文档库 最新最全的文档下载
当前位置:文档库 › 光纤弯曲损耗的测试方案

光纤弯曲损耗的测试方案

光纤弯曲损耗的测试方案
光纤弯曲损耗的测试方案

光纤弯曲损耗的测试方案

一.实验目的

近些年,光纤的弯曲损耗问题引起众多学者越来越广泛的关注。除去由于弯曲损耗在光纤通信中的不利影响之外,许多光纤光学传感器也利用了这一传感机理,如在某些传感器中.被测物理量产生一个小位移,该位移又使光纤弯曲半径发生变化,从而改变光衰减。传统的理论都假设光纤具有无限大的包层.因此得到弯曲损耗随弯曲半径或工作波长单调的关系。最近的研究发现单模光纤的弯曲损耗随工作波长及弯曲半径变化的振荡现象。国外的研究人员从上世纪80年代,就已经开始对光纤的弯曲损耗进行比较系统的研究”,但在国内这方面的研究丁作开展较少”,相关的文献报道也比较少。在本文中,我将分析弯曲损耗在850nm,1310nm和1550三种工作波长,强弯曲状态F的单模光纤弯曲损耗随弯曲半径的变化关系.讨论了弯曲半径、工作波长对单模光纤弯曲损耗的影响。

二.实验仪器

光源单模光纤功率计扰模器

三.实验原理

在早期的研究工作中,对于弯曲的单模光纤,设定其包层为无限大,即光在芯区中传输时,包层及覆层的厚度对光的传输无任何影响%光损耗完全是由纯弯曲引起的,光功率的变化表示为:

式中P

i,P

分别为光纤弯曲前及弯曲后的光功率,2α是弯曲损耗系数,L是弯曲

的长度,其中:

将上述公式整理后可得:

通过以上的分析,可以看到光纤弯曲引起的损耗依赖于波长和弯曲半径。四.实验步骤

1.测试弯曲半径对弯曲损耗的影响:

试验所用光源波长为850nm半导体激光器,将长飞公司的单模光纤沿圆柱弯曲,测量在不同的弯曲半径下的弯曲损耗特性:

(1)将光纤与光源连接,保持不要弯曲,测量光纤的输入功率和输出功率(2)将光纤弯曲,使弯曲半径为5mm,用功率计测出光纤的输入光功率和输出光功率,计算损耗:

(3)同上,分别用8mm和10mm的弯曲半径测量,计算损耗。

(4)将康宁公司和长飞公司的单模光纤焊接在一起,重复上述步骤,测量损耗,与(3)实验结果比较。

2.测量光源波长对弯曲损耗的影响:

选取长飞公司的单模光纤,弯曲半径为8mm,选用不同波长的光源进行测量,算出弯曲损耗:

(1)选取850nm波长的光源与光纤连接,使光纤保持不弯曲,测出输入功率和输出功率,再将光纤弯曲,将弯曲半径保持在8mm,测量光纤的输入功率和输出功率,计算损耗

(2)将波长变为1310nm,1550nm重复上述步骤,计算损耗。

光纤弯曲损耗的测试方案

光纤弯曲损耗的测试方案 一.实验目的 近些年,光纤的弯曲损耗问题引起众多学者越来越广泛的关注。除去由于弯曲损耗在光纤通信中的不利影响之外,许多光纤光学传感器也利用了这一传感机理,如在某些传感器中.被测物理量产生一个小位移,该位移又使光纤弯曲半径发生变化,从而改变光衰减。传统的理论都假设光纤具有无限大的包层.因此得到弯曲损耗随弯曲半径或工作波长单调的关系。最近的研究发现单模光纤的弯曲损耗随工作波长及弯曲半径变化的振荡现象。国外的研究人员从上世纪80年代,就已经开始对光纤的弯曲损耗进行比较系统的研究”,但在国内这方面的研究丁作开展较少”,相关的文献报道也比较少。在本文中,我将分析弯曲损耗在850nm,1310nm和1550三种工作波长,强弯曲状态F的单模光纤弯曲损耗随弯曲半径的变化关系.讨论了弯曲半径、工作波长对单模光纤弯曲损耗的影响。 二.实验仪器 光源单模光纤功率计扰模器 三.实验原理 在早期的研究工作中,对于弯曲的单模光纤,设定其包层为无限大,即光在芯区中传输时,包层及覆层的厚度对光的传输无任何影响%光损耗完全是由纯弯曲引起的,光功率的变化表示为: 式中P i,P 分别为光纤弯曲前及弯曲后的光功率,2α是弯曲损耗系数,L是弯曲 的长度,其中: 将上述公式整理后可得:

通过以上的分析,可以看到光纤弯曲引起的损耗依赖于波长和弯曲半径。四.实验步骤 1.测试弯曲半径对弯曲损耗的影响: 试验所用光源波长为850nm半导体激光器,将长飞公司的单模光纤沿圆柱弯曲,测量在不同的弯曲半径下的弯曲损耗特性: (1)将光纤与光源连接,保持不要弯曲,测量光纤的输入功率和输出功率(2)将光纤弯曲,使弯曲半径为5mm,用功率计测出光纤的输入光功率和输出光功率,计算损耗: (3)同上,分别用8mm和10mm的弯曲半径测量,计算损耗。 (4)将康宁公司和长飞公司的单模光纤焊接在一起,重复上述步骤,测量损耗,与(3)实验结果比较。 2.测量光源波长对弯曲损耗的影响: 选取长飞公司的单模光纤,弯曲半径为8mm,选用不同波长的光源进行测量,算出弯曲损耗: (1)选取850nm波长的光源与光纤连接,使光纤保持不弯曲,测出输入功率和输出功率,再将光纤弯曲,将弯曲半径保持在8mm,测量光纤的输入功率和输出功率,计算损耗 (2)将波长变为1310nm,1550nm重复上述步骤,计算损耗。

