文档库 最新最全的文档下载
当前位置:文档库 › 圆的方程

圆的方程

圆的方程
圆的方程

直线与圆

位置关系

平面内,直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0的位置关系判断一般方法是:

1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x2+y2+Dx+Ey+F=0,

即成为一个关于x的一元二次方程f(x)=0。利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:

如果b2-4ac>0,则圆与直线有2交点,即圆与直线相交。

如果b2-4ac=0,则圆与直线有1交点,即圆与直线相切。

如果b2-4ac<0,则圆与直线有0交点,即圆与直线相离。

2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将

x2+y2+Dx+Ey+F=0化为(x-a)2+(y-b) 2=r2。令y=b,求出此时的两个x值x1、x2,并且规定x1

当x=-C/Ax2时,直线与圆相离;

当x1

半径r,直径d

在直角坐标系中,圆的标准方程为:(x-a)2+(y-b)2=r2;

x2+y2+Dx+Ey+F=0

=> (x+D/2)2+(y+E/2)2=(D2+E2-4F)/4

=> 圆心坐标为(-D/2,-E/2)

其实只要保证X方Y方前系数都是1

就可以直接判断出圆心坐标为(-D/2,-E/2)

这可以作为一个结论运用的

且r=根号(圆心坐标的平方和-F)

圆上一点的切线方程

(x-a)2+(y-b)2=r2上任意一点(X0,Y0)该点的切线方程:

(X-a)(X0-a)+(Y-b)(Y0-b)=r*2

如果在平面直角坐标系中还可以直接将

直线方程:与圆的方程: 联立得出

若>0 则该方程有两个根,即直线与圆有两个交点,相交;

若=0 则该方程有一个根,即直线与圆有一个交点,相切;

若<0 则该方程有零个根,即直线与圆有零个交点,相离。

代数法

如果直线方程y=kx+m,圆的方程为(x-a)2+(y-b)2=r2,将直线方程代入圆的方程,消去y,得关于x的一元二次方程Px2+Qx+R=0(P≠0),那么:

a.当△<0时,直线与圆没有公共点;

b.当△=0时,直线与圆相切;

c.当△>0时,直线与圆相交。

几何法

求出圆心到直线的距离d,半径为r

d>r,则直线与圆相离

d=r,则直线与圆相切

d

判断步骤

①计算两圆的半径,r1,r2;

②计算两圆的圆心距d;

③根据d与r1,r2之间的关系,判断两圆的位置关系.

判断公式

若两圆的方程分别为C1:(x-x1)2+(y-y1)2=r12,C2:(x-x2)2+(y-y2)2=r22:

则两圆外离r1+r2

两圆外切r1+r2=d;

两圆相交|r1-r2|

两圆内切|r1-r2|=d;

两圆内含|r1-r2|>d.

圆与方程及应用(1)

第五讲 圆与方程及应用 一、知识链接 1、圆的定义,圆心,半径的概念 2、圆的方程的标准式,一般式 3、直线与圆的位置关系及判断与应用 二、基本问题 1.方程05242 2=+-++m y mx y x 表示圆的条件是 ( ) A .14 1 << m m 或 C .41m 2.方程03222 2 2 =++-++a a ay ax y x 表示的图形是半径为r (0>r )的圆,则该圆圆心在 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.若方程2 2 2 2 0(40)x y Dx Ey F D E F ++++=+->所表示的曲线关于直线y x =对称, 必有 ( ) A .E F = B .D F = C .D E = D .,,D E F 两两不相等 4.点(1,2-a a )在圆x 2+y 2-2y -4=0的内部,则a 的取值范围是 ( ) A .-1>-+F F E D 且 B .0,0>

高考数学复习圆的方程专题练习(附答案)

高考数学复习圆的方程专题练习(附答案)圆的标准方程(x-a)+(y-b)=r中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定。以下是圆的方程专题练习,请考生查缺补漏。 一、填空题 1.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0 和x轴都相切,则该圆的标准方程是________. [解析] 设圆心C(a,b)(a0,b0),由题意得b=1. 又圆心C到直线4x-3y=0的距离d==1, 解得a=2或a=-(舍). 所以该圆的标准方程为(x-2)2+(y-1)2=1. [答案] (x-2)2+(y-1)2=1 2.(2019南京质检)已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则圆C的圆心坐标为________. [解析] 因为点P关于直线x+y-1=0的对称点也在圆上, 该直线过圆心,即圆心满足方程x+y-1=0, 因此-+1-1=0,解得a=0,所以圆心坐标为(0,1). [答案] (0,1) 3.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是________. [解析] 过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x

