文档库 最新最全的文档下载
当前位置:文档库 › 信号产生与检测电路

信号产生与检测电路

信号产生与检测电路
信号产生与检测电路

3.1信号产生与检测电路的组成

信号产生与检测电路的组成框图如图3.1所示。

6

图3.1 信号产生与检测电路的组成框图

信号产生与检测电路的主要技术指标和功能如下:

(1)网络接口:100Mb/s,全双工,支持TCP/IP协议;

(2)串行接口:1个RS232接口,1个RS485接口,1个RS485转接接口,波特率最高115200B,数据位8位,停止位1位,校验位无;

(3)IIC总线:连接信号处理器、主控制器、码产生器、方位控制板插座,经开关控制连接6片PCF8574;

(4)高速DAC:2路,位数14位,最大采样速率210 MSP;

(5)串行DAC:6路,串行控制接口SPI;

(6)输入输出数字信号电平标准:5V CMOS/TTL电平;

(7)检测插座:为9种电路板提供检测插座;

(8)激励信号:为9种电路板诊断提供电源和激励信号;

(9)检测信号:被测信号通过信号诊断钩引入信号产生与检测电路,一部分由FPGA或ARM检测,一部分经模拟开关选通输出至数据采集器检测。

信号产生与检测电路实现的功能见表3.1。

表3.1 信号产生与检测电路的功能

3.2主处理芯片介绍

3.2.1 FPGA(EP3C25)

FPGA模块使用的是EP3C25系统,该系统属于FPGA-Cyclone III系列。

Altera公司于2007年07月宣布开始发售业界的首款65nm低成本FPGA-Cyclone III系列,Cyclone III FPGA含有5~120KB逻辑单元(LE),288个数字信号处理(DSP)乘法器,存储器达到4Mb。在可编程逻辑发展历史中,Cyclone III FPGA比其他低成本FPGA系列能够支持实现更多的应用[5]。对于软件无线电(SDR),Cyclone III系列在单个器件中集成了所需的逻辑、存储器和

DSP乘法器等信号处理功能,成本非常低;与前一代产品和竞争产品相比,Cyclone III FPGA的低功耗、高密度和充足的DSP功能使设计人员可以在大量新的无线应用中使用低成本系列产品;在视频和图像处理应用中,Cyclone III FPGA恰当地结合了DSP乘法器、存储器和逻辑资源;Cyclone III器件针对显示应用进行了优化,是第一款能够满足所有1080p HDTV性能需求的低成本FPGA。

3.2.2 ARM(AT91SAM9G20)

ARM模块使用的是AT91SAM9G20系统。

AT91SAM9G20微处理器是由ATMEL公司生产的,这款400 MHz 的微处理器具有ATMEL先进的外设DMA 和分布式存储器架构,连同6层总线矩阵,可实现存储器、外设和外部接口之间的多重数据同时传送,而无需耗费CPU的时钟周期。其外部总线接口 (EBI) 的时钟频率为133 MHz,用于片外存储器的高速数据传送。这种架构为器件提供了内部和外部的高数据带宽,能满足许多嵌入式网络应用的要求。AT91SAM9G20联网和通信的要求通过10/100M BT 以太网MAC、7个USART接口、12M bps USB 全速双端口主机和器件端口、双SPI接口、SSC接口和双线接口(TWI) 来进行。此外,还有一个完全集成的图像传感器接口 (ISI),能够满足图像感应的要求。同时,在所有外设启动的400 MHz全功率模式下,AT91SAM9G20的功耗仅为80mW。而且这款器件还具有 4 种降低功耗的模式,包括在后备模式中主电源被关断,而器件的功耗非常低 (9mW),能够延长电池供电的时间。

AT91SAM9G20不但有效地结合了高性能和低功耗特性,而且价格非常吸引,这些优点使其在市场中得到广泛接受。

3.3 ARM系统电路设计

ARM系统电路包括ARM处理器AT91SAM9G20、供电电路、复位电路、时钟电路、存储电路、网络接口电路和串行接口电路。

3.3.1 AT91SAM9G20

AT91SAM9G20集成了外部存储控制器(SDRAM控制器和片选逻辑),支持Data

Flash、Nand Flash和Nor Flash系统引导;有1路主USB和1路从USB,主USB 可同时连接两路USB设备;内部集成锁相环;96个可编程的I/O口和31路外部中断;具有日历功能的RTC和6路TC计时器;支持串口USART,同步串口SSC 等多种通信接口;并集成了10/100Mbps双以太网控制器。

AT91SAM9G20的组成框图如图3.2所示。

图3.2 AT91SAM9G20的组成框图

3.3.2供电电路

供电电路中使用了大量的滤波电容,使输出的直流电源更平滑。同时,每个芯片的电源引脚和地之间都连接了这样的滤波电容,以防止电源噪声影响元件正常工作。AT91SAM9G20的供电范围如表3.2所示:

供电电路设计采用1V和3.3V两种电源,核电压为1V,其余为3.3V,上电顺序如图3.3所示。供电电路中1V电压由5V电压经过DC-DC芯片TPS60500DGSR 变换得到,3.3V电压由5V电压经过线性稳压芯片LT1963AEQ-3.3得到,1V电压的上电顺序由比较器LM293和三极管IRLML6402控制。图3.4显示了DC-DC芯片TPS60500DGSR将5V转换为1V的过程,图3.5显示了稳压芯片LT1963AEQ将5V 电压转换为3.3V的过程。

图3.3 上电顺序时序图

图3.4 1V供电电路

ARM供电电路的滤波电容如图3.6所示,

图3.6 ARM的滤波电容

3.3.3复位电路

复位电路主要完成系统的上电复位和系统在运行时用户的按键复位功能。在AT91SAM9G20中,提供系统复位功能的是nRST管脚, nRST管脚上的低电平有效使得AT91SAM9G20复位,复位电路如图3.7所示。

图3.7 复位电路

3.3.4时钟电路

AT91SAM9G20正常工作需要提供启动时钟的慢时钟和正常工作时钟的主时钟2个时钟源。AT91SAM9G20时钟发生器内置慢时钟振荡器、主振荡器、两个PLL 及分频器模块,组成框图如图3.8所示。从硬件设计上看,AT91SAM9G20需要外接两个晶体,如图3.9和图3.10所示,在AT91SAM9G20与慢时钟振荡器对应的脚XIN32、XOUT32之间接32.768KHz的晶体,作为AT91SAM9G20的慢时钟;在AT91SAM9G20与主振荡器对应的脚XIN、XOUT之间接18.432MHz的晶体,作为AT91SAM9G20正常工作的各种时钟源。外部晶体的振荡频率最高只有18.432MHz,但是AT91SAM9G20处理器时钟通过编程可达400MHz,这是因为AT91SAM9G20内部有两个锁相环,称为PLLA和PLLB,其中,锁相环A输出400-800MHz的时钟,锁相环B输出100MHz的时钟。