光纤损耗测试方法及其注意事项(1)

光纤损耗测试方法及其注意事项1 引言 由于应用和用户对带宽需求的进一步增加和光纤链路对满足高带宽方面的巨大优势,光纤的使用越来越多。无论是布线施工人员,还是网络维护人员,都有必要掌握光纤链路测试的技能。 2004年2月颁布的TIA/ TSB-140测试标准,旨在说明正确的光纤测试步骤。该标准建议了两级测试,分别为: Tier 1(一级),使用光缆损耗测试设备(OLTS)来测试光缆的损耗和长度,并依靠OLTS或者可视故障定位仪(VFL)验证极性; Tier 2(二级),包括一级的测试参数,还包括对已安装的光缆链路的OTDR追踪。? 根据TSB-140标准,对于一条光纤链路来说,一级测试主要包括两个参数:长度和损耗。事实上,早在标准ANSI/TIA/EIA-526-14A 和ANSI/TIA/EIA-526-7中,已经分别对多模和单模光纤链路的损耗测试,定义了三种测试方法(长度的测量,取决于仪表是否支持,如果仪表支持,在测试损耗的同时,长度同时也会测量)。为了方便,我们分别称为:方法A、方法B和方法C。TSB-140就是在这基础上发展而来,与此兼容。 那么这三种方法各有什么特点,怎么操作,应该在什么场合下使用呢?这正是本文要阐述的问题。另外,光纤链路的测试,不同于双绞线链路的测试,又有什么地方需要注意或者有什么原则可以遵循呢?这也是本文想与读者分享的内容。 2 如何测试光纤链路损耗 光纤链路损耗的测试,包含两大步骤:一是设置参考值(此时不接被测链路),二是实际测试(此时接被测链路)。 下面我们具体介绍一下标准中定义的三种测试损耗的方法(以双向测试为例)。 2.1 测试方法A

多模光纤弯曲损耗

多模光纤的弯曲损耗实验研究 何国财 (吉首大学物理科学与信息工程学院,湖南吉首416000) 摘要:随着光通讯、光网络、光传感技术的发展,光纤已经被广泛应用于上述系统作为信息载体和敏感元件。多模光纤以其结构简单、芯径大、耦合效率高,损耗、色散较大而被广泛应用于小型局域网,局域网的铺设线路上往往弯曲较多。因此,研究弯曲对多模光纤所传输信号的衰减对于合理构建和铺设局域网是十分必要的。 为此,我们实验研究了62.5微米芯径多模石英光纤在相同圈数不同弯曲半径和相同弯曲半径不同圈数情况下的弯曲损耗,得到了如下结论:(1)多模光纤弯曲时有一个4.5厘米到5厘米的临界值。(2)当弯曲半径大于临界值时,弯曲不对损耗产生影响,当弯曲半径小于临界值时,弯曲半径越小则损耗越大;(3)当弯曲圈数到一定程度时,弯曲圈数不影响损耗。 关键词:多模光纤;弯曲损耗;弯曲半径 Experimental study about loss of Multi- molds optical fiber inducing by bending He Guocai (College of Physics Science and Information Engineering, Jishou University, Jishou, Hunan 416000) Abstract:Along with development of the optical communication, the optical network, the optical sensor technology, the optical fiber widely is already applied to the above system as the information carrier and the sensitive unit. Multi-molds optical fiber has been applied widely in the LAN for its simple structure, big core diameter, high coupling efficiency, highly waste and big dispersion. The line of LAN always has many bending, therefore, it is necessary to research the bending waste of the multi- molds optical fiber for constructing reasonably and laying down the LAN. For this,it has been experimental study that the bending loss of 62.5-microns- cores-diameters multi-molds silica fiber has the same number of loop with different radius and has the same radius with different number of loop, obtained the following conclusion: (1) The multi- molds optical fiber have a marginal when has curving 4.5 centimeters to 5 centimeters. (2) The winding radius is bigger than marginal, it is not influence lost. The winding radius is more small the lost more big when the winding radius smaller then

光纤传输损耗测试-实验报告

光纤传输损耗测试-实验报告

华侨大学工学院 实验报告 课程名称:光通信技术实验 实验项目名称:实验1 光纤传输损耗测试 学院:工学院 专业班级:13光电 姓名:林洋 学号:1395121026 指导教师:王达成

2016 年05 月日 预习报告 一、实验目的 1)了解光纤损耗的定义 2)了解截断法、插入法测量光纤的传输损耗 二、实验仪器 20MHz双踪示波器 万用表 光功率计 电话机 光纤跳线一组 光无源器件一套(连接器,光耦合器,光隔离器,波分复用器,光衰减器) 三、实验原理 αλ,其含义为单位长度光纤引起的光纤在波长λ处的衰减系数为()

光功率衰减,单位是dB/km 。当长度为L 时, 10()()lg (/)(0) P L dB km L P αλ=- (公式1.1) ITU-T G.650、G.651规定截断法为基准测量方法,背向散射法(OTDR 法)和插入法为替代测量方法。本实验采用插入法测量光纤的损耗。 (1)截断法:(破坏性测量方法) 截断法是一个直接利用衰减系数定义的测量方法。在不改变注入条件下,分别测出长光纤的输出功率2()P λ和剪断后约2m 长度短光纤的输出功率1()P λ,按定义计算出()αλ。该方法测试精度最高。 偏置电路 注入系统 光源 滤模器 包层模 剥除器 被测光纤 检测器 放大器电平测量 图1.1 截断法定波长衰减测试系统装置 (2)插入法 插入法原理上类似于截断法,只不过用带活接头的连接软线代替短纤进行参考测量,计算在预先相互连接的注入系统和接受系统之间(参考条件)由于插入被测光纤引起的功率损耗。显然,功率 1 P 、 2 P 的测量 没有截断法直接,而且由于连接的损耗会给测量带来误差,精度比截断法差一些。所以该方法不适用于光纤光缆制造长度衰减的测量。但由于它具有非破坏性不需剪断和操作简便的优点,用该方法做成的便携式仪表,非常适用于中继段长总衰减的测量。图1.2示出了两种参考条件下的测试原理框图。

