文档库 最新最全的文档下载
当前位置:文档库 › 三棱锥的一个体积公式及其两条推论

三棱锥的一个体积公式及其两条推论

三棱锥的一个体积公式及其两条推论
三棱锥的一个体积公式及其两条推论

三棱锥的一个体积公式及其两条推论

(李明 中国医科大学数学教研室 110001)

摘要:本文利用空间向量这个强有力的数学工具推导出了三棱锥的一个体积公

1

6

V =a b c 、、为三条侧楞的

长度,αβγ、、为它们的相互夹角,即三个侧面顶角),并由该公式推演出了两条推论. 关键词: 三棱锥 体积公式 等夹角三棱锥 最大体积

0引言

我们知道,如果

OAB ?的两条边OA a OB b ==、,其夹角AOB α∠=(显然

(0,)απ∈),则OAB ?的面积1

sin 2

S ab α=(如图1).将此结论类比到空间(如图2),我们

便有如下问题:如果三棱锥O ABC -的三条侧棱OA a OB b OC c ===、、,其夹角

AOB BOC COA αβγ∠=∠=∠=、、(显然(0,),(0,2)αβγπαβγπ∈++∈、、),则

三棱锥O ABC -的体积V 如何用这些已知的棱长a b c 、、及已知的夹角αβγ、、来表示呢?即体积V 的公式是什么呢?

1 推导体积V 的公式

首先,在图2的基础上,以三棱锥O ABC -的顶点O 为坐标原点,以OA 为x 轴正向,以垂直于OAB ?所在的平面的方向为z 轴建立右手空间直角坐标系Oxyz (如图3).

图3

x

在图3中,(,0,0),(cos ,sin ,0),(,,)OA a OB b b OC x y z αα===

(其中x y z 、、为未知

数),将这些向量带入如下向量方程组:

cos cos OC c OB OC OB OC OA OC OA OC βγ

?=???=???=??

我们便得到如下关于x y z 、、的代数方程组:

2222cos sin cos cos x y z c x y c x c ααβγ?++=?

+=??=?

由此方程组我们可以求得

:

z 于是三棱锥的体积为

111

sin 3321

(1)

6

AOB V S z z ab α

?==?=

2 两条推论

由体积公式(1),我们可以推演出如下两条推论.其中推论2的证明略微复杂,下文将详细给出证明步骤,而推论1的证明显而易见,不予赘述.

推论1(等夹角三棱锥体积公式)如图4,在三棱锥O ABC -中,如果三条侧棱

OA a OB b OC c ===、、,其夹角AOB BOC COA θ∠=∠=∠=(显然2

(0,)3

θπ∈),则

三棱锥O ABC -的体积为

1

(1cos (2)6

V abc θ=-

B

b

O

a c

图5

C

B

b

A

O a

c

θ θ

θ

图4

C

推论2(三棱锥最大体积公式)如图2, 三棱锥

O A B C

-的三条侧棱O A a O B b O C ===、、,其夹角A O B B O C C O αβγ∠=∠=∠=、、(显然

(0,),(0αβγπαβγπ

∈++∈、、),则当且仅当2

π

αβγ===时,即OA

OB OC 、、两两垂直时(如图5),其体积最大,为

max 1

(3)6

V abc

=

证明: 由公式(1),再结合三个数的均值不等式,我们有

1

61

61

(61

6

1166

V t abc =≤===≤=其中 上述放大过程,第一个“≤”中的“=”成立,当且仅当222cos cos cos αβ

γ==成立; 第二个“≤”中的“=”成立,当且仅当112t t -=+,即cos cos cos 0αβγ=.

因此,两个“≤”中的“=”成立,即体积取到最大值max 1

6

V abc =

,当且仅当222cos cos cos αβγ

==与

cos cos cos 0

αβγ=同时

,

cos cos cos 0αβγ===亦即2

π

αβγ===成立,也就是OA OB OC 、、两两垂直,

证毕.