联立可求得圆心为(1,-4). 半径r=2,所求圆的方程为(x-1)2+(y+4)2=8. [答案] (x-1)2+(y+4)2=8 4.(2019江苏常州模拟)已知实数x,y满足 x2+y2-4x+6y+12=0,则|2x-y|的最小值为________. [解析] x2+y2-4x+6y+12=0配方得(x-2)2+(y+3)2=1,令 x=2+cos , y=-3+sin ,则|2x-y|=|4+2cos +3-sin | =|7-sin (-7-(tan =2). [答案] 7- 5.已知圆x2+y2+4x-8y+1=0关于直线2ax-by+8=0(a0,b0)对称,则+的最小值是________. [解析] 由圆的对称性可得,直线2ax-by+8=0必过圆心(-2,4),所以a+b=2.所以+=+=++52+5=9,由=,则a2=4b2,又由a+b=2,故当且仅当a=,b=时取等号. [答案] 9 6.(2019南京市、盐城市高三模拟)在平面直角坐标系xOy中,若圆x2+(y-1)2=4上存在A,B两点关于点P(1,2)成中心对称,则直线AB的方程为________. [解析] 由题意得圆心与P点连线垂直于AB,所以kOP==1,kAB=-1, 而直线AB过P点,所以直线AB的方程为y-2=-(x-1),即

圆的方程经典题目带答案

圆的方程经典题目 1.求满足下列条件的圆的方程 (1)过点A(5,2)和B(3,-2),且圆心在直线32-=x y 上;(2)圆心在835=-y x 上,且与两坐标轴相切;(3)过ABC ?的三个顶点)5,5()2,2()5,1(C B A 、、---;(4)与y 轴相切,圆心在直线03=-y x 上,且直线 x y =截圆所得弦长为72;(5)过原点,与直线1:=x l 相切,与圆1)2()1(:2 2 =-+-y x C 相外切;(6)以C(1,1)为圆心,截直线2-=x y 所得弦长为22;(7)过直线042:=++y x l 和圆0142:2 2 =+-++y x y x C 的交点,且面积最小的圆的方程. (8)已知圆满足①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为1:3③圆心到直线02:=-y x l 的距离为52.0,求该圆的方程. (9)求经过)3,1()2,4(-B A 两点且在两坐标轴上的四个截距之和是2的圆的方程 2、已知方程0916)41(2)3(24222=++-++-+m y m x m y x 表示一个圆(1)求实数m 的取值范围 (2)求该圆半径r 的取值范围(3)求面积最大的圆的方程(4)求圆心的轨迹方程 1. 已知圆252 2 =+y x , 求下列相应值

(1)过)4,3(-的切线方程(2)过)7,5(的切线方程、切线长;切点弦方程、切点弦长 (3)以)2,1(为中点的弦的方程 (4)过)2,1(的弦的中点轨迹方程 (5)斜率为3的弦的中点的轨迹方程 2. 已知圆 062 2 =+-++m y x y x 与直线032=-+y x 相交于Q P 、两点,O 为坐标原点,若OQ OP ⊥,求实数m 的值. 3、已知直线b x y l +=:与曲线21:x y C -=有两个公共点,求b 的取值范围 4、一束光线通过点)18,25(M 射到x 轴上,被反射到圆25)7(:2 2 =-+y x C 上.求: (1)通过圆心的反射线方程,(2)在x 轴上反射点A 的活动范围. 5、圆03422 2 =-+++y x y x 上到直线0=++m y x 的距离为2的点的个数情况 已知两圆01010:2 2 1=--+y x y x O 和04026:2 2 2=--++y x y x O (1)判断两圆的位置关系 (2)求它们的公共弦所在的方程 (3)求公共弦长 (4)求公共弦为直径的圆的方程. 题型五、最值问题 思路1:几何意义 思路2:参数方程 思路3、换元法 思路4、函数思想 1. 实数y x ,满足012462 2 =+--+y x y x (1)求 x y 的最小值 (2)求2 2y x ++32-y 的最值;(3)求y x 2-的最值(4)|143|-+y x 的最值 2. 圆25)2()1(:2 2=-+-y x C 与)(047)1()12(:R m m y m x m l ∈=--+++.(1)证明:不论m 取什么实数直线l 与圆C 恒相交(2)求直线l 被圆C 截得最短弦长及此时的直线方程 3、平面上有A (1,0),B (-1,0)两点,已知圆的方程为()()2 2 2342x y -+-=.⑴在圆上求一点1P 使△AB 1P 面积最大并求出此面积;⑵求使2 2 AP BP +取得最小值时的点P 的坐标. 4、已知P 是0843:=++y x l 上的动点,PB PA ,是圆01222 2 =+--+y x y x 的两条切线,A 、B 是切点, C 是圆心,那么四边形PACB 的面积的最小值为 5、已知圆的方程为0862 2=--+y x y x .设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为_________ 6、已知圆的方程为0862 2=--+y x y x .设该圆过点(3,5)的互相垂直的弦分别为AC 和BD ,则四边形ABCD 的面积为_________

