文档库 最新最全的文档下载
当前位置:文档库 › 光纤与半导体光源耦合

光纤与半导体光源耦合

光纤与半导体光源耦合
光纤与半导体光源耦合

§6-6 光纤与半导体光源耦合

光纤通信中最常用的光源是发光二极管和激光二极管,二者皆是细小如砂粒般的半导体微芯片,当外加电流时,可使二者发光。把光源发射的光功率尽可能多的送入传输光纤,这就是光源和光纤的耦合问题。提高耦合效率有利于允许在系统中使用较低功率的光源,从而减少成本和增加可靠度。

在此实验中我们学习如何利用0.29节距的渐变折射率(GRIN )杆状透镜将注入式激光二极管(ILD )和发光二极管耦合到光纤的技术。GRIN 透镜体积小,具有便利的焦距及工作距离和低失真的高质量影像,已被广泛使用于光纤和光源的耦合。

实验中的光源为远红外线组件,注入式激光二极管峰值波长为780nm ,而发光二极管的峰值波长为830nm 。这些组件可发射非可见光辐射,适当的安全手则必须遵守,以避免可能的伤害。切记:决不可用眼睛直接观察激光或其反射光。

【实验目的】

1、 了解发光二极管(LED)和注入式激光二极管(ILD )的光学特性,比较两者异同。

2、 掌握利用GRIN 透镜将半导体光源耦合到光纤的技术。

【实验原理】 一、光源的类型

在光纤通信系统中有两种光源最常被使用,即发光二极管(LED )与注入式激光二极管(ILD )。两者具有相同的基本结构,皆基于PN 结,但注入式激光二极管较复杂,参见图6.6.1。

两者基本工作原理相同,在正向偏置电压下由电子注入在有源层形成粒子数反转而产生光输出。但注入式激光二极管的光输出功率-驱动电流曲线与发光二极管不同,前者有一阈值电流需先达到,光输出对电流响应才会迅速增加,参见图6.6.2。

一个光源可用从它表面所发射的所有可能方向的光线的光功率分布来说明其特征。光源一般依其

辐射分布可分为两种型式,即朗伯(Lambertian )光源和准直(collimated )光源。朗伯光源从每个

图6.6.1 激光二极管基本结构及光场分布

图6.6.2 驱动电流与光输出功率的关系

微分光源单元的所有的方向上发射光,面发射的发光二极管接近朗伯光源。若光源辐射只有垂直于其表面的某一很窄的角度范围则谓之准直光源,氦氖激光即属此类光源。而注入式激光二极管则比较特殊,其辐射远场分布典型的角度为1530???,参见图6.6.1。

通常,光源强度的角度分布可以下式表示:

()()B B m

θθθθ=<0cos m ax ; (1)

0B 为沿0θ=方向的辐射强度,θm ax 是离开光发射法线的最大辐射角度,由光源的几何特性决定。对

一扩散光源,m =1。对准直光源,m 值非常大。图6.6.3显示m =1(典型的发光二极管光源)和m =20(典型的注入式激光二极管光源)在极坐标下的辐射场型的特性。

图6.6.3 典型发光二极管与激光二极管之辐射场型。

光纤系统的辐射极化性与所选用之光源类型有关,其偏振性通常由光源的细节结构决定。发光二极管输出为散乱的偏振性,然注入二极管之极化方向与p-n 接面之平面平行,参见图6.6.1。光源的偏振性可经由在光源前加装一偏振片,然后通过观察探测器的输出而得之。当偏振片旋转时,线性偏振光会显示较大的变化;而杂乱偏振或圆偏振则有较小的变化甚或无变化。

二、耦合效率

光纤与半导体光源之耦合一般可分为两种方法,①直接耦合(butt-coupling )和②分立式光学组件耦合(butt components coupling )两种。

(a)直接耦合

(b)利用球面透镜耦合

图6.6.4 光纤与半导体光源耦合示意图

所谓直接耦合即是将光纤端面与半导体光源直接接近,经过精密的调整使光纤输出最大功率,如图6.6.4(a )所示。对LD 而言,在平行于PN 结方向,光源的发散角2Θ∥仅为15°,只要距离

S 适当,全部光功率都能进入光纤。而在垂直PN 结方向,光源的发散角2Θ⊥约为30°,有部分光功率能进入光纤。对LED 而言,在平行和垂直PN 结方向的发散角都很大,若直接耦合,效率很低。

分立式光学组件耦合,可采用球面透镜、柱透镜和GRIN 透镜等,较常用于包装型式。使用光学组件的目的就是降低光源光束的发散角,提高耦合效率。如图6.6.4(b )利用球面透镜耦合。

耦合效率定义为

f s P P η= (2)

上式中,f P 为耦合入光纤的功率,s P 为光源发射的功率。

若光纤为直接耦合,则光纤接收到的功率与光源辐射之功率比为:

()()2

0.512N A f s P P m αα=++???? (3) 其中α

一般而言,阶跃折射率光纤(α=∞)或渐变折射率光纤(α=2)的耦合系数与光源数值孔径的平方及光源指向性的增量(m )成正比。耦合损失为()-1010log P P f s ,图6.6.5为针对不同的m 值,理论耦合损失与NA 之关系。

三、GRIN 透镜耦合器

GRIN 透镜运用平整的光学表面,而不是曲形的表面。透镜性能取决于不断变化的折射率,因而相对应于传统的球形透镜,GRIN 透镜代表着一种创新的的选择。GRIN 透镜是最常被用来做光源与光纤耦合而增加其耦合效率之微小光学组件。此种圆棒状GRIN 透镜其功能上与传统所用的球状透镜是相同的。光能量在GRIN 透镜内之传播方式与在渐变折射率多模光纤中的传播方式相同。

GRIN 透镜之一般特性为①具有不同的焦距以供选择②使用方便,耦合校准容易③体积小,重量轻,价格便宜④影像失真小。

GRIN 透镜其折射率可用下式表示:

)2/1()(2

0Ar

n r n -= (4)

其中n 0为镜轴之折射率,A 聚焦常数(实际上,A a =22?/),r 为透镜中任意一点到轴心的距离。

最常使用的GRIN 透镜长度为1/4节距,这一距离等于光在一正弦周期的1/4所行进之距离。因此,平行光于透镜一边入射会聚焦于透镜另一边。相反,任一点光源入射于1/4节距GRIN 透镜,将于透镜另一边形成平形光束,见图

6.6.6a 。

另一常用的GRIN 透镜为0.29节距,使用于激光二极管至光纤或光纤至探测器的耦合。本实

验使用的GRIN 透镜为n 01599=.与

A mm =-03321

.。由于此透镜长度大于1/4节距,故点光源

经过此透镜会转为会聚光束而非平行光束。参见图6.6.6b 。

表6.6.1为083.μm 波长0.29节距透镜的放大倍率与工作距离的关系。 1为光源与透镜之间距, 2为透镜至接收光纤之距离。此表可作为于寻找激光与光纤之最适位置。