正三棱锥的内切球与外接球

正三棱锥的内切球与外接球要回答这个问题,先要了解什么是正三棱锥. 请看正三棱锥的定义. 1.底面是正三角形 2.顶点在底面的射影是底面三角形的中心.满足以上两条的三棱锥是正三棱锥. 由以上定义可知,正三棱锥底面为正三角形,三个侧面是全等的等腰三角形. 要防止和另外一个概念----正四面体混淆. 正四面体的要求比正三棱锥更要.每个面都是正三角形的四面体才是正四面体.我们可以说,正四面体是特殊的正三棱锥,正三棱锥具备的性质正四面体都有,而正四面体具备的性质正三棱锥不一定有. 下面来说如何寻找正三棱锥的内切球和外接球球心. 在棱柱和棱锥的外接球中,谈到了一种方法,就是把符合条件的棱锥和棱柱放入长方体中,从而把问题转化、简化为长方体的外接球的问题. 这是处理问题的方法之一. 适合这种方法的情况可小结如下: ⑴正四面体、三条侧棱两两垂直的正三棱锥、四个面都是直角三角形的三棱锥.⑵同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥.

⑶若已知棱锥含有线面垂直关系,则可将棱锥补成长方体或正方体. ⑷若三棱锥的三个侧面两两垂直,则可将三棱锥补成长方体或正方体. 今天说说第二种方法,就是利用球的定义确定球心. 基本的规律可小结如下: ⑴长方体或正方体的外接球的球心是其体对角线的中点. ⑵正三棱柱的外接球的球心是上下底面中心连线的中点. ⑶直三棱柱的外接球的球心是上下底面三角形外心连线的中点. ⑷正棱锥的外接球球心在其高上,具体位置可通过建立直角三角形运用勾股定理计算得到. 我们利用第(4)条结论来研究正三棱锥的外接球球心的位置. 举一个具体栗子来说明.外接球球心分析:在正三棱锥的高线上,先假设一个位置,然后构造直角三角形,利用勾股定理求解.从图看出,此正三棱锥的外接球球心在高线PO的延长线上. 再来求内切球的球心位置.由正三棱锥的对称性可知,内切球球心也在高线PO上. 下面利用等体积法(即算两次体积)求内切球的半径.等体积法已经是第二次提到了,第一次提起是在线面角和点面距中.回到这位朋友的问题上来,外接球球心和内切球球心重合吗 显然,多数情况下是不重合的. 有童鞋可能会问,有没有重合的时候呢

圆锥体积计算公式的推导

圆锥体积计算公式的推导 歙县王村中心学校程金丽 教学内容:教科书第42~~43页的例1、例2,完成“做一做”和练习九的第3—5题。 教学目的:使学生初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,发展学生的空间观念。 教具准备:等底等高的圆柱和圆锥各一个,比圆柱体积多的沙土(最好让学生也准备). 教学过程: 一、复习 1、圆锥有什么特征? 使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。 2、圆柱体积的计算公式是什么? 指名学生回答,并板书公式:“圆柱的体积=底面积×高”。 二、导人新课 我们已经学过圆柱体积的计算公式,那么圆锥的体积又该如何计算呢?今天我们就来学习圆锥体积的计算。 板书课题:圆锥的体积 三、新课 1、教学圆锥体积的计算公式。 教师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的? 指名学生叙述圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。 教师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢? 先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。 教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?” 然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?” 接着,教师边演示边叙述:现在圆锥和圆柱里都是空的。我先在圆锥里装满沙土,然后倒入圆柱。请大家注意观察,

看看能够倒几次正好把圆柱装满? 问:把圆柱装满一共倒了几次? 学生:3次。 教师:这说明了什么? 学生:这说明圆锥的体积是和它等底等高的圆柱的体积的。 板书:圆锥的体积=1/3 ×圆柱体积 教师:圆柱的体积等于什么? 学生:等于“底面积×高”。 教师:那么,圆锥的体积可以怎样表示呢? 引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。 板书:圆锥的体积=1/3 ×底面积×高 教师:用字母应该怎样表示? 然后板书字母公式:V=1/3 SH 2、教学例1。 一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少? 教师:这道题已知什么?求什么? 指名学生回答后,再问:已知圆锥的底面积和高应该怎样计算? 引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。 3、做第50页“做一做”的第1题。 让学生独立做在练习本上,教师行间巡视。 做完后集体订正。 4、教学例2。 在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克) 教师:这道题已知什么?求什么? 学生:已知近似于圆锥形的麦堆的底面直径和高,以及每立方米小麦的重量;求这堆小麦的重量。