高一数学圆的方程经典例题

典型例题一 例1 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?= d . 如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意. 又123=-=-d r . ∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个. 解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点. 设所求直线为043=++m y x ,则14 3112 2 =++= m d , ∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :. 设圆9)3()3(2 2 1=-+-y x O : 的圆心到直线1l 、2l 的距离为1d 、2d ,则 34 36 343322 1=+-?+?=d ,14 316 34332 2 2=+-?+?= d . ∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个. 说明:对于本题,若不留心,则易发生以下误解:

设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?=d . ∴圆1O 到01143=-+y x 距离为1的点有两个. 显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1. 到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根据圆与直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断. 典型例题三 例3 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 124-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为: 23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C

第四章 4.2.3 直线与圆的方程的应用

4.2.3 直线与圆的方程的应用 学习目标 1.理解直线与圆的位置关系的几何性质;2.会建立平面直角坐标系,利用直线与圆的位置关系及圆与圆的位置关系解决一些实际问题;3.会用“数形结合”的数学思想解决问题. 知识点 坐标法解决几何问题的步骤 用坐标法解决平面几何问题的“三步曲”: 第一步:建立适当的平面直角坐标系,用坐标和方程表示 问题中的几何元素,将平面几何问题转化为代数问题; 第二步:通过代数运算,解决代数问题; 第三步:把代数运算结果“翻译”成几何结论 . 类型一 直线与圆的方程的应用 例1 某圆拱桥的水面跨度20 m ,拱高4 m .现有一船,宽10 m ,水面以上高3 m ,这条船能否从桥下通过? 解 建立如图所示的坐标系. 依题意,有A (-10,0),B (10,0),P (0,4),D (-5,0),E (5,0). 设所求圆的方程是(x -a )2+(y -b )2=r 2, 于是有???? ? (a +10)2+b 2=r 2, (a -10)2 +b 2 =r 2 , a 2 +(b -4)2 =r 2 . 解此方程组,得a =0,b =-10.5,r =14.5. 所以这座圆拱桥的拱圆的方程是

x2+(y+10.5)2=14.52(0≤y≤4). 把点D的横坐标x=-5代入上式,得y≈3.1. 由于船在水面以上高3 m,3<3.1, 所以该船可以从桥下通过. 反思与感悟解决直线与圆的实际应用题的步骤: (1)审题:从题目中抽象出几何模型,明确已知和未知; (2)建系:建立适当的直角坐标系,用坐标和方程表示几何模型中的基本元素; (3)求解:利用直线与圆的有关知识求出未知; (4)还原:将运算结果还原到实际问题中去. 跟踪训练1如图,一座圆拱桥的截面图,当水面在某位置时,拱顶离水面2 m,水面宽12 m,当水面下降1 m后,水面宽为________米. 答案251 解析如图,以圆拱桥顶为坐标原点,以过圆拱顶点的竖直直线为y轴, 建立直角坐标系,设圆心为C,圆的方程设为x2+(y+r)2=r2,水面所在弦 的端点为A,B,则A(6,-2),将A(6,-2)代入圆的方程,得r=10,∴ 圆的方程为x2+(y+10)2=100.当水面下降1米后,可设点A′(x0,-3)(x0 >0),将A′(x0,-3)代入圆的方程,得x0=51,∴当水面下降1米后,水面宽为2x0=251米. 类型二坐标法证明几何问题 例2如图所示,在圆O上任取C点为圆心,作圆C与圆O的直径AB相切于D,圆C与圆O交于点E,F,且EF与CD相交于H,求证:EF平分CD.

高中数学圆的方程专题复习

高二数学辅导资料(三) 内容:圆与方程 本章考试要求 考试内容 要求层次A B C 圆与方程 圆的标准方程与一般方程√ 直线与圆的位置关系 √ 两圆的位置关系√ 用直线和圆的方程解决简单的问 题 √空间直角坐标系 空间直角坐标系√ 空间两点间的距离公式√ 一、圆的方程 【知识要点】 圆心为,半径为的圆的标准方程为: 时,圆心在原点的圆的方程为:. 圆的一般方程,圆心为点,半径,其中. 圆系方程:过圆:与圆: 交点的圆系方程是 (不含圆), 当时圆系方程变为两圆公共弦所在直线方程. 【互动探究】 考点一求圆的方程 问题1.求满足下列各条件圆的方程: 以两点,为直径端点的圆的方程是 求经过,两点,圆心在直线上的圆的方程;

过点的圆与直线相切于点,则圆的方程是? 考点二圆的标准方程与一般方程 问题2.方程表示圆,则的取值范围是 考点三轨迹问题 问题3.点与圆上任一点连线的中点轨迹方程是 问题4.设两点,,动点到点的距离与到点的距离的比为,求点的轨迹. 二、直线和圆、圆与圆的位置关系 【知识要点】 直线与圆的位置关系 位置关系相切相交相离 几何特征 代数特征 将直线方程代入圆的方程得到一元二次方程,设它的判别式 为,圆的半径为,圆心到直线的距离为,则直线与 圆的位置关系满足以下关系: 直线截圆所得弦长的计算方法: 利用垂径定理和勾股定理:(其中为圆的半径,直线到圆心的距离). 圆与圆的位置关系:①设两圆的半径分别为和,圆心距为,则两圆的位置关系满足关系: 位置关系外离外切相交内切内含 几何特征 代数特征无实数解一组实数解两组实数解一组实数解无实数解 ②设两圆,,若两圆相交,则两圆的公共弦所在的直线方程 是 相切问题的解法:

必修二圆的方程

圆的方程 ()() 2 2 2x a y b r -+-= 1.求标准方程的方法——关键是求出圆心(),a b 和半径r ①待定系数:往往已知圆上三点坐标,例如教材119P 例2 往往涉及到直线与圆的位置关系,特别是:相切和相交 相切:利用到圆心与切点的连线垂直直线 相交:利用到点到直线的距离公式及垂径定理 2.特殊位置的圆的标准方程设法(无需记,关键能理解) 条件 方程形式 圆心在原点 ()222 0x y r r +=≠ 过原点 ()()()2 2 2 2 2 20x a y b a b a b -+-=++≠ 圆心在x 轴上 ()()2 2 2 0x a y r r -+=≠ 圆心在y 轴上 ()()2 2 2 0x y b r r +-=≠ 圆心在x 轴上且过原点 ()()2 2 2 0x a y a a -+=≠ 圆心在y 轴上且过原点 ()()2 2 2 0x y b b b +-=≠ 与x 轴相切 ()()()2 2 2 0x a y b b b -+-=≠ 与y 轴相切 ()()()2 2 2 0x a y b a a -+-=≠ 与两坐标轴都相切 ()()()2 2 2 0x a y b a a b -+-==≠ 二、一般方程 ()2222040x y Dx Ey F D E F ++++=+-> 1.求圆的一般方程一般可采用待定系数法:如教材122P 例r 4 2.2 2 40D E F +->常可用来求相关参数的范围 三、点与圆的位置关系 1.判断方法:点到圆心的距离d 与半径r 的大小关系 d r ?点在圆外 2.涉及最值: (1)圆外一点B ,圆上一动点P ,讨论PB 的最值

圆的方程的求解和对称问题

圆的方程的求解和对称问题 1. 圆的方程 (1) 圆的定义:平面上与一个定点的距离等于定长的点的集合. 确定一个圆:圆心和半径 (2)圆的标准方程. (x-a)2+(y-b)2=r 2 ,方程表示圆心为 ( a, b ),半径为r 的圆. 特别地,x 2+y 2=r 2表示以原点为圆心,半径为r 的圆 (3)圆的一般方程 x 2+y 2+Dx+Ey+F=0 (1) 当D2+E2-4F>0时,表示圆心为( -D/2 , -E/2 ),半径 的圆. (2) 当D2+E2-4F=0时,表示一个点( -D/2 , -E/2 ); (3) 当D2+E2-4F<0时,它不表示任何图形. 2. 与圆有关的对称 (1) 圆关于点对称:只需用中点坐标公式求出所求圆圆心即可. (2) 圆关于直线对称:只需求出所求圆圆心即可. ① 已知圆圆心与所求圆圆心两点构成的直线的斜率与已知直线斜率之积为 -1. ② 已知圆圆心与所求圆圆心两点中点在已知直线上. 圆的方程的求解:方法:待定系数法 Eg1:求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程. 20)1(22=++y x Eg 2:过点A (4,1)的圆C 与直线x-y-1=0相切于点B (2,1),则圆C 的方程 为 (x-3)2+y 2=2 对称问题:

Eg1:已知圆C与圆(x-1)2+y2=1关于直线y=-x对称,则圆C的方程为( C ) A. (x+1)2+y2=1 B. x2+y2=1 C. x2+(y+1)2=1 D. x2+(y-1)2=1 Eg2:圆(X+2)2+Y2=5 关于原点( O, O )对称的圆的方程为( A ) A. (x-2)2+y2=5 +(y-2)2=5 C. (x+2)2+(y+2)2=5 +(y+2)2=5

