文档库 最新最全的文档下载
当前位置:文档库 › OPENSEES

OPENSEES

OPENSEES
OPENSEES

OPENSEES

opensees中的单元问题

梁柱单元

1. Nonlinear BeamColumn

基于有限单元柔度法理论。允许刚度沿杆长变化,通过确定单元控制截面各自的截面抗力和截面刚度矩阵,按照Gauss-Lobatto积分方法沿杆长积分计算出整个单元的抗力与切线刚度矩阵。NonlinearBeamColumn单元对于截面软化行为,构件反应由单元积分点数控制,为保证不同积分点数下构件反应的一致性,可以通过修正材料的应力-应变关系来实现,但同时会造成截面层次反应的不一致,因此需要在截面层次进行二次修正。一根构件不需要单元划分,使用1个单元即可,建议单元内使用4个截面积分点,截面上使用6*6的纤维积分点。

[5]

2. Displacement – Based BeamColumn

基于有限单元刚度法理论。允许刚度沿杆长变化,按照Gauss -Legendre积分方法沿杆长积分计算出整个单元的抗力与切线刚度矩阵。

Displacement - BasedBeam- Column单元对于截面软化行为,构件反应由遭受软化行为的单元长度控制,为保证计算结果的精确性,一般需要将构件离散为更多的单元,而截面层次的反应与构件的单元离散数无关,可以较为准确地反应截面的软化行为。

建议一根构件划分为5个单元,单元内使用4个截面积分点,截面上使用6*6的纤维积分点。[5]

3. Beam With Hinges

基于有限单元柔度法理论。假定单元的非弹性变形集中在构件的两端,在杆件端部设置2个积分控制截面,并设定恰当的塑性铰长度,按照Gauss - Radau积分方法沿塑性铰长度积分来模拟构件和整体结构的非线性反应特点,而杆件中部的区段仍保持弹性。

L P塑性铰长度。

通过对BeamWithHinges单元的积分方法进行修正,保证塑性铰区只存在一个积分点,BeamWithHinges单元对于截面软化行为可以在单元层次和截面层次准确地进行描述。[1]建议预设合理的塑性铰长度,截面上使用6*6的纤维积分点。[5]

纤维模型

纤维模型是指将纤维截面赋予梁柱构件(即定义构件的每一截面为纤维截面),纤维截面是将构件截面划分成很多小纤维(包括钢筋纤维和混凝土纤维)对每一根纤维只考虑它的轴向本构关系,且各个纤维可以定义不同的本构关系。纤维模型假定构件的截面在变形过程中始终保持为平面,这样只要知道构件截面的弯曲应变和轴向应变就可以得到截面每一根纤维的应变,从而可以计算得到截面的刚度。纤维模型能很好的模拟构件的弯曲变形和轴向变形,但不能模拟构件的剪切非线性和扭曲非线性。

零长度构件

可以赋予零长度构件BARSLIPMaterial(这种材料的本构关系可以精确模拟循环加载时在构件节点处由于钢筋的滑移和混凝土的开裂所引起的构件的刚度退化和强度退化现象)来模拟构件节点处的变形,另外用Bond-SP01Material可以模拟节点处钢筋的应力渗透现象(节点处钢筋还没有整体滑移)所引起的构件的强度和刚度变化。

OPENSEES中零长度构件虽然在建模时是零长度,但在计算这种构件变形时却是取其长度为单位长度。计算时将零长度截面的弯曲曲率乘以1得到构件的弯曲变形。

梁柱构件

建模时核心区混凝土轴心抗压强度增大百分之40,以考虑箍筋对核心混凝土的强度和延性的增加。或者取柱构件受约束混凝土的强度增加系数K=1.2[3];

剪力墙

基于纤维截面来模拟,定义一种专门用来模拟构件截面剪切应变的材料,将此材料组合到纤维截面中,组合截面的应变为纤维截面应变与剪切材料应变的叠加,将构件的剪切柔度矩阵与构件的弯曲和轴向柔度矩阵叠加就可以求得构件考虑剪切变形的柔度矩阵。

因为纤维模型的求解是基于平面假设,而剪力墙构件变形很大时其截面显然不会保持平面,所以还是有一定的误差。HystereticMaterial模拟构件截面剪切变形的应力-应变关系。通过减小钢筋的屈服后刚度模拟实际情况。(实际构件在变形时并不是平截面假定,如果按照同等位移的话,那么将会增加约束,使结构偏小。)抵消由于平面假设所引起的刚度增加。经过试验与计算结构的比较,认为将构件截面钢筋纤维屈服后刚度降低百分之30~40时,计算结果与试验结果符合的较好。[2]

单元参数问题

积分点数目

单个构件为3~5个,杆件两端设置2个,中间均布2~3个。混凝土本构模型中是否考虑受拉区段对构件的滞回性能影响不大,对圆钢管混凝土柱进行数值模拟时,混凝土本构模型宜采用Mander本构模型。在混凝土本构关系相同的条件下,钢材本构关系中的强化段对柱试件滞回性能的影响显著由分析可知,不宜考虑钢材的强化段,否则会使数值计算结果高于试验测试结果。

对于纤维截面网格划分,径向环向划分的段数在6~20为宜,钢材和混凝土可分别划分,亦可以统一划分。[4]

附录

1. OpenSees中三种非线性梁柱单元的研究

2. OPENSEES中纤维模型的研究

3. 基于OPENSEES的钢筋混凝土柱非线性有限元分析

4. 基于柔度法的纤维梁柱单元及其参数分析

5. 纤维模型中单元、截面及纤维划分问题研究

PUSHOVER分析方法

静力弹塑性分析方法是:通过对结构逐步施加某种分布形式的水平静力荷载,通过静力推覆分析计算得到结构的内力和变形,并借助地震需求谱或直接估算的目标性能需求点等方法,近似得到结构在预期地震作用下的抗震性能状态,由此对结构的抗震性能进行评估。静力弹塑性分析又称Pushover分析、静力推覆分析等。

侧力模式

我国抗震规范:倒三角模式。考虑楼层高度影响的侧力模式。

SAP2000:均匀加速度分布、模态荷载分布、自定义荷载分布。

Opensees模型

OpenSEES中有限元对象被划分成更多的子对象,其中包括节点对象、材料对象、截面对象、单元对象、荷载对象和约束对象等,并且为其子对象提供了多种不同的选择,包括不同的材料类型,截面形式,荷载模式以及约束方式等,再由它们组合成为有限元模型对象。在程序中建立子对象的命令主要有:Node、Mass、Material、Section、Element、LoadPattern、TimeSeries、Transformation、Block和Constraint等等。通过上述命令,我们可以分别确定对象中各节点的位置、节点集中质量、材料本构关系、截面恢复力模型、单元类型、外加荷载模式、几何坐标转换类型和约束形式等。这些命令构建了有限元模型相应的子对象,由这些子对象组合构成有限元模型对象ModelBuilder。