三棱锥外接球问题

三棱锥外接球问题 1.有公共斜边的直角三角形组成的三棱锥,球心在公共斜边的中点处。 2.等腰四面体的外接球:补成长方体 3.按照定义,球心到四个顶点的距离为半径 4.平面截球的截面是圆,设球心到平面的距离为d ,球的半径为R ,截面圆(三角形外接圆)的半径为r ,则有222d r R += 5.补成直棱柱,球心在上下底面中心连线中点 (2011年全国高考题)(11)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ?是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为 ()A ()B ()C ()D 【解析】选A ABC ?的外接圆的半径r =O 到面ABC 的距离d == SC 为球O 的直径?点S 到面ABC 的距离为2d = 此棱锥的体积为11233436 ABC V S d ?=?=?= 此解法充分利用了球当中的性质:每一个截面圆的圆心与球心的连线垂直于截面圆所在平面。下面就几个例题简单总结一下三棱锥外接球问题。 1.(2010辽宁11)已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,

1SA AB ==,BC ,则球O 表面积等于 选A (A )4π (B )3π (C )2π (D )π 【解析】该椎体可以补成一个长方体,而长方体的体对角线就是外接圆的直径,所以可轻松得解。 解:14 2112=++=R ππ442==R S 球 练一练:将边长为2的正ABC ?沿BC 边上的高AD 折成直二面角B AD C --,则三棱锥B ACD -的外接球的表面积为 . 答案:5π 说明:对于直角四面体和双垂四面体,都可以补成长方体或正方体,再利用体对角线是外接球直径这一性质求解。 2. 点A 、B 、C 、D 均在同一球面上,其中△ ABC 是正三角形,AD ⊥平面ABC ,AD=2AB=6则该球的体积为 。 解析:由于有一条棱垂直于底面,所以该棱柱可以补成一个直三棱柱,而直三棱柱的外接球的球心正好是三棱柱中截面的外接圆圆心。 答案:π332 说明:对于能补成直三棱柱的三棱锥外接球问题皆可用此法解。 3.正四面体BCD A -的边长为2,求该四面体外接球的表面积 。 解析:正四面体可以看成是有一个正方体的四条对角线构成的,所以它的外接球与正方体的外接球是同一个,从而轻松得解。 解:若对角线为2,则边长为2,体对角线为6,球半径为2 6,表面积为π6。 另解: 33 2=ED ,3 62344=-=AE

四面体外接球的球心、半径求法

四面体外接球的球心、半径求法 在立体几何中,几何体外接球是一个常考的知识点,对于学生来说这是一个难点,一方面图形不会画,另一方面在画出图形的情况下无从下手,不知道球心在什么位置,半径是多少而无法解题。 本文章在给出图形的情况下解决球心位置、半径大小的问题。 一、出现“墙角”结构利用补形知识,联系长方体。 【原理】:长方体中从一个顶点出发的三条棱长分别为c b a ,,,则体对角线长为 2 2 2 c b a l ++=,几何体的外接球直径R 2为体对角线长l 即2 2 22c b a R ++= 【例题】:在四面体ABCD 中,共顶点的三条棱两两垂直,其长度分别为3,61,,若该四面体的四个顶点在一个球面上,求这个球的表面积。 解: 因为:长方体外接球的直径为长方体的体对角线长 所以:四面体外接球的直径为AE 的长 即:22224AD AC AB R ++= 1663142 2 22=++=R 所以2=R 球的表面积为ππ1642==R S 二、出现两个垂直关系,利用直角三角形结论。 【原理】:直角三角形斜边中线等于斜边一半。球心为直角三角形斜边中点。 A C D B E

【例题】:已知三棱锥的四个顶点都在球O 的球面上,BC AB ⊥且7=PA , 5=PB ,51=PC ,10=AC ,求球O 的体积。 解:BC AB ⊥且7=PA ,5=PB ,51=PC ,10=AC , 因为22 210517=+ 所以知222PC PA AC += 所以 PC PA ⊥ 所以可得图形为: 在ABC Rt ?中斜边为AC 在PAC Rt ?中斜边为AC 取斜边的中点O , 在ABC Rt ?中OC OB OA == 在PAC Rt ?中OC OB OP == 所以在几何体中OA OC OB OP ===,即O 为该四面体的外接球的球心 52 1 == AC R 所以该外接球的体积为3 500343π π==R V 【总结】斜边一般为四面体中除了直角顶点以外的两个点连线。 三、出现多个垂直关系时建立空间直角坐标系,利用向量知识求解 【例题】:已知在三棱锥BCD A -中,ABC AD 面⊥,?=∠120BAC , 2===AC AD AB ,求该棱锥的外接球半径。 解:由已知建立空间直角坐标系 )000(,, A )002(,, B )200(,,D 由平面知识得 )031(,,-C O A B C P A B C D z x y