圆的方程_基础 知识讲解

圆的方程 编稿:丁会敏 审稿:王静伟 【学习目标】 1.掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题,并会推导圆的标准方程. 2.掌握圆的一般方程的特点,能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程. 【要点梳理】 【高清课堂:圆的方程370891 知识要点】 要点一:圆的标准方程 222()()x a y b r -+-=,其中()a b ,为圆心,r 为半径. 要点诠释: (1)如果圆心在坐标原点,这时00a b ==,,圆的方程就是2 2 2 x y r +=.有关图形特征与方程的转化:如:圆心在x 轴上:b=0;圆与y 轴相切时:||a r =;圆与x 轴相切时:||b r =;与坐标轴相切时: ||||a b r ==;过原点:222a b r += (2)圆的标准方程2 2 2 ()()x a y b r -+-=?圆心为()a b ,,半径为r ,它显现了圆的几何特点. (3)标准方程的优点在于明确指出了圆心和半径.由圆的标准方程可知,确定一个圆的方程,只需要a 、b 、r 这三个独立参数,因此,求圆的标准方程常用定义法和待定系数法. 要点二:点和圆的位置关系 如果圆的标准方程为2 2 2 ()()x a y b r -+-=,圆心为()C a b ,,半径为r ,则有 (1)若点()00M x y ,在圆上()()2 2 200||CM r x a y b r ?=?-+-= (2)若点()00M x y ,在圆外()()2 2 200||CM r x a y b r ?>?-+-> (3)若点()00M x y ,在圆内()()2 2 200||CM r x a y b r ?时,方程2 2 0x y Dx Ey F ++++=叫做圆的一般方程.,22D E ?? - - ?? ?为圆心, 为半径. 要点诠释: 由方程2 2 0x y Dx Ey F ++++=得22 224224D E D E F x y +-? ???+++= ? ?? ??? (1)当2240D E F +-=时,方程只有实数解,22D E x y =- =-.它表示一个点(,)22 D E --. (2)当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.

圆的方程练习题

1 圆的方程练习题 1.圆x 2+y 2 -4x=1的圆心及半径分别是 ( ) A .(2,0),5 B . C . D .(2,2),5 2 .方程x 2+y 2 +2x-4y-6 =0表示的图形是 ( ) A .以(1,- 2)为圆心 B .以(1,2)为圆心 为半径的圆 C .以(-1, -2)为圆心 D .以( -1,2)为圆心 3.过点A (6,0),B (1,5),且圆心在直线2x-7y+8=0上的圆的方程为( ) A .(x+3)2+(y+2)2=13 B .(x+3)2+(y-2)2 =13 C .(x-3)2+(y-2)2=13 D .(x-3)2+(y+2)2 =13 4.方程(x-a )2+(y-b )2 =0的图形是 ( ) A .一个圆 B .两条直线 C .两条射线 D .一个点 5.已知点A (2,4),B (8,-2),以AB 为直径的圆的方程 ( ) A .(x-5)2+(y-1)2=18 B .(x-5)2+(y-1)2 =72 C .(x+5)2+(y+1)2=18 D .(x+5)2+(y+1)2 =72 6.与圆x 2+y 2 -2x+4y+3=0的圆心相同,半径是5的圆的方程是( ) A .(x-1)2+(y+2)2=25 B .(x-1)2+(y+2)2 =5 C .(x+1)2+(y-2)2=25 D .(x+1)2+(y-2)2 =5 7.已知圆x 2+y 2 +2x-4y-a=0的半径为3,则 ( ) A .a=8 B .a=4 C .a=2 D .a=14 8.圆心在C (-1,2),半径为 ( ) 11A. B.2213cos 1C. D.23sin 2x x y y x x y y θθ θθ θθ θθ ? ?=+=-+????=-=?????=-+=-+????=+?=+??

圆的方程总结

梗概: 1、关于圆与直线的三种位置关系的判定,分代数法和几何法。三种情况分别各有研究重点。相交时,研究弦长,中点弦,最长最短弦;相切时,研究切线方程,切线段长,切点所在直线方程;相离时,研究圆上动点到直线距离的最值(其它两种位置关系也可研究);直线和圆系方程及圆系方程。 2、圆与圆位置关系的判定,连心线性质(平分公共弦),公切线条数判断(实质及两圆位置关系判断),公共弦所在直线方程及公共弦长,两圆上动点距离的最值,圆系方程。 注:关注各种利用几何意义求最值 求圆的方程 一、已知圆上三点,求圆的方程 例1 、(1,0),1,1),(3,2). A B C -- 解法一:待定系数法,设出圆的标准方程或一般方程,求出a,b,r,或者D,E,F 解法二:垂直平方线的焦点为圆心,两点间距离求半 径。 二、已知两点和圆心所在直线 解法一:待定系数法,设出标准或一般方程。 解法二:垂直平分线与圆心所在直线的交点求圆心,两 点间距离求半径。 三、已知弦长求圆的方程 (2,4)Q3-1 P- 例2、过及(,)两点,且在x轴上 截得的弦长为6的圆的方程。 例3、圆心在直线30 x y -=上,与 x轴相切,且 被直线0 x y -=截得的弦长为,求圆的方程。(课 本132A6) 例4、求与x轴切于(5,0),并在y轴上截得 的弦长为10的圆的方程。 例5、已知圆C过点(1,0),且圆心在x轴的 正半轴上,直线被圆C所截得的弦长为 求过圆心且与直线l垂直的直线方程。 四、已知切点,求圆的方程 例6、直线43350 x y +-=与圆心在原点的圆C相 切,求圆的方程。 例7、圆心在y轴上,半径为5,且与直线6 y= 相切的圆的方程。(课本132A2(2)) 例8、圆心在直线2 y x =-上,且过点A(2,-1), 与直线1 x y +=相切的圆的方程。 五、过直线和圆的交点 直线与圆系方程 六、过两圆交点的圆的方程 圆系方程 例11、圆心在直线40 x y --=上,并且经过圆 22640 x y x ++-=与226280 x y y ++-=的交点的圆的 方程。 例12、经过点M(3,-1),且与圆C: 222650 x y x y ++-+=相切于N(1,2)的圆的方程。 例13、求过两圆222880 x y x y +++-=和 224420 x y x y +---=的交点且面积最小的圆的 方程。 解法一:解出两个交点 解法二 :连心线过圆心且圆心在某直线上,由此得出圆 心,然后设出一般方程,再利用三圆有公共 弦,直线重合求出m 解法三、圆系方程 七、最值问题 (1)点和圆