表6.6.1 工作距离与0.29节距 GRIN 透镜之放大率

图6.6.6 GRIN 透镜

其它设备:

1.酒精-清洁光纤被覆层。

【实验内容】

实验一:激光二极管实验

1.将3只SM-13千分尺分别安装到3个423位移平台。将一个平台安装到桌面,而用另外两个平台沿着360-90角度支架构建一个xyz三维微调结构。

2.将激光二极管组件(已经被安装到一个光基座(MH-2PM),并已连上接地腕带线(FK-STRAP))用1个柱状物(SP-2)和通用钳制器(CA-2)支持,安装到423位移平台系统的Z轴方向,装置图见图6.6.7。

图6.6.7 光纤与半导体光源耦合之装置图

3.连接激光二极管(注入式激光二极管)和505激光驱动电源(FK-DRV)。

4.放置光功率表(815)之探测头于激光窗口前。

5.打开505激光驱动电源开关,将其限制电流调至120 mA (已调好),注意此时激光驱动电源的钥匙处于关闭(off)状态,电流示值为零。激光电流不得超过100毫安;典型的阈值电流(Threshold current)为50毫安,操作电流为65毫安。注意:实验过程不得超过激光二极管之电流规格。

将激光驱动电源的钥匙拨向开(on)的位置,慢慢将电流从零调至42mA,按一下(注意只能按一次)激光输出按钮(output/on,灯亮)。增加激光二极管之电流,直到其电流达到最适操作电流为止。

6.减少激光二极管电流至零。现在缓慢增加电流,记录耦合输出功率与电流之关系。

图6.6.8 505激光驱动电源(FK-DRV)

7.将上所得结果绘成图表。电流为横轴,功率为纵轴,依其上升驱势绘出一直逼近线,将此线往下延伸与横轴相交。此相交点即阈值电流之值,可与理论值比较之。

8.红外线探测卡(F-IRC1)可探测激光输出。将此卡置于一便于观察激光路径的适当距离。量测与二极管接面平行和垂直之光束宽度。由制造商提供之数据此激光发散角度为1530

???。

9.放置一已知极化偏振轴向的偏振片于激光光前,确定此激光的极化偏振状态。

10.将0.29节距的GRIN透镜(FK-GR29)置于耦合器(F-925)之凹槽上。参见图6.6.9。朝向激光

二极管部份,透镜与耦合器需延伸超过约1毫米。,利用支持器(FPH-S)将多模态光纤(F-MLD)剥开部分插入到光纤位置调整器(FP-1) 内,利用GRIN透镜将激光输出与光纤耦合。

图6.6.9 放置0.29节距GRIN透镜于耦合器之凹槽

11.调整耦合状况至最佳化,利用耦合进光纤的光功率和步骤6中所测量的光源出射光功率计算其耦合损失。你会发现当激光窗口愈接近透镜其耦合效果愈佳。本实验的耦合损失约为4dB。

12.降低激光二极管电流至零,关闭电源,拆除连接线。

实验二:发光二极管实验

1.如激光二极管实验步骤1,固定发光二极管(FK-发光二极管)。

2.连接发光二极管与505驱动电源。将电流增加至100毫安,记录二极管输出功率。

3.减少发光二极管电流至零。记录发光二极管的输出功率与二极管电流由零至110毫安(超过最适电流10%)间的关系值。对一典型的发光二极管,该曲线应为一直线。

4.将红外线探测卡置于发光二极管输出路径上。发光二极管于其半导体芯片前有一显微镜;所有输出功率不会被显微镜全部接受,输出会较预期值更为平行。但你所看到的和激光二极管明显不同。

5.放置偏振片于发光二极管的输出路径上,确定发光二极管输出为非极化光束。

6. 如激光二极管实验的步骤10和11使用光纤耦合器(F-925)耦合光纤与发光二极管。利用耦合

进光纤的光功率和步骤3中所测量的光源出射光功率计算其耦合损失。

【思考题】

1.注入式激光二极管之阈值电流为50毫安,实验所测量的值与其有何差异,原因何在?

2.发光二极管功率与输入电流成直线关系,评估理论值与实际值的关系。

3.计算发光二极管与注入式激光二极管的效率。

4.光纤端面紧贴GRIN棒透镜能否提高耦合效率。

注意事项

1.完成实验后一定要将调制电流调回到零,先按一次激光输出按钮(灯灭),再拨钥匙至off,最后才能关电源。

2.LD,LED器件千万不能用手摸,否则它们将因静电而击坏。

3.LD为近红外激光,不能用眼睛直接观察激光或其反射光。

高亮度光纤耦合半导体激光器

高亮度光纤耦合半导体激光器 High Brightness Fiber Coupled Diode Laser 凯普林光电 1 引言 光纤耦合半导体激光器以其体积小、光束质量好、寿命长及性能稳定等优势在各领域得到广泛应用,主要作为光纤激光器的泵浦源、固体激光器泵浦源,也可直接应用于激光医疗,材料处理如熔覆、焊接等领域。受光纤激光器向高功率方向发展趋势的影响,半导体激光器也在向高功率、高亮度发展,高亮度半导体激光器具有较高的光功率密度,经合束器合束同样成为高功率光纤激光器理想的泵浦源。目前光纤耦合半导体激光器结构主要有单管耦合激光器、多单管耦合激光器、迷你Bar以及Bar条/叠阵系列,多单管耦合激光器因其具有高可靠性而成为光纤激光器的主流泵浦源之一,本文主要介绍通过多单管光纤耦合技术实现高亮度半导体激光器的技术与实现。 2 多单管结构 多单管结构是将多路分立的半导体激光器发出的光束经过整形、重新排列、合束后耦合进入单根光纤,从而可提高激光器输出功率。由于分立半导体激光器芯片必须安装在具有一定大小的热沉上,如果直接将多个半导体激光器的输出光束进行排列并聚焦耦合,通常由于受到每个芯片和其热沉体积的限制,合并光束体积较大,很难获得小芯径高亮度的光纤耦合输出。为减小合并光束的空间体积大小,必须采取一定的措施。为此,凯普林自主研发的多单管耦合结构采用阶梯热沉、聚焦透镜、耦合光纤以及独特的安装方式,光路设计简化了结构的复杂性,减小了组件的体积,大大提高了半导体激光器输出的功率,同时保证了耦合点的合理工作温度,如图1所示。 在进行多单管耦合前可对分立半导体激光器芯片进行老化筛选,从而保证了多单管耦合后的可靠性。单管的随机失效特性独立,相比于Bar条、叠阵无热效应干扰,单管的可替换也增加了其耐用性,具有较高的成本优势。