图3.8 时钟发生器的组成框图

图3.9 接外部晶振作慢时钟

锁相环是一种反馈电路,其作用是使得电路上的时钟和某一外部时钟的相位同步。PLL通过比较外部信号的相位和由压控晶振(VCXO)的相位来实现同步的,

在比较的过程中,锁相环电路会不断根据外部信号的相位来调整本地晶振的时钟

相位,直到两个信号的相位同步。在数据采集系统中,锁相环是一种非常有用的同步技术,因为通过锁相环,可以使得不同的数据采集板卡共享同一个采样时钟。因此,所有板卡上各自的本地80MHz和20MHz时基的相位都是同步的,从而采样时钟也是同步的。因为每块板卡的采样时钟都是同步的,所以都能严格地在同一时刻进行数据采集。

3.3.5存储电路

存储电路分为FLASH存储器电路和SDRAM存储器电路。

1. FLASH存储器电路

由于微控制器运行的代码需要存储在非易失的存储介质中,以确保掉电后程序也不丢失。而AT91SAM9G20只有64K字节片上ROM,这就对片内存储的代码大小提出了限制,而实际嵌入式系统的代码大小一般都超过64K。因此在实际的硬件设计中,会采用外扩的FLASH存储器存放程序代码,目前用的非易失的存储介质通常是FLASH。

FLASH 即为闪存,有许多种种类,从结构上分主要有NandFlash、NorFlash 等,这些都是目前主流的类型,在嵌入式系统中,一般用FLASH来存放需要永久保存的程序和数据,掉电后不会丢失。而用SDRAM来存放系统运行时的数据,掉电后则消失。

综合各方面的性能,NandFlash更优,它拥有较快的擦除和写入速度(大多数的写入操作需要先进行擦除操作);在更低的成本上获得更大的容量;它的每个块最大擦写次数是100万次,远高于NorFlash的10万次,拥有更长的使用寿命;并且NandFlash的擦除单元(NorFlash的擦出块单元为64~128KB,NandFlash 的擦除块单元为8~32KB)更小,相应的擦除电路更简单。

但是在NandFlash中,位反转的问题更加严重,在使用NandFlash时必须同时使用EDC/ECC算法来确保其可靠性,并且NandFlash器件中的坏块是随机分布的,如果通过可靠的方法不能进行坏块扫描,则将导致较高的故障率。

与此同时,NorFlash闪存的连接方式类似于其他存储器,并可以直接运行代码,而不像NandFlash器件上始终必须进行虚拟映射。并且在NorFlash器件上运行代码不需要任何的软件支持,在进行写入和擦除操作时,NorFlash器件

所需要的MTD(闪存技术驱动程序)相对较少,驱动程序还可用于对DiskOnChip 产品进行仿零点和闪存管理,包括纠错、坏块处理和损耗平衡。

虽然NandFlash的性能较好,但是Nor Flash 带有SRAM接口,有足够的地址引脚,可以很容易的对存储器内部的存储单元进行直接寻址。在实际的系统中,可以根据需要选择ARM处理器与NorFlash的连接方式。NorFlash的操作最更加方便,电路也更为简易易懂。

此外,DataFlash也是目前主流的一种闪存类型。DataFlash是Atmel公

司新推出的大容量串行Flash存储器产品,具有体积小,容量大,功耗低和

硬件接口简单的特点。它是Atmel私有的接口,与兼容SPI标准。信息从DataFlash芯片被写并且读使用所有微型控制器,非常易于构成微型测量系统。

本次设计中,这三种Flash存储我们使用DataFlash,电路图如3.11所示,采用的都是并行存储方式。

图3.11 FLASH存储器

2.SDRAM存储器电路

AT91SAM9G20只有两个16 K字节片上SRAM,而一般程序运行时需要更大的内存,因此在实际的硬件设计中,需要外扩存储空间。SDRAM(Synchronous Dynamic Random Access Memory),即同步动态随机存取存储器,工作需要同步时钟,内部的命令的发送与数据的传输都以它为基准,存储阵列需要不断的刷新来保证数据不丢失。SDRAM的特点是:体积小、容量大、相对价格便宜、存取的速度相对较慢、耗电量小、控制起来相对复杂、需要定时进行刷新操作。SDRAM一般都是行列地址复用的,数据可以自由指定地址进行数据读写。

SDRAM是对bank结构,例如在一个具有两个bank的SDRAM的模组中,其中一个bank在进行预充电期间,另一个bank则马上可以被读取,这样可以大大提高存储器的访问速度。在SDRAM芯片中一般会有实现bank选择的引脚,用于实现多个bank 的选择。

目前常用的SDRAM为8bit/16bit数据宽度、工作电压一般为3.3V,主要生产厂商为Micron、HynixI、Winbond等,若同类器件具有相同的电气特性和封装形式可通用。但在使用SDRAM时要注意ARM芯片是否具有独立的SDRAM的刷新控制逻辑,若有可直接与SDRAM接口,若无则不能直接与SDRAM连接。

SDRAM通过对电容的充放电完成存储操作,但因电容本身有漏电问题,所以内存中的数据要持续不断地存取,存储在SDRAM中的数据必须不断地刷新以保持数据的完整性,否则数据将会丢失。通常使用特定的刷新电路来对SDRAM中存储的数据进行刷新工作。

SDRAM存储器采用2片MT48LC16M16A2P,实现32位位宽数据存取。SDRAM 的原理框图如图3.12所示。

图3.12 SDRAM的原理框图

SDRAM控制信号的引脚介绍:

①RAS:行地址选通信号,为输入信号,低电平有效。

②CAS:列地址选通信号,为输入信号,低电平有效。

③SDWE:写使能信号,为输入信号,低电平有效。

④SDA10:地址信号,为输入信号。

⑤SDCKE:时钟使能信号,为输入信号,高电平有效。CKE信号的用途有两个:一、关闭时钟以进入省电模式;二、进入自刷新状态。CKE无效时,SDRAM内部所有与输入相关的功能模块停止工作。

⑥SDCK:时钟信号,为输入信号。SDRAM所有输入信号的逻辑状态都需要通过CLK 的上升沿采样确定。

⑦SDCS:片选信号,为输入信号,低电平有效。只有当片选信号有效后,SDRAM 才能识别控制器发送来的命令。设计时注意上拉。

本设计中,SDRAM与AT91SAM9G20的连接电路如图3.13所示

图3.13 SDRAM与AT91SAM9G2连接

3.3.6网络接口

AT91SAM9G20内嵌有以太网控制器,使用DAVICOM公司生产的以太网控制芯片DM9161作为 AT91SAM9G20与以太网连接的物理层接口芯片。DM9161是一款低功耗,高性能的CMOS芯片,支持10和100M以太网传输,主要完成对网络数据的接收解码和对数据帧编码发送。它完全兼容IEEE802.3u l0Base-T/l00Base-Tx 标准,同时兼容ANSI X3T12 TP-P如1995标准;支持MII和RMII两种接口模式,方便与AT91SAM9G20互连。DM916l采用0.35um CMOS技术,3.3V单电源供电,