光纤损耗测试方法及其注意事项

《中国有线电视》2009(10) C H I N A D I G I T A L C A B L ET V·经验点滴·中图分类号:T N943.6 文献标识码:B 文章编号:1007-7022(2009)10-1094-01 光纤损耗测试方法及其注意事项 ◆管 辉(吉林省广播电影电视局三三一台,吉林永吉132200) 由于应用和用户对带宽需求的进一步增加和光纤链路在满足高带宽方面的巨大优势,光纤的使用越来越多,无论是布线施工人员还是网络维护人员都有必要掌握光纤链路测试的技能。 2004年2月颁布的T I A/T S B-140测试标准,旨在说明正确的光纤测试步骤,该标准建议了两级测试,分别为:T i e r1(一级),使用光缆损耗测试设备(O L T S)来测试光缆的损耗和长度,并依靠O L T S或者可视故障定位仪(V F L)来验证极性;T i e r2(二级),包括一级的测试参数,还包括对已经安装的光缆链路的O T D R 追踪。 根据T S B-140标准,对于一条光纤链路来说,一级测试主要包括两个参数:长度和损耗。事实上,早在标准A N S I/T I A/E I A-526-14A和A N S I/T I A/E I A-526-7中,已经分别对多模和单模光纤链路的损耗测试定义了3种测试方法(长度的测量,取决于仪表是否支持,如果仪表支持,在测试损耗的同时,长度同时也会测量)。 1 如何测试光纤链路损耗 光纤链路损耗的测试包含两大步骤:一是设置参考值(此时不接被测链路),二是实际测试(此时接被测链路),下面具体介绍标准中定义的3种测试损耗的方法(以双向测试为例)。 测试方法A:方法A设置参考值时,采用两条光纤跳线和一个连接器(考虑一个方向,见图1上半部分),设置参考值后,将被测链路接进来(见图1 下半部分),进行测试。我们不难发现,每个方向的测试结果中包括光纤和一端的连接器的损耗,因此方法A是用来测试这种光缆链路:光纤链路一端有连接器,另一端没有。 图1 测试方法A 测试方法B:方法B设置参考值时,只使用一条光纤跳线(考虑一个方向,见图2上半部分),设置参考值后,将被测链路接进来(见图2下半部分),进行测试。这种方法的测试结果中,包括光纤链路和两端连接的损耗,因此方法B是用来测试这种光缆链路:链路两端都有连接器,其连接器的损耗是整个损耗的重要部分,这就是室内光缆的常见例子。 从技术角度讲,测试结果还包括额外的光纤跳线(3~4)的损耗,但是其长度较短,损耗可以忽略不计。对室内光缆网络,这种方法提供了精确的光缆链路测试,因为它包括了光 图2 测试方法B 缆本身以及电缆两端的连接器。

光纤传输损耗测试实验报告报告

华侨大学工学院 实验报告 课程名称:光通信技术实验 实验项目名称:实验1 光纤传输损耗测试 学院:工学院 专业班级:13光电 姓名:林洋 学号:1395121026 指导教师:王达成 2016 年05 月日

预 习 报 告 一、 实验目的 1)了解光纤损耗的定义 2)了解截断法、插入法测量光纤的传输损耗 二、 实验仪器 20MHz 双踪示波器 万用表 光功率计 电话机 光纤跳线一组 光无源器件一套(连接器,光耦合器,光隔离器,波分复用器,光衰减器) 三、 实验原理 光纤在波长λ处的衰减系数为()αλ,其含义为单位长度光纤引起的光功率衰减,单位是dB/km 。当长度为L 时, 10()()l g (/)(0) P L dB km L P αλ=- (公式1.1) ITU-T G .650、G .651规定截断法为基准测量方法,背向散射法(OTDR 法)和插入法为替代测量方法。本实验采用插入法测量光纤的损耗。 (1)截断法:(破坏性测量方法) 截断法是一个直接利用衰减系数定义的测量方法。在不改变注入条件下,分别测出长光纤的输出功率2()P λ和剪断后约2m 长度短光纤的输出功率1()P λ,按定义计算出()αλ。该方法测试精度最高。

图1.1 截断法定波长衰减测试系统装置 (2)插入法 插入法原理上类似于截断法,只不过用带活接头的连接软线代替短纤进行参考测量,计算在预先相互连接的注入系统和接受系统之间(参考条 件)由于插入被测光纤引起的功率损耗。显然,功率1P、2P的测量没有 截断法直接,而且由于连接的损耗会给测量带来误差,精度比截断法差一些。所以该方法不适用于光纤光缆制造长度衰减的测量。但由于它具有非破坏性不需剪断和操作简便的优点,用该方法做成的便携式仪表,非常适用于中继段长总衰减的测量。图1.2示出了两种参考条件下的测试原理框图。 (a) (b) 图1.2 典型的插入损耗法测试装置

G652D光纤宏弯损耗测试方法(精)

