冷凝下来的液体硫磺,在管程出口与过程气分离,自底部流出进入硫封罐。分离后的过程气通过高温掺合阀与高温过程气混合后温度达到225℃进入二级转化器。在催化剂作用下,过程气中剩余的H2S和SO2进一步转化为元素硫。 反应后的过程气进入三级冷凝冷却器,温度从246℃被冷却至1.60~C。三级 冷凝冷却器冷凝下来的液体硫磺,在管程出口与过程气分离,自底部流出进入硫 封罐。顶部出来的尾气自烟囱排放。 三、开车操作规程 1、系统升温 条件确认:制硫炉和一、二、三级冷凝冷却器达到使用条件:一、二、三级 冷凝冷却器内引入除氧水至正常液位;按程序对制硫炉点火;按升温曲线对制硫 炉升温;流程:制硫炉烘炉烟气一废热锅炉一一级冷凝冷却器一高温掺合阀一一 级转化器一二级冷凝冷却器一高温掺合阀一二级转化器一三级冷凝冷却器一为 其扑集器一烟囱;一、二级转化器升温至200~C,废热锅炉蒸汽压力0.04—0.045mpa,冷凝

硫磺回收工艺介绍

硫磺回收工艺介绍-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

目录 第一章总论 (4) 1.1项目背景 (4) 1.2硫磺性质及用途 (5) 第二章工艺技术选择 (5) 2.1克劳斯工艺 (5) 2.1.1MCRC工艺 (5) 2.1.2CPS硫横回收工艺 (6) 2.1.3超级克劳斯工艺 (7) 2.1.4三级克劳斯工艺 (9) 2.2尾气处理工艺 (10) 2.2.1碱洗尾气处理工艺 (10) 2.2.2加氢还原吸收工艺 (14) 2.3尾气焚烧部分 (14) 2.4液硫脱气 (15) 第三章超级克劳斯硫磺回收工艺 (16) 3.1工艺方案 (16) 3.2工艺技术特点 (16) 3.3工艺流程叙述 (16) 3.3.1制硫部分 (16) 3.3.2催化反应段 (16) 3.3.3部分氧化反应段 (17) 3.3.4碱洗尾气处理工艺 (18) 3.3.5工艺流程图 (18) 3.4反应原理 (18) 3.4.2制硫部分一、二级转化器内发生的反应: (19) 3.4.3尾气处理系统中 (19) 3.5物料平衡 (20)

3.6克劳斯催化剂 (20) 3.6.1催化剂的发展 (20) 3.6.2催化剂的选择 (21) 3.7主要设备 (22) 3.7.1反应器 (22) 3.7.2硫冷凝器 (22) 3.7.3主火嘴及反应炉 (22) 3.7.4焚烧炉 (23) 3.7.5废热锅炉 (23) 3.7.6酸性气分液罐 (23) 3.8影响Claus硫磺回收装置操作的主要因素 (24) 3.9影响克劳斯反应的因素 (25) 第四章工艺过程中出现的故障及措施 (27) 4.1酸性气含烃超标 (27) 4.2系统压降升高 (27) 4.3阀门易坏 (28) 4.4设备腐蚀严重 (29)

硫磺回收工艺介绍

目录 第一章总论 (3) 1.1项目背景 (3) 1.2硫磺性质及用途 (4) 第二章工艺技术选择 (4) 2.1克劳斯工艺 (4) 2.1.1MCRC工艺 (4) 2.1.2CPS硫横回收工艺 (5) 2.1.3超级克劳斯工艺 (6) 2.1.4三级克劳斯工艺 (9) 2.2尾气处理工艺 (9) 2.2.1碱洗尾气处理工艺 (9) 2.2.2加氢还原吸收工艺 (13) 2.3尾气焚烧部分 (13) 2.4液硫脱气 (14) 第三章超级克劳斯硫磺回收工艺 (15) 3.1工艺方案 (15) 3.2工艺技术特点 (15) 3.3工艺流程叙述 (15) 3.3.1制硫部分 (15) 3.3.2催化反应段 (15) 3.3.3部分氧化反应段 (16) 3.3.4碱洗尾气处理工艺 (17) 3.3.5工艺流程图 (17) 3.4反应原理 (18) 3.4.2制硫部分一、二级转化器内发生的反应: (18) 3.4.3尾气处理系统中 (18) 3.5物料平衡 (19)

3.6克劳斯催化剂 (19) 3.6.1催化剂的发展 (19) 3.6.2催化剂的选择 (21) 3.7主要设备 (21) 3.7.1反应器 (21) 3.7.2硫冷凝器 (21) 3.7.3主火嘴及反应炉 (22) 3.7.4焚烧炉 (22) 3.7.5废热锅炉 (22) 3.7.6酸性气分液罐 (22) 3.8影响Claus硫磺回收装置操作的主要因素 (23) 3.9影响克劳斯反应的因素 (24) 第四章工艺过程中出现的故障及措施 (26) 4.1酸性气含烃超标 (26) 4.2系统压降升高 (27) 4.3阀门易坏 (28) 4.4设备腐蚀严重 (28)

硫磺回收工艺介绍

硫磺回收工艺介绍

————————————————————————————————作者:————————————————————————————————日期:

目录 第一章总论 .............................................................................. 错误!未定义书签。 1.1项目背景 (2) 1.2硫磺性质及用途2? 第二章工艺技术选择2? 2.1克劳斯工艺 (2) 2.1.1MCRC工艺2? 2.1.2CPS硫横回收工艺2? 2.1.3超级克劳斯工艺2? 2.1.4三级克劳斯工艺....................................................... 2 2.2尾气处理工艺 (2) 2.2.1碱洗尾气处理工艺 (2) 2.2.2加氢还原吸收工艺 (2) 2.3尾气焚烧部分2? 2.4液硫脱气........................................................................................ 2第三章超级克劳斯硫磺回收工艺. (2) 3.1工艺方案 (2) 3.2工艺技术特点?2 3.3工艺流程叙述 (2) 3.3.1制硫部分 (2) 3.3.2催化反应段............................................ 错误!未定义书签。 3.3.3部分氧化反应段....................................... 错误!未定义书签。 3.3.4碱洗尾气处理工艺 (2) 3.3.5工艺流程图2? 3.4反应原理 (2) 3.4.2制硫部分一、二级转化器内发生的反应: (2)

硫磺回收工艺介绍

目录 第一章总论................................................................ 项目背景.............................................................. 硫磺性质及用途 ........................................................ 第二章工艺技术选择 ........................................................ 克劳斯工艺 ............................................................ 工艺.............................................................. 硫横回收工艺 .................................................... 超级克劳斯工艺 .................................................. 三级克劳斯工艺 ................................................ 尾气处理工艺 .......................................................... 碱洗尾气处理工艺 .................................................. 加氢还原吸收工艺 .................................................. 尾气焚烧部分 .......................................................... 液硫脱气.............................................................. 第三章超级克劳斯硫磺回收工艺 ........................................... 工艺方案.............................................................. 工艺技术特点 .......................................................... 工艺流程叙述 .......................................................... 制硫部分.......................................................... 催化反应段 ........................................................ 部分氧化反应段 .................................................... 碱洗尾气处理工艺 .................................................. 工艺流程图 ........................................................ 反应原理.............................................................. 制硫部分一、二级转化器内发生的反应: ............................... 尾气处理系统中 ................................................ 物料平衡..............................................................

硫磺回收装置操作手册

文件编号 MZYC-AS-ZY.013-2007(A/0) 受控状态受控 发放编号——————————————— 硫磺回收装置 操作手册 中国神华煤制油有限公司煤制油厂 二〇〇七年

操作手册编审表 编制: 车间审核: 车间主任: 汇审 消防气防队: 技术监督部: 机动部: 安全生产部: 审批:

目录 第1章装置正常开工方案 (1) 1.1开工准备及注意事项 (2) 1.2装置吹扫、贯通、气密 (2) 1.3系统的烘干 (10) 1.4催化剂及其填料填装 (13) 1.5装置投料步骤及关键操作 (15) 1.6装置正常开车步骤及其说明 (19) 1.7装置正常开工盲板表 (20) 第2章装置停工方案 (20) 2.1正常停工方案 (21) 2.2非正常停工方案(紧急停工方案) (28) 第3章事故处理预案 (29) 3.1事故处理的原则 (30) 3.2原料、燃料中断事故处理 (30) 3.3停水事故处理 (32) 3.4停电及晃电 (34) 3.5净化风中断 (36) 3.6其它 (37) 3.7DCS故障处理 (39) 3.8关键设备停运(风机) (40) 第4章装置冬季防冻凝方案 (40) 4.1伴热线流程及现场编号 (41) 4.2防冻凝方案 (41) 4.3相关物料及带水物料管线冬季防冻凝措施 (41) 4.4间断输送物料的管线防冻凝措施 (42) 第5章岗位操作法 (42) 5.1正常及异常操作法 (43) 5.2单体设备操作法 (54) 5.3高温掺合阀操作法 (63) 5.4制硫燃烧燃烧器的操作 (64) 附表一硫磺装置盲板一览表 (68) 附图―硫磺回收装置伴热流程图 (70)

克劳斯硫磺回收技术的基本原理讲解

前言 在石油和天然气加工过程中产生大量的H2S气体,为了保护环境和回收元素硫,工业上普遍采用克劳斯过程处理含有H2S的酸性气体,其反应方程式如下:’ H2S + 3/2 O2 = S02 + H2O (1) 2H2S + S02 = 3/X Sx +2H2O (2) 其中反应(1)和(2)是在高温反应炉中进行的,在催化反应区(低于538℃)除了发生反应(2)外,还进行下述有机硫化物的水解反应: CS2 + H2O = COS + H2S (3) COS + H20 = H2S + C02(4) 本文回顾了改良克劳斯硫磺回收工艺的发展历程,阐明了工艺方法的基本原理、影响因素及操作条件,进行了扼要的评述. 1、工艺的发展历程 1.1原始的克劳斯工艺 1883年英国化学家C,F·C1aus首先提出回收元素硫的专利技术,至今已有100多年历史。原始的克劳斯法是一个两步过程,其工艺流程示于图1,专门用于回收吕布兰(Leblanc)法生产碳酸钠时所消耗的硫。关于后者的反应过程列于下式: 2NaCl + H2S04 = Na2SO4 + 2HCl (5) Na2SO4 + 2C = Na2S + 2CO2 (6) Na2S + CaCO3 = Na2CO3 + CaS (7)