48脚LQFP小封装设计。

DM916l与AT91SAM9G20硬件连接如图3.14所示。AT91SAM9G20与DM9161采用RMII接口方式互连,RMII的目的是用缩减的引脚数来代替IEEE 802.3u MII。它使用2位进行发送(ETX0与ETX1,对应PA12与PA13),2位进行接收(ERX0与ERX1,对应PA14与PA15)。有一个发送使能(ETXEN对应PA16),一个接收错误(ERXER对应PA18),一个数据有效(ERXDV对应PA17),以及一个在100Mb/s数据传输速率下,需要50MHz的参考时钟(ETXCK对应PA19)。DM9161的状态中断输出脚(MDINTR)连接在AT91SAM9G20的FIQ(PC13)上,状态中断输出脚需要外接1.5K电阻上拉,当状态发生改变时,比如连接、传输速率、状态中断输出脚由高电平变为低电平。AT91SAM9G20的PA20和PA21与DM9161的MDC和MDIO相连接,其中MDC是管理数据时钟脚,最大时钟速率为2.5MHz:MDIO是管理数据I/0引脚,通过MDC和MDIO可以控制和管理DM9161,可以获得物理层芯片的状态信息和错误信息等。

3.3.7串行接口

串行接口,即串口,也称串行通信接口,按电气标准及协议来分包括

RS-232-C、RS-422、RS485、USB等。RS-232-C、RS-422与RS-485标准只对接口的电气特性做出规定,不涉及接插件、电缆或协议。本系统采用的是目前最常用的RS232接口和RS485接口,如图3.15所示,RS232接口物理层适配采用适配芯片MAX3232完成。RS232接口是在1970年由美国电子工业协会(EIA)联合贝尔系统、调制解调器厂家及计算机终端生产厂家共同制定的用于串行通讯的标准,它的全名是“数据终端设备(DTE)和数据通讯设备(DCE)之间串行二进制数据交换接口技术标准”。传统的RS-232-C接口标准有22根线,采用标准25芯D型插头座。后来的PC上使用简化了的9芯D型插座。本系统采就采用9芯D型插座。

RS232C标准所定义的高、低电平信号与AT91SAM9G20系统的LVTTL电路所定义的高、低电平信号完全不同:LVTTL的标准逻辑“1”对应2V~3.3V电平,标准逻辑“0”对应0V~0.4V电平,而RS232C标准采用负逻辑方式,标准逻辑“1”对应-5V~-15V电平,标准逻辑“0”对应+5V~+15V电平。因此,需要实现两者间信号的转换。

图3.15 RS232接口

如图3.16所示,RS485接口物理层适配采用适配芯片MAX483完成。RS485采用差分信号负逻辑,+2V~+6V表示“0”,- 6V~- 2V表示“1”。

图3.16 RS485接口

3.3.8 JTAG调试模块

调试和测试接口不是系统运行所必须的,但是在现代系统越来越强调可测试性,所以调试、测试接口设计也就显得十分重要了。AT91SAM9G20有一个内置JTAG 调试接口,通过这个接口可以控制芯片的运行并得到内部信息。不过在正式产品中不需要这部分电路。

JTAG (Joint Test Ation Group),联合测试行动小组)是一种国际标准测试协议,主要用于芯片内部测试及对系统进行仿真及调试[12]。JTAG技术是一种嵌入式调试技术,它在芯片内部封装了专门的测试电路TAP(测试访问口),通过专用的JTAG测试工具对内部节点进行测试。目前JTAG接口的连接有两种标准,即14针接口和20针接口,本系统中采用标准的20针接口方式,其接口如图3.17

所示

图3.17 JTAG调试模块电路图

3.4 FPGA系统电路设计

3.4.1 FPGA与ARM的连接

FPGA与AT91SAM9G20之间采用并行总线接口,包括1位读、1位写、16位地址、16位数据、2位中断、2位片选,连接关系如图3.18所示。

3.4.2配置电路

本设计采用AS模式配置,如图3.19所示。

图3.19 AS模式配置

EPCS(Erasable programmable configurable serial)是串行存贮器,NiosII 不能直接从EPCS中执行程序,它实际上是执行EPCS控制器的片内ROM 中的代码(即Bootloader),把EPCS中的程序搬到RAM中执行。

目前大部分FPGA都是基于SRAM工艺的,而SRAM工艺的芯片在掉电后信息就会丢失,因此需要外加一片专用的配置芯片。在上电的时候,由这个专用配置芯片把数据加载到FPGA中,FPGA就可以正常工作了。

FPGA是由存放在片内RAM中的程序来设置其工作状态的,加电时,FPGA芯片将EPROM中数据读入片内编程RAM中,配置完成后,FPGA进入工作状态。掉电后,FPGA恢复成白片,内部逻辑关系消失。因此FPGA能够反复使用,当需要修改FPGA功能时,只需换一片EPROM即可。本系统中采用EPCS16作为EPROM,如图3.20所示。

图3.20 配置芯片

微弱光信号检测电路的设计

Electronic Component & Device Applications 0引言 光电检测技术是光学与电子学相结合而产生 的一门新兴检测技术。它主要利用电子技术来对光学信号进行检测,并进一步传递、储存、控制、计算和显示。其原理是通过光电探测器件将光学信息量变换成电信号,并进一步经过电路放大、处理,以达到电信号输出的目的。微弱光信号的检测在许多领域都有应用,检测方法多种多样,但常用的方法由于灵敏度有限,难以满足要求,本文应用光电检测技术来检测微弱光信号。该方法利用高性能运放来设计检测电路,因而具有精度高、稳定性好等优点。 1电路基本原理 用光电二极管组成的光电检测电路,实际上 是一个光→电流→电压的变换器。首先由光电二极管将接收的光信号变成与之成比例的微弱电流信号,再通过运放和反馈电阻组成的放大器变换成电压信号。其基本电路如图1所示。 假定运放为理想的运放,其输入电阻和放大倍数都为无穷大,则输出电压为U 0=I P R 。理论上,系统的输出电压U 0的值与输入电流I P 成线性关系,灵敏度由反馈电阻R 确定。而实际应用中,由于要受到运放失调电压V od 与偏置电流I b 的影响,其输出电压总要产生误差。误差电压一般为: U e =V od (1+R /R d )+I b R 其中R d 为光电二极管的结电阻。由此式中可以看出,当运放的失调电压与偏置电流都较小时,输出电压误差较小。因此,选择运放时,应选择性能参数都符合要求的运放。本设计选择 AD795KN 作为前置放大器。 2检测电路设计 光电二极管所接收到的信号一般都非常微 弱,而且输出的信号往往被深埋在噪声之中。因此,对这样的微弱信号一般都要先进行放大、滤波,然后通过模数转换将信号传输给后续处理器电路。 本检测系统由光电二极管、前置放大电路、滤波电路、主放大电路、A/D 转换电路,MCU 控制和信号处理电路等组成,其结构框图如图2所示。 微弱光信号检测电路的设计 杜习光 (西南大学工程技术学院,重庆 400716) 摘 要:从微弱光信号检测电路的设计方案入手,论述了光电检测电路的基本工作原理,给 出了采用AD795KN 为前置放大器来设计放大电路、有源滤波电路以及主放大电路,最终设计低噪声光电检测电路的一般原则。实验表明,基于本设计的检测电路可以有效测量微弱光信号,适用于一般光信号和微弱光信号的检测需要。关键字: 微弱光信号;光电检测 ;AD795KN ;低噪声