材料的本构关系

OpenSEES提供了单轴受力材料和多轴受力材料供使用者选择,考虑论文主要涉及到结构平面问题,这里仅对单轴应力状态的钢筋本构和混凝土本构进行介绍。OpenSEES中为单轴受力材料提供了丰富的对象:弹性材料、理想弹塑性材料、强化材料、滞回材料、粘滞材料、混凝土材料、钢筋材料、Fedeas材料,等等。单轴受力材料中混凝土和钢筋的本构关系是目前研究的最为成熟和最为充分的一类。

钢筋本构模型

OpenSEES程序中钢筋的应力应变关系采用由Menegotto和Pinto建议,并经Filippou 等人修正,能够考虑等向应变硬化影响的本构模型。该本构模型采用应变的显函数表达形式,不仅在计算上非常有效率,而且保持了与钢筋反复加载试验结果的非常好的一致性,可以反映包辛格效应(反向加载,弹性极限下降明显)。

混凝土本构模型

混凝土模型如图2.2、图2.3所示,混凝土受压的滞回曲线采用Scott-Kent-Park模型[42][43],该模型通过修正混凝土材料受压时的峰值应力应变和软化段的斜率来考虑混凝土中横向箍筋的约束影响,修正后的本构模型在简化和精确之间达到了较好的平衡。其调用名为Concrete02。OpenSEES中还提供了不考虑混凝土受拉的本构模型(Concrete01)和考虑材料拉伸强化的两种混凝土模型(Concrete03)。

截面恢复力模型

截面恢复力模型按照建模的细化程度主要可以分为基于构件、基于截面和基于材料的恢复力模型三类。在OpenSEES中直接提供的常规截面恢复力模型主要有弹性恢复力模型、理想弹塑性恢复力模型、两折线强化恢复力模型和滞回恢复力模型,通过定义材料类及材料类派生类对象来完成对积分控制点处截面恢复力模型的定义。如通过建立ElasticSection2d(),SectionAggregator()等类的对象来定义弹性截面恢复力模型和对组合两种或两种以上的截面恢复力模型。如图2.4所示设置截面和确定截面恢复力模型。

OpenSEES将单元沿纵向划分成若干离散的单元,各个单元依靠积分控制点

(integration points)组装成梁柱单元。OpenSEES为位于截面处的积分控制点提供Gauss-Legendre和Gauss-Lobatto等数值积分方法。通过数值积分方法得到整个构件的刚度。众所周知,构件的弹塑性变形往往集中于构件端部截面。OpenSEES提供的Gauss-Legendre数值积分方法对结构构件非线性变形的模拟,只能随着积分控制点的增加才能逐渐接近单元端部截面,因此积分点数目的选择将直接影响该方法对构件弹塑性变形模拟的精确度;而Gauss-Lobatto数值积分方法始终保持两个积分控制点在单元的端部截面处[44],因此使用该方法能够更加有效的模拟构件的非线性行为。

当划分的纤维数目达到一定水平之后,数值积分产生的误差将不再显著。对于平面问题中的矩形截面分析,纤维数目达到40就可以达到足够的精度[45]。

单元类型

OpenSEES程序提供了多种单元分析模型,如实体模型和杆系模型,实体模型中包括二维实体模型和三维实体模型,如平面多节点实体模型、多节点空间实体模型等;OpenSEES 中杆系模型主要包括桁架单元Truss、零长度单元ZeroLength、弹性梁柱单元ElasticBeamColumn和非线性梁柱单元NonlinearBeamColumn。本研究主要涉及三种非线性梁柱单元:NonlinearBeamColumn单元、DispBeam-Column单元和BeamWith Hinges单元。NonlinearBeamColumn和BeamWithHinges单元是基于有限单元柔度法理论的,在编程过程中由建立Force Beam-Column类的子类来实现;DispBeamColumn单元基于有限单元刚度法理论。这三种单元既能够用于考虑地震作用下结构整体分析,又能够用于构件本身的地震响应的考察。以下将分别进行介绍。

a)NonlinearBeamColumn单元允许刚度沿杆件长度变化,通过确定单元控制截面的各截面抗力和截面刚度,按照Gauss-Lobatto积分方法计算单元抗力和刚度。可以设置多个积分控制点来适当提高精度。实际编程过程中,对于二维结构分析,由BeamIntegration、ForceBeamColumn2d相互协作完成。如通过建立BeamIntegration的子类对象LobattoBeamIntegration设置积分方法和考虑构件非线性,再建立ForceBeamColumn2d类的实例完成该单元的建立。

b)DispBeamColumn单元允许刚度沿杆件长度变化,通过节点位移计算得到单元的端部位移,进而求得截面的变形,再根据截面恢复力关系得到相应的截面抗力和刚度,再按照Gauss-Legendre积分方法得到单元内力和刚度。可以通过增加积分控制点提高计算精度。实际编程过程中,对于二维结构分析,由BeamIntegration、DispBeamColumn2d相互协作完

成。如通过建立BeamIntegration的子类对象LegendreBeamIntegration设置积分方法和考虑构件非线性,再建立DispBeamColumn2d类的实例完成该单元的建立。

c)Beam With Hinges 单元假定非线性变形集中在构件两端,沿杆长在杆件两端设置积分控制截面和塑性较长,按照Gauss-Radau积分方法沿塑性铰长积分,模拟构件和整体结构的非线性行为,杆件中间保持弹性。实际编程过程中,对于二维结构分析,由BeamIntegration、ForceBeamColumn2d相互协作完成。如通过建立BeamIntegration的子类对象的实例HingeRadauBeamIntegration(double lpI,double lpJ)设置积分方法和两端塑性铰长度,再建立ForceBeamColumn2d类的实例完成该单元的建立。

结构分析

OpenSEES中非线性方程组的求解采用增量迭代法进行。该方法将外荷载的施加划分成若干加载步,在每一级荷载步中进行迭代计算,使每一级增量步中计算误差减到很小的范围内。该方法在结构分析中得到广泛应用。OpenSEES程序中外荷载的施加可以通过以下方法控制:基于位移控制的施加方法、基于荷载控制的施加方法、荷载-位移组合控制方法和弧长控制法,各级增量步作用下的迭代方法也比较丰富,主要包括:线性迭代、牛顿线性迭代、Newton-Raphson方法、改进的Newton-Raphson方法、Krylov-Newton方法、Broyden方法和BFGS方法。

OpenSEES程序中同时也给出了增量迭代法求解时容差判敛精度的确定方法,向使用者提供了基于增量位移、不平衡力和能量控制等几种不同的收敛准则,通过设置函数的参数收敛容差达到确定判敛精度的目的。以能量控制为例,当结构第j次迭代的能量增量值和结构第一次迭代时的能力相比满足下式时,可以认为结构此时内外力平衡。

此外,OpenSEES程序中还提供了节点编号的优化方法。如逆Cuthill-Mckee算法,简称RCM算法[39],用于非线性分析开始前对用户编制的节点编号进行优化,以减小结构整体刚度矩阵的带宽和数据存储量,提高了计算效率;同时OpenSEES程序提供了罚函数法、拉格朗日乘子法和Transformation等方法来处理多点约束的情况,这些方法用来决定在非线性方程组求解过程中如何处理约束自由度所对应的行列向量;不仅如此,针对刚度矩阵的不同类型(稀疏程度,是否对称,是否正定等),OpenSEES程序向使用者提供了各种不同的数据存储方式和求解方法。如SparseSPD类对象用于对称的稀疏矩阵,BandGeneral类对象用于