光纤光学与半导体激光器的电光特性实验(精)

光纤光学与半导体激光器的电光特性实验 上个世纪70年代光纤制造技术和半导体激光器技术取得了突破性的进展。光纤通信具有容量大、频带宽、光纤损耗低、传输距离远、不受电磁场干扰等优点,因此光纤通信已成为现代社会最主要的通信手段之一。半导体激光器是近年来发展最为迅速的一种激光器。由于它的体积小、重量轻、效率高、成本低,已进入了人类社会活动的多个领域。 【实验目的】 1.了解半导体激光器的电光特性和测量阈值电流。 2.了解光纤的结构和分类以及光在光纤中传输的基本规律。 3.掌握光纤数值孔径概念、物理意义及其测量方法。 4.对光纤本身的光学特性进行初步的研究。 【实验仪器】 GX-1000光纤实验仪,导轨,半导体激光器+二维调整, 三维光纤调整架+光纤夹,光纤,光探头+二维调整架,激光功 率指示计,一维位移架+十二档光探头(选购),专用光纤钳、 光纤刀,示波器,音源等。如右图所示。 1.设备参数: (1)半导体激光器类型:氮化镓,工作电流:0-70mA,激 光功率:0-10mW,输出波长:650nm; (2)总输出电压为3.5-4V,考虑保护电路分压,所以管芯 电压降为2.2V。 (3)光纤损耗率:每千米70%,实验所用光纤长度:200m,计算损耗为93.1%,如激光输出功率为10mW,除去损耗后激光输出的总功率:9.31mW,(计算耦合效率时用到)。 (4)信号源频率可用范围:10KH Z-300KH Z。 2.主机功能 实验主机面板如下图 主机主要由3部分组成:电源模块、发射模块、接收模块。 (1)电源模块主要是为半导体激光器和主机其它模块提供电源。由3部分组成:

①表头:三位半数字表头,用于显示半导体激光器的平均工作电流。该电流可通过表头下的 电位器进行调整。 ②电源开关:220VAC电源开关。 ③电流调节旋钮:半导体激光器的工作电流调整钮。 (2)发射模块主要功能为半导体激光器工作状态和频率参数的控制。内含一频率可调的矩形波发 生器、一个频率固定的矩形波发生器和模拟信号调制电路。 ①功能状态选择钮:用于选择半导体激光器的工作状态。直流档:半导体激光器工作在直流 状态。脉冲频率档:半导体激光器工作在周期脉冲状态下。输出的激光是一系列的光脉冲,且频率可 调。调制档:激光器工作在周期脉冲状态下,但频率固定,脉冲宽度受外部输入的音频信号调制。 ②脉冲频率旋钮:用于调节脉冲信号的频率。 ③输出插座:三芯航空插座。连接半导体激光器。 ④输出波形插座:Q9插座。接示波器,用于观察驱动激光器的波形。 ⑤音频输入插座:3.5mm耳机插座。连接音频信号源——单放机。 ⑥音频输入波形插座:Q9插座。接示波器,可用于观察音频信号波形。 (3)接收模块主要功能为光信号的接受、放大、解调和还原。内含光电二极管偏置驱动、高频放 大、解调、音频功放电路和扬声器等。 ①输入插座:Q9插座。连接光电二极管。用于探测光脉冲信号。 ②波形插座:两个Q9插座。可分别接示波器,观察波形。前一个为解调前的脉冲信号波形, 后一个为解调后的模拟音频信号波形。 ③扬声器开光:用于控制内置扬声器的开和关。在主机后面板上。 : 3. OPT-1A型激光功率指示计是一种数字显示的光功率测量仪器,采用硅光电池作为光传感器,针对650nm波长的激光进行了标定,用于测量该波段的激光功率。如图: (1)前面板 ①表头:3位半数字表头,用于显示光强的大小。 ②量程选择钮:分为200uW、2mW、20mW、200mW四个标定量程和可调档;测量时尽量采用合适 的量程,如测得的光强为1.732mW,则采用2mW量程。可调档显示的是光强的相对值。 ③调零:调零时应遮断光源,旋动调零旋钮,使显示为零,调零完毕。 (2)后面板 ①电源开关按钮:电源开关(220VAC)。

导体激光器与单模光纤耦合效率的分析

导体激光器与单模光纤耦合效率的分析fH,w ` [ dx#i/Ka# 一、引言] 7% CL.2Q 随着光纤加工工艺和制造技术的日益提高,在光纤通讯与光纤传感中的传输损耗已经降低到了0.154dB/km的极限程度。而光源与光纤的耦合损耗问题越来越显得突出。在光纤通讯中,由于在多模光纤中各传输模的群延迟不同,所以限制了它的应用场合[1];而在光纤传感中,多模光纤与光源的耦合相对单模光纤来说容易得多,但由于单模光纤具有较高的横向分辨力,在一些特殊的传感测试场合,还必须使用单模光纤[2]。所以,改善和提高半导体激光光源与单模光纤的耦合效率成为国内外研究的焦点。npT(iP`") 由于单模光纤的芯径只有多模光纤的十分之一,即5~10μm左右,加上激光器在垂直于结平面方向有较大的发散光束角,所以,简单的套筒式耦合无法获得较高的耦合效率[3]。况且,激光器与光纤轴线的对中容许误差只有1μm,增大了SLD-SMF光耦合的难度。为了减小SLD-SMF间的光耦合损耗,激光器的模场半径(光点尺寸)应与光纤的模场半径相互匹配起来,也就是说,使激光器的椭圆形模场转换为光纤的圆形模场,这可以通过在SLD-SMF间使用透镜来实现[4]。迄今为止,已有许多种用不同形状的透镜进行模式匹配的方法,如柱状透镜法、半球透镜法、四角锥形半椭圆透镜法、共焦透镜法及柱状透镜与自聚焦透镜组合法等[5,6];也可以用一些特种加工技术,如通过拉伸被加热的光纤端头使其形成尖锥状或在研磨后熔融光纤的末梢以及用光刻技术[7~11]直接在光纤的端头处加工出各种形状的微透镜。2d"@g* 本文将对一些典型的SLD-SMF光耦合方式进行理论上的分析,并给出一些具有实用价值的数据。并从耦合效率与成本双重角度给出了适合于实际工程应用的几种耦合方式的优选率。2-v?T6<2 i*DP:$c 二、耦合特性的理论分析1 ]_!4{f 当单模光纤的归一化频率V在1.9≤V≤2.4范围内时,对在单模光纤内光能量分布采用高斯场近似,误差在1%以内。所以,采用高斯光束模场分布来分析计算和比较各种耦合方式的耦合效率及实用性是完全可行的。SLD-SMF直接耦合原理如图1所示。图中w0为单模光纤的模场半宽,其值在理论上在计算过程中相当烦琐,在工程实际中常由下式近似[12]:jS9 ,Z" (1) h,34JYq0 (z=0,w∥1=2μm) ^NXQ>Arg b>*'C3!LF 图3耦合效率与两轴相错角度和距离的关系'O(4mysc