G652D光纤宏弯损耗测试方法 摘要:实现了一种全集成可变带宽中频宽带低通滤波器,讨论分析了跨导放大器-电容(OTA—C)连续时间型滤波器的结构、设计和具体实现,使用外部可编程电路对所设计滤波器带宽进行控制,并利用ADS软件进行电路设计和仿真验证。仿真结果表明,该滤波器带宽的可调范围为1~26 MHz,阻带抑制率大于35 dB,带内波纹小于0.5 dB,采用1.8 V电源,TSMC 0.18μm CMOS工艺库仿真,功耗小于21 mW,频响曲线接近理想状态。关键词:Butte 光纤宏弯损耗测试,在国家标准GB/T9771.3-2008中描述为:光纤以30mm半径松绕100圈,在1625nm测得的宏弯损耗应不超过0.1dB。 而注2中描述:为了保证弯曲损耗易于测量和测量准确度,可用1圈或几圈小半径环光纤代替100圈光纤进行试验,在此情况下,绕的圈数环的半径和最大允许的弯曲损耗都应该与30mm半径100圈试验的损耗值相适应。 大多光纤厂家都提供Φ60mm*100圈的判断标准,然而,在日常的测试工作中,若要采用方便快捷的实验方法,则倾向于按照注2中的建议去进行一些常规判断。因此,掌握Φ32mm*1圈与Φ60mm*100圈的数据差异就十分有必要。 Φ32mm*1宏弯测试更为简便 两种宏弯损耗测试方法示意图如图1所示。 用上述方法对10盘正常生产条件下的光纤样品进行对比测试。 分别在1310nm、1550nm、1625nm三种波长下,对10盘光纤样品的宏弯平均值、标准偏差进行统计,最后将全部数据汇总,得到图2。 从整体数据汇总图可看出,Φ32mm*1宏弯测试方法所得数据的平均值和标准偏差都比Φ60mm*100的要小,且数据相对稳定,重复性好。当然所抽样品也不是完全都遵循此规律,10个样品中有3个样品在1625nm窗口下Φ32mm*1 所得数据的平均值大于Φ60mm*100所测得的;还有1个样品在1550nm、1625nm窗口下所得数据的标准偏差大于Φ60mm*100的。 10个样品用两种测试方法所得数据的平均值和标准偏差相差不大,处于一个数据等级内。Φ32mm*1的判断标准应考虑的与60mm*100比较接近。

浅谈光纤通信传输损耗

浅谈光纤通信传输损耗 摘要:本文主要对光纤传输损耗产生的原因进行分析,并提出了相应的解决对策。 关键词:光纤通信传输耗损 中图分类号:tn818 文献标识码:a 文章编号: 1007-9416(2012)02-0054-01 光纤通信由于其自身的一些优点,因此得到了广泛的使用,因此,在光纤通信中产生的问题,也值得我们去认真思考并加以解决。光纤接续工作,技术复杂、工艺要求高,是对质量标准严格要求的精细工作,也是关系到光纤通信传输质量的重要工作,因此,在施工中,技术人员要充分重视光纤接续时产生的损耗,按照严格标准做好光纤的接续工作,从而降低光缆的附加损耗,提高光纤的传输质量。同时相关的技术人员也要不断的学习相关的专业知识,不断的提升自身的专业技能,在日常的施工工作中注意总结经验教训,不断的提高施工的质量,这也是提高光纤传输效果的一条有效的途径。 1、光纤通信的相关理论 光纤即为光导纤维的简称。光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分

类,可分为通信用光纤和传感用光纤。传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。 光纤通信的应用在当前主要集中于各种信息的传输与控制上。以互联网的发展为例,传统互联网以电缆为传输工具,速度比较慢,随着90年代美国信息高速公路的建设,现代互联网传输的主体为光纤。去年,我国的有线电视实现了由模拟信号向数字信号的完全转变,有线电视信号的传输也是以光纤的应用为前提的。另外,随着信息化的普及,光纤通信基本已经深入到每个人的生活。除此之外,由于光纤通信具有保密性高、受干扰性能高的优点,其在军事与科技中的应用也十分广泛。当然光纤在实际应用中也有一些缺陷,比如玻璃的质地比较脆,比较容易折断,因此加工难度高,价格也较昂贵,要求的加工工艺与电缆相比也复杂很多。而且由于光纤通信自身存在着传输过程中的光能损耗等问题,因此,对于光纤通信要有全面的认识。 2、光纤传输损耗的种类及原因 光纤在传输中的损耗一般可分为接续损耗和非接续损耗。接续损耗包括由于光纤自身特性引起的固有损耗以及非自身因素(一般为工业加工下艺以及机械的设置)引起的的熔接损耗和活动接头的损耗。非接续损耗包括光纤自身的弯曲损耗和由于施工等因素造成的