课程设计 光电脉搏检测电路设计报告

光电脉搏检测电路设计报告 脉搏波的概述 1.脉搏波的定义 脉搏波是以心脏搏动为动力源, 通过血管系的传导而产生的容积变化和振动现象。当心脏收缩时, 有相当数量的血液进入原已充满血液的主动脉内, 使得该处的弹性管壁被撑开,此时心脏推动血液所作的功转化为血管的弹性势能; 心脏停止收缩时, 扩张了的那部分血管也跟着收缩, 驱使血液向前流动, 结果又使前面血管的管壁跟着扩张, 如此类推。这种过程和波动在弹性介质中的传播有些类似, 因此称为脉搏波(pulse wave) 。 2.脉搏信息 血液在人体内循环流动过程中,经历过心脏的舒张、内脏流量的涨落、血管各端点的阻滞、血管内波的折一反射以及血管壁的黏弹等过程。脉搏波不仅受到心脏状况的影响,同时要受到内环境调控功能器官(脏器) 状态所需血液参数以及系统状态参数等的影响。所以脉搏波所呈现出的形态、强度、速率和节律等方面的综合信息富含有关心脏、内外循环和神经等系统的动态信息,很大程度上反映出人体心血管系统中许多生理病理的血流特征。 3.脉搏测量的意义 脉搏是临床检查和生理研究中常见的生理现象,包含了反映心脏和血管状态的重要生理信息。人体内各器官的健康状态、病变等信息将以某种方式显现在脉搏中即在脉象中。人体脉象中富含有关心脏、内外循环和神经等系统的动态信息。通过对脉搏波检测得到的脉波图含有出许多有诊断价值的信息,可以用来预测人体某些器脏结构和功能的变换趋势,如:血管几何形态和力学性质的变异会引起脉搏波波形和波速等性质的改变,而脉搏的病理生理性改变常引发各种心血管事件,脉搏生理性能的改变可以先于疾病临床症状出现,通过对脉搏的检测可以对如高血压和糖尿病等引起的血管病变进行评估。同时脉搏测量还为血压测量,血流测量及其他某些生理检测技术提供了一种生理参考信号。 设计目的与意义 ?目的 应用光电式传感器、放大滤波电路组成的脉搏测量电路 通过示波器显示人体指端动脉脉搏信息 ?意义 通过观测到的脉搏的次数、跳动的波形为临床提供部分 诊断价值的信息,为人体某些器脏结构和功能的变换趋势提供生理参考信号 系统设计 1.测量信号的特征

呼吸检测信号调理电路设计

课程设计任务书 (指导教师填写) 课程设计名称生物医学电子学课程设计学生姓名专业班级 设计题目呼吸检测信号调理电路设计 通过设计和调试呼吸检测仪器的信号调理电路电路,深入了解医学信号放大器的特点,并掌握放大及滤波电路的有关指标。 一、设计内容、技术条件和要求 1、查阅相关资料,了解呼吸检测常用方法,选择一种,确定呼吸信号检测放大电路对输入阻抗、差动增益、共模抑制比、等效输入噪声等特性参数的要求;根据信号特点,确定滤波器的相关特性参数。 2、计算和设计呼吸信号检测电路,绘制放大及滤波电路系统电路图;设计50Hz 工频滤波器。 3、在EWB仿真系统中模拟测试设计电路,进行电路连接与调试; 4、测试和计算电路的放大倍数,截止频率、共模抑制比,等效输入噪声以及等效输入阻抗等参数,保存测试的波形文件,并对上述参数进行分析。使安装和调试后的生物医学信号放大及滤波电路,满足指标要求。 5、在仿真系统中,使用含有干扰信号的呼吸信号作为放大器的输入信号进行观察。 6、思考分析: ①设计的放大器,其共模抑制比主要受哪些元器件的影响?应如何选择这些元件才能保证具有较高的共模抑制比? ②如何进一步提高其抗干扰,尤其是抗工频干扰(50Hz)的能力。 二、时间进度安排 1、查阅资料文献;(12月16日~12月17日) 2、熟悉EWB(/Multisim)设计软件,设计及调试;(12月17日~12月24日) 3、撰写和修改论文;(12月25日~12月26日) 4、演示与现场答辩。(12月27日) 三、主要参考书目 1.余学飞.医学电子仪器原理与设计.广州:华南理工大学出版社 2.王保华.生物医学测量与仪器.上海:复旦大学出版社 3.蔡建新.生物医学电子学.北京:北京大学出版社 4.周希贤.生物医学电子学及实验.兰州:兰州大学出版社 5.张唯真.生物医学电子学.北京:清华大学出版社 6.康华光.电子技术基础.北京:高等教育出版社 指导教师签字:2013 年12 月15 日

第七章 信号检测与处理电路

第七章信号检测与处理电路一、教学要求 知识点 教学要求 学时掌握理解了解 信号检测系统的基本组成√ 检测系统中的放大电路 测量放大器的电路结构和工作 原理 √ 隔离放大器的电路结构和工作 原理 √ 有源滤波 器 滤波器的基础知识√ 低通、高通有源滤波器特性和 分析方法 √ √ 带通、带阻有源滤波器电路结 构与特性 √ 电压比较器的特性和分析方法√ 二、重点和难点 本章的重点和难点 本章的重点是:测量放大器的电路结构和工作原理、滤波器的基础知识、低通和高通有源滤波器特性和 分析方法、电压比较器的特性和分析方法。本章的难点是:二阶有源滤波器、迟滞比较器的电路分析。 三、教学内容 7.1 信号检测系统的基本组成 一般信号检测系统的前向通道主要包含传感器、放大器、滤波器、采样保持器和模数转换器等电路模块。 将被测物理量转换成相应的电信号的部件称为传感器。传感器输出的电信号一般都比较微弱,通常需要利用放大电路将信号放大。然而,与被测信号同时存在的还会有不同程度的噪声和干扰信号,有时被测信号可能会被淹没在噪声及干扰信号之中,很难能分清哪些是有用信号,哪些是干扰和噪声。因此,为了提取出有用的信号,而去掉无用的噪声或干扰信号,就必须对信号进行处理。 在信号处理电路中,应根据实际情况选用合理的电路。例如,当传感器的工作环境恶劣,输出信号中的有用信号微弱、共模干扰信号很大,而传感器的输出阻抗又很高,这时应采用具有高输入阻抗、高共模抑制比、高精度、低漂移、低噪声的测量放大器;当传感器工作在高电压、强电磁场干扰等场所时,还必须将检测、控制系统与主回路实现电气上的隔离,这时应采用隔离放大器;对于那些窜入被测信号中的差模干扰和噪声信号,通常需要根据信号的频率范围选择合理的滤波器来滤除。 另外,在信号检测系统中,有时还需要对某些被测模拟信号的大小先做