多模光纤激光器

多模光纤激光器 可见光和红外光半导体激光器都可以和多模光纤耦合,通过光纤输出。光纤输出的优点是可以随意改变光路方向,此类激光器多用于探测仪器及医疗仪器等。光纤出口光斑大小和光纤长度可由客户选择。光纤耦合模块具有大功率、高亮度的连续光输出,其输出为圆光束、小孔径和对称的请打零贰玖捌捌柒贰陆柒柒叁光斑形状,可广泛应用于医疗、材料处理、固体激光器泵浦、工业及航空、航天等诸多领域。光纤耦合模块的输出波长可满足固体激光器泵浦、医疗诊断及冶疗所需的波段。在工业应用上可被金属及其它材料有效地吸收,可用于激光焊接、打孔和材料处理。光纤的小数值孔径及小芯径有效地改善了激光器的输出亮度、功率密度和光束质量。 Visible light and infrared laser diode can be and multimode optical fiber coupling, through the optical fiber output. The advantages of optical fiber output is free to change the direction of the light path, such lasers to detect more instruments and medical instruments, etc. Fiber export spot size and fiber length can be selected by the customer. Fiber coupling module has high power, high brightness, light output, the output for the circular beam and small aperture shape and symmetry of light, can be widely used in medical, materials processing, solid state laser pump, industrial and aviation, aerospace and other fields. Fiber coupling module output wavelength can meet please dozen zero two nine pure two land and pure pure three solid laser pumped, medical

高功率光纤耦合半导体激光器(ST)

ST 系列高功率光纤耦合半导体激光器 ST系列高功率光纤耦合半导体激光器是一款结构紧凑、维护和运行成本低廉、有显著节能效果的半导体激光器系统(如工作时长按八小时算比光纤激光器节能20%)。此激光器通常用于激光焊接,切割塑料和金属,以及许多其他的制造工艺上(如退火、回火或软钎焊等)。 特性: 交钥匙系统,可定制的OEM系统 易于集成,设计紧凑 手动和远程操作状态的界面 可控的半导体激光器操作,激光器模块更换方便 免维护,被动水冷,每年检查一次水冷系统(纯净水,颗粒过滤器) 严格按照安全标准操作(光纤插头和断线检测,互锁,争停界面,激光警示灯等) 可选设备:光纤长度可选 (5, 10, 20 m, 各种激光加工的激光头可选 电转换效率为 30%, 同功率等级的CO2激光器的转换率约为 6 - 8 % ,光纤激光器约为 20 - 25 % 应用: 金属和塑料的切割和焊接 激光退火、回火或软钎焊 参数: 2KW光纤耦合半导体激光器,也可根据客户要求提供其他功率的激光器 激光模块电源 半导体激光器AV-70 最大输出电压 2 x 80V 最大运行电流75A 最大输出电流75A 最大运行电压 2 x 80V 最小上升时间100us 冷却被动水冷却最大脉冲频率10kHz 激光模块传感 器功能监控,温度监控运行模式脉冲,剖面 光束指示切换开/关控制单元(可选远程终端)显示器,手轮,钥匙开关,启动/停止,急停

重量~70kg 界面以太网, can-bus, profibus, RS232, SPS-接口 制冷机机架系统 制冷机型号类型19” system 冷却方式尺寸(HxWxD 1650x565x800mm 3 环境空气温度 范围重量(不含激光模块~100kg 自来水温度范 围电压输入400VAC±10% 自来水最小流 量最大电流32A 水槽容量线索号3+N+PE 嗓音消除频率50/60Hz 激光电路温度 范围电源插头类型(标准CEE 过滤丝网激光 电路自来水接口类型CPC-plugs 自来水滤网电 路水管尺寸(内径8mm 感应器水管尺寸 (外径12mm 加热器激光头冷却水接口Hose 我们还根据不同的加工材料及应用提供相应的激光头。 优点: -优化对于许多应用的最佳强度分布的光束整形

大功率半导体激光器光纤耦合技术调研报告

大功率半导体激光器光纤耦合技术调研报告 1.前言 近年来,高功率光纤激光器因其优良的性能日益受到人们的重视和青睐,被广泛地应用于工业加工、空间光通信、医疗和军事等各个方面,其迅速发展在很大程度上得益于大功率高亮度半导体激光器技术的进步,大功率半导体激光光纤耦合技术一直是高功率光纤激光器技术的一项关键核心技术。相反地,半导体激光器泵浦的高功率光纤激光器(DPFL)的发展也带动了大功率半导体激光器技术,尤其是大功率半导体激光光纤耦合技术的进步。 由于单管半导体激光器(LD)的输出功率受限于数瓦量级,远不能满足高功率光纤激光器泵浦源的要求,要获得更大输出功率须采用具有多个发光单元的激光二极管阵列(LD Array)。按照结构形式的不同,激光二极管阵列分为线阵列(LD Bar)和面阵列(LD Stack),分别如图1(a)和(b)所示,其中LD Bar的输出功率一般在数十瓦至百瓦量级,而LD Stack的输出功率一般在数百瓦乃至上千瓦。无论是单管LD还是LD Array,由其固有结构特点决定了半导体激光器具有光束发散角较大,输出光束光斑不对称,亮度不高等问题,给作为高功率光纤激光器泵浦源的实际应用带来很大困难和不便。一个较好的解决方法是将半导体激光耦合进光纤输出,这样既可以利用光纤的柔性传输,增加使用的灵活性,又可以从根本上改善半导体激光器的输出光束质量。 Fig.1 (a)LD Bar 和(b)LD Stack 大功率半导体激光器阵列光纤耦合技术作为一项高新技术,具有很高的技术含量,涉及半导体材料、纤维光学技术、微光学技术、微精细加工技术和耦合封装技术等关键单元技术。目前为止,大功率半导体激光器阵列光纤耦合技术主要采用两条技术路线:光纤束耦合法和微光学系统耦合法。下面将主要以LD Bar 光纤耦合技术为例,就该两种方法进行详细阐述。 2.大功率半导体激光器阵列光纤耦合技术 2.1光纤束耦合法 光纤束耦合法(又称光纤阵列耦合法)是早期使用的一种光纤耦合技术,具有结构简单明了、耦合效率高、各发光元的间隙不影响整体光束质量和成本低等优点。该方法通过微光学系统将LD Bar各个发光单元发出的光束在快轴方向进行准直和压缩后,与相同数目的光纤阵列一一对应耦合,然后通过光纤合束在