光纤损耗测试方法及其注意事项

光纤损耗测试方法及其注意事项 1 引言 随着应用和用户对带宽需求的进一步增加,光纤链路对满足高带宽方面的巨大优势逐步体现,光纤的使用越来越多。在施工中,无论是布线施工人员,还是网络维护人员,都有必要掌握光纤链路测试的技能。 2004年2月颁布的TIA/ TSB-140测试标准,旨在说明正确的光纤测试步骤。该标准建议了两级测试,分别为: Tier 1(一级),使用光缆损耗测试设备(OLTS)来测试光缆的损耗和长度,并依靠OLTS或者可视故障定位仪(VFL)验证极性; Tier 2(二级),包括一级的测试参数,还包括对已安装的光缆链路的OTDR追踪。 根据TSB-140标准,对于一条光纤链路来说,一级测试主要包括两个参数:长度和损耗。事实上,早在标准ANSI/TIA/EIA-526-14A 和ANSI/TIA/EIA-526-7中,已经分别对多模和单模光纤链路的损耗测试,定义了三种测试方法(长度的测量,取决于仪表是否支持,如果仪表支持,在测试损耗的同时,长度同时也会测量)。为了方便,本文中分别称为:方法A、方法B和方法C。TSB-140就是在这基础上发展而来,与此兼容。 本文主要就这三种方法各自的特点、操作方法、应该使用的场合进行分析和阐述。另外,对光纤链路的测试中需要注意的问题进行分析。 2 如何测试光纤链路损耗 光纤链路损耗的测试,包含两大步骤:一是设置参考值(此时不接被测链路),二是实际测试(此时接被测链路)。 标准中定义了三种测试损耗的方法(以双向测试为例): 2.1 测试方法A 方法A设置参考值时,采用两条光纤跳线和一个连接器(考虑一个方向,如图1)。设置参考值后,将被测链路接进来(如图2),进行测试。 图1 图2 每个方向的测试结果中包括光纤和一端的连接器的损耗。因此,方法 A 是用来测试这种光缆链路:光纤链路一端有连接器,另一端没有。 2.2 测试方法B 方法B设置参考值时,只使用了一条光纤跳线(考虑一个方向,如图3)。设置参考值后,将被测链路接进来(如图4),进行测试。 图3 图4 这种方法的测试结果中,包括光纤链路和两端连接的损耗。因此,方法B是用来测试这种光缆链路:链路两端都有连接器,其连接器的损耗是整个损耗的重要部分。这就是室内光缆的常见例子。 从技术角度讲,测试结果中还包括了额外的光纤跳线(3-4)的损耗,但是其长度较短,损耗可以忽略不计。对室内光缆网络,这种方法提供了精确的光缆链路测试,因为它包括了光缆本身以及电缆两端的连接器。 2.3 测试方法C 方法C设置参考值时,使用三条光纤和两个连接器(单方向,见图5),其中两个连接

光纤损耗测试方法及其注意事项

1引言 由于应用和用户对带宽需求的进一步增加和光纤链路对满足高带宽方面的巨大优势,光纤的使用越来越多。无论是布线施工人员,还是网络维护人员,都有必要掌握光纤链路测试的技能。 2004年2月颁布的TIA/TSB-140测试标准,旨在说明正确的光纤测试步骤。该标准建议了两级测试,分别为: Tier1(一级),使用光缆损耗测试设备(OLTS)来测试光缆的损耗和长度,并依靠OLTS或者可视故障定位仪(VFL)验证极性; Tier2(二级),包括一级的测试参数,还包括对已安装的光缆链路的OTDR追踪。? 根据TSB-140标准,对于一条光纤链路来说,一级测试主要包括两个参数:长度和损耗。事实上,早在标准ANSI/TIA/EIA-526-14A和ANSI/TIA/EIA-526-7中,已经分别对多模和单模光纤链路的损耗测试,定义了三种测试方法(长度的测量,取决于仪表是否支持,如果仪表支持,在测试损耗的同时,长度同时也会测量)。为了方便,我们分别称为:方法A、方法B和方法C。TSB-140就是在这基础上发展而来,与此兼容。 那么这三种方法各有什么特点,怎么操作,应该在什么场合下使用呢?这正是本文要阐述的问题。另外,光纤链路的测试,不同于双绞线链路的测试,又有什么地方需要注意或者有什么原则可以遵循呢?这也是本文想与读者分享的内容。 2如何测试光纤链路损耗 光纤链路损耗的测试,包含两大步骤:一是设置参考值(此时不接被测链路),二是实际测试(此时接被测链路)。 下面我们具体介绍一下标准中定义的三种测试损耗的方法(以双向测试为例)。 2.1测试方法A 方法A设置参考值时,采用两条光纤跳线和一个连接器(考虑一个方向,如下图上半部分)。设置参考值后,将被测链路接进来(如下图下半部分),进行测试。

光纤传输损耗及其解决方法

光纤传输损耗及其解决方法 光纤的传输损耗特性是决定光网络传输距离、传输稳定性和可靠性的最重要因素之一。光纤传输损耗的产生原因是多方面的,在光纤通信网络的建设和维护中,最值得关注的是光纤使用中引起传输损耗的原因以及如何减少这些损耗。光纤使用中引起的传输损耗主要有接续损耗(光纤的固有损耗、熔接损耗和活动接头损耗)和非接续损耗(弯曲损耗和其它施工因素和应用环境所造成的损耗)两类。 1、接续损耗及其解决方案 1.1接续损耗 光纤的接续损耗主要包括:光纤本征因素造成的固有损耗和非本征因素造成的熔接损耗及活动接头损耗三种。 (1)光纤固有损耗: 主要源于光纤模场直径不一致;光纤芯径失配;纤芯截面不圆;纤芯与包层同心度不佳四点;其中影响最大的是模场直径不一致。 (2)熔接损耗: 非本征因素的熔接损耗主要由轴向错位;轴心(折角)倾斜;端面分离(间隙);光纤端面不完整;折射率差;光纤端面不清洁以及接续人员操作水平、操作步骤、熔接机电极清洁程度、熔接参数设置、工作环境清洁程度等其他因素造成。 (3)活动接头损耗: 非本征因素的活动接头损耗主要由活动连接器质量差、接触不良、不清洁以及与熔接损耗相同的一些因素(如轴向错位、端面间隙、折角、折射率差等)造成。 1.2 解决接续损耗的方案 (1)工程设计、施工和维护工作中应选用特性一致的优质光纤。一条线路上尽量采用同一批次的优质名牌裸纤,以求光纤的特性尽量匹配,使模场直径对光纤熔接损耗的影响降到最低程度。 (2)光缆施工时应严格按规程和要求进行: 配盘时尽量做到整盘配置(单盘≥500米),以尽量减少接头数量。敷设时严格按缆盘编号和端别顺序布放,使损耗值达到最小。(3)挑选经验丰富训练有素的接续人员进行接续和测试: 接续人员的水平直接影响接续损耗的大小,接续人员应严格按照光纤熔接工艺流程进行接续,严格控制接头损耗,熔接过程中时刻使用光域反射仪(OTDR)进行监测(接续损耗≤0.08dB/个),不符合要求的应重新熔接。使用光时域反射仪(OTDR)时,应从两个方向测量接头的损耗,并求出这两个结果的平均值,消除单向OTDR测量的人为因素误差。 (4)保证接续环境符合要求: 严禁在多尘及潮湿的环境中露天操作,光缆接续部位及工具、材料应保持清洁,不得让光纤接头受潮,准备切割的光纤必须清洁,不得有污物。切割后光纤不得在空气中暴露时间过长尤其是在多尘潮湿的环境中。接续环境温度过低时,应采取必要的升温措施。 (5)制备完善的光纤端面: 光纤端面的制备是光纤接续最为关键的工序。光纤端面的完善与否是决定光纤接续损耗的重要原因之一。优质的端面应平整,无毛刺、无缺损,且与轴线垂直,光纤端面的轴线倾角应小于0.3度,呈现一个光滑平整的镜面,且保持清洁,避免灰尘污染。应选用优质的切割刀,并正确使用切割刀切割光纤。裸纤的清洁、切割和熔接应紧密衔接,不可间隔过长。移动光纤时要轻拿轻放,防止与其他物件擦碰而损伤光纤端面。 (6)正确使用熔接机: 正确使用熔接机是降低光纤接续损耗的重要保证和关键环节。 ①应严格按照熔接机的操作说明和操作流程,正确操作熔接机。 ②合理放置光纤,将光纤放置到熔接机的V型槽中时,动作要轻巧。这是因为对纤芯直径为10 nm的单模光纤而言,若要熔接损耗小于0.1dB,则光纤轴线的径向偏移要小于0.8nm。 ③根据光纤类型正确合理地设置熔接参数(预放电电流、时间及主放电电流、主放电时间等)。 ④在使用中和使用后应及时去除熔接机中的灰尘(特别是夹具、各镜面和v型槽内的粉尘和光纤碎末)。