光电检测技术中的微弱光信号前置放大电路设计解读

光电检测技术中的微弱光信号前置放大电路设计< 0引言 光电检测技术是光学与电子学相结合而产生的一门新兴检测技术[1]。它主要利用电子技术对光学信号进行检测,并进一步传递、储存、控制、计算和显示[2]。光电检测技术从原理上讲可以检测一切能够影响光量和光特性的非电量。它可通过光学系统把待检测的非电量信息变换成为便于接受的光学信息,然后用光电探测器件将光学信息量变换成电量,并进一步经过电路放大、处理,以达到电信号输出的目的[3]。然后采用电子学、信息论、onclick=kwC(event,0) onmouseout=kwL(event,this)> 计算机及物理学等方法分析噪声产生的原因和规律,以便于进行相应的电路改进,更好地研究被噪声淹没的微弱有用信号的特点与相关性,从而了解非电量的状态。微弱信号检测的目的是从强噪声中 onclick=kwC(event,1) onmouseout=kwL(event,this)>提取有用信号,同时提高检测系统输出信号的信噪比。 1 光电检测电路的基本构成 光电探测器所接收到的信号一般都非常微弱,而且光探测器输出的信号往往被深埋在噪声之中,因此,要对这样的微弱信号进行处理,一般都要先进行预处理,以将大部分噪声滤除掉,并将微弱信号放大到后续处理器所要求的电压幅度。这样,就需要通过前置放大电路、滤波电路和主放大电路来输出幅度合适、并已滤除掉大部分噪声的待检测信号。其光电检测模块的组成框图如图1所示。 2 光电二极管的工作模式与等效模型 2.1 光电二极管的工作模式 光电二极管一般有两种模式工作:零偏置工作和反偏置工作,图2所示是光电二极管的两种模式的偏置电路。图中,在光伏模式时,光电二极管可非常精确的线性工作;而在光导模式时,光电二极管可实现较高的切换速度,但要牺牲一定的线性。事实上,在反偏置条件下,即使无光照,仍有一个很小的电流(叫做暗电流或无照电流1。而在零偏置时则没有暗电流,这时二极管的噪声基本上是分路电阻的热噪声;在反偏置时,由于导电产生的散粒噪声成为附加的噪声源。因此,在设计光电二极管电路的过程中,通常是针对光伏或光导两种模式之一进行最优化设计,而不是对两种模式都进行最优化设计[4]。 一般来说,在光电精密测量中,被测信号都比较微弱,因此,暗电流的影响一般都非常明显。本设计由于所讨论的待检测信号也是十分微弱的信号,所以,尽量避免噪声干扰是首要任务,所以,设计时采用光伏模式。 2.2 光电二极管的等效电路模型

信号点灯电路检测方法

信号点灯电路常见故障及其检测处理方法 信号机是铁路信号设备的重要组成部分之一,在运输生产工作中,它起着指挥列车和车列运行的重要作用,在铁路运输系统中,它为提高区间和车站通过能力及编解效率提供了强有力的安全保障。随着铁路扩大内涵再生产的不断深入,铁路信号设备也在随其发生着巨大的变化。根据地区发展和站场的实际情况,所设置的信号机类型也大不相同,因此,在控制信号机显示状态的点灯电路中所接入的条件也不相同。用来提供不同的显示,以满足和适应不同地区的各种需要。信号机按用途分为进站、出站、通过、进路、预告、遮断、驼峰、驼峰辅助、复示、调车十种。本论文中将主要介绍一种信号机点灯电路--进站信号机点灯电路。 一、信号点灯电路的安全措施 信号点灯电路采用了双重系统,具有主灯丝断丝后,自动转换副丝的功能,又有较完善的故障自诊功能,点灯电路出现故障可以从控制台上的信号复示器点亮的状态以及电铃响铃报警得到发现。另外,信号点灯电路要保证断线时灭灯,允许灯光灯要使信号显示降级使用。如绿灯或黄灯灯灭要自动改点红灯。禁止灯光灭灯时要禁止信号机再开放。因此,在每一个信号灯泡上都串联一个灯丝继电器,用以监督灯泡的完整性。由于禁止灯光信号和允许灯光不能同时点亮,因此,并非每一个灯泡都需要一个灯丝继电器,而是根据每架信号机同时能点亮几个灯泡,就设置几个灯丝继电器。这样既能监督灯泡的完整性又能节省材料。 如果信号灯因混线点亮了平时不该点亮的灯光,将会给行车带来严重的危害,为此必须采取防护措施。在信号点灯电路中采取了两种故障--安全方法。一是位置法,另一种是双极折断法。位置法是将控制条件加在电源负载(即灯泡、变压器)之间,双极折断法是将控制条件加在正、负电源上。这样一处混电不能使灯光出现错误及升级显示。即满足了故

光电信号检测实验

实验一 光敏电阻特性实验 实验原理: 利用具有光电导效应的半导体材料制成的光敏传感器叫光敏电阻,又称为光导管。是一种均质的半导体光电器件,其结构如图1-1所示。光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。 光敏电阻应用得极为广泛,可见光波段和大气透过的几个窗口都有适用的光敏电阻。利用光敏电阻制成的光控开关在日常生活中随处可见。当光电效应发生时,光敏电阻电导率的改变量为: p n p e n e σμμ?=???+??? 在上式中,e 为电荷电量,p ?为空穴浓度的改变量,n ?为 电子浓度的改变量,μ表示迁移率。当两端加上电压U 后,光电流为:ph A I U d σ= ??? 式中A 为与电流垂直的表面,d 为电极间的间距。在一定的光照度下,σ?为恒定的值,因而光电流和电压成线性关系。 光敏电阻的伏安特性如图1-2所示,不同的光照度可以得到不同的伏安特性,表明电阻值随光照度发生变化。光照度不变的情况下,电压越高,光电流也越大,光敏电阻的工作电压和电流都不能超过规定的最高额定值。 图1-2光敏电阻的伏安特性曲线 图1-3 光敏电阻的光照特性曲线 光敏电阻的光照特性则如图 1-3 所示。不同的光敏电阻的光照特性是不同的,但是在大多数的情况下,曲线的形状都与图1-3 类似。由于光敏电阻的光照特性是非线性的,因此不适宜作测量型的线性敏感元件,在自动控制中光敏电阻常用作开关量的光电传感