高功率光纤耦合半导体激光器失效分析

光纤耦合半导体激光器失效模式分析 摘要:高功率半导体激光器在商用领域的应用越来越广泛,许多半导体激光厂家越来越重视商用激光市场,因此多年来以IPG为主要供应商的市场格局正逐步被打破,国内从2010年开始就有供应商开始生产光纤耦合激光器。经过几年的经验积累,光纤耦合的单芯片封装技术已趋于成熟。本文主要结合实际工作分析光纤耦合半导体激光器出现的各种失效模式和原因,仅供同行参考。作者认为,在中国仍未掌握芯片生产技术的前提下,激光厂家唯有选择优质的光纤和透镜组件,不断优化制造工艺和提高产品的可靠性,才能从国人所诟病的山寨大军中脱胎换骨,成为终端用户信赖的激光器件提供商,才能成为成为行业的领先者。 关键字:光纤镀膜,激光器,耦合效率,芯片COD,光纤燃烧,裸光纤端面研磨清洗, 增透膜,高透高反膜 (一)半导体激光器尾纤耦合工艺 光纤耦合半导体激光器的工艺是先使用一个柱面透镜准直快轴发散角(慢轴角度较小,短光程不需准直),再把准直后的激光耦合入一根多模尾纤(图1.)。这种看似非常简单的原理应用在大批量生产上并不容易,因为其中光纤移动的几何空间是微米级别,照射在柱面透镜或者光纤端面的激光功率密度达到兆瓦/平方厘米,十分容易出现失之毫厘,差之千里的结果。影响激光耦合效率有多方面的因素,例如芯片出光孔径大小,快慢轴角度,模块散热效果,柱面透镜加工精度和光纤端面镀膜质量等。 图 1.单芯片半导体激光器光纤耦合示意图 (二)常见光纤耦合半导体激光器失效模式 高功率光纤耦合半导体激光器器件最常见的失效模式如图2,其中芯片端面光学损伤(COD: catastrophic optical damage)超过60% ,耦合效率偏低次之。下文将针对各种失效模式进行逐一分析。 图 2.单芯半导体激光器失效模式(光纤耦合模块)

光纤与半导体光源耦合

§6-6 光纤与半导体光源耦合 光纤通信中最常用的光源是发光二极管和激光二极管,二者皆是细小如砂粒般的半导体微芯片,当外加电流时,可使二者发光。把光源发射的光功率尽可能多的送入传输光纤,这就是光源和光纤的耦合问题。提高耦合效率有利于允许在系统中使用较低功率的光源,从而减少成本和增加可靠度。 在此实验中我们学习如何利用0.29节距的渐变折射率(GRIN )杆状透镜将注入式激光二极管(ILD )和发光二极管耦合到光纤的技术。GRIN 透镜体积小,具有便利的焦距及工作距离和低失真的高质量影像,已被广泛使用于光纤和光源的耦合。 实验中的光源为远红外线组件,注入式激光二极管峰值波长为780nm ,而发光二极管的峰值波长为830nm 。这些组件可发射非可见光辐射,适当的安全手则必须遵守,以避免可能的伤害。切记:决不可用眼睛直接观察激光或其反射光。 【实验目的】 1、 了解发光二极管(LED)和注入式激光二极管(ILD )的光学特性,比较两者异同。 2、 掌握利用GRIN 透镜将半导体光源耦合到光纤的技术。 【实验原理】 一、光源的类型 在光纤通信系统中有两种光源最常被使用,即发光二极管(LED )与注入式激光二极管(ILD )。两者具有相同的基本结构,皆基于PN 结,但注入式激光二极管较复杂,参见图6.6.1。 两者基本工作原理相同,在正向偏置电压下由电子注入在有源层形成粒子数反转而产生光输出。但注入式激光二极管的光输出功率-驱动电流曲线与发光二极管不同,前者有一阈值电流需先达到,光输出对电流响应才会迅速增加,参见图6.6.2。 一个光源可用从它表面所发射的所有可能方向的光线的光功率分布来说明其特征。光源一般依其 辐射分布可分为两种型式,即朗伯(Lambertian )光源和准直(collimated )光源。朗伯光源从每个 图6.6.1 激光二极管基本结构及光场分布 图6.6.2 驱动电流与光输出功率的关系

半导体激光器和光纤的耦合

半导体激光器和光纤的耦合 高树理 (西安建筑科技大学理学院,西安710055) 摘要:半导体激光器与光纤的耦合是提高EDFA性能的关键技术之一,论文详细分析光纤与半导体激光器耦合的各种方法,最后总结出了提高耦合效率的研究方向。 关键词:光纤;半导体激光器;耦合效率 中图分类号:TN248文献标识码:A文章编号:1008-8725(2010)02-0028-03 Coupling of Semiconductor Laser with Fiber GAO Shu-li (College of Science,Xi c an University of Archi tecture&Technology,Xi c an710055,China) Abstract:The coupling of semiconductor laser with fiber is a key technology to obtain EDFA with high perfor-mance.Methods of c oupling of semiconduc tor laser with fiber are analyzed in the paper.The direction of re-search to improve the coupling efficiency is summarized at last. Key words:fiber;semiconductor laser;the coupling efficiency 0引言 近年来,半导体激光器与光纤的耦合技术得到了迅速发展,而且日趋成熟。按照半导体激光器与光纤之间是否存在光学元件,将耦合方式分为两种,即直接耦合与间接耦合。因为LD 和平面光纤的耦 图2T2中断服务程序流程图 5结束语 文章讨论了传统频率测量方法的原理及误差。 在此基础上,对多周期同步测频技术的原理及其误 差进行了详细分析。由于多周期同步测频技术的测 量精度与被测信号的频率无关,实现了整个测量频 段内的等精度测量,消除了M法中对被测脉冲信号 的计数量化误差,克服了M P T法中高低频两端精度 高而中界频率附近测量误差最大的缺陷。提出了基 于AT89C52实现多周期同步测频方法,利用T2的捕 捉功能和外部中断产生与待测信号同步的闸门时 间,通过T2的定时功能实现了时基信号与待测信号 的同步计数,使得系统只用一个定时器P计数器T2 就实现了多周期同步测频技术,该系统软硬件结构 简单,具有较高的测量精度和较短的系统反应时间。 参考文献: [1]尹克荣.智能仪表中的频率测量方法[J].长沙电力学院学报, 2002,17(1):74-76. [2]章军,张平,于刚.多周期同步测频测量精度的提高[J].电测与 仪表,2003,40(6):16-18. [3]王连符.测频系统测量误差分析及其应用[J].中国科技信息, 2005. [4]李全利.单片机原理及应用技术[M].北京:高等教育出版社, 2001. [5]李群芳,黄建.单片微型计算机与接口技术[M].北京:电子工 业出版社,2002. [6]孙传友,孙晓斌,汉泽西,等.测控系统原理与设计[M].北京: 北京航空航天大学出版社,2002. (责任编辑王秀丽) 收稿日期:2009-12-04;修订日期:2009-12-22 作者简介:高树理(1983-),男,西安人,硕士研究生,助教,现在西安建筑科技大学从事光纤激光器的研究工作,E-mail: gaoshuli1983@https://www.wendangku.net/doc/146848609.html,。 第29卷第2期 2010年2月 煤炭技术 Coal Technology Vol129,No102 Feb,2010