光缆接续损耗及互联网测试计算方法

工信部颁YDJ44-89《电信网光纤数字传输系统施工及验收暂行规定》简称《暂规》,对光纤接续损耗的测量方法做了规定,但没有规定明确的标准。原信产部郑州设计院在中国电信南九试验段以后的工程中提出了中继段单纤平均接续损耗0.08dB/个的设计标准,以后的干线工程均沿用。 1、光纤衰减:1310nm波长,0.35dB/km;1490nm波长,0.22dB/km。 2、光活动连接器插入衰减:0.5dB/个(尾纤连接)。 3、光纤熔接接头衰减:束状光缆0.1dB/每个接头,带状光缆0.2db/每个接头。 4、冷接子双向平均值为0.15dB/每个接头。 互联网(Dedicated Internet Access)测试计算方法: 在计算机网络、IDC机房中,其宽带速率的单位用bps(或b/s)表示;换算关系为:1Byte=8bit 1B=8b----------1B/s=8b/s(或1Bps=8bps) 1KB=1024B----------1KB/s=1024B/s 1MB=1024KB----------1MB/s=1024KB/s 在实际上网应用中,下载软件时常常看到诸如下载速度显示为128KB(KB/s),103KB/s等等宽带速率大小字样,因为ISP提供的线路带宽使用的单位是比特,而一般下载软件显示的是字节(1字节=8比特),所以要通过换算,才能得实际值。然而我们可以按照换算公式换算一下: 128KB/s=128×8(Kb/s)=1024Kb/s=1Mb/s即:128KB/s=1Mb/s 理论上:2M(即2Mb/s)宽带理论速率是:256KB/s(即2048Kb/s),实际速率大约为80--200kB/s;(其原因是受用户计算机性能、网络设备质量、资源使用情况、网络高峰期、网站服务能力、线路衰耗,信号衰减等多因素的影响而造成的)。

光纤作业及答案要点

第一次作业 1.公式推导:单位长度光纤中斜光线的光路长度和反射次数分别为 (1)S 斜=1/cos θ=S 斜 (2)斜η =r cos a 2tan θ =sr co 子η。 解:(1)如图1.2.2所示,设沿光纤的径向方向总长度为L ,则根据图中所示三角函数关系,得S=L/cos θ其中L=l 1 +l 2+…+l n (将光纤分割,在一小段上光路近似为直线) S 1= l 1/cos θ,S 2 =l 2 /cos θ,…,S n = l n /cos θ 从而得S 总= S 1 + S 2+…+ S n =L /cos θ 于是,单位长度中光线路程为S 斜=1/cos θ=S 斜。 (2)在沿横向方向上,光线传播的平面与光轴平面有一角r ,则光线在 横向上传播的总距离为r L cos tan θ ,从而总反射次数总η=r a L cos 2tan θ, 于是,单位长度中的光线总的全反射次数 斜η=r cos a 2tan θ = sr co 子η 2.推导光线方程: ()() d d r n r n r d s d s ?? =????? 解: 由在各向同性媒质中程函方程()()r n r =??,取光线的某一点的单位方向 矢量s l ()()r n l r s =?? ()[]()()r n ds r d r ds d ?=???????=??? ()[]()??? ???=ds dr r n ds d r n l ds d s 从而

()()d d r n r n r d s d s ?? =????? 第二次作业 见课本公式 P22-P26 第三次作业 1.什么是光纤,其传输的基本原理? 答:光纤是光导纤维的简称。它是工作在光波波段的一种介质波导,通常是圆柱形。它把以光的形式出现的电磁能量利用全反射的原理约束在其界面内,并引导光波沿着光纤轴线的方向前进。 2.光纤的分类? 答:光纤有三种分类方式:按光纤的传输模式、折射率分布、材料进行分类。 按传输模式分为单模光纤和多模光纤; 按折射率分布分为阶跃折射率光纤和渐变折射率光纤; 按材料分为石英光纤、多组分玻璃光纤、塑料光纤、液芯光纤和晶体光纤。 3.已知SI 光纤,n1=1.46,△=0.005, (1)当波长分别为0.85um 、1.3um 和1.55um 时,要保证单模传输a 范围是多少? 解:由单模条件得V=a k 0)(2 221n n -?2.4048可得: 单模光纤尺寸为a =1.202λ0/[ π ( )(2 221n n -)] 因为?=1-n n 1 2=0.005而n 1=1.46,所以n 2=1.4527