器。 图1-4 几种光敏电阻的光谱特性 实验所需部件: 稳压电源、光敏电阻、负载电阻(选配单元)、电压表、各种光源、遮光罩、激光器 实验步骤: 1.测试光敏电阻的暗电阻、亮电阻、光电阻 观察光敏电阻的结构,用遮光罩将光敏电阻完全掩盖,用万用表欧姆档测得的电阻值为 暗电阻R 暗,移开遮光罩,在环境光照下测得的光敏电阻的阻值为亮电阻R 亮 ,暗电阻与 亮电阻之差为光电阻,光电阻越大,则灵敏度越高。 结果:用万用表欧姆档测得的暗电阻为∞,超出万用表的量程。在环境光照下的亮电阻为6.5k?。 在光电器件模板的试件插座上接入另一光敏电阻,试作性能比较分析。 2.光敏电阻的暗电流、亮电流、光电流 按照图1-5接线,分别在暗光及有光源照射下测出输出U 暗和U亮,电流L 暗=U 暗 /R,亮电流L 亮 =U 亮 /R,亮电流与 暗电流之差称为光电流,光电流越大则灵敏度越高。 结果:暗光时电流为0。有光源照射时光电流为71uA。 3. 光敏电阻的伏安特性测试 按照图1-5接线,电源可从直流稳压电源+2~+12V间 选用,每次在一定的光照条件下,测出当加在光敏电阻上 电压为+2V;+4V;+6V;+8V;+10V时电阻R两端的电压U R,和电流数据,同时算出此时光敏电阻的阻值,并填入以下表格,根据实验数据画出光敏电阻的伏安特性曲线。 图1-5 光敏电阻的测量电路 光敏电阻伏安特性测试数据表(暗光) 电源电压(毫 伏) 2 4 6 8 10 U R(伏) 1.98 3.98 5.98 7.98 9.87 电阻(欧姆)∞∞∞∞∞ 电流(毫安)0 0 0 0 0

心电信号检测电路的设计

毕业论文(设计) 题目:心电信号检测电路的设计

目录 摘要 (1) Abstract (1) 1 引言 (2) 2 心电信号的特征、检测电路的要求以及心电图导联 (3) 2.1 人体心电信号的特征 (3) 2.1.1抑制干扰的措施 (3) 2.1.2 降低噪声的措施 (4) 2.2 心电信号检测电路设计要求 (4) 2.3 ECG导联方式 (4) 3 心电信号检测电路的整体制作 (6) 3.1 ECG前置放大器 (6) 3.1.1 AD620AN实际放大倍数以及共模抑制比的测量 (8) 3.1.2 有源低通滤波电路 (9) 3.2陷波电路 (10) 3.3 安全隔离 (13) 3.4 补偿跟随 (15) 4 总结 (15) 致谢 (16) 参考文献 (16)

心电信号检测电路的设计 摘要:心电信号检测电路是各种心电监护仪中的核心组成部分,其性能的好坏直接影响心脏疾病的准确诊断和治疗,因此心电信号检测电路的精确性和可靠性是至关重要的。针对心电信号具有的特殊性、微弱性和易受干扰等特点,本心电信号检测电路由高性能单片集成的仪器放大器AD620组成的前置放大电路、50HZ双T 陷波电路以及以6N136为核心的光电隔离电路构成 ,从而使该电路具有高输入阻抗、高共模抑制比、低噪声、低温漂和高信噪比等特点,很好地满足心电采集设备的要求,电路简单可靠,可行性强。 关键词:心电信号检测;前置放大;陷波;光电隔离 The Manufacture of ECG circuit design Abstract: The Manufacture of ECG circuit is the core component of the ECG monitor, the quality of the system directly impacts on the accuracy of diagnosis and treatments about heart diseases, therefore the accuracy and reliability of ECG detection system is very important.Due to the particularity and weak and easily distracted of ecg signals, we use high-performance single-chip AD620 formed the ECG preamplifier circuit, double T-notch filter circuit and high speed data transmission photoelectric isolation circuit to design the Manufacture of ECG circuit,which make this circuit has high input impedance, high common mode rejection ratio, low noise, low temperature drift and high signal-to-noise ratio characteristics, such as well meet the requirements of ecg acquisition device, with the advantages of simple and feasibility. Key words: ECG detection; preamplifier; filter;Photoelectric isolation

光电信号的检测方法(莫尔拓扑图)

第五章:光电信号的检测方法 单频光相位调制和条纹检测 在使用窄光束单频光波相位调制的干涉测量中,干涉条纹的形成和检测是在光束重叠的较小空间范围内进行的,通常采用单元光电器件检测局部位置上的干涉条纹波数或相位随时间的变化。 1.单频光的相位调制 在单一频率相干光路中,被测量使相干光波的相位发生变化,同时通过干涉作用把波相位的变化变换为振幅的变化,这个过程称单频光波的相位调制或称相幅变换。由前面的公式可知,能引起相位变化的参量是光路长L和介质折射率n。因此相位调制通常是利用不同形式的干涉仪,借助机械的、光学的、光电子学等变换器伴将被测量的变化转换为光路长L 和折射率n的变化。前者用来检测几何和机械运动参量,后者用于分析物质的理化特性。 为了定量描述被测参量对相位调制的影响,采用规一化相位响应表示在单位长度的光路内由被测参量引起的相位变化。 (1/L)(dφ/dF)=(2π/λ0)[dn/dF+(n/L)(dL/dF)] 式中,(1/L)(dφ/dF)为规一化相位响应,L为干涉光路长度,F为被测参量。 等式右端两项分别表示折射率变化和光路长度变化引起的相位响应。上式可用来衡量相位调制的各种类型光学干涉仪和光纤干涉仪的工作特性。 1)光学干涉仪相位调制 通常作为相位调制用的光学干涉仪有迈克尔逊干涉仪、吉曼干涉汉、马赫-泽德干涉仪、萨纳克干涉仪和法布里-珀罗干涉仪等。下图给出了它们的原理示意图。 典型的光学干涉仪原理示意图 除了法布里-珀罗干涉仪外,前述干涉仪皆属双光束干涉。干涉强度分布满足公式。图a的迈克尔逊干涉仪其特点是结构简单,条纹对比度好,信噪比高。测量镜M2与被测物连接可以感知位移、变形等参量。由于M2的位移量Δx引起测量光路2Δx的变化,即λ/2的位移引起干涉条纹一个周期的变化,所以条纹的计数和被测位移的计算关系简单。它的测量灵敏度达10-13m的数量级。其缺点是输出光束能经分束镜返回激光器,这将使激光器工作不稳定,这可以通过设置偏振器来防止。图b是吉曼干涉仪。同样厚度的二块玻璃板背面镀以反射膜,利用两玻璃表面的反射形成光束的分束和再合成。由于两光路的光程差很小,即使相干性较差的光源也可进行精密测量。它主要用来测定透光物质(例如气体)的折射率,可进行标准试样和被测试样的比较测量。若试样长度为L,条纹测量精度为λ/50,则折射率误差在δn=λ/50L之内。图c是马赫-泽德干涉仪,由二片分束镜和二片反射镜组成。输出分束镜有两束干涉光输出,可用于布置多路接收器,它的返回散射光较少,有利于降低激光的不稳定噪声。被测位移的引入通过可移动反射镜进行,位移范围不能超过相干光束的截面。