解析几何 圆的方程

07-05 圆的方程 点一点——明确目标 掌握圆的标准方程、一般方程、参数方程,能根据需要选择园方程的恰当形式解决问题. 做一做——热身适应 1.方程x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0(t ∈R )表示圆方程,则t 的取值范围是 . 解析:由D 2+E 2-4F >0,得7t 2-6t -1<0, 即- 7 1

直线与圆的方程的应用

4.2.3 直线与圆的方程的应用 学习目标 1.理解直线与圆的位置关系的几何性质.2.会建立平面直角坐标系,利用直线与圆的位置关系及圆与圆的位置关系解决一些实际问题.3.会用“数形结合”的数学思想解决问题. 知识点 坐标法解决几何问题的步骤 用坐标方法解决平面几何问题的“三步曲”: 第一步:建立适当的平面直角坐标系,用坐标和方程表示 问题中的几何元素,将平面几何问题转化为代数问题; 第二步:通过代数运算,解决代数问题; 第三步:把代数运算结果“翻译”成几何结论. 类型一 直线与圆的方程的应用 例1 某圆拱桥的圆拱跨度为20 m ,拱高为4 m .现有一船,宽10 m ,水面以上高3 m ,这条船能否从桥下通过? 解 建立如图所示的坐标系.依题意,有A (-10,0),B (10,0), P (0,4),D (-5,0),E (5,0). 设所求圆的方程是 (x -a )2+(y -b )2=r 2(r >0), 于是有???? ? (a +10)2+b 2=r 2,(a -10)2+b 2=r 2, a 2+( b -4)2=r 2, 解此方程组,得a =0,b =-10.5,r =14.5, 所以这座圆拱桥的拱圆的方程是 x 2+(y +10.5)2=14.52(0≤y ≤4). 把点D 的横坐标x =-5代入上式,得y ≈3.1. 由于船在水面以上高3 m,3<3.1,

所以该船可以从桥下通过. 反思与感悟解决直线与圆的实际应用题的步骤 (1)审题:从题目中抽象出几何模型,明确已知和未知. (2)建系:建立适当的直角坐标系,用坐标和方程表示几何模型中的基本元素. (3)求解:利用直线与圆的有关知识求出未知. (4)还原:将运算结果还原到实际问题中去. 跟踪训练1如图为一座圆拱桥的截面图,当水面在某位置时,拱顶离水面2 m,水面宽12 m,当水面下降1 m后,水面宽为________米. 答案251 解析如图,以圆拱桥顶为坐标原点,以过圆拱顶点的竖直直线为y轴,建立直角坐标系. 设圆心为C,圆的方程设为x2+(y+r)2=r2(r>0),水面所在弦的端点为A,B,则A(6,-2).将A(6,-2)代入圆的方程,得r=10, ∴圆的方程为x2+(y+10)2=100.当水面下降1米后,可设点A′(x0,-3)(x0>0),将A′(x0,-3)代入圆的方程,得x0=51, ∴当水面下降1米后,水面宽为2x0=251(米). 类型二坐标法证明几何问题 例2如图所示,在圆O上任取C点为圆心,作圆C与圆O的直径AB相切于点D,圆C与圆O交于点E,F,且EF与CD相交于H,求证:EF平分CD. 证明以AB所在直线为x轴, O为坐标原点,建立直角坐标系, 如图所示,设|AB|=2r,D(a,0),

《圆的方程》专题

《圆的方程》专题 2019年( )月( )日 班级 姓名 1.圆的定义及方程 ?标准方程强调圆心坐标为(a ,b ),半径为r . ?(1)当D 2+E 2-4F =0时,方程表示一个点????-D 2,-E 2; (2)当D 2+E 2-4F <0时,方程不表示任何图形. 2.点与圆的位置关系 点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2. 二、常用结论汇总——规律多一点 (1)二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是???? ? A =C ≠0, B =0,D 2+E 2-4AF >0. (2)以A (x 1,y 1),B (x 2,y 2)为直径端点的圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.