光缆施工现场与验收的检测方法和标准

光缆施工现场及验收的检测方法与标准 光缆施工的现场测试很重要,它是为连接光端机总调测做准备。光缆内光纤的测试项目有传输衰减的测量,对多模光纤,当需要时测试基带响应。 单盘光缆测试的目的在于工厂产品的质量;施工布放后的测试是为检查布放过程有无损伤,并作为接续前的检查;接续中的测试是为了检查接头是否达到低损耗;接续后组成单元光缆段的测试,目的在于检查是否达到设计对传输总衰减和总基带响应要求,作为连接光端机总调测的准备。 单模光纤是以色散系数来表征色散的。单模光纤的色散系数本来很低,对于140Mbit/s 系统的限额为300ps/nm,因此当中继段长小于50km时,该限额有很大余量,施工过程可以不必测量;565Mbit/s五次群的限额为120ps/nm,因此有必要在设计中考虑,施工后进行验证测量。 1、现场传输衰减的测量 1.1 光纤的衰减 光信号沿光纤传输时,光功率的损失即为光纤的衰减,衰减A以分贝(dB)为单位,A=10lgP1/P2(dB) P1和P2分别是注入端和输出端的光功率。 1.2 光缆间增加注入系统

为了测量得到精确的结果,必须保证功率分配是稳态模,因此在光源与被测光缆间增加注入系统。注入系统由扰模器、滤模器和包层模剥除器组成的一种模拟装置;对多模光纤可以用1km以上,以一定曲率半径圈绕的光纤。 1.3 3种测试方法比较 CCITT建议G.651推荐了3种测试方法。即剪断法、和后向散射法。剪断法精度高但有破坏性;介入损耗法是非破坏性,精度不如剪断法;而后向散射法,即用光时域反射仪(OTDR)测量,功能全、精度高和无破坏性,测量数据可直接打印出来。 1.4 用光时域反射仪(OTDR)测量的优点 用光时域反射仪(OTDR)测试只需在光纤的一端进行,如图1、2所示,用这种仪表不仅可以测量光纤的衰减系数,还能提供沿光纤长度衰减特性的详细情况,检测光纤的物理缺陷或断裂点的位置,测定接头的衰减和位置,以及被测光纤的长度,这种仪器带有打印机,可以把测绘的曲线打印出来。

塑料光纤弯曲损耗特性的测试与分析精选文档

塑料光纤弯曲损耗特性的测试与分析精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

天津工业大学 毕业论文 塑料光纤弯曲损耗特性的测试与分析 姓名 学院 专业 指导教师 职称 年月日

摘要 塑料光纤具因其质地柔软,芯径大,连接容易,传输带宽大,价格便宜等优点而广泛应用于照明,宽带接入网系统,短距离数据传输系统,汽车智能系统太阳能利用系统等诸多领域。本文回顾了塑料光纤的发展历程,从其结构,材料等方面了解其性能,研究分析其损耗,色散等传输特性,最后通过通过实验测试和分析塑料光纤弯曲半径和弯曲圈数对弯曲损耗影响的变化规律以掌握更多的塑料光纤传输特性信息,探讨其本质,充实其理论。 关键词:塑料光纤;弯曲损耗;弯曲半径

ABSTRACT Plastic optical fiber is widely used in various fields such as lighting, broadband access network system, short distance data transmission systems, automotive intelligent systems, solar energy utilization system because of its many advantages range from soft texture and large core diameter to easy connection, large transmission bandwidth and cheaper prices. My paper reviews the development of plastic optical fiber,explores its performance from its structure, materials, etc. And I will research and analyze its loss, dispersion and transmission characteristics. In the last, I will experiment testing and analyzing the variation of the bending loss due to bending radius and bending number of turns to explore its nature and enrich its theory. Key word:Plastic optical fiber; bending loss; bending radius

插入法测光纤的平均损耗系数

实验一 插入法测光纤的平均损耗系数 一.实验目的 1.掌握插入法测量光纤损耗系数的原理 2. 熟悉光纤多用表的使用方法 二.实验原理 最精确的光纤损耗测量方法是剪断法,这种方法首先在光纤输出端(远端)测量光功率,然后在不改变入射条件的情况下,在离光源几米长的光纤处剪断,再测量近端光功率,如图1.1所示。 图1.1 剪断法测量光纤损耗的示意图 但是这种方法是破坏性的。在工程中往往需要非破坏性测量,因此更常用插入法测量光纤的损耗。插入法测量光纤损耗的装置如图1.2所示。 图1.2 插入损耗法测量光纤损耗 光源 (a )参考测量 光源 光纤活动连接器 2(b ) 被测光纤损耗测量 光源