为了回收元素硫,第一步是把CO2导入由H20和CaS(碱性废料)组成的液浆中,按上述反应式得到H2S,然后在第二步将H2S和O2混合后,导入一个装有催化剂的容器,催化剂床层则预先以某种方式预热至所需要的温度,按←CaS(固)+ H2O (液)+C02(气)= CaC03(固)十H2S(气) (8) 反应式(9)进行反应。反应开始后,用控制反应物流的方法来保持固定的床层温度.显然此工艺只能在催化剂上以很低的空速进行反应。据报导, H2S + 1/2 O2 = 1/X Sx + H2O (9) 如果使用了水合物形式的铁或锰的氧化物,就不需要预热催化剂床层即可以开始反应,然而由于H2S和O2之间的反应是强烈的放热反应,而释放的热量又只靠辐射来发散,因此限制了克劳斯窑炉只能处理少量的H2S气

5000吨年硫磺回收装置技术协议

5000吨/年硫磺回收装置 酸性气燃烧器 技 术 协 议 买方:代表:日期: 卖方: 代表:日期: 一、总则 1.(以下简称“买方”)和(以下简称“设计方”)就公司硫磺回收联合装置项目5000吨/年改造硫磺回收装置酸性气燃烧器(文件编号PR-01/D4801)的设计、制造、供货范围、技术要求、检修与试验、性能保证、图纸资料交付等问题与北京****天环保设备有限公司(以下简称“卖方”),经技术交流和友好协商,达成如下技术协议,本技术协议为硫

磺回收联合装置项目5000吨/年改造硫磺回收装置酸性气燃烧器的设计与制造商务合同的组成部分,随商务合同一起生效。 2 .本技术文件由酸性气燃烧器技术规格书等文件构成。卖方对酸性气燃烧器所有设备的材料、制造、检验和验收负全部责任。 3.本技术文件是根据工程设计方编制的技术询价书的要求而编制的,卖方收到资料如下: (1)(文件编号PR-01/D4801)。 (2)《炉制造图总图》(文件编号PR-01/D4801)。 4.酸性气燃烧器根据买方提供的询价文件进行、制造、检验和验收、当无版本说明时,采用合同生效时期的最新版本。 5.卖方的质量控制体系按ISO9001-2000质量体系执行。 6.设备在制造过程中接受买方的监督和检验。 二、现场自然情况和公用工程情况 1.安装地点自然条件:参照当地气候条件。 2.公用工程条件和能耗指标 2.1 供电??380V、220V;50Hz 需要量1000W; 2.2 仪表风??0.7MPa(g);常温需要量80Nm3/h 2.3 氮气???0.7MPa(g);常温需要量80Nm3/h 2.4 燃料气??0.4MPa(g);常温需要量200Nm3/h 参考组成(v%):酸性气燃烧器数据表 三、技术要求及产品特点 1. 安装条件 1.1室外安装; 1.2酸性气燃烧器安装位置:酸性气燃烧炉; 1.3安装方式:水平安装; 2.技术要求 2.1 适用于5000吨硫磺回收装置技术改造。 2.2 焚烧含酸性气,酸性气炉炉膛温度>1450℃。

关于硫回收工艺总结

当前硫回收方法主要有湿法和干法脱硫,干法又分为:传统克劳斯法、亚露点类克劳斯工艺,还原吸收类工艺、直接氧化类克劳斯工艺、富氧克劳斯工艺、和氧化吸收类克劳斯工艺;湿法主要有鲁奇的低、高温冷凝工艺、托普索的WSA工艺。 1 干法脱硫 1.1 常规克劳斯(Claus)法 克劳斯法是一种比较成熟的多单元处理技术,是目前应用最为广泛的硫回收工艺。其工艺过程为:含有硫化氢的酸性气体在克劳斯炉内燃烧,使部分硫化氢氧化为二氧化硫,二氧化硫再与剩余的未反应的硫化氢在催化剂上反应生成硫磺。传统克劳斯法的特征为:1)控制n(O2):n(H2S)=1:2,若氧气含量过高有SO2溢出,过低则降低H2S的脱除效率;2)需要安装除雾器脱除气流中的硫以提高硫回收量;3)克劳斯法硫总回收率为94%-96%;4)对含可燃性成分的气体如煤气,或当硫质量分数低于40%时不宜用克劳斯法。 1.2亚露点类克劳斯工艺 所谓的亚露点工艺是以在低于硫露点的温度下进行克劳斯反应为主要特征的工艺。主要包括Sulfreen、Hydrosulfreen、Carbonsulfreen、Oxysulfreen、CBA、ULTRA、MCRC、Clauspol 1500、Clauspol 300、Clisulf SDP、ER Claus、Maxisulf等工艺。 1.3