非对称的带状矩阵等,使用者可以根据实际情况选用。

OpenSEES中结果输出简介

在结果输出部分,OpenSEES程序为使用者提供了极其灵活的方式,主要依靠Recorder 类完成。用户可以根据需要自定义需要记录的计算数据,例如,输出参数中包括非线性时程分析中各点的位移、速度、加速度、位移增量以及整个过程中各个响应量的包络值;单元在各时刻的内力、变形以及截面抗力、变形和刚度等信息;当采用纤维界面梁柱单元进行分析时,用户可以输出指定位置的钢筋和混凝土纤维的应力应变关系等数据。

节点类

节点类的对象指的是有限元域内定义了自由度的离散点。节点类中的成员函数用来存储节点坐标、节点响应和节点不平衡力等信息,并提供了设置和检查这些信息的接口函数。节点类的接口函数主要包括以下几类:

a)节点构造函数允许建立1、2、3维节点,自由度数由用户自定义;

b)类中提供了检查节点坐标和自由度等相关信息的方法;

c)类中提供了设定和检查节点当前响应量和求解路径上节点响应量的方法,这些响应量包括节点位移、荷载增量等;

d)类中提供了设定节点不平衡荷载归零、不平衡荷载增量及其检查的方法;

e)类中还提供了设定和检查节点质量等方法。

单元类

单元类对象的基本功能是提供基于当前应力状态和单元荷载状态下单元的线刚度、质量、阻尼和残余应力等信息。

a)每个单元类对象与多个节点对象相关联,如图 2.10,在单元类中提供了获得相关节点数目和节点标识符的方法;

b)单元类中提供了返回单元线刚度、阻尼、质量等信息的方法;可以利用程序中的函数返回当前残余荷载信息或将之置零,可以通过创建ElementalLoad对象将荷载的贡献添加到残余荷载中去;

c)可以通过Element类对象的子类创建用于线性和非线性分析的单元对象,每个对象可以同commit()方法保存当前状态信息,单元类没有给出任何的执行部分的代码,所有方法的实现都必须在子类予以呈现。

约束类

OpenSEES中有限元约束类提供了单点约束(SP_Constraint)和多点约束(MP_Constraint)两种类型,其中单点约束的作用形式为节点自由度提供指定的值;多点约束则是为相关节点一定数量的自由度提供参考值。

约束类对象在整个系统中保存用于分析的模型相应节点上存在的约束值,并可以利用其内部成员函数将约束应用到节点上。每个单点约束对象都与单个节点对象相关联,如图2.10所示。

单点约束类对象接口声明如图2.11所示。该类为用户提供了获取被约束的节点数目、自由度数目和约束值等方法;不仅如此,单点约束类还为用户提供判断约束是否具备相同的类型,借此来缩减方程数量;除此之外,该类中还提供给用户设置和获取分析过程中所用的荷载模式的编号,同时提供了针对不同荷载模式使用不同约束值的接口函数。单点约束类的接口仅适用于约束不随时间改变的情况,对应于约束随时间变化的情况可以通过其子类类实现。

同样每个多点约束对象和两个或两个以上节点对象相关联,该类的接口函数中提供用户获取被约束节点的数目、主节点与从节点的自由度的约束情况,以及主从节点之间如何关联等信息的方法,此外,isTimeVarying()函数的实现使得用户可以方便的判断某节点约束是否随时间改变。

荷载类

在OpenSEES中有限元模型上荷载可以分为两类:节点荷载(NodalLoad)和单元荷载(ElementalLoad)。节点荷载即作用在节点上的荷载;单元荷载就是作用在单元上的荷载,可以是构件自重、表面张力、初始应力和温度变化引起的力等。在有限元程序中提供单

元荷载类的抽象非常重要,如果没有该类的定义,用户就必须手动将单元荷载折算成节点荷载了。

每个节点荷载对象与一个节点对象相关,如图2.10所示。该类对象用来施加节点荷载,用户可以利用程序提供的接口实现获取与荷载相关的节点对象,并可以将荷载以任意比例施加于相关节点。单元荷载类与节点荷载类基本相似。

CAD常用命令汇总及详解

CAD中有哪些命令?我们可以把它们分为几类。一类是绘图类,二类是编辑类,三类是设置类,四类是其它类,包括标注、视图等。我们依次分析。 第一类,绘图类。常用的命令有: Line 直线 Xline 构造线 mline 双线 pline 多义线 rectang 矩形 arc 圆弧 circle 圆 hatch 填充 boundary 边界 block 定义块 insert 插入快 第二类,编辑类。常用的命令有: Matchprop 特性匹配 Hatchedit 填充图案编辑 Pedit 多义线编辑 Erase 擦除 Copy 拷贝 Mirror 镜像 Offset 平移 Array 阵列 Move 移动 Rotate 旋转 Scale 缩放 Stretch 拉伸 Lengthen 拉长 Trim 裁减 Extend 延伸 Break 打断 Fillet 倒圆角 Explode 炸裂 Align 对齐 Properties 属性

绘图工具栏: 直线(L):全称(line) 在屏幕上指定两点可画出一条直线。也可用相对坐标 或者在正交模式打开的情况下,直接给实际距离鼠标拖动来控制方向 构造线(XL):全称(xline) H为水平V为垂直O为偏移A为角度B为等分一个角度。 多段线(PL):全称(pline) 首先在屏幕上指定一点,然后有相应提示: 指定下一个点或[圆弧(A)/半宽(H)/长度(L)/放弃(U)/宽度(W)]。可根据需要来设置。 其中“圆弧”指定宽度可画任意角度圆弧;“半宽”指多段线的一半宽度,即如要高线宽为10,则5;“长度”给相应的值,则画出相应长度的多段线;“放弃”指放弃一次操作;“宽度”指多段线的宽度 多边形(pol):全称(polygon) 所绘制多边形为正多边形,边数可以自己设 E:根据边绘制多边形也可根据圆的半径利用外切和内接来画正多边形 矩形(REC):全称(rectang) 点击矩形工具后出现下列提示: 指定第一个角点或[倒角(C)/标高(E)/圆角(F)/厚度(T)/宽度(W)] 其中“倒角”是将90度直角的两条边割去一点。变成一个斜角。“标高”是空间上的意义可以在三视图当中展现出来,标高是相对的;“圆角”:即是将四个直角边倒成半径为X的圆角;“厚度”:空间上的意义,可在Z轴上表现出来“宽度”:平面空间的概念,指矩形四边的宽度。 圆弧(ARC或A):默认为3点画圆弧,成弧方向为逆时针,画优弧半径给负值。绘图菜单中有如下选项: 起点、圆心、端点; 起点、圆心、角度; 起点、圆心、长度; 起点、端点、角度; 起点、端点、方向; 起点、端点、半径; 圆心、起点、端点; 圆心、起点、角度; 圆心、起点、长度;