光电检测技术中的微弱光信号前置放大电路设计

光电检测技术中的微弱光信号前置放大电路设计 光电检测技术是光学与电子学相结合而产生的一门新兴检测技术[1]。它主要利用电子技术对光学信号进行检测,并进一步传递、储存、控制、计算和显示[2]。光电检测技术从原理上讲可以检测一切能够影响光量和光特性的非电量。它可通过光学系统把待检测的非电量信息变换成为便于接受的光学信息,然后用光电探测器件将光学信息量变换成电量,并进一步经过电路放大、处理,以达到电信号输出的目的[3]。然后采用电子学、信息论、计算机及物理学等方法分析噪声产生的原因和规律,以便于进行相应的电路改进,更好地研究被噪声淹没的微弱有用信号的特点与相关性,从而了解非电量的状态。微弱信号检测的目的是从强噪声中提取有用信号,同时提高检测系统输出信号的信噪比 1光电检测电路的基本构 光电探测器所接收到的信号一般都非常微弱,而且光探测器输出的信号往往被深埋在噪声之中,因此,要对这样的微弱信号进行处理,一般都要先进行预处理,以将大部分噪声滤除掉,并将微弱信号放大到后续处理器所要求的电压幅度。这样,就需要通过前置放大电路、滤波电路和主放大电路来输出幅度合适、并已滤除掉大部分噪声的待检测信号。其光电检测模块的组成框图如图 1 所示 2光电二极管的工作模式与等效模 2.1 光电二极管的工作模 光电二极管一般有两种模式工作:零偏置工作和反偏置工作,图 2 所示是光电二极管的两种模式的偏置电路。图中,在光伏模式时,光电二极管可非常精确的线性工作;而在光导模式时,光电二极管可实现较高的切换速度,但要牺牲一定的线性。事实上,在反偏

置条件下,即使无光照,仍有一个很小的电流(叫做暗电流或无照电流 1。而在零偏置时则没有暗电流,这时二极管的噪声基本上是分路电阻的热噪声;在反偏置时,由于导电产生的散粒噪声成为附加的噪声源。因此,在设计光电二极管电路的过程中,通常是针对光伏或光导两种模式之一进行最优化设计,而不是对两种模式都进行最优化设计[4] 一般来说,在光电精密测量中,被测信号都比较微弱,因此,暗电流的影响一般都非常明显。本设计由于所讨论的待检测信号也是十分微弱的信号,所以,尽量避免噪声干扰是首要任务,所以,设计时采用光伏模式 2.2 光电二极管的等效电路模 工作于光伏方式下的光电二极管的工作模型如图 3 所示,它包含一个被辐射光激发的电流源、一个理想的二极管、结电容和寄生串联及并联电阻。图中,IL 为二极管的漏电流 ;ISC 为二极管的电流;RPD 为寄生电阻;CPD 为光电二极管的寄生电容;ePD 为噪声源;Rs 为串联电阻 由于工作于该光伏方式下的光电二极管上没有压降,故为零偏置。在这种方式中,影响电路性能的关键寄生元件为 CPD 和 RPD,它们将影响光检测电路的频率稳定性和噪声性能。CPD 是由光电二极管的 P 型和 N 型材料间的耗尽层宽度产生的。耗尽层越窄,结电容的值越大。相反,较宽的耗尽层(如 PIN 光电二极管)会表现出较宽的频谱响应。硅二极管结电容的数值范围大约在 20 或 25pF 到几千 pF 以上。而光电二极管的寄生电阻 RPD(也称作"分流"电阻或"暗"电阻),则与光电二极管的偏置有关 与光伏电压方式相反,光导方式中的光电二极管则有一个反向偏置电压加至光传感元件的两端。当此电压加至光检测器件时,耗尽层的宽度会增加,从而大幅度地减小寄生电容 CPD 的值。寄生电容值的减小有利于高速工作,然而,线性度和失调误差尚未最优化。这个问题的折衷设计将增加二极管的漏电流 IL 和线性误差

光电检测-报告

摘要 设计了一种应用于微光夜视仪检测设备中低噪声的光电检测系统,分析了电路中产生的主要噪声,并提出了抑制方法。系统采用光敏二极管作为光电检测器件,并利用单片机实现了光照度的实时显示与超差报警以及与上位机的通信。关键词:单片机;光电检测电路;光电二极管 Abstract Alownoiselightmonitoringsystemisdesignedforanightvisiontestingequipment.Weanalyzethenoisesexistingincircuitandstudyhowtocheckthem.Inthemonitoringsystem,photodiodeisusedasphotoelectricdetector,andamicrocontrollerisappliedtorealizethereal-timedisplayofillumination,alarmandcommunicationwiththehostcomputer. Keywords:microcontroller;photoelectricdetectioncircuit;photodiode. 0 引言 夜视技术在军事、工业、农业、科学研究、医药卫生等领域有着广泛的应用,特别是在军事方面的需求是夜视技术发展的原动力。在现代战争中,为了提升战争的突然性以及扩大战争的时间范围和空间范围,需要部队在星光或月光等微弱光照度情况下对战场进行侦查和监控,这就必须依靠夜视技术,所以,微光夜视仪设备的可靠性将直接影响到军队的战斗力。要确保每一个装备的夜视仪都是合格的,就对检测设备的技术指标提出了很高的要求。为模拟实际中的夜天光环境,在微光夜视仪检测设备中的光源要求色温为2856K,光照度的变化不超过±10%。光应力源是否符合要求直接决定了整套系统工作的稳定性及判断结果的准确度,所以,为了保证检测设备的检测精度以及检测结果的准确性,要求对光源的照度变化进行实时监测。当光源变化超出规定范围时,能够及时报警,提示进行设备维修或光源的更换。 1系统设计与工作原理 系统主要包括:光电检测电路、光照度显示模块、超差报警模块、串口通信模块。具体原理是通过光电检测电路将采集到的外界自然光转换为相应的直流电压信号,再通过ADC将电压信号转换为数字信号送入单片机,单片机将数据进行补偿算法获得精确的实际采样值,控制数码管显示实时光照度,一旦光照度不符合设计指标,则通过报警灯及蜂鸣器进行报警,同时,通过RS232串口与上位机进行通信。系统原理框图如图1所示。