还原吸收类工艺 还原吸收类工艺由于将有机硫及SO2等转化为H2S再行吸收,故总硫回收率可达99.5%以上。主要有SCOT、Super-SCOT、LS-SCOT、BSR/Amine、BSR/Wet Oxidation、Resulf、AGE/Dual Solve、HCR、Parsons/BOC Recycle、Sulfcycle和ELSE工艺。 1.4 直接氧化类工艺 直接氧化是指H2S在固体催化剂上直接氧化成硫,实际上乃是克劳斯原型工艺的新发展。直接氧化法工艺技术的关键是研制出选择性好、对H2O 和过量O2不敏感的高活性催化剂,目前用铁基金属氧化物的不同混合物制备。选择性催化氧化硫回收技术主要有:主要有Seleclox、BSR/Selectox、BSR/Hi-Activity claus、MODOP、Superclaus、Catasulf 和Clinsulf DO等工艺。 以超级克劳斯(Superclaus)工艺为例进行简单介绍。超级克劳斯工艺有2种类型:Super Claus-99型和Super Claus-99.5型。超级克劳斯工艺中气体不必脱水,选择性氧化时,可配入过量氧而对选择性无明显影响。该工艺方法简单,操作容易。过程连续无需周期切换,硫回收率高,投资省,能耗及原材料费用低,且应用规模不限,使用范围广。 1.5 富氧克劳斯工艺 以富氧空气乃至纯氧代替空气用于克莱斯装置,可以相应地减少惰性组分N2的量,进而提高装置的处理能力。已经工业化的富氧克劳斯工艺

第十四章 硫磺回收装置

第十四章硫磺回收装置 第一节装置概况及特点 一、装置概况 硫磺回收装置是环保装置,它是洛阳分公司500万吨/年炼油工程主体生产装置之一。该装置主要处理液态烃、干气脱硫酸性气及含硫污水汽提酸性气等,其产品是国标优等品工业硫磺。 二、装置组成及规模 硫磺回收(Ⅰ)设计生产能力为3000t/a,1987年8月开工,2001年4月扩能改造至1.0×104t/a;硫磺回收(Ⅱ)设计生产能力为5650t/a,1997年9月开工,2000年3月扩能至1.0×104t/a。 三、工艺流程特点 两套硫磺回收装置均采用常规克劳斯工艺,采用部分燃烧法,即将全部酸性气引入酸性气燃烧炉,按烃类完全燃烧和1/3硫化氢完全燃烧生成二氧化硫进行配风。过程气采用高温外掺合、二级转化、三级冷凝、三级捕集,最终硫回收率达到93%以上。尾气中硫化物及硫经尾气焚烧炉焚烧,70m烟囱排放。 第二节工艺原理及流程说明 一、工艺原理 常用制硫方法中根据酸性气浓度不同,分别采用直接氧化法、分流法和部分燃烧法。本装置采用的是部分燃烧法,即将全部酸性气引入燃烧炉,按烃类完全燃烧和1/3硫化氢完全燃烧生成二氧化硫进行配风。对于硫化氢来说,反应结果炉内约有65%的硫化氢转化为硫,余下35%的硫化氢中有1/3燃烧生成二氧化硫,2/3保持不变。炉内反应剩余的硫化氢、二氧化硫在转化器内催化剂作用下发生反应,进一步生成硫,其主要反应如下: 主要反应: 燃烧炉内:H2S+3/2O2=H2O+SO2+Q 2H2S+ SO2= 2H2O+3/2S2+Q H2S+CO2=COS+ H2O+Q 2H2S+CO2=CS2+2 H2O+Q 反应器内:2H2S+SO2=H2O+3/nSOn+Q COS+ H2O = H2S+CO2-Q CS2+ 2H2O=2H2S+CO2-Q 为获得最大转化率,必须严格控制转化后过程气中硫化氢与二氧化硫的摩尔比为2:1。 二、工艺流程说明

硫磺回收装置操作规程

山东天宏新能源化工有限公司10000T/a硫磺回收装置操作规程

目录 第一章概述-------------------------------------------------(1)第二章工艺原理及流程----------------------------------(2)第一节工艺原理-------------------------------------------(2)第二节工艺流程叙述--------------------------------------(3)第三节主要控制方案--------------------------------------(4)第四节工艺指标--------------------------------------------(5)第五节主要生产控制分析---------------------------------(10)第六节岗位管辖范围与岗位任务综述------------------(10)第三章设备与仪表明细表-----------------------------------(11)第四章装置的开工--------------------------------------------(17)第五章装置的停工--------------------------------------------(23)第六章岗位操作法--------------------------------------------(26)第七章事故预案-----------------------------------------------(34)附:工艺流程图