OpenSEES重点笔记

1、利用零长单元模拟阻尼, uniaxialMaterial Elastic 1 6.8098e6; uniaxialMaterial Viscous 2 3.24e5 1; uniaxialMaterial Parallel 3 3 5; element zeroLength 1 $iNode $jNode -mat 3 -dir 1; 通常有两种方式: (1)truss element and viscous material.(桁架单元和阻尼材料) (2)force-based beam-column element and Maxwell material(基于力的梁柱单元和Maxwell 材料)。 -、如何运行OpenSEES 有三种方法可以执行OpenSees/Tcl命令: 1、interactive交互式 直接将命令输入Prompt。 2、执行文件输入 这种方法是最常用的一种,以source inputfile.tcl方式执行已写好的外部命令文件。 3、Batch模式 即以Opensees inputFile.tcl方式在MS-DOS/Unix promt中运行。 二、定义单位和常数 在编写一个较大的Opensees命令时。最好先定义好单位及常数。在Opensees中,编译器不能自行转换单位。所以一开始就要先定义好。 单位定义包括两部分:首先定义基本单位;再定义合成单位。其中基本单位要相互独立。同时,在定义单位时,既可以按国际公制单位,也可以按私制单位。因些在单位定义文件中可能是混合的。我个人建议,还是采用国际公制单位较好。像国外常用英制单位。很不习惯。对于一些常数,如 和g等常数要事先定义好。 在定义这些单位时所用的命令是“set”。

大数据分析的六大工具介绍

大数据分析的六大工具介绍 2016年12月 一、概述 来自传感器、购买交易记录、网络日志等的大量数据,通常是万亿或EB的大小,如此庞大的数据,寻找一个合适处理工具非常必要,今天我们为大家分学在大数据处理分析过程中六大最好用的工具。 我们的数据来自各个方面,在面对庞大而复杂的大数据,选择一个合适的处理工具显得很有必要,工欲善其事,必须利其器,一个好的工具不仅可以使我们的工作事半功倍,也可以让我们在竞争日益激烈的云计算时代,挖掘大数据价值,及时调整战略方向。 大数据是一个含义广泛的术语,是指数据集,如此庞大而复杂的,他们需要专门设il?的硬件和软件工具进行处理。该数据集通常是万亿或EB的大小。这些数据集收集自各种各样的来源:传感器、气候信息、公开的信息、如杂志、报纸、文章。大数据产生的其他例子包括购买交易记录、网络日志、病历、事监控、视频和图像档案、及大型电子商务。大数据分析是在研究大量的数据的过程中寻找模式, 相关性和其他有用的信息,可以帮助企业更好地适应变化,并做出更明智的决策。 二.第一种工具:Hadoop Hadoop是一个能够对大量数据进行分布式处理的软件框架。但是Hadoop是 以一种可黑、高效、可伸缩的方式进行处理的。Hadoop是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop还是可伸缩的,能够处理PB级数据。此外,Hadoop依赖于社区服务器,因此它的成本比较低,任何人都可以使用。

Hadoop是一个能够让用户轻松架构和使用的分布式计算平台。用户可以轻松地 在Hadoop上开发和运行处理海量数据的应用程序。它主要有以下儿个优点: ,高可黑性。Hadoop按位存储和处理数据的能力值得人们信赖。,高扩展性。Hadoop是 在可用的计?算机集簇间分配数据并完成讣算任务 的,这些集簇可以方便地扩展到数以千计的节点中。 ,高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动 态平衡,因此处理速度非常快。 ,高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败 的任务重新分配。 ,Hadoop带有用Java语言编写的框架,因此运行在Linux生产平台上是非 常理想的。Hadoop上的应用程序也可以使用其他语言编写,比如C++。 第二种工具:HPCC HPCC, High Performance Computing and Communications(高性能计?算与通信)的缩写° 1993年,山美国科学、工程、技术联邦协调理事会向国会提交了“重大挑战项 U:高性能计算与通信”的报告,也就是被称为HPCC计划的报告,即美国总统科学战略项U ,其U的是通过加强研究与开发解决一批重要的科学与技术挑战 问题。HPCC是美国实施信息高速公路而上实施的计?划,该计划的实施将耗资百亿 美元,其主要U标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络 传输性能,开发千兆比特网络技术,扩展研究和教育机构及网络连接能力。

ORACLE SQLPLUS 常用命令及解释

Oracle SQLPlus常用命令及解释 1.@ 执行位于指定脚本中的SQLPlus语句。可以从本地文件系统或Web服务器中调用脚本。可以为脚本中的变量传递值。在iSQL*Plus中只能从Web服务器中调用脚本。 2.@@ 执行位于指定脚本中的SQL*Plus语句。这个命令和@(“at”符号)命令功能差不多。在执行嵌套的命令文件时它很有用,因为它会在与调用它的命令文件相同的路径或url中查找指定的命令文件。在iSQL*Plus中只支持url形式。 3./ 执行保存在SQL缓冲区中的最近执行的SQL命令或PL/SQL块。在SQL*Plus命令行中,可在命令提示符或行号提示符使用斜线(/)。也可在iSQL*Plus的输入区中使用斜线(/)。斜线不会列出要执行的命令。 4.ACCEPT 可以修改既有变量,也可定义一个新变量并等待用户输入初始值,读取一行输入并保存到给出的用户变量中。ACCEPT在iSQL*Plus中不可用。 5.APPEND 把指定文本添加到SQL缓冲区中当前行的后面。如果text的最前面包含一个空格可在APPEND和text间输入两个空格。如果text的最后是一个分号,可在命令结尾输入两个分号(SQL*Plus会把单个的分号解释为一个命令结束符)。APPEND 在iSQL*Plus中不可用。 6.ARCHIVE LOG 查看和管理归档信息。启动或停止自动归档联机重做日志,手工(显示地)归档指定的重做日志,或者显示重做日志文件的信息。 7.ATTRIBUTE 为对象类型列的给定属性指定其显示特性,或者列出单个属性或所有属性的当前显示特性。 8.BREAK 分开重复列。指定报表中格式发生更改的位置和要执行的格式化动作(例如,在列值每次发生变化时跳过一行)。只输入BREAK而不包含任何子句可列出当前的BREAK定义。 9.BTITLE 在每个报表页的底部放置一个标题并对其格式化,或者列出当前BTITLE定义。

OPENSEES

OPENSEES opensees中的单元问题 梁柱单元 1. Nonlinear BeamColumn 基于有限单元柔度法理论。允许刚度沿杆长变化,通过确定单元控制截面各自的截面抗力和截面刚度矩阵,按照Gauss-Lobatto积分方法沿杆长积分计算出整个单元的抗力与切线刚度矩阵。NonlinearBeamColumn单元对于截面软化行为,构件反应由单元积分点数控制,为保证不同积分点数下构件反应的一致性,可以通过修正材料的应力-应变关系来实现,但同时会造成截面层次反应的不一致,因此需要在截面层次进行二次修正。一根构件不需要单元划分,使用1个单元即可,建议单元内使用4个截面积分点,截面上使用6*6的纤维积分点。 [5] 2. Displacement – Based BeamColumn 基于有限单元刚度法理论。允许刚度沿杆长变化,按照Gauss -Legendre积分方法沿杆长积分计算出整个单元的抗力与切线刚度矩阵。 Displacement - BasedBeam- Column单元对于截面软化行为,构件反应由遭受软化行为的单元长度控制,为保证计算结果的精确性,一般需要将构件离散为更多的单元,而截面层次的反应与构件的单元离散数无关,可以较为准确地反应截面的软化行为。 建议一根构件划分为5个单元,单元内使用4个截面积分点,截面上使用6*6的纤维积分点。[5] 3. Beam With Hinges 基于有限单元柔度法理论。假定单元的非弹性变形集中在构件的两端,在杆件端部设置2个积分控制截面,并设定恰当的塑性铰长度,按照Gauss - Radau积分方法沿塑性铰长度积分来模拟构件和整体结构的非线性反应特点,而杆件中部的区段仍保持弹性。