六年级数学圆锥的体积计算公式

圆锥的体积计算公式 白泉一小郝永辉 一、教学目标: 知道圆锥体积的推导过程,理想解并掌握体积公式,能运用公式求圆锥的体积,并会解决简单的实际问题,对学生进行辨证唯物主义启蒙教育。 二、教学重点: 圆锥体积的公式 三、教学难点: 圆锥体积公式的推导 四、教具准备: 沙、圆锥教具、圆柱教具若干个,其中有等底、等到高圆柱,圆锥多个 五、教学过程: (一)复习 1、口答圆锥体积计算公式。 2、计算下面各圆柱的体积。 (1)底面积是6。28平方分米,高是5公米。 (2)底下面半径是3公米,高与半径相等。 3、小结 (二)新授 1、点明课题,圆锥体积的计算

2、体积公式的推导 (1)要研究圆锥的体积,你想提出什么问题? ·圆锥的体积与什么有关?有怎样的关系? ·为什么时候有这样的关系? (2)出示教具让学生观察圆锥体积与底面积、高的关系? (3)圆锥的体积需转化成已学过的物体的体积来计算。转化成哪一种形体最合适? (4)实验 ·出示等底、等高的圆柱和圆锥容器教具观察特征:等底等高 ·教师示范用空间圆柱里倒,让学生观察看看倒几次倒满圆柱。·得出结论:圆锥体积等于这个圆柱体积的1/3。 ·教师再次实验。 ·学生动手实验:先做等底等高的实验,再做不等底不等高的实验,然后提问,圆锥体积都是圆柱体积的1/3吗?为什么? 3、学生讨论实验情况,汇报实验结果。 4、推导出公式 指名口答,师板书:圆锥体积等于等底等高圆柱体积的1/3 圆锥体积=底面积×高×1/3 V=1/3Sh S表示什么? H表示什么? SH表示什么? 1/3SH表示什么? 5、练习(口答) 6、运用公式

(1)出示例1、一个圆锥形零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少? 学生尝试练习,教师讲评。 (2)出示例2、在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,。高是12米。每立言米小麦约重735千克,这堆小麦大约重多少克?(得数保留整千克) 学生读题思考后尝试练习。 三、巩固练习 课本第43页“做一做”第1、2题。 四、小结 今天这节课,你学到了什么知识?要求圆锥的体积需要知道哪些条件? 板书设计: 圆锥的体积计算 V=1/3Sh 例1、1/3×19×12=76(立方厘米) 答:这个零件的体积是76立方厘米。 例2、(!)麦堆底面积:(略) (2)麦堆体积:(略) (3)小麦重量:(略)

不规则几何体体积计算中的三钟方法例析

体积计算中的常用方法 一、转换法 当所给几何体的体积不能直接套用公式或套用公式时某一量(底面积或高)不易求出时,可以转换一下几何体中有关元素的相对位置进行计算求解,该方法尤其适用于求三棱锥的体积. 例1 在边长为a 的正方体1111ABCD A B C D -中,M N P ,,分别是棱11111A B A D A A ,,上的点,且满足1111 2 A M A B = ,112A N ND =,113 4 A P A A = (如图1) ,试求三棱锥1A MNP -的体积. 分析:若用公式1 3 V Sh = 直接计算三棱锥1A MNP -的体积,则需要求出MNP △的面积和该三棱锥的高,这两者显然都不易求出,但若将三棱锥 1A MNP -的顶点和底面转换一下,变为求三棱锥1P A MN -的体积,便能很容易的求出其 高和底面1A MN △的面积,从而代入公式求解. 解: 1113111111111231 3323223424 A MNP P A MN A MN V V S h A M A N A P a a a a --===?=??=△·······. 评注:转换顶点和底面是求三棱锥体积的一种常用方法,也是以后学习求点到 平面距离的一个理论依据. 二、分割法 分割法也是体积计算中的一种常用方法,在求一些不规则的几何体的体积以及求两个几何体的体积之比时经常要用到分割法. 例2 如图2,在三棱柱111ABC A B C -中,E F ,分别为AB AC ,的中点,平面11EB C F 将三棱柱分成两部分,求这两部分的体积之比. 分析:截面11EB C F 将三棱柱分成两部分,一部分是三棱台 111AEF A B C -;另一部分是一个不规则几何体,其体积可以利用棱 柱的体积减去棱台的体积求得. 解:设棱柱的底面积为S ,高为h ,其体积V Sh =.