克劳斯法硫回收工艺实例

克劳斯法硫回收工艺 一、工艺要求 三高无烟煤:元素分析含硫3.3% 造气:121332Nm3含硫化氢1.11% 含COS0.12% 约17克/Nm3 低温甲醇洗:净化气含硫0.1ppm 送出H2S含量为35%左右的酸性气体3871Nm3。 本岗位主要任务是回收低温甲醇洗含硫CO2尾气中的H2S组份,通过该装置回收,制成颗粒状硫磺。同时将尾气送到锅炉燃烧,使排放废气达到国家排放标准,本装置的正常硫磺产量约为16160吨/年。 二、工艺方法 1、常用硫回收工艺 (1) 液相直接氧化工艺 有代表性的液相直接氧化工艺有:ADA法和改良ADA法脱硫、拷胶法脱硫、氨水液相催化法脱等。液相直接氧化工艺适用于硫的“粗脱”,如果要求高的硫回收率和达到排放标准的尾气,宜采用固定床催化氧化工艺或生物法硫回收工艺。 (2) 固定床催化氧化工艺 硫回收率较高的Claus工艺是固定床催化氧化硫回收工艺的代表。Claus硫回收装置一般都配有相应的尾气处理单元,这些先进的尾气处理单元或与硫回收装置组合为一个整体装置,或单独成为一个后续装置。Claus硫回收工艺及尾气处理方式种类繁多,但基本是在Claus硫回收技术基础上发展起来的,主要有:SCOT 工艺、SuperClaus工艺、Clinsulf工艺、Sulfreen工艺、MCRC工艺等。 2. 克劳斯硫回收工艺特点 常规Claus工艺是目前炼厂气、天然气加工副产酸性气体及其它含H2S 气体回收硫的主要方法。其特点是:流程简单、设备少、占地少、投资省、回收硫磺纯度高。但是由于受化学平衡的限制,两级催化转化的常规Claus工艺硫回收率为90-95%,三级转化也只能达到95-98%,随着人们环保意识的日益增强和环保标准的提高,常规Claus工艺的尾气中硫化物的排放量已不能满足现行环保标准的要求,降低硫化物排放量和提高硫回收率已迫在眉睫。

焦炉煤气脱硫及硫回收工艺分析

焦炉煤气脱硫及硫回收工艺分析 (冶金工业规划研究院; Email:dengdpan@https://www.wendangku.net/doc/185163190.html,) 潘登 摘要:简述了几种具有代表性的脱硫、脱氰工艺,分析了不同工艺特点。介绍 了常用的几种硫回收工艺,并总结了脱硫工艺组合硫回收工艺的原则和方法,为企业选择焦炉煤气净化工艺提供参考依据。 关键词:焦炉煤气,脱硫,硫回收,工艺分析 一.前言 炼焦煤在干馏过程中,煤中全硫的20~45%会转到荒煤气中,荒煤气中的硫 以有机硫和无机硫两种形态存在,有机硫主要有二硫化碳、噻吩、硫醇等,煤气 中95%以上的硫以H2S无机硫形态存在,由于荒煤气中的有机硫含量很少而且在煤气净化洗涤过程中大部分会被除去,因此焦炉煤气的脱硫主要是脱除煤气中的H2S,同时除去同为酸性的HCN。据生产统计焦炉炼焦生产的荒煤气中H2S 含量为2~15g/m3,HCN含量为1~2.5 g/m3。荒煤气中H2S在煤气处理和输送过程中,会腐蚀设备和管道危害生产安全,未经脱硫的煤气作为燃料燃烧时,会生成大量SO2,造成严重的大气污染,同时H2S含量较高的焦炉煤气用在冶炼,将严重影响钢材产品质量,制约高附加值优质钢材品种的开发。出于生产安全,环保要求及煤气有效利用方面考虑,那种五、六十年代老焦化厂采用荒煤气→冷凝鼓风工段→硫铵工段→粗苯工段的无脱硫工段老三段模式与绿色环保的现代生产理念相悖,这样焦炉煤气脱硫已经成为煤气净化不可或缺的重要组成部分。焦炉煤气脱硫,不但环保,而且还可以回收硫磺及硫酸等化学品,产生一定的经济效益。在淘汰落后产能以及清洁生产政策下,对煤气脱硫的要求是越来越高,《焦化行业准入条件》已明确要求焦炉煤气必须脱硫,脱硫后煤气作为工业或其它用时H2S含量应不超过250 mg/Nm3,若用作城市煤气,H2S含量应不超过20mg/Nm3。本文将对焦炉煤气常用脱硫工艺进行介绍,分析不同工艺的特点,同时对硫回收工艺作简要说明。 二.工艺概述 近年来,焦炉煤气脱硫技术经不断发展与完善已日益成熟和广泛应用,脱硫 产品以生产硫磺和硫酸工艺为主。煤气脱硫主要有干法脱硫和湿法脱硫两大类,

克劳斯硫磺回收技术的基本原理

克劳斯硫磺回收技术的基本原理

前言 在石油和天然气加工过程中产生大量的H2S气体,为了保护环境和回收元素硫,工业上普遍采用克劳斯过程处理含有H2S的酸性气体,其反应方程式如下:’ H2S + 3/2 O2 = S02 + H2O (1) 2H2S + S02 = 3/X Sx +2H2O (2) 其中反应(1)和(2)是在高温反应炉中进行的,在催化反应区(低于538℃)除了发生反应(2)外,还进行下述有机硫化物的水解反应: CS2 + H2O = COS + H2S (3) COS + H20 = H2S + C02(4) 本文回顾了改良克劳斯硫磺回收工艺的发展历程,阐明了工艺方法的基本原理、影响因素及操作条件,进行了扼要的评述. 1、工艺的发展历程 1.1原始的克劳斯工艺 1883年英国化学家C,F·C1aus首先提出回收元素硫的专利技术,至今已有100多年历史。原始的克劳斯法是一个两步过程,其工艺流程示于图1,专门用于回收吕布兰(Leblanc)法生产碳酸钠时所消耗的硫。关于后者的反应过程列于下式: 2NaCl + H2S04 = Na2SO4 + 2HCl (5) Na2SO4 + 2C = Na2S + 2CO2 (6) Na2S + CaCO3 = Na2CO3 + CaS (7)