数据分析软件和工具

以下是我在近三年做各类计量和统计分析过程中感受最深的东西,或能对大家有所帮助。当然,它不是ABC的教程,也不是细致的数据分析方法介绍,它只是“总结”和“体会”。由于我所学所做均甚杂,我也不是学统计、数学出身的,故本文没有主线,只有碎片,且文中内容仅为个人观点,许多论断没有数学证明,望统计、计量大牛轻拍。 于我个人而言,所用的数据分析软件包括EXCEL、SPSS、STATA、EVIEWS。在分析前期可以使用EXCEL进行数据清洗、数据结构调整、复杂的新变量计算(包括逻辑计算);在后期呈现美观的图表时,它的制图制表功能更是无可取代的利器;但需要说明的是,EXCEL毕竟只是办公软件,它的作用大多局限在对数据本身进行的操作,而非复杂的统计和计量分析,而且,当样本量达到“万”以上级别时,EXCEL的运行速度有时会让人抓狂。 SPSS是擅长于处理截面数据的傻瓜统计软件。首先,它是专业的统计软件,对“万”甚至“十万”样本量级别的数据集都能应付自如;其次,它是统计软件而非专业的计量软件,因此它的强项在于数据清洗、描述统计、假设检验(T、F、卡方、方差齐性、正态性、信效度等检验)、多元统计分析(因子、聚类、判别、偏相关等)和一些常用的计量分析(初、中级计量教科书里提到的计量分析基本都能实现),对于复杂的、前沿的计量分析无能为力;第三,SPSS主要用于分析截面数据,在时序和面板数据处理方面功能了了;最后,SPSS兼容菜单化和编程化操作,是名副其实的傻瓜软件。 STATA与EVIEWS都是我偏好的计量软件。前者完全编程化操作,后者兼容菜单化和编程化操作;虽然两款软件都能做简单的描述统计,但是较之 SPSS差了许多;STATA与EVIEWS都是计量软件,高级的计量分析能够在这两个软件里得到实现;STATA的扩展性较好,我们可以上网找自己需要的命令文件(.ado文件),不断扩展其应用,但EVIEWS 就只能等着软件升级了;另外,对于时序数据的处理,EVIEWS较强。 综上,各款软件有自己的强项和弱项,用什么软件取决于数据本身的属性及分析方法。EXCEL适用于处理小样本数据,SPSS、 STATA、EVIEWS可以处理较大的样本;EXCEL、SPSS适合做数据清洗、新变量计算等分析前准备性工作,而STATA、EVIEWS在这方面较差;制图制表用EXCEL;对截面数据进行统计分析用SPSS,简单的计量分析SPSS、STATA、EVIEWS可以实现,高级的计量分析用 STATA、EVIEWS,时序分析用EVIEWS。 关于因果性 做统计或计量,我认为最难也最头疼的就是进行因果性判断。假如你有A、B两个变量的数据,你怎么知道哪个变量是因(自变量),哪个变量是果(因变量)? 早期,人们通过观察原因和结果之间的表面联系进行因果推论,比如恒常会合、时间顺序。但是,人们渐渐认识到多次的共同出现和共同缺失可能是因果关系,也可能是由共同的原因或其他因素造成的。从归纳法的角度来说,如果在有A的情形下出现B,没有A的情形下就没有B,那么A很可能是B的原因,但也可能是其他未能预料到的因素在起作用,所以,在进行因果判断时应对大量的事例进行比较,以便提高判断的可靠性。 有两种解决因果问题的方案:统计的解决方案和科学的解决方案。统计的解决方案主要指运用统计和计量回归的方法对微观数据进行分析,比较受干预样本与未接受干预样本在效果指标(因变量)上的差异。需要强调的是,利用截面数据进行统计分析,不论是进行均值比较、频数分析,还是方差分析、相关分析,其结果只是干预与影响效果之间因果关系成立的必要条件而非充分条件。类似的,利用截面数据进行计量回归,所能得到的最多也只是变量间的数量关系;计量模型中哪个变量为因变量哪个变量为自变量,完全出于分析者根据其他考虑进行的预设,与计量分析结果没有关系。总之,回归并不意味着因果关系的成立,因果关系的判定或推断必须依据经过实践检验的相关理论。虽然利用截面数据进行因果判断显得勉强,但如果研究者掌握了时间序列数据,因果判断仍有可为,其

DOS常用命令宝典全面+详细

](一)MD——建立子目录 1.功能:创建新的子目录 2.类型:内部命令 3.格式:MD[盘符:][路径名]〈子目录名〉 4.使用说明: (1)“盘符”:指定要建立子目录的磁盘驱动器字母,若省略,则为当前驱动器;(2)“路径名”:要建立的子目录的上级目录名,若缺省则建在当前目录下。例:(1)在C盘的根目录下创建名为FOX的子目录;(2)在FOX子目录下再创建USER子目录。 C:、>MD FOX (在当前驱动器C盘下创建子目录FOX) C:、>MD FOX 、USER (在FOX 子目录下再创建USER子目录) (二)CD——改变当前目录 1.功能:显示当前目录 2.类型:内部命令 3.格式:CD[盘符:][路径名][子目录名] 4.使用说明: (1)如果省略路径和子目录名则显示当前目录; (2)如采用“CD、”格式,则退回到根目录; (3)如采用“CD.。”格式则退回到上一级目录。 例:(1)进入到USER子目录;(2)从USER子目录退回到子目录;(3)返回到根目录。 C:、>CD FOX 、USER(进入FOX子目录下的USER子目录) C:、FOX、USER>CD.。(退回上一级根目录) C:、FOX>CD、 (返回到根目录) C:、> (三)RD——删除子目录命令 1.功能:从指定的磁盘删除了目录。 2.类型:内部命令 3.格式:RD[盘符:][路径名][子目录名] 4.使用说明: (1)子目录在删除前必须是空的,也就是说需要先进入该子目录,使用DEL(删除文件的命令)将其子目录下的文件删空,然后再退回到上一级目录,用RD命令删除该了目录本身; (2)不能删除根目录和当前目录。 例:要求把C盘FOX子目录下的USER子目录删除,操作如下: 第一步:先将USER子目录下的文件删空; C、>DEL C:、FOX、USER、*。* 第二步,删除USER子目录。 C、>RD C:、FOX、USER