多面体外接球半径常见的求法整理

多面体外接球半径常见求法 知识回顾: 定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。 定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球。 1、内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。 2、正多面体的内切球和外接球的球心重合。 3、正棱锥的内切球和外接球球心都在高线上,但不重合。 4、基本方法:构造三角形利用相似比和勾股定理。 5、体积分割是求内切球半径的通用做法。 一、公式法 例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为 98,底面周长为3,则这个球的体积为 . 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式. 二、多面体几何性质法 例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是 A.16π B.20π C.24π D.32π 小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的. 三、补形法 例3 ,则其外接球的表面积是 . 小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为 R ,则有2R = 变式1:

变式2:三棱锥O ABC -中,,,OA OB OC 两两垂直,且22OA OB OC a ===,则三棱锥O ABC -外接球的表面积为( ) A .26a π B .29a π C .212a π D .224a π 四、寻求轴截面圆半径法 例4 正四棱锥S ABCD - S A B C D 、、、、都在同一球面上,则此球的体积为 . 小结 根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习. 变式1:求棱长为 a 的正四面体 P – ABC 的外接球的表面积 变式2:正三棱锥的高为 1 ,底面边长为 。求棱锥的内切球的表面积。 C D A B S O 1图3

多面体外接球半径内切球半径的常见几种求法

多面体外接球、内切球半径常见的5种求法 如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用. 公式法 例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98 ,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h ,则有263,1,296,84x x x h h =??=??∴??=???=?? ∴正六棱柱的底面圆的半径12r = ,球心到底面的距离2 d =. ∴外接球的半径1R ==.43 V π∴=球. 小结 本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式. 多面体几何性质法 例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是 A.16π B.20π C.24π D.32π 解 设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =. ∴2R R ==∴= .∴这个球的表面积是2424R ππ=.选C. 小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的. 补形法 例3 若三棱锥的三个侧棱两两垂直, 则其外接球的表面积是 . 解 据题意可知,该三棱锥的三条侧棱两两垂直, ∴把这个三棱锥可以补成一个棱长为. 设其外接球的半径为R ,则有( ) 222229R = ++=.∴294R =. 故其外接球的表面积249S R ππ==. 小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2R =

三角形体积计算公式

关实际问题. 教学重点:运用公式解决问题. 教学难点:理解计算公式的由来. 教学过程: 一、复习准备: 1. 讨论:正方体、长方体的侧面展开图?→ 正方体、长方体的表面积计算公式? 2. 讨论:圆柱、圆锥的侧面展开图? → 圆柱的侧面积公式?圆锥的侧面积公式? 二、讲授新课: 1. 教学表面积计算公式的推导: ① 讨论:如何求棱柱、棱锥、棱台等多面体的表面积?(展开成平面图形,各面面积和) ② 练习:求各面都是边长为10的等边三角形的正四面体S-ABC 的表面积. 一个三棱柱的底面是正三角形,边长为4,侧棱与底面垂直,侧棱长10,求其表面积. ③ 讨论:如何求圆柱、圆锥、圆台的侧面积及表面积?(图→侧→表) 圆柱:侧面展开图是矩形,长是圆柱底面圆周长,宽是圆柱的高(母线), S 圆柱侧=2rl π,S 圆柱表=2()r r l π+,其中为r 圆柱底面半径,l 为母线长。 圆锥:侧面展开图为一个扇形,半径是圆锥的母线,弧长等于圆锥底面 周长,侧面展开图扇形中心角为0 360r l θ=?,S 圆锥侧=rl π, S 圆锥表=()r r l π+,其中为r 圆锥底面半径,l 为母线长。 圆台:侧面展开图是扇环,内弧长等于圆台上底周长,外弧长等于圆 台下底周长,侧面展开图扇环中心角为0 360R r l θ-= ?,S 圆台侧=()r R l π+,S 圆台表=22()r rl Rl R π+++. ④ 练习:一个圆台,上、下底面半径分别为10、20,母线与底面的夹角为60°,求圆台的表面积. (变式:求切割之前的圆锥的表面积) 2. 教学表面积公式的实际应用: ① 出示例:一圆台形花盆,盘口直径20cm ,盘底直径15cm ,底部渗水圆孔直径1.5cm ,盘壁长15cm.. 为美化外表而涂油漆,若每平方米用100毫升油漆,涂200个这样的花盘要多少油漆? 讨论:油漆位置?→ 如何求花盆外壁表面积? 列式 → 计算 → 变式训练:内外涂 ② 练习:粉碎机的上料斗是正四棱台性,它的上、下底面边长分别为80mm 、440mm ,高是200mm, 计算制造这样一个下料斗所需铁板的面积. 3. 小结:表面积公式及推导;实际应用问题 三、巩固练习: 1. 已知底面为正方形,侧棱长均是边长为5的正三角形的四棱锥S-ABCD ,求其表面积. 2. 圆台的上下两个底面半径为10、20, 平行于底面的截面把圆台侧面分成的两部分面积之比为1:1,求截面的半径. (变式:r 、R ;比为p:q ) 3. ,求这个圆锥的表面积. *4. 圆锥的底面半径为2cm ,高为4cm ,求圆锥的内接圆柱的侧面积的最大值. 5. 面积为2的菱形,绕其一边旋转一周所得几何体的表面积是多少? 6. 作业:P30 2、P32 习题1、2题.