为了回收元素硫,第一步是把CO2导入由H20和CaS(碱性废料)组成的液浆中,按上述反应式得到H2S,然后在第二步将H2S和O2混合后,导入一个装有催化剂的容器,催化剂床层则预先以某种方式预热至所需要的温度,按←CaS(固)+ H2O (液)+C02(气)= CaC03(固)十H2S(气) (8) 反应式(9)进行反应。反应开始后,用控制反应物流的方法来保持固定的床层温度.显然此工艺只能在催化剂上以很低的空速进行反应。据报导,H2S + 1/2 O2 = 1/X Sx + H2O (9) 如果使用了水合物形式的铁或锰的氧化物,就不需要预热催化剂床层即可以开始反应,然而由于H2S和O2之间的反应是强烈的放热反应,而释放

硫磺装置流程

一、装置规模 装置建成后为连续生产,年开工按8000小时计。硫磺回收单元设计规模为年回收硫磺4t/a,操作弹性:60~110%;胺液再生单元设计规模为140t/h,操作弹性:60~2×10 110%。 1、硫磺回收装置原料为再生酸性气和含氨酸性气,其中再生酸性气来自本装置胺液再生单 元;含氨酸性气来自酸性气汽提装置,其中再生酸性气组成见表2-1;酸性水汽提含氨酸性气组成见表2-2。 表2-1 再生酸性气组成 表2-2 含氨酸性气组成 表2-4 排放尾气组成

尾气处理部分物料平衡表 MDEA(甲基二乙醇胺)

一、流程简述 1、制硫部分 自胺液再生装置来酸性气经酸性气缓冲罐(D-2411)脱液,自酸性水汽提装置来的含氨酸性气经含氨酸性气分液罐(D-2410)脱液后,混合进入制硫燃烧炉(F-2411)进行高温转化反应,根据制硫反应需要氧量,严格控制进炉空气量,在炉内酸性气中的烃类等有机物全部分解,约65%(V)的H2S进行高温克劳斯反应转化为硫,余下的H2S中有 1/3转化为SO2,燃烧时所需空气由制硫炉鼓风机(K-2411/1、2)供给。自F-2411排出的高温过程气一小部分通过高温掺合阀(TV-4110)调节一级转化器(R-2411)的入口温度,其余部分进入制硫余热锅炉(ER-2411)冷却至约350℃,制硫余热锅炉壳程发生1.1MPa饱和蒸汽回收余热。从制硫余热锅炉出来的过程气进入一级冷凝冷却器(E-2411),过程气被冷却至160℃,一、二、三级冷凝冷却器壳程发生0.4MPa低压蒸汽,在E-2411管程出口,冷凝下来的液体硫磺与过程气分离,自底部进入硫封罐(D-2413),顶部出来的过程气经过高温掺合阀调节至277℃进入一级转化器(R-2411),在催化剂的作用下进行反应,过程气中的H2S和SO2进一步转化为元素硫。反应后的气体先进过程气换热器(E-2414)管程回收部分余热,温度降至270℃,再进入二级冷凝冷却器(E-2412)被冷却至160℃,E-2412冷凝下来的液体硫磺,在管程出口与过程气分离,自底部流出进入硫封罐(D-2413),顶部出来的过程气再经过程气换热器(E-2414)壳程加热至230℃进入二级转化器(R-2412),在催化剂的作用下继续进行反应,使过程气中剩余的H2S和SO2进一步发生催化转化,反应后的气体进入三级冷凝冷却器(E-2413),过程气温度自253℃被冷却至160℃,在E-2413管程出口,被冷凝下来的液体硫磺与过程气分离自底部流出进入硫封罐(D-2413),顶部出来的制硫尾气进入制硫尾气分液罐(D-2412)分出携带的液硫后至尾气处理部分。汇入硫封罐的液硫自流进入液硫池(T-2411),在NH3气的作用下,液硫中的有毒气体被分出,送至尾气焚烧炉焚烧。脱气后的液硫用液硫提升泵(P-2412/1、2)送至液硫成型部分,进行造粒成型包装,或进入液硫储罐(D-2419)液硫装车出厂。 2尾气处理部分 尾气至D-2412顶部出来,进入尾气加热器(E-2421),与蒸汽过热器(E-2423)出口的高温烟气换热,温度升到300℃,混氢后进入加氢反应器(R-2421),在加氢催化剂的作用下进行加氢、水解反应,使尾气中的SO2、S2、COS、CS2还原、水解为H2S。反应后的高温气体进入蒸汽发生器(E-2422)后在进入尾气急冷塔(C-2421)下部,与急冷水逆流接触、水洗冷却至40℃。尾气急冷塔使用的急冷水,用急冷水循环泵(P-2421/1,2)自C-2421底部抽出,经急冷水冷却器(E-2424)冷却至40℃后返C-2421循环使用,为了防止设备腐蚀,需在急冷水中注入NH3,以调节其PH值保持在7~8。急冷降温后的尾气自急冷塔顶出来进入尾气吸收塔(C-2422)。自胺液再生系统来的MDEA贫胺液(30%的MDEA液)进入尾气吸收塔(C-2422)上部,与尾气急冷塔来的尾气逆流接触,尾气中的H2S被吸收。吸收H2S后的MDEA富液,经富液泵(P-2422/1,2)送返胺液再生系统进行再生。自吸收塔顶出来的净化尾气(总硫≤300ppm)进入尾气焚烧炉(F-2421),在600℃左右高温下,将净化尾气中残留的硫化物焚烧生成SO2,焚烧后的高温烟气进入蒸汽过热器(E-2423)中回收余热,使来自制硫余热锅炉(ER-2411)的1.1MPa蒸汽过热至250℃,出口烟气温度降至约520℃,再进入尾气加热器(E-2421)加热制硫尾气,出口烟气温度降至378℃,掺入冷空气使温度降至360℃以下,由烟囱(S-2421)排入大气。