光纤耦合器

光纤耦合器 光纤耦合器的概述 ?·光纤耦合器的简介 ?·光纤耦合器的分类 ?·光纤耦合器的制作方式 ?·光纤耦合器端口的级联 光纤耦合器的应用 ?·2×2单模光纤耦合器的改进... ?·光纤耦合器中光孤子传输的... ?·可调光子晶体光纤耦合器的制作 光纤耦合器的简介 光纤耦合器是指光讯号通过光纤中分至多条光纤中的元件,属于一种光被动元件,一般 在电信网路、有线电视网路、用户回路系统、区域网路各个领域都会应用到,与光纤连接器 在被动元件中起重大作用,也叫分歧器. 光纤耦合器的分类 光纤耦合器一般分为三类: 标准耦合器:双分支,单位1X2,就是将光讯号未成两个功率 星状/树状耦合器 波长多工器:也称作WDM,一般波长属于高密度分出,即波长间距窄,就是WDM 光纤耦合器的制作方式 光纤耦合器制作方式有烧结(FUSE)、微光学式(MICRO Optics)、光波导式(Wave Guide) 三种.这里介绍下烧结方式,烧结方式占了多数(约有90%),主要的方法是将两条光纤并在一起烧融拉伸,使核芯聚合一起,以达光耦合作用,而其中最重要的生产设备就是融烧机,也是最为重要的步骤,虽然重要步骤部分可由机器代工,但烧结之后,必须人工封装,所以人工成本在10%-15%左右,其次采用人工检测封装必须保证品质一致性,这也是量产时所必须克服的,但技术困难度不若DWDM MODULE及光主动元件高,因此初期想进入光纤产业的厂商,大部 分会从光耦合器切入,毛利则在20~30% 光纤耦合器端口的级联 光纤耦合器端口的级联 由于光纤端口的价格仍然非常昂贵,所以,光纤主要被用于核心交换机和骨干交换机之间连接,或被用于骨干交换机之间的级联.需要注意的是,光纤端口均没有堆叠的能力,只能被用于级联. 1. 光纤跳线的交叉连接

光纤耦合实验报告

篇一:光纤测量实验报告 光纤测量实验报告 课程名称:光纤测量 实验名称: 耦合器光功率分配比的测量 学院:电子信息工程学院专业:通信与信息系统班级:研1305班 姓名:韩文国 学号:13120011 实验日期:2014年4月22日指导老师:宁提纲、李晶 耦合器光功率分配比的测量 一、实验目的: 1. 理解光纤耦合器的工作原理; 2. 掌握光纤耦合器的用途和使用方法; 3. 掌握光功率计的使用方法。 二、实验装置:ld激光器,1 ×2光纤耦合器,2 ×2光纤耦合器,tl-510型光功率计,光纤跳线若干。 1. ld激光器 半导体激光器是以一定的半导体材料做工作物质而产生激光的器件。.其工作原理是通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。电注入式半导体激光器,一般是由砷化镓(gaas)、硫化镉(cds)、磷化铟(inp)、硫化锌(zns)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。本实验用的ld激光器中心频率是1550nm。 2. 光功率计 光功率计(optical power meter )是指用于测量绝对光功率或通过一段光纤的光功率相对损耗的仪器。在光纤系统中,测量光功率是最基本的,非常像电子学中的万用表;在光纤测量中,光功率计是重负荷常用表。通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。用光功率计与稳定光源组合使用,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。 3. 耦合器 光纤耦合器是一种用于传送和分配光信号的光纤无源器件,是光纤系统中使用最多的光无源器件之一,在光纤通信及光纤传感领域占有举足轻重的地位。光纤耦合器一般具有以下几个特点:一是器件由光纤构成,属于全光纤型器件;二是光场的分波与合波主要通过模式耦合来实现;三是光信号传输具有方向性。光纤耦合器是光纤与光纤之间进行可拆卸(活动)连接的器件,它是把光纤的两个端面精密对接起来,以使发射光纤输出的光能量能最大限度地耦合到接收光纤中去,并使其介入光链路从而对系统造成的影响减到最小。对于波导式光纤耦合器,一般是一种具有y型分支的元件,由一根光纤输入的光信号可用它加以等分。 在本实验中所用的1 ×2耦合器光功率分配比理论值为1:9,而2 ×2耦合器光功率分配比理论值为1:1。 三、实验内容: 测量耦合器两输出端的功率,计算功率分配比。 四、实验原理: 2 ×2 光纤耦合器亦称x型光纤耦合器,它是一种应用最为广泛的定向耦合器件。该种耦合器主要依靠倏逝场的作用实现耦合,使两根光纤纤芯相互靠近,可以实现光功率的有效耦合。

STFB系列光纤耦合半导体激光器

STFB系列光纤耦合半导体激光器 高功率、高亮度半导体激光器,主要用于医疗、打标头泵浦和材料加工。 SMA905接头便于光纤连接。 热沉热传导,风冷,免去笨重的水冷。 已安装两个温度传感器(NTC/PT100) 可以附带红光指示和输出功率监测,也可以供应相应传输光纤。 光学参数 连续激光功率(W) 30 32 中心波长λ(nm) 805-810, 915, 940, 975-9801 波长偏差(nm) ±10 (±3, ±2)2 谱宽(FWHM) (nm) < 5 (<4)2 波长温漂λ3 (nm/K) ~0.3, ~0.35, ~0.4 光纤参数 光纤芯径(um) 200 400 数字孔径NA 0.22 光纤接头SMA905 电气参数 典型工作电流(A) 40 40 最大工作电流(A) 50 50 极限电流(A) 60 60 典型阈值电流(A) 5 - 8 典型系列(%) 42 44 典型斜效率(W/A) 0.7 – 1.0 工作电压(V) < 2 反向电压(V) < 2 热参数