圆锥体体积公式的证明

圆锥体体积公式的证明 ? 证明需要几个步骤来解决: 1)圆柱体的微分单元是三棱柱, 而圆锥体的微分单元是三棱锥。 所以, 只要证明三棱锥的体积,是等底等高的三棱柱的体积的1/3,即可知题目所求正确。 2)如图,一个三棱柱可以切分成三个三棱锥:

(上图中,第二个“等底等高”的“高”是横着的,而“底”是竖着的。?) 现在需要证明,这三个三棱锥,体积都是相等的,也就是各自的体积都是图中三棱柱的体积的1/3. 证明需要的命题是:底面全等,且高度相等的三棱锥,体积必然相同。 3)如图,底面全等,且高度相等的三棱锥,体积必然相同。这个命题的证明,需要基本的一个原理:祖暅原理。 注释:祖暅原理

祖暅原理也就是“等积原理”。它是由我国南北朝杰出的数学家、祖冲之(429-500)的儿子祖暅(gèng)首先提出来的。 祖暅原理的内容是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的任何平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等。 在西方,直到17世纪,才由意大利数学家卡瓦列里(,1589-1647)发现。于1635年出版的《连续不可分几何》中,提出了等积原理,所以西方人把它称之为“卡瓦列里原理”。其实,他的发现要比我国的祖暅晚1100多年。 祖暅原理的思想 我们都知道“点动成线,线动成面,面动成体”这句话,直线由点构成,点的多少表示直线的长短;面由线构成,也就是由点构成,点的多少表示面积的大小;几何体由面构成,就是由线构成,最终也就是由点构成,点的多少也表示了体积的大小,要想让两个几何体的体积相等,也就是让构成这两个几何体的点的数量相同,祖暅原理就运用到了它。 两个几何体夹在两平行平面中间,可以理解为这两个几何体平行面间的的高度相等。两平行面之间的距离一定,若视距离为一条线段,那么这个距离上就有无数个点,过一个点,可以画出一个平行于两平行面的截面,若两几何体在被过每一点的平行截面截出的截面面积两两相等,则说明两几何体在同一高度下的每两个截面上的点的数量相同。有无数个截面,同一高度每两个几何体的截面上的点的数量相同,则说明,这两个几何体所拥有的点数量相同,那么也就是说,它们的体积相同。所以我们可以用这种思想来理解祖暅原理。 这个原理说:如果两个高度相等的立体,在任何同样高度下的截面面积都相等,那么,这两个立体的体积就相等。 所以,下图可证明:若两三棱锥的底面(三角形)全等,高度相等,那么它们在任何高度上的截面(三角形)也必然全等。于是可以根据祖暅原理断言: 等底等高的三棱锥,体积都相等:

圆锥的体积计算公式推导

圆锥的体积计算公式推导 执 教: 董宁华 教学内容:第62~65页圆锥的体积计算公式、例1、例2和“做一做”,练习九第1—5题。 教学目标:1.知道圆锥体积计算公式的推导过程,理解并掌握体积公式,能运 用公式求圆锥的体积,并会解决简单的实际问题。 2.培养学生初步的空间观念和发展学生的思维能力。 教学重点:圆锥体积的计算公式。 教学难点:理解和掌握圆锥体积的计算公式。 教具准备:沙、圆锥、圆柱教具,其中圆锥体积等于等底等高圆柱体积的的教具。 教学过程: 一、复习 1、 口答圆柱体积计算公式。 2、 计算下面各圆柱的体积。 (1) 底面积是6.28平方分米,高是5分米。 (2) 底面半径是2分米,高与半径相等。 (3) 底面直径6厘米,高5厘米。 (4) 底面周长6.28分米,高2分米。 3、 小结练习情况。 二、新课 1、 点明课题:圆锥体积的计算 2、 体积公式的推导 要研究圆锥的体积,你想提出什么问题? 出示教具:实验操作、推导圆锥体积计算公式。 (1)通过演示使学生知道什么叫等底等高。(量一量同学们手中的圆柱和圆锥的底面直径和它们的高) (2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系? (3)实验操作,发现规律。 A 、老师演示在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积 之间有怎样的关系?(得出圆锥的体积是与它等底等高的圆柱体体积的13 ) 老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律? B 、学生四人小组做一做实验,看看结果跟老师的一样吗? C 、让学生汇报实验结果。 (4)想一想:是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱 体积的13 。

三棱锥的外接球问题教学设计与反思

《三棱锥的外接球问题》教学设计与反思 福鼎市第六中学李靖 一、课程整合点 立体几何需要有较强的空间想象能力、逻辑推理能力以及作图能力。教学中,若依靠传统的黑板或PPT讲解空间立体几何问题,学生往往由于这些能力的不足造成解题困难,而白板,FLASH教学软件则可以达到图形的自由分解、拖拽、旋转等效果,还可以在课堂上利用作图工具直接作出标准图,为研究立体几何提供了新的思想方法和工具,具有相当大的优越性。在激发学生学习兴趣吸引学生注意力方面能达到较好的效果。 由于全国卷对立体几何中球的考察,多以球内切或外接于几何体的形式出现,而三棱锥外接球的问题是一种常见题型,某些具有垂直关系的三棱锥又可以化归成正方体或长方体,进而使求三棱锥外接球的体积问题就转化为正方体或长方体外接球的相关问题。 二、教材分析: (一)教材的地位、作用: 本节课是在高三学生复习完高中数学必修2第一章《球的表面积和体积公式》的基础上开的一节专题。由于高考对立体几何中球的考察,多以球内切或外接于几何体的形式出现,而三棱锥外接球的问题是一种常见题型,某些具有垂直关系的三棱锥又可以化归成正方体或长方体,进而使求三棱锥外接球的体积问题就转化为正方体或长方体外接球的相关问题。另外,化归思想是数学中的一种重要思想,通过本节的学习,使学生更好地体会化归的思想方法,感受数学的精妙之处。从而丰富学生的理论体系,体会分析问题、解决问题的过程。在历年高考中的选择、填空题中时有出现,加重了对这一方面的考查。 (二)教学目标: 1、知识与技能: (1)了解以正方体或长方体的顶点为顶点的三棱锥的结构特点。 (2)能熟练的把具有一些垂直特点的三棱锥化归成正方体或长方体。并能够利用正方体或长方体外接球的特点求出球的体积。 (3)启发学生发现问题和提出问题,进一步培养学生的逻辑推理能力和创新意识。 2、过程与方法: (1)通过对例题的研究求解,归纳总结,从中体会分析问题、解决问题的过程,培养其思维的严谨性。 (2)培养学生的空间想象能力和化归思想方法的运用。

外接球内切球问题(含答案)

外接球内切球问题 1. (陕西理?6)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( ) A . 4 33 B .33 C . 43 D .123 答案 B 2. 直三棱柱111ABC A B C -的各顶点都在同一球面上,若 12AB AC AA ===,120BAC ∠=?,则此球的表面积等于 。 解:在ABC ?中2AB AC ==,120BAC ∠=?,可得BC =由正弦定理,可得ABC ? 外接圆半径r=2,设此圆圆心为O ',球心为O ,在RT OBO '?中,易得球半径R =故此球的表面积为2 420R ππ=. 3.正三棱柱111ABC A B C -内接于半径为2的球,若,A B 两点的球面距离为π,则正三棱 柱的体积为 . 答案 8 4.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为 A B .13π C .23π D 答案 A 【解析】此正八面体是每个面的边长均为a 的正三角形,所以由8= 1a =A 。 5.已知正方体外接球的体积是π3 32,那么正方体的棱长等于( ) A.22 B.332 C.324 D.3 34 答案 D 6.(2006山东卷)正方体的内切球与其外接球的体积之比为 ( ) A . 1∶3 B . 1∶3 C . 1∶33 D . 1∶9 答案 C 7.(2008海南、宁夏理科)一个六棱柱的底面是正六边 形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,