硫回收工段工艺原理

采用SUPERCLAUS 硫磺回收工艺,是基于硫化氢(H 2S )与受控比的氧气流进行的部分燃烧。O 2与H 2S 的比率将自动维持,以实现所有碳氢化合物的完全氧化以及酸性原料气中H 2S 的部分燃烧。 在SUPERCLAUS 反应器的进口处H 2S 含量为0.7-0.8%(v ),设计值为0.781%(v )。传统的Claus 工艺中,空气与酸气的比例应能保证燃烧后气体中的H 2S 与SO 2的比率刚好为2:1,是Claus 反应的最佳比例。 SUPERCLAUS 工艺中,氧气与酸气的比例将调整到使H 2S 与SO 2的比例大于2:1,以保证在SUPERCALUS 反应器进口H 2S 的浓度要求,从而达到更高的总回收率。控制氧气,使进入SUPERCLAUS 反应器的过程气中的H 2S 浓度处于0.7-0.8%(v )。前端燃烧步骤的操作时基于对H 2S 浓度反馈的控制,而非传统的对H 2S/SO 2(或H 2S-2SO 2)反馈比例的控制。第二级Claus 催化所产生的废气流中的H 2S 浓度将由过程气分析器进行测量。 原理归纳如下: (1)如果进入SUPERCLAUS 反应器的H 2S 浓度太高,需要向燃烧器供给更多的氧气来生成SO 2。 (2)如果进入SUPERCLAUS 反应器的H 2S 浓度太低,则向燃烧器供给相对较少的氧气以生成更少的SO 2。 主要反应: 2H 2S+3O 2→SO 2+H 2O+热量 Claus 反应器之后的冷凝可以使下一级Claus 反应向正反应方向移动,提高硫的回收率。 剩余H 2S 气体中的大部分与SO 2反应生成单质硫: 4H 2S+2SO 2→3S 2+2H 2O-热量(克劳斯反应) Claus 催化阶段 位于下游的Claus 催化阶段将进一步提高硫的总体转化率。在Claus 反应器中将发生以下反应: 热量2x 322x 22++?+O H S SO S H SUPERCLAUS 反应器阶段 来自最后一个Claus 反应器的过程气与空气混合,在SUPERCLAUS 反应器中,使用一种特殊的催化剂来进行H 2S 选择氧化,直接得到单质硫。反应方程式: O H S O S H 2x 22x 121+?+

硫磺回收

我国硫磺回收现状及发展前景 中石化齐鲁分公司研究院张义玲达建文 【摘要】介绍了我国硫磺回收及尾气处理技术的现状及装置达标情况。针对国内外硫回收技术的发展,结合我国的实际情况,分析了硫回收技术发展趋势及硫磺的应用市场,对于新建或扩建硫回收装置提出了具体的建议。 【关键词】硫回收工艺催化剂尾气处理 1. 前言 随着我国国民经济的快速增长,我国的石油加工与天然气工业得到高速发展。与此同时,含硫原油加工量和含硫天然气处理量随之相应增加。2003年我国进口原油超过9000万吨,2004年超过1.2亿吨,而且进口原油大多为高硫原油,除此以外大量的含硫燃料油深加工及煤造气等工艺也涉及到含硫化合物的处理。国内胜利油田、辽河油田以及新疆的部分油田也大多是高硫重质油,新近开采的多 S。预计GDP增长将维持在每年在9%~10%之间,数天然气田也伴生大量的H 2 石油化工增长的弹性系数在5%左右,到2010年我国新增炼油能力将达一亿吨左右,因此估计到2010年我国的硫磺的生产能力将达到150万t/a左右。经济的增长与环保的严格使得相关的气体脱硫与硫磺回收技术日益重要。经过几十年的发展,我国在依靠自身力量开发脱硫、硫磺回收及尾气处理工艺的同时,沿海沿江地区大的炼化基地还先后全套或部分引进了国外先进技术。同时,在此基础上国内组织生产、设计和研究单位通过消化吸收、联合攻关,也形成了国产化的大型化硫磺回收装置成套技术。从2000~2003年三年的时间内,国内硫磺回收装置从62套猛增到100多套,这些新建装置大多是大型化、高自动化硫磺回收装置,均带有尾气处理装置;其中新增装置中采用国产化技术的约占76%。然而,随着沿江沿海大型炼油基地的建设,我国硫磺回收大型化方面与国外先进水平相比仍然存在一定差距。为了尽快缩短与国外先进技术的差距,必须抓住这一机遇,努力追赶,尽快使我国的硫回收技术再上一个新的水平。 2. 目前的现状