光的发射和探测都通过光纤活动连接器连接。光源发出的光通过光的注入系统输入到短光纤中,并通过光纤活动连接器与光功率计接通。首先,测量短光纤的输出功率 () mW P λ1,然后通过光纤连接器接入被测光纤,测量长光纤的输出功率()mW P λ2, 则光纤的总损耗为 ()() ()dB P P A λλ21lg 10= (1-1) A 实际上是被测光纤的损耗与连接器损耗之和。如果忽略连接器损耗,被测光纤的长度为L ,则光纤的损耗系数为 ()km dB L A =α (1-2) 对于多模光纤,不同的模式分布对损耗有很大影响。不同的发射条件,可产生不同的模式分布,因此有不同的光纤损耗值。解决办法是在光的注入系统加一个扰模器,使多模光纤在短的传播长度内达到稳态模分布。对于单模光纤,光的注入系统是一个剥模器,可以滤除单模光纤的包层模。 三.实验设备 AV2498光纤多用表、 1310nmLD 光源、 待测光纤、 光纤跳线 四.实验步骤 1.将1310nmLD 光源打开预热30分钟。 2. 在激光耦合进光纤的起始端,用一定长度的光纤跳线在扰模器上缠绕,达到稳定 的模式输出后,在光纤跳线的另一端测量或连接待测光纤。 3.将光纤多用表电源开关拨到"单开"位置。 4.光纤多用表调零 。调零是在最小量程下进行,按“平均”键后,在遮光下进行(盖 上光输入保护盖),按“调零”键即可。 5.测量方式的选择。用“波长”键设定波长为1310nm ,使之与被测波长相符。 6.按照图1.2(a)测出参考光功率P 0。将两端都带有标准FC/PC 活动接头的光纤跳线 的一端直接插入光纤多用表的光输入插座,另一端插入光源的光输出插座,测出参考光功率P 0。 7.按照图1.2(b)测出参考光通过待测光纤后的功率P S 。将待测光纤串到跳线的一端 和光纤多用表输入端之间,测出此时的功率P S 。 测试中可根据用户的习惯和测试特点随时按"W/dBm"键得到线性(W)、对数值(dBm)读数。 对数值(dBm)=10log(测量线性值/1mW) 8.算出光纤的损耗和损耗系数。 总损耗为:

关于光纤接续损耗测试以及分析

关于光纤接续损耗测试以及分析 作者:舒伟明 光纤接续损耗是光纤通信系统 性能指标中的一项重要参数,损耗值的大小直接影响到光传输系统的整体传输质量,在光缆施工和维护测试中,运用科学的测试分析方法,对提高整个光缆接续施工质量和维护工作极其重要,尤其是进一步研究光通信中长波长的单模光纤的通信性能、传输衰耗、测量精度和检查维修等方面有一定现实意义。 一、 光纤接续损耗分析 1、 光纤接续损耗产生的原因 1.1 本征损耗 本征损耗是光纤材料所固有的一种损耗,预制棒拉丝成纤后就确定了,这种损耗无法避免,引起光纤本征损耗的主要原因是散射和吸收,散射是由于材料密度不均匀而产生的瑞利散射,吸收主要是光纤材料中的杂质粒子对某些波长的光产生强烈的吸收。 1.2光纤的附加损耗 附加损耗是成纤后产生的损耗,主要是由于光纤受到弯曲和微弯所产生的,在成缆和光缆的施工过程中,都不可避免地要发生弯曲,因此就会产生附加损耗,对于单模光纤,对接的两根纤,由于模场直径,纤芯和包层的同心度、纤芯的不圆度参数的差异,会导致光纤接续损耗的产生,在两根光纤完全对准,且忽略端面间隙的情况下,接续损耗主要取决于光纤模场直径的差异,接续损耗的计算为:b=20lg[1/2(d1/d2+ d2/ d1)], d1与d2分别为两对接光纤的模场直径,从计算公式可以看出,两对接光纤的模场直径相等(即d1=d2)时,其接续损耗b=0。 2、 影响光纤接续损耗的原因

影响光纤接续损耗的原因,主要是光纤本身的结构参数和熔接机的熔接质量,同时还有一些人为因素和机械因素,比如光纤收容盘纤产生的弯曲损耗,光纤切割的断面质量,横向失配、纵向分离、轴向倾斜等。 二、光纤接续损耗测试分析 1、熔接机对接续损耗估算原理 熔接机接续是通过对光纤X轴和Y轴方向的错位调整,在轴心错位最小时进行熔接的,这种能调整轴心的方法称为纤芯直视法,这种方法不同于功率检测法,现场是无法知道接续损耗的确切数值的,在整个调整轴心和熔接接续过程中,通过摄像机把探测到所熔接纤芯状态的信息,送到熔接机的分析程序中,然后熔接机计算出接续损耗值,其实准确地说,这只能是说明光纤轴心对准的程度,并不含有光纤本身的固有特性所影响的损耗,而OTDR 的测试方法是后向散射法,它包含有光纤参数的不同形式的反射损耗,所以熔接机所显示的数据配合观察光纤接续断面情况只是粗略地估计了光纤接续点损耗的状况,不能作为光纤接续损耗的真实值。 2、OTDR的工作原理 背向散射法是将大功率的窄脉冲光注入待测光纤,然后在同一端检测沿光纤轴向向后返回的散射光功率,由于光纤材料密度不均匀,其本身的缺陷和掺杂成分不均匀,当脉冲通过光纤传输时,沿光纤长度上的每一点均会引起瑞利散射,其中总有一部分进入光纤的数值孔径角,沿光纤轴反向传输到输入端。瑞利散射光的波长与入射光的波长相同,其光功率与散射点的入射光功率成正比,测量沿光纤轴向返回的背向瑞利散射光功率可采集到沿光纤传输损耗的信息,从而测得光纤的衰减。 光时域反射仪通过光发送脉冲进入输入光纤,同时在输入端接收其中的菲涅尔反射光和瑞利背向散射光,再变成电信号,随时间在示波器上显示。 使用OTDR测试光纤接续损耗时,1550nm的波长对光纤弯曲的损耗较1310nm敏感,所以光纤接续损耗测试应选择1550nm波长,以便观察光缆敷设和光纤接续中是否会因光纤弯曲过度而造成损耗增大,但采用光源光功率计全程传输损耗测试时应对1310nm和1550nm两波长进行分测。

相关文档