底面周长为3,则这个球的体积为 . 答案 3 4π 8. (2007天津理?12)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱 的长分别为1,2,3,则此球的表面积为 . 答案 14π 9.(2007全国Ⅱ理?15)一个正四棱柱的各个顶点在一个直径为2 cm 的球面上。如果正四 棱柱的底面边长为1 cm ,那么该棱柱的表面积为 cm 2. 答案 2+ 10.(2006辽宁)如图,半径为2的半球内有一内接正六棱锥P ABCDEF -,则此正六棱 锥的侧面积是________. 答案 11.(辽宁省抚顺一中2009届高三数学上学期第一次月考) 棱长为2的正四面体的四个顶点都在同一个 球面上,若过该球球心的一个截面如图,则图中 三角形(正四面体的截面)的面积是 . 答案 12.(2009枣庄一模)一个几何体的三视图如右图所示,则该几何体外接球的表面积为 ( ) A .π3 B .π2 C .316π D .以上都不对 答案C 13.(吉林省吉林市2008届上期末)设正方体的棱长为233 ,则它的外接球的表面积为( ) A .π38 B .2π C .4π D .π3 4 答案C 1 .(2012新课标理)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ?是边长为 1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为 ( ) F

三棱锥外接球问题

三棱锥外接球问题 河北师范大学实验中学 秦琳 摘要:三棱锥外接球问题是高考热点,也是难点,常见的椎体外接球问题是有固 定方法的,本文做了一些总结。 关键字:三棱柱,外接球,高考题 引入语: 近几年三棱锥外接球问题,经常出现在高考题中,本文就常见的几种题型做一些介绍,希望对同学们有所帮助。 (2011年全国高考题)(11)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ?是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为 ()A 6 ()B 6 ()C 3 ()D 2 【解析】选A ABC ?的外接圆的半径3 r =O 到面ABC 的距离3d == SC 为球O 的直径?点S 到面ABC 的距离为2d = 此棱锥的体积为11233ABC V S d ?=?==此解法充分利用了球当中的性质:每一个截面圆的圆心与球心的连线垂直于截面圆所在平面。下面就几个例题简单总结一下三棱锥外接球问题。 1.(2010辽宁11)已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥, 1SA AB ==,BC ,则球O 表面积等于 选A (A )4π (B )3π (C )2π (D )π 【解析】该椎体可以补成一个长方体,而长方体的体对角线就是外接圆的直径,所以可轻松

得解。 解:14 2112=++=R ππ442==R S 球 练一练:将边长为2的正ABC ?沿BC 边上的高AD 折成直二面角B AD C --,则三棱锥B ACD -的外接球的表面积为 . 答案:5π 说明:对于直角四面体和双垂四面体,都可以补成长方体或正方体,再利用体对角线是外接球直径这一性质求解。 2. 点A 、B 、C 、D 均在同一球面上,其中△ ABC 是正三角形,AD ⊥平面ABC ,AD=2AB=6则该球的体积为 。 解析:由于有一条棱垂直于底面,所以该棱柱可以补成一个直三棱柱,而直三棱柱的外接球的球心正好是三棱柱中截面的外接圆圆心。 答案:π332 说明:对于能补成直三棱柱的三棱锥外接球问题皆可用此法解。 3.正四面体BCD A -的边长为2,求该四面体外接球的表面积 。 解析:正四面体可以看成是有一个正方体的四条对角线构成的,所以它的外接球与正方体的外接球是同一个,从而轻松得解。 解:若对角线为2,则边长为2,体对角线为6,球半径为2 6,表面积为π6。 另解: 33 2=ED ,362344=- =AE = ?-+=OD OD AE ED OD 22)(26 =∴球S π6 此法对于顶点在底面的射影是地面三角形的外心的三棱锥外接球问题皆可用。

相关文档
相关文档 最新文档