硫磺回收工艺介绍样本

目录 第一章总论 .............................................................................. 错误!未定义书签。 1.1项目背景 ..................................................................... 错误!未定义书签。 1.2硫磺性质及用途............................................................ 错误!未定义书签。第二章工艺技术选取 ................................................................. 错误!未定义书签。 2.1克劳斯工艺.................................................................. 错误!未定义书签。 2.1.1MCRC工艺............................................................ 错误!未定义书签。 2.1.2CPS硫横回收工艺............................................. 错误!未定义书签。 2.1.3超级克劳斯工艺 .............................................. 错误!未定义书签。 2.1.4三级克劳斯工艺 ........................................... 错误!未定义书签。 2.2尾气解决工艺............................................................... 错误!未定义书签。 2.2.1碱洗尾气解决工艺 .............................................. 错误!未定义书签。 2.2.2加氢还原吸取工艺 .............................................. 错误!未定义书签。 2.3尾气焚烧某些............................................................... 错误!未定义书签。 2.4液硫脱气 ..................................................................... 错误!未定义书签。第三章超级克劳斯硫磺回收工艺............................................ 错误!未定义书签。

硫磺回收装置工艺流程描述

硫磺回收装置工艺流程描述 1、制硫部分 自溶剂再生装置来酸性气经分液罐脱液、酸性气预热器加温后,与来自酸性水汽提装置的含氨酸性气混合,进入制硫燃烧炉进行高温转化反应。在炉内,酸性气中的烃类等有机物全部分解,约65%(v)的H2S进行高温克劳斯反应,生成单质硫。 燃烧时所需空气由制硫炉鼓风机供给。 自燃烧炉排出的高温过程气一小部分通过高温掺合阀调节一级二级转化器的入口温度,其余部分进入制硫余热锅炉冷却至约350℃;制硫余热锅炉壳程用来发生1.0MPa饱和蒸汽。 从制硫余热锅炉出来的过程气进入一级冷凝冷却器,被冷却至170℃,冷凝下来的液体硫磺自底部进入硫封器A,顶部出来的过程气经高温掺合阀调节至约240℃进入一级转化器。在一级转换器催化剂的作用下,过程气中的H2S和SO2进一步进行克劳斯反应,产生单质硫,进入二级冷凝冷却器,被冷却至160℃,冷凝下来的液体硫磺自底部流出进入硫封器B,冷凝器顶部出来的过程气再经高温掺合阀加热至220℃,进入二级转化器。 在二级转换器催化剂的作用下,过程气中剩余的H2S和SO2进一步发生催化转化,反应后的气体进入三级冷凝冷却器,自236℃被冷却至158℃,被冷凝下来的液硫自底部流出进入硫封罐C,冷凝器顶部出来的尾气进入硫雾捕集器。硫雾捕集器底部分离出携带的液硫,进入硫封罐D,顶部气相进入尾气处理部分。 汇入硫封罐的液硫自流进入液硫池,液硫中的有毒气体被蒸汽喷射器送至尾气焚烧炉焚烧。脱气后的液硫用液硫提升泵送至液硫成型部分,进行造粒成型包装出厂。 2、尾气处理部分 尾气自捕集器顶部出来,进入尾气加热器、电加热器,混氢后进入加氢反应器,在加氢催化剂的作用下进行加氢、水解反应,使尾气中的SO2、COS、CS2还原、水解为H2S。 反应后的高温气体经降温后进入急冷塔下部,与急冷水逆流接触、水洗冷却至40℃。尾气急冷塔使用的急冷水,用急冷水循环泵自急冷塔底部抽出,经急冷水冷却器冷却至40℃,然后循环使用。为了防止设备腐蚀,需在急冷水中注入NH3,以调节其pH值保持在7~8。急冷降温后的尾气自急冷塔顶出来进入尾气吸收塔。 自溶剂再生系统来的MDEA贫胺液(30%的MDEA液)进入尾气吸收塔上部,与尾气急冷塔来的尾气逆流接触,尾气中的H2S被吸收。吸收H2S后的MDEA富液,经富液泵送返溶剂再生系统进行再生。 自吸收塔顶出来的净化尾气进入尾气焚烧炉,在700℃左右高温下,尾气中残留的硫化物焚烧生成SO2,高温烟气进入余热锅炉产出1.0Mpa蒸汽,同时烟气温度降至约350℃,由烟囱排入大气。

相关文档