STFB xxx F-xxxx - xxxx - xxxx - xxxx - xxx 输出功率光纤芯径中心波长波长偏差监测二极管红光指示 30W 32W 200um 400um 808, 806, 807, 808, 809, 810, 915, 940nm T0=±10nm T2=±2nm T3=±3nm M0=不含监测二极管 M3=含监测二极管 P0=不含红光指示 P2=含红光指示 例子:STFB30F200-980-T3M3P0,30W光纤耦合半导体激光器,980nm波长,波长偏差±3nm,光纤芯径200um,含监测二极管,不含红光指示。

高功率光纤耦合半导体激光器

STV-DLF系列高功率光纤耦合半导体激光器 STV-DLF是一款高功率光纤耦合半导体激光器,可以有多种输出功率、波长和光纤直径的组合。客户可以单独选择激光器或者集成了激光器和外围设备的交钥匙系统。 半导体激光器单元包含一个高功率、半导体激光器阵列和光学元件,激光器束可以高效率的耦合进入可分离和互换的单模阶跃光纤中。光纤直径范围从600微米到1200微米,输出功率从300W到数千瓦,光纤长度可以到50米或者更长,非常适合远程灵活的功率传输。 我们可以为客户量身定做诸如激光焊接、熔覆、切割和高速扫描处理系统,系统里也可以集成定位红光和监控传感器如照相机和测量锥。高度集成的激光器,保证了最少的安装时间和最大的生产时间。除此之外,我们还有很多控制器可以让客户根据需求选择,其中就包括微处理器,基于电脑的控制单元,我们也可以帮助客户集成标准的工业控制器。整个系统可以单机工作,也可以多机同时工作。 光纤耦合可以直接传输均匀激光束到工件上的任意位置,减少了直接安装半导体激光器在机器人手臂上而带来的成本增加、复杂性和危险性。 特点: 便于产线集成 光纤耦合,最高功率可以到4500W 结构灵活,便于伸缩 内部水流监控 工业级别安全光纤 长寿命 方便用户操作 紧凑便携 可靠高效 售后服务最小化 应用: 塑料焊接 激光熔覆 铜焊 硬化和热处理 泵浦光纤或者固体激光器 可选配置: 交钥匙系统集成 客户化或者下架光学系统和各种应用 指示光 方形光纤 脚踏操作 远程控制 远程网络控制

技术指标: 型号STV-DLF-500 STV-DLF-1000 STV-DLF-3000 STV-DLF-6000 最大输出功率(W) 500 1000 3000 6000 波长(nm) 808,915,940,980 808,915,940,980 808,915,940,980 808,915,940,980 波长数目 1 1 4 4 光纤芯径(um) 400,600,1000 600,1000 600,1000 1000 光纤长度5m 标准长度, 其他长度可以定做 光纤终端QBH QBH QBH QBH 外部水冷 温度(℃) 10 10 10 10 流量(GPM) 4 4 6 6 控制 客户界面 (GUI) 触摸屏触摸屏触摸屏触摸屏 外控接口安全互锁,数字I/O,模拟量功率控制(0-10V),网络 箱体 交钥匙系统机构标准 19” rack 标准 19” rack NEMA12 NEMA12 (产品图片1)

尖锥端光纤和半导体激光器的耦合

收稿日期∶1996—10—21;收到修改稿日期∶1996—12—02 第25卷 第1期 中 国 激 光V o l .A 25,N o .1 1998年1月CH I N ESE JOU RNAL O F LA SER S January ,1998 尖锥端光纤和半导体激光器的耦合 韦朝炅 查开德 王新宏 (清华大学电子工程系 北京100084) 提要 介绍了一种低反射高效率的尖锥端光纤和半导体激光器的耦合技术。应用模式耦合理论分析表明,这种尖锥端光纤的耦合效率可接近90%,锥端反射损耗大于60dB 。因此,这种耦合技术既可以提高LD 和光纤的耦合效率,又可以大大降低耦合反射对D FB 等激光器的影响。简单介绍了这种尖锥端光纤的制造技术,通过精密的磨抛加工,即可获得理想的尖锥端。用自行加工制备的尖锥端光纤与D FB 半导体激光器耦合,实际测量的耦合效率最大达7319%,反射损耗优于50dB 。 关键词 尖锥端光纤,高效率,低反射,模式耦合理论 1 引 言 光纤和半导体激光器耦合是光纤通信系统中获得高性能光源的重要技术之一。耦合技术的进步,直接影响光纤通信系统的性能。光纤和LD 耦合发展过程大致是:LD 和平端光纤→透镜+平端光纤→球端光纤(微透镜光纤)→自聚焦透镜+光隔离器+ 光纤→双曲线端光纤和尖锥端光纤。这个过程是为了获得性能更好的光纤通信系统用光源。总起来说,一个优秀的耦合应该是效率高,获得尽可能大的出纤功率,以有利于扩展系统的传输距离和提高系统的信噪比;反射小,尽可能减少耦合反射光对半导体激光器工作特性的影响。因为即使很小的反射,也将影响激光器振荡频率的稳定性,影响激光谱线宽度、动态响应及功率起伏而产生的强度噪声[1~3]。下面首先用模式耦合理论来分析尖锥端光纤头的耦合效率及反射损耗,然后介绍光纤头的工艺加工过程及测量的实验装置,最后比较理论和实测的结果。 2 理论模型 图1用于计算的模式耦合理论模型简图F ig .1Geom etry fo r the calculati on ,show ing the locati on of the laser and the m icro lens 为了设计出最佳角度的尖锥端光纤,我们应用一 个模式耦合理论模型来计算半导体激光器和尖锥端光 纤的耦合效率及反射损耗。这个模型由以下几个部分 组成:(1)半导体激光器和光纤中模场的高斯模近似; (2)高斯模的传输规律;(3)尖锥端光纤的模场相位 传输因子;(4)用来计算耦合效率和反射损耗的模式 匹配公式。