三、基础小题强化——功底牢一点 (一)判一判(对的打“√”,错的打“×”) (1)确定圆的几何要素是圆心与半径.( ) (2)方程(x -a )2+(y -b )2=t 2(t ∈R )表示圆心为(a ,b ),半径为t 的一个圆.( ) (3)方程x 2+y 2+4mx -2y =0不一定表示圆.( ) (4)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 2 0+Dx 0+Ey 0+F >0.( ) 答案:(1)√ (2)× (3)× (4)√ (二)选一选 1.圆x 2+y 2-4x +6y =0的圆心坐标是( ) A .(2,3) B .(-2,3) C .(-2,-3) D .(2,-3) 解析:选D 因为圆的方程可化为(x -2)2+(y +3)2=13,所以圆心坐标是(2,-3). 2.圆心为(1,1)且过原点的圆的方程是( ) A .(x -1)2+(y -1)2=1 B .(x +1)2+(y +1)2=1 C .(x +1)2+(y +1)2=2 D .(x -1)2+(y -1)2=2 解析:选D 因为圆心为(1,1)且过原点,所以该圆的半径r =12+12=2,则该圆的方程为(x -1)2+(y -1)2=2,选D. 3.若坐标原点在圆(x -m )2+(y +m )2=4的内部,则实数m 的取值范围是( ) A .(-1,1) B .(-3,3) C .(-2,2) D.?? ? ? - 22, 22 解析:选C ∵点(0,0)在(x -m )2+(y +m )2=4的内部,∴(0-m )2+(0+m )2<4,解得-2<m < 2.故选C. (三)填一填 4.(2018·天津高考)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________.

圆的方程及性质

教案 学生姓名 _______ 科目______ 年级_______ 编号_____ 授课老师______ 授课时间___________上课日期__________ 总课时 ______ 本次课时_____ 剩余课时______ 教学重难点: 1、圆的定义及方程 (1)圆的定义 (2)圆的标准方程 (3)圆的一般方程 2、点与圆的位置与关系 教学过程(内容): 1、课前基础知识梳理,(问答式、填空式、回顾式); 2、学生自行完成基础自测环节,旨在检验基础知识应用情况; 3、教师进行课堂考点讲解,使学生明确考点,有的放矢; 4、考题演练,难度系数较第二环节高,可检验本次课教学情况; 作业: 1、本节所学课后务必再多加练习以期全部掌握; 2、重在熟练解题思路、掌握解题模式、体会相关思想方法、习得突破口技能。 3、课时作业(四十五) 课堂反馈: 家长反馈意见: 学生签字:家长签字: 人的一生会经历风风雨雨,不是每一件事都由我们所控制,有些事的结果甚至会出乎我们的意料。无论结果怎样,这对我们都不是最重要的,重要的是我们曾为它而经历过、拼搏过,只要有这个过程,我们就不会后悔。

第四节 圆的方程 知识梳理 1、圆的定义及方程 ⑴标准方程:()()22 2r b y a x =-+- 其中圆心为(,)a b ,半径为r . ⑵一般方程:022=++++F Ey Dx y x . 其中圆心为(,)22D E --,半径为221 42r D E F =+-. 2、点与圆的位置与关系 第一部分 基础自测 1、方程2222210x y ax ay a a +++++-=表示圆,则a 的取值范围是() A.2a <-或23a > B. 203a -<< C. 20a -<< D. 223 a -<< 2、当a 为任意实数时,直线(1)10a x y a --++=恒过定点C ,则以C 为圆心,5为半径的圆的方程为() A. 22240x y x y +-+= B. 22240x y x y +++= C. 22240x y x y ++-= D. 22240x y x y +--= 3、过点(1,1)A -,(1,1)B -,且圆心在直线20x y +-=上的圆的方程( ) A. 22(3)(1)4x y -++= B. 22(3)(1)4x y ++-= C. 22(1)(1)4x y -+-= D. 22(1)(1)4x y +++= 4、圆22410x y x ++-=关于原点(0,0)对称的圆的标准方程为_________. 5、已知直线:40l x y -+=与圆22:(1)(1)2C x y -+-=,则C 上各点到l 的距离的最小值为_________.

直线与圆的方程的应用理解练习知识题

4.2.3 直线与圆的方程的应用 练习一 一、 选择题 1、ABC ?的顶点A 的坐标为(3,-1),AB 边上的中线所在直线方程为08=-+y x ,直线L :012=+-y x 是过点B 的一条直线,则AB 的中点D 到直线L 的距离是( ) A 、 55 2 B 、 55 3 C 、 55 4 D 、5 2、两直线l 1:mx-y+n=0和l 2:nx-y+m=0在同一坐标系中,则正确的图形可能是( ) A B C D 3、已知点A(-7,1),B(-5,5),直线:y=2x-5,P 为上的一点,使|PA |+|PB |最小时P 的坐标为 ( ) (A) (2,-1) (B) (3,-2) (C) (1,-3) (D) (4,-3) 4、如果点A(1,2),B(3,1),C(2,3)到直线x=my 的距离平方和取最大值,那么m 的值等于 ( ) (A) 0 (B) -1 (C) 1 (D) 2 5、已知直线b x y += 2 1 与x 轴、y 轴的交点分别为A ,B ,如果△AOB 的面积(O 为原点)小于等于1,那么b 的取值范围是 ( ) (A) b ≥ -1 (B )b ≤1且0≠b (C) -1 ≤b ≤1 且0≠b (D) b ≤-1或b ≥1 6、通过点M (1,1)的直线与坐标轴所围成的三角形面积等于3,这样的直线共有