用Opensees进行IDA分析(桥墩模型命令流)

wipe # Openseesdandun # #Units:kN, m, sec # ----------------- # Start of model generation # ----------------- # CreateModeBulider (with two-dimensions and 3 DOF/node) model basic -ndm 2 -ndf 3 # ----------------- # tag X Y node 1 0.0 0.0 node 2 0.0 0.0 node 3 0.0 2.0 node 4 0.0 4.0 node 5 0.0 6.0 node 6 0.0 8.0 node 7 0.0 10.0 node 8 0.0 12.0 node 9 0.0 14.0 node 10 0.0 16.0 node 11 0.0 18.0 node 12 0.0 20.0 # ----------------- # Fix supports at base of columns # tag DX DY RZ fix 1 1 1 1 # ---------------- # Concrete tag fc ec0 fcuecu # Core concrete (confined) uniaxialMaterial Concrete01 1 -25600.0 -0.00219 -17780.0 -0.01 #Cover concrete (unconfined) uniaxialMaterial Concrete01 2 -23400.0 -0.002 -0.0 -0.006 # STEEL # Reinforcing steel setfy 400000.0; #Yield stress set E 200000000.0;# Young's modulus # tag fy E0 b uniaxialMaterial Steel02 3 $fy $E 0.01 18.5 0.925 0.15 uniaxialMaterial Elastic 11 29043600 uniaxialMaterial Elastic 12 12326600 uniaxialMaterial Elastic 13 587247596 #Define cross-section for nonlinear columns # ---------------------

Linux常用命令详解(配合示例说明,清晰易懂)

Linux常用命令详解 (常用、详细) BISTU 自动化学院 刷碗小工(frisen.imtm) 2010年11月 开源社区,造福大家,版权所有,翻录不究(初次接触Linux命令可能对以下说明有不少疑问,可待看完一遍后再回头细看) (配合Ctrl + F可快速查找你想了解的命令)

索引:(待完善) 文件说明:Linux命令很多,但最常用的80个左右 文档内容充实,用示例说明命令如何使用笔者力求语言简洁,清晰易懂 由于忙于其他事情,改进排版的工作只能搁置了 最后,望此文档能为大家Linux学习之路献微薄之力 一、路径: 执行命令前必须要考虑的一步是命令的路径,若是路径错误或是没有正确的指定,可能导致错误的执行或是找不到该命令。要知道设置的路径,可执行以下命令: 一般而言,本书的命令位于/bin、usr/bin、/sbin、/usr/sbin之中。若读者执行了命令却出现“command not find”或是“命令不存在”的字样,就必须要确定该命令的位置是否在命令的路径中,或是系统上根本没有安装该套件。 二、命令顺序: 若在shell内置的命令/bin以及/usr/bin之下都出现了命令pwd,那当我们执行该命令时,会执行哪一个?答案是第一优先执行shell内置的命令,再执行路径中的设置;因此若有相同名称的命令时,必须要注意顺序设置,或是直接输入完整路径。 三、参数(或称选项)顺序: 一般除了特殊情况,参数是没有顺序的。举例而言,输入“–a –v”与输入“–v –a”以及“–av”的执行效果是相同的。但若该参数后指定了要接的文件或特殊对象,如“–a cmd1 –v cmd2”,则不能任意改变选项顺序。 四、常用参数: 下面所列的是常见的参数(选项)意义: --help,-h 显示帮助信息 --version,-V 显示版本信息 -v 繁琐模式(显示命令完整的执行过程) -i 交谈模式(指定界面) -l 长列表输出格式 -q,-s 安静模式(不显示任何输出或错误信息) -R 递归模式(连同目录下所有文件和子目录一起处理) -z 压缩 五、命令的结合与定向: 命令中除了一般命令外,还有管道(或称途径)(|)与定向(>或>>)。 管道(途径)的用法: “命令一[选项]”| “命令二[选项]”,也就是将“命令一[选项]”的输出结果传到“命令二[选项]”,通过命令二的处理之后才输出到标准输出(屏幕)上。比如“ls /etc”会列出etc下的所有文件,若加上“| less”,也就是“ls /etc | less”,则会将“ls /etc”的结果通过less分页输出。 定向的用法: 将结果定向到命令的输出设备,一般不加文件名意为将结果输出到屏幕,若是在定向后加上文件名,则会将命令的执行结果输出到定向的文件,例如“ls > temp.txt”,就会将ls 的结果输出到文件temp.txt中。“>”与“>>”的差异在于前者是覆盖,而后者是附加。 六、命令中的命令: 许多命令在执行后,会进入该命令的操作模式,如fdisk、pine、top等,进入后我们必须要使用该命令中的命令,才能正确执行;而一般要退出该命令,可以输入exit、q、quit或是按【Ctrl+C】组合

常用统计软件介绍

常用统计软件介绍

常用统计软件介绍 《概率论与数理统计》是一门实践性很强的课程。但是,目前在国内,大多侧重基本方法的介绍,而忽视了统计实验的教学。这样既不利于提高学生创新精神和实践能力,也使得这门课程的教学显得枯燥无味。为此,我们介绍一些常用的统计软件,以使学生对统计软件有初步的认识,为以后应用统计方法解决实际问题奠定初步的基础。 一、统计软件的种类 1.SAS 是目前国际上最为流行的一种大型统计分析系统,被誉为统计分析的标准软件。尽管价格不菲,SAS已被广泛应用于政府行政管理,科研,教育,生产和金融等不同领域,并且发挥着愈来愈重要的作用。目前SAS已在全球100多个国家和地区拥有29000多个客户群,直接用户超过300万人。在我国,国家信息中心,国家统计局,卫生部,中国科学院等都是SAS系统的大用户。尽管现在已经尽量“傻瓜化”,但是仍然需要一定的训练才可以使用。因此,该统计软件主要适合于统计工作者和科研工作者使用。 2.SPSS SPSS作为仅次于SAS的统计软件工具包,在社会科学领域有着广泛的应用。SPSS是世界上最早的统计分析软件,由美国斯坦福大学的三位研究生于20世纪60年代末研制。由于SPSS容易操作,输出漂亮,功能齐全,价格合理,所以很快地应用于自然科学、技术科学、社会科学的各个领域,世界上许多有影响的报刊杂志纷纷就SPSS 的自动统计绘图、数据的深入分析、使用方便、功能齐全等方面给予了高度的评价与称赞。迄今SPSS软件已有30余年的成长历史。全球

约有25万家产品用户,它们分布于通讯、医疗、银行、证券、保险、制造、商业、市场研究、科研教育等多个领域和行业,是世界上应用最广泛的专业统计软件。在国际学术界有条不成文的规定,即在国际学术交流中,凡是用SPSS软件完成的计算和统计分析,可以不必说明算法,由此可见其影响之大和信誉之高。因此,对于非统计工作者是很好的选择。 3.Excel 它严格说来并不是统计软件,但作为数据表格软件,必然有一定统计计算功能。而且凡是有Microsoft Office的计算机,基本上都装有Excel。但要注意,有时在装 Office时没有装数据分析的功能,那就必须装了才行。当然,画图功能是都具备的。对于简单分析,Excel 还算方便,但随着问题的深入,Excel就不那么“傻瓜”,需要使用函数,甚至根本没有相应的方法了。多数专门一些的统计推断问题还需要其他专门的统计软件来处理。 4.S-plus 这是统计学家喜爱的软件。不仅由于其功能齐全,而且由于其强大的编程功能,使得研究人员可以编制自己的程序来实现自己的理论和方法。它也在进行“傻瓜化”,以争取顾客。但仍然以编程方便为顾客所青睐。 5.Minitab 这个软件是很方便的功能强大而又齐全的软件,也已经“傻瓜化”,在我国用的不如SPSS与SAS那么普遍。