高亮度光纤耦合泵浦激光器的发展

高亮度光纤耦合泵浦激光器的发展 摘要:文章将就nlight公司不断发展的高亮度激光二极管模块作一个报告。这些模块以nlight公司PearlTM产品平台为基础,在输出功率、亮度、波长稳定、波长性能方面显示突出优势。该系统基于十四个单管激光器,采用空间光聚焦方式将激光耦合到光纤芯径为105μm,数值孔径NA小于0.14的光纤。我们目前实现了超过100W的光功率在波长为9xx nm的二极管亮度超过了20MW/cm2-str,运行效率大约50%。另外结果也显示了超过70W的光耦合在8xx nm。也展示了在波长14xx nm和更长的波长有卓越的纪录的光纤耦合技术,其中功率超过15W,7.5mm-mrad的光束质量。这些高亮度,高效率,高波长稳定性的成果显示了下一代固体激光和光纤激光器所需的泵浦技术。 关键词:光纤耦合二极管激光器、高亮度。 1.介绍 高亮度光纤耦合二极管激光器打开了二极管激光器在工业和泵浦应用上新的应用领域。nLIGHT公司已展示了具有优越亮度的设备应用在各种工业和泵浦应用中。 在Photonics West 2009 展会上nLIGHT公司介绍了高亮度光纤耦合激光器二极管模块,展示了超过100W光功率耦合进105μm,0.15 NA的光纤,相对应的亮度超过20 MW/cm2-str1。本文着重介绍了这项技术的应用在泵浦模块从79x 到15xx nm。一如往常,这些设备都是基于nLIGHT公司高功率大面积单管结构的专利,即自由空间组合的一个简洁和廉价的方法2。这种方法保留了激光二极管的功率和高亮度,造就具有最佳亮度和效率的设备。 2.高亮度泵浦激光器应用 对高亮度的激光模块结构发展的几点注意事项。首先,平台和工具必须与波长无关,使其适用于整个频谱激光二极管。其次,光设计的效率应尽可能高。最后,激光二极管模块的可靠性,必须充分被评估和验证。 nLIGHT公司的高亮度激光二极管模块最初是为泵浦光纤激光器而研制。更高亮度泵浦源能够使更高功率的光纤激光器通过其性能空间地耦合更大数量的泵浦和更有效的将它们耦合到光纤中。脉冲光纤激光器也需要高亮度泵浦模块,以减少有源光纤长度和相应光纤的非线性。在脉冲光纤激光器设法处理好非线性以使激光器脉冲长度更短和峰值功率更高。 过去几年我们致力于解决泵浦应用包括以下几点:

光纤光学大学物理实验讲义

光纤通信实验 光纤通信就是利用光纤来传输携带信息的光波以达到通信的目的。光纤通信是现代通信网的主要传输手段,主要通过在发送端把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。 因此构成光纤通信的基本要素是光源、光纤和光检测器。 半导体激光器可以作为光纤通信的主要光源,其具有超小型、高效率和高速工作的优异特点,到如今,它是当前光通信领域中发展最快、最为重要的激光光纤通信的重要光源.光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。前香港中文大学校长高锟和George A. Hockham 首先提出光纤可以用于通讯传输的设想,高锟因此获得2009年诺贝尔物理学奖。光检测器:把光发射机发送的携带有信息的光信号转化成相应的电信号并放大、再生恢复为原传输的信号的器件。 【实验目的】 1. 了解和掌握半导体激光器的电光特性和测量阈值电流 2. 了解和掌握光纤的结构和分类以及光在光纤中传输的基本规律。 3. 对光纤本身的光学特性进行初步的研究,对光纤的使用技巧和处理方法有一定的了解。 4. 了解光纤通信的基本原理。 【实验仪器】 导轨,半导体激光器+二维调整,三维光纤调整架+光纤夹,光纤,光探头+二维调整架,激光功率指示计,一维位移架,专用光纤钳、光纤刀,示波器,音源等。 【实验原理】 一、半导体激光器的电光特性 实验采用的光源是半导体激光器,由于它的体积小、重量 轻、效率高、成本低,已进入了人类社会活动的多个领域。 因此对半导体激光器的了解和使用就显得十分重要。本实验 对半导体激光器进行一些基本的实验研究,以掌握半导体激

光纤耦合与特性测试实验

目录 【实验目的】..................................................................................................... - 2 -【实验原理】..................................................................................................... - 2 -【实验设计】..................................................................................................... - 4 -【思考题】......................................................................................................... - 8 - - 1 -

【实验目的】 1.了解常用的光源与光纤的耦合方法。 2.熟悉光路调整的基本过程,学习不可见光调整光路的办法。 3.通过耦合过程熟悉Glens 的特性。 4.了解1dB 容差的基本含义。 5.通过实验的比较,体会目前光纤耦合技术的可操作性。 【实验原理】 在光纤线路耦合的实施过程中,存在着两个主要的系统问题:即如何从各种类型的发光光源将光功率发射到一根特定的光纤中(相对于目前的光源而言),以及如何将光功率从一根光纤耦合到另外一根光纤中去(相对于目前绝大多数光纤器件而言)。对于任一光纤系统而言,主要的目的是为了在最低损耗下,引入更多能量进入系统。这样可以使用较低功率的光源,减少成本和增加可靠度,因为光源是不能工作在接近其最大功率状态的。 光学耦合系统的1dB 失调容差定义为当耦合系统与半导体激光器之间出现轴向、横向、侧向和角向偏移,从而使得耦合效率从最大值下降了1dB 时的位置偏移量。1dB 失调容差对于实用化的光学耦合系统来说是一个重要的衡量指标.因为任何半导体激光器组件中都存在如何将耦合系统与半导体激光器芯片相对固定(封装)的问题,不论采用何种固定方式,都不可避免地存在由于封装技术不完善及环境因素变化而造成的位置失调现象。一个光学耦合系统具有效大的失调容差就意味着该系统在封装时允许出现较大的位置失调.因而可以来用结构简单、定位精度不太高的低成本封装技术。 光纤系统中,必须考虑光源的辐射空间分布(角分布)、发光面积,光纤的数值孔径、纤芯尺寸和光纤的折射率剖面等等,使尽可能多的光能量进入光纤当中。对于耦合系统,通常要求具有以下几个特点: 1. 大的1dB 容差。大的容差是工业生产的一个基本条件,容差 越大,才可能产量越大,成本越低。 2. 弱的光反馈。目前低成本光源一般不配置隔离器,所以对于 耦合系统来说,弱的光反馈意味着光源的稳定性的提高。 3. 简单易操作、耦合效率高、稳定。 通常使用的耦合方式主要有以下几种: 一.直接耦合: 所谓直接耦合就是把一根端面为平面的光纤直接靠近光源发光面放置,在光纤一定的情况下,耦合效率与光源种类关系密切。如果光源是半导体激光器,因其发光面积比光纤端面面积小,只要光源与光纤面靠的足够近,激光器所发出的光就能照到光纤端面上。考虑到光源光束的发散角和光纤接收角的不匹配程度,一般耦合效率不到10%,90%以上都可能浪费了。如果光源是发光二极管,则情况更为严重。因为发光二极管的发散角更大,其耦合的效率基本上由光纤的收光角决定,即 ()()20.512f s P P m NA ηαα==++???? 其中α为光纤的折射率轮廓因子,m 为和光源有关的参数,一般LED , m=1,对于LD , m=20。例如,NA =0.14,η≈5%。 二.透镜耦合

相关文档