( ) (A)1条 (B)2条 (C)3条 (D)4条 7、点P (x,y )在直线x+2y+1=0上移动,函数f(x,y)=2x +4y 的最小值是 ( ) (A) 2 2 (B) 2 (C)22 (D)42 8、已知两点O(0,0) , A(4,-1)到直线mx+m 2y+6=0的距离相等, 则实数m 可取的不同值共有 ( ) (A) 1个 (B) 2个 (C) 3个 (D) 4个 二、填空题 9、菱形ABCD 的相对两个顶点是B(1,3),D(0,4),如果∠BAD=60o ,那么顶点A 和C 的坐标是________. 10、与直线3x+4y-7=0平行,且和两轴围成的三角形面积等于24的直线方程是_____ 11、如果对任何实数k ,直线(3+k)x +(1-2k)y +1+5k=0都过一个定点A ,那么A 的坐标是______。 12、已知y 轴上有一点P ,它与点(-3、1)连成的直线的倾斜角为1200,则点P 的坐标为 三、解答题 13、求与直线0534=+-y x 垂直,且与两坐标轴围成的三角形周长为10的直线的方程. 14、、已知圆0242 2 =++-+m y x y x 与y 轴交于A 、B 两点,圆心为P ,若?=∠90APB 。 求m 的值。 15、已知定点)0,2(A ,点在圆12 2 =+y x 上运动,AOP ∠的平分线交PA 于Q 点,其中O 为坐标原点, 求Q 点的轨迹方程.

圆的一般方程练习题

课时作业23 圆的一般方程 (限时:10分钟) 1.若圆x 2+y 2-2x -4y =0的圆心到直线x -y +a =0的距离为2 2,则a 的值为( ) A .-2或2 或32 C .2或0 D .-2或0 解析:圆的标准方程为(x -1)2+(y -2)2=5,圆心为(1,2),圆心到 直线的距离|1-2+a |12+-1 2=22,解得a =0或2. 答案:C 2.若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 解析:圆心为? ?? ??a ,-32b ,则有a <0,b >0.直线x +ay +b =0变为y =-1a x -b a .由于斜率-1a >0,在y 轴上截距-b a >0,故直线不经过第四象限. 答案:D 3.直线y =2x +b 恰好平分圆x 2+y 2+2x -4y =0,则b 的值为 ( ) A .0 B .2 C .4 D .1 解析:由题意可知,直线y =2x +b 过圆心(-1,2), ∴2=2×(-1)+b ,b =4. 答案:C 4.M (3,0)是圆x 2+y 2-8x -2y +10=0内一点,过M 点最长的弦所在的直线方程为________,最短的弦所在的直线方程是________. 解析:由圆的几何性质可知,过圆内一点M 的最长的弦是直径,最短的弦是与该点和圆心的连线CM 垂直的弦.易求出圆心为C (4,1), k CM =1-04-3=1,∴最短的弦所在的直线的斜率为-1,由点斜式,分

别得到方程:y=x-3和y=-(x-3),即x-y-3=0和x+y-3=0. 答案:x-y-3=0x+y-3=0 5.求经过两点A(4,7),B(-3,6),且圆心在直线2x+y-5=0上的圆的方程. 解析:设圆的方程为x2+y2+Dx+Ey+F=0,其圆心为? ? ? ? ? - D 2,- E 2, 由题意得 ?? ? ??42+72+4D+7E+F=0, -32+62-3D+6E+F=0, 2· ? ? ? ? ? - D 2+? ? ? ? ? - E 2-5=0. 即 ?? ? ??4D+7E+F=-65, 3D-6E-F=45, 2D+E=-10, 解得 ?? ? ??D=-2, E=-6, F=-15. 所以,所求的圆的方程为x2+y2-2x-6y-15=0. (限时:30分钟) 1.圆x2+y2+4x-6y-3=0的圆心和半径分别为() A.(2,-3);16B.(-2,3);4 C.(4,-6);16 D.(2,-3);4 解析:配方,得(x+2)2+(y-3)2=16,所以,圆心为(-2,3),半径为4. 答案:B 2.方程x2+y2+4x-2y+5m=0表示圆的条件是() 1 C.m< 1 4D.m<1 解析:由42+(-2)2-4×5m>0解得m<1. 答案:D 3.过坐标原点,且在x轴和y轴上的截距分别是2和3的圆的方程为() A.x2+y2-2x-3y=0 B.x2+y2+2x-3y=0 C.x2+y2-2x+3y=0

相关文档
相关文档 最新文档