Cad常用命令及使用方法

Cad常用命令及使用方法 一、绘图命令 直线:L 用法:输入命令L/回车/鼠标指定第一点/输入数值(也就是指定第二点)/回车(这时直线就画出来了)/回车(结束命令) 射线:RAY 用法:输入命令RAY/回车/鼠标指定射线起点/指定通过点/回车(结束命令) 构造线:XL 用法:输入命令XL/回车/鼠标指定构造线起点/指定通过点/回车(结束命令) 多段线:PL 用法1:同直线命令 用法2:输入命令PL/回车/指定起点/输入W(绘制带有宽度的线)/回车/指定线起点宽度/回车/指定线结束点宽度/回车/输入数值(线的长度值)/回车(结束命令) 正多边形:POL 用法:输入命令POL/回车/指定边数/回车/鼠标指定正多边形的中心点/输入选项(C外切于圆;I内接于圆)/回车/输入半径/回车(结束命令) 矩形:REC 用法1:输入命令REC/回车/鼠标指定第一角点/指定第二角点 用法2:输入命令REC/回车/输入C(绘制带有倒角的矩形)/回车/输入第一倒角值/回车/输入第二倒角值/回车/鼠标指定第一角点/指定第二角点 用法3:输入命令REC/回车/输入F(绘制带有圆角的矩形)/回车/输入圆角半径/回车/指定第一角点/指定第二角点 圆弧:A 用法:输入命令A/回车/指定圆弧起点/指定圆弧中点/指定圆弧结束点 (绘制圆弧的方法有11种,可参考绘图菜单---圆弧选项) 圆:C 用法:输入命令C/回车/鼠标指定圆心/输入半径值/回车(命令结束) (绘制圆的方法有6种,可参考绘图菜单---圆选项) 样条曲线:SPL 用法:输入命令SPL/回车/鼠标指定要绘制的范围即可/需要三下回车结束命令 椭圆:EL

opensees总结

1、定义梁柱单元局部坐标轴的命令流为: geomTransf Linear $transfTag $vecxzX $vecxzY $vecxzZ 其中,$transfTag 代表局部坐标轴矢量的编号,$vecxzX $vecxzY $vecxzZ 表示局部坐标轴的方向矢量值。 2、OPENSEES 的刚性隔板假定命令流格式为: rigidDiaphragm $perpDirn $masterNodeTag $slaveNodeTag1 $slaveNodeTag2 ... 其中,$perpDirn 表示刚性隔板的方法,如实例中楼板的刚性隔板的平移方向为U1(X 方向)与U2(Y 方向),即1-2 平面,该值应为3。$masterNodeTag 为主结点,$slaveNodeTag1 为从结点。主结点一般为刚性隔板刚心。 实例中:rigidDiaphragm 3 35 2,表示刚性隔板平动方向为1-2 平面,刚心主节点为35 点,2号结点为从结点。 3、弹性梁柱单元的命令流: element elasticBeamColumn $eleTag $iNode $jNode $A $E $G $J $Iy $Iz $transfTag 需要提供截面的截面积A、截面Y 轴惯性矩Iy,截面Z 轴惯性矩Iz,截面扭转矩,截面材料的弹性模量E 及剪切模量G。其中:$transfTag 与$eleTag 是一致的,表示一个单元有自已特定的坐标轴向量,为了编程的方便。 陈:例题三 4、非线性材料模型的定义 (1)uniaxialMaterial Steel01 1 335 200000 0.00001 表示,钢筋的屈服强度为335MPa,弹性模量为200000MPa,硬化系数为0.00001,即屈服平台基本上为水平段。 将混凝土材料本构C40 改为非线性混凝土本构【Concrete01】,命令流如下: (2)uniaxialMaterial Concrete01 2 -26.8 -0.002 -10 -0.0033材料参数意见参 考图所示。 注意:混凝土本构Concrete01 是最简单的混凝土本构,注意数值是负数, 即表示受压段。该本构没有受拉段,即受拉强度为0,表示结构一分析即进 入弹塑性。 5、采用纤维单元,需要定义纤维截面,纤维截面的定义如下面代码所示: section Fiber 1 { fiber -1.125E+002 -2.700E+002 4.500E+003 2 ……… fiber 1.150E+002 -2.650E+002 4.900E+002 1 } 以上命令流表示,纤维截面编号为1,{}内部为子命令流,表示每一个纤维的信息,每一个纤维的定义格式如下: fiber $Y $Z $Area $Mat 命令中,$Y 表示每个纤维的截面Y 坐标(截面中心为原点0);$Z 表示每个纤维的截面Z 坐标(截面中心为原点0);$Area 表示每个纤维的贡献面积;$ Mat 表示每个纤维使用的非线性材料本构的编号。 注意:纤维的坐标与材料切线模量可以组装成截面的刚度,而纤维的坐标与材料的应力可以组装成截面的内力(抗力),那么每个纤维的应变可以通过截面的变形与坐标求出。采用纤维截面的单元,即为基于平截面假定。截面变形求解应变是基于平截面假定的。 6、采用的单元为非线性梁柱单元,即基于柔度法的纤维单元(Nonlinear BeamColumn Element or Force Beam Column Element),需要输入命令流如下: element nonlinearBeamColumn $eleTag $iNode $jNode $numIntgrPts $secTag $transfTag 其中,$eleTag 为单元编号;$iNode 为开始结点;$jNode 为结束结点;$numIntgrPts 为积分点数量;$secTag 为纤维截面编号,$transfTag 为局部坐标轴编号。积分点数量,也就纤维单元的计算截面数量,纤维单元的刚度与抗力是由截面刚度与抗力沿杆件长度积分所得,显然,不能将全部截面积分,只能采用

数据处理软件介绍.

Chapter4 Introduction to Analysis-of-Variance Procedures Chapter T able of Contents 52Chapter4.Introduction to Analysis-of-Variance Procedures SAS OnlineDoc?:Version8 Chapter4 Introduction to Analysis-of-Variance Procedures 54Chapter4.Introduction to Analysis-of-Variance Procedures The following section presents an overview of some of the fundamental features of analysis of variance.Subsequent sections describe how this analysis is performed with procedures in SAS/STAT software.For more detail,see the chapters for the individual procedures.Additional sources are described in the“References”section on page61. De?nitions Analysis of variance(ANOV Ais a technique for analyzing experimental data in which one or more response(or dependent or simply Yvariables are measured un-der various conditions identi?ed by one or more classi?cation variables.The com-binations of levels for the classi?cation variables form the cells of the experimental design for the data.For example,an experiment may measure weight change(the dependent variablefor men and women who participated in three different weight-loss programs.The six cells of the design are formed by the six combinations of sex (men,womenand program(A,B,C.

CISCO 常用命令解释

视图模式介绍: 普通视图 router> 特权视图 router# /在普通模式下输入enable 全局视图 router(config)# /在特权模式下输入config t 接口视图 router(config-if)# /在全局模式下输入int 接口名称例如int s0或int e0 路由协议视图 router(config-route)# /在全局模式下输入router 动态路由协议名称 1、基本配置: router>enable /进入特权模式 router#conf t /进入全局配置模式 router(config)# hostname xxx /设置设备名称就好像给我们的计算机起个名字 router(config)#enable password /设置特权口令 router(config)#no ip domain lookup /不允许路由器缺省使用DNS解析命令 router(config)# Service password-encrypt /对所有在路由器上输入的口令进行暗文加密router(config)#line vty 0 4 /进入设置telnet服务模式 router(config-line)#password xxx /设置telnet的密码 router(config-line)#login /使能可以登陆 router(config)#line con 0 /进入控制口的服务模式 router(config-line)#password xxx /要设置console的密码 router(config-line)#login /使能可以登陆 2、接口配置: router(config)#int s0 /进入接口配置模式 serial 0 端口配置(如果是模块化的路由器前面加上槽位编号,例如serial0/0 代表这个路由器的0槽位上的第一个接口) router(config-if)#ip add xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx /添加ip 地址和掩码router(config-if)#enca hdlc/ppp 捆绑链路协议 hdlc 或者 ppp 思科缺省串口封装的链路层协议是HDLC所以在show run配置的时候接口上的配置没有,如果要封装为别的链路层协议例如PPP/FR/X25就是看到接口下的enca ppp或者enca fr router(config)#int loopback /建立环回口(逻辑接口)模拟不同的本机网段 router(config-if)#ip add xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx /添加ip 地址和掩码给环回口 在物理接口上配置了ip地址后用no shut启用这个物理接口反之可以用shutdown管理性的关闭接口 3、路由配置: (1)静态路由 router(config)#ip route xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 下一条或自己的接口router(config)#ip route 0.0.0.0 0.0.0.0 s 0 添加缺省路由 (2)动态路由 rip协议 router(config)#router rip /启动rip协议 router(config-router)#network xxx.xxx.xxx.xxx /宣告自己的网段 router(config-router)#version 2 转换为rip 2版本 router(config-router)#no auto-summary /关闭自动汇总功能,rip V2才有作用 router(config-router)# passive-int 接口名 /启动本路由器的那个接口为被动接口

opensees总结

o p e n s e e s总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1、定义梁柱单元局部坐标轴的命令流为: geomTransf Linear $transfTag $vecxzX $vecxzY $vecxzZ 其中,$transfTag 代表局部坐标轴矢量的编号,$vecxzX $vecxzY $vecxzZ 表示局部坐标轴的方向矢量值。 2、OPENSEES 的刚性隔板假定命令流格式为: rigidDiaphragm $perpDirn $masterNodeTag $slaveNodeTag1 $slaveNodeTag2 ... 其中,$perpDirn 表示刚性隔板的方法,如实例中楼板的刚性隔板的平移方向为U1(X 方向)与U2(Y 方向),即1-2 平面,该值应为3。$masterNodeTag 为主结点,$slaveNodeTag1 为从结点。主结点一般为刚性隔板刚心。 实例中:rigidDiaphragm 3 35 2,表示刚性隔板平动方向为1-2 平面,刚心主节点为35 点,2号结点为从结点。 3、弹性梁柱单元的命令流: element elasticBeamColumn $eleTag $iNode $jNode $A $E $G $J $Iy $Iz $transfTag 需要提供截面的截面积A、截面Y 轴惯性矩Iy,截面Z 轴惯性矩Iz,截面扭转矩,截面材料的弹性模量E 及剪切模量G。其中:$transfTag 与$eleTag 是一致的,表示一个单元有自已特定的坐标轴向量,为了编程的方便。 陈:例题三 4、非线性材料模型的定义 (1)uniaxialMaterial Steel01 1 335 200000 0.00001 表示,钢筋的屈服强度为335MPa,弹性模量为200000MPa,硬化系数为0.00001,即屈服平台基本上为水平段。 将混凝土材料本构C40 改为非线性混凝土本构【Concrete01】, 命令流如下: (2)uniaxialMaterial Concrete01 2 -26.8 -0.002 -10 -0.0033材料参 数意见参考图所示。 注意:混凝土本构Concrete01 是最简单的混凝土本构,注意数值是负数,即表示受压段。该本构没有受拉段,即受拉强度为0,表示结构一分析即进入弹塑性。 5、采用纤维单元,需要定义纤维截面,纤维截面的定义如下面代码所示:

大数据可视化分析平台介绍

大数据可视化分析平台 一、背景与目标 基于邳州市电子政务建设的基础支撑环境,以基础信息资源库(人口库、法人库、宏观经济、地理库)为基础,建设融合业务展示系统,提供综合信息查询展示、信息简报呈现、数据分析、数据开放等资源服务应用。实现市府领导及相关委办的融合数据资源视角,实现数据信息资源融合服务与创新服务,通过系统达到及时了解本市发展的综合情况,及时掌握发展动态,为政策拟定提供依据。 充分运用云计算、大数据等信息技术,建设融合分析平台、展示平台,整合现有数据资源,结合政务大数据的分析能力与业务编排展示能力,以人口、法人、地理,人口与地理,法人与地理,实现基础展示与分析,融合公安、交通、工业、教育、旅游等重点行业的数据综合分析,为城市管理、产业升级、民生保障提供有效支撑。 二、政务大数据平台 1、数据采集和交换需求:通过对各个委办局的指定业务数据进行汇聚,将分散的数据进行物理集中和整合管理,为实现对数据的分析提供数据支撑。将为跨机构的各类业务系统之间的业务协同,提供统一和集中的数据交互共享服务。包括数据交换、共享和ETL等功能。 2、海量数据存储管理需求:大数据平台从各个委办局的业务系统里抽取的数据量巨大,数据类型繁杂,数据需要持久化的存储和访问。不论是结构化数据、半结构化数据,还是非结构化数据,经过数据存储引擎进行建模后,持久化保存在存储系统上。存储系统要具备

高可靠性、快速查询能力。 3、数据计算分析需求:包括海量数据的离线计算能力、高效即席数据查询需求和低时延的实时计算能力。随着数据量的不断增加,需要数据平台具备线性扩展能力和强大的分析能力,支撑不断增长的数据量,满足未来政务各类业务工作的发展需要,确保业务系统的不间断且有效地工作。 4、数据关联集中需求:对集中存储在数据管理平台的数据,通过正确的技术手段将这些离散的数据进行数据关联,即:通过分析数据间的业务关系,建立关键数据之间的关联关系,将离散的数据串联起来形成能表达更多含义信息集合,以形成基础库、业务库、知识库等数据集。 5、应用开发需求:依靠集中数据集,快速开发创新应用,支撑实际分析业务需要。 6、大数据分析挖掘需求:通过对海量的政务业务大数据进行分析与挖掘,辅助政务决策,提供资源配置分析优化等辅助决策功能, 促进民生的发展。

相关文档
相关文档 最新文档