一种弱光信号光电检测系统的设计

目录 1 引言................................................................................................. - 1 - 2 基本原理 ......................................................................................... - 3 - 2.1 光电二极管的技术参数 ....................................................... - 3 - 2.2 光电二极管的种类 ................................................................. - 4 - 2.3 光电转换电路 ....................................................................... - 5 - 2.4 前置放大电路 ..................................................................... - 6 - 3 设计分析 ........................................................................................ - 7 - 4结果讨论 ......................................................................................... - 7 - 参考文献............................................................................................. - 7 - 1 引言 光的信息就存在于光强和相位中。而相位信息又是通过干涉转化成强度信息进行测量的,故光强的测量是很重要的检测目标。 光强变化的检测要针对光的变化特性进行设计。第一,入射光从频谱方面分析有单色的,有白光的,有特定光谱的;第二,光强有缓变和快变之分,一天之中日光强度的变化就属于缓变,再快一点的话如屏幕上木一个像素点随动画播放强度的变化,更快的还有人眼无法识别的,这将涉及到器件的响应度;第三,光强有变化幅度的问题,变化幅度有大有小针,这将涉及到器件的灵敏度;第四,光强的静态点,如果静态点在零点,且属于小幅度变化便属于微光检测。本段是对光源的分析,这是设计的目的,理想的检测是能针可以检测任

光电脉搏信号检测电路设计

光电脉搏信号检测电路设计 生物医学工程1班-唐维-3004202327 摘要:系统采用硅光电池做为光电效应手指脉搏传感器识取脉搏信号。信号经放大后采用低通放大器克服干扰。 关键词:脉搏测量放大器二阶低通 一、前言 脉诊在我国已具有2600多年临床实践,是我国传统中医的精髓,但祖国传统医学采用“望、闻、问、切”的手段进行病情诊断,受人为的影响因素较大,测量精度不高。随着科学技术的发展,脉搏测试不再局限于传统的人工测试法或听诊器测试法。利用血液是高度不透明的液体,光照在一般组织中的穿透性要比在血液中大几十倍的特点, 可通过传感器对脉搏信号进行检测,这种技术具有先进性、实用性和稳定性,同时也是生物医学工程领域的发展方向。本文将详细介绍一种光传导式的脉搏信号检测电路,并说明所涉及到的问题和方法。 二、系统设计 1 系统目标设计及意义 设计制作一个光电脉搏测试仪,通过光电式脉搏传感器对手指末端透光度的监测,间接检测出脉搏信号,并在显示器上显示所测的脉搏跳动波形,要求测量稳定、准确、性能良好。 2 设计思想 (1)传感器:利用指套式光电传感器,指套式光电传感器的换能元件用硅光电池,由于心脏的跳动,引起手指尖的微血管的体积发生相应的变化(当心脏收缩时,微血管容积增大;当心脏舒张时,微血管容积减少),当光通过手指尖射到硅光电池时,产生光电效应,两极之间产生电压由于指尖的微血管内的血液随着心脏的跳动发生相应于脉搏的容积变化,因而使光透过指尖射到硅光电池时也发生相应的强度变化, 而非血液组织(皮肤、肌肉、骨格等)的光吸收量是恒定不变

的, 这样就把人体的脉搏(非电学量) 转换为相应于脉博的电信号, 方便检测。 (2)按正常人脉搏数为60~80次/min ,老人为100~150次/min ,在运动后最高跳动次数为240次/ min 设计低通放大器。5Hz 以上是病人与正常人脉搏波体现差异的地方,应注意保留。 (3)测量中考虑到并要消除的干扰有:环境光对脉搏传感器测量的影响、电磁干扰对脉搏传感器的影响、测量过程中运动的噪声还有50Hz 干扰。 (4)由于透过指尖射到硅光电池的光强很小,输出短路电流约为0.1uA ~3 uA ,所以总共放大106倍以便于观察。传感器得到的脉搏信号极为微弱,很容易淹没在噪声及干扰信号之中,所以对取得的微弱信号先进行放大后再滤波。设计两极放大,因为三级放大个别电路板的零点漂移大得足以达到满幅,测量不准确。每个单级放大器的放大倍数不大于30,以免自激振荡。 (5)所选的电阻参数要尽量精确, IC 选用偏置电流小、输入失调电压小的运算放大器,考虑到性价比,使用LM324。由于硅光电池的输出短路电流受光照变化较大,使得输出变化大,所以采用12V 双电源供电。 3 整体框图 本系统共分为三个模块: 方框图中各部分的作用是: (1)传感器:将脉搏的跳动转换为电压信号,放大104倍。 (2)一级放大电路:对微弱信号进行放大,放大约20倍 (3)二阶低通滤波电路: 滤除干扰信号并进一步放大,再放大约20倍。 4 单元电路的设计

光电检测器

光纤通信结课论文 题目:光电检测器 学院: xxxxxxxxxxx学院专业班级: xxxxxxxxxxx一班任课教师: xxxxxxxxxxxxxxxx 姓名: xxxx xxxxxx 学号: xxxxxxxxxxxxxxxx 日期: 2009年6月

光电检测器 摘要 光电检测技术是光学与电子学相结合而产生的一门新兴检测技术。它 主要利用电子技术对光学信号进行检测,并进一步传递、储存、控制、计算和显示。光电检测技术从原理上讲可以检测一切能够影响光量和光特性的非电量。它可通过光学系统把待检测的非电量信息变换成为便于接受的光学信息,然后用光电探测器件将光学信息量变换成电量,并进一步经过电路放大、处理,以达到电信号输出的目的。然后采用电子学、信息论、计算机及物理学等方法分析噪声产生的原因和规律,以便于进行相应的电路改进,更好地研究被噪声淹没的微弱有用信号的特点与相关性,从而了解非电量的状态。微弱信号检测的目的是从强噪声中提取有用信号,同时 提高检测系统输出信号的信噪比。 关键词光电二极管雪崩光电二极管光电检测光电效应信噪比正文 一、概述 光信号经过光纤传输到达接收端后,在接收端有一个接收光信号的元件。但是由于目前我们对光的认识还没有达到对电的认识的程度,所以我们并不能通过对光信号的直接还原而获得原来的信号。在他们之间还存在着一个将光信号转变成电信号,然后再由电子线路进行放大的过程,最后再还原成原来的信号。这一接收转换元件称作光检测器,或者光电检测器,简称检测器,又叫光电检波器或者光电二极管。 常见的光检测器包括:PN光电二极管、PIN光电二极管和雪崩光电二极管(APD)。 光检测器的要求:

光电检测实验报告

光电检测技术课程设计 光电脉搏检测电路题目: 小组人员姓名: 专业: 班级: 小组人员学号: 指导教师: 年月日

光电脉搏检测电路 摘要:本电路由光电池、放大器等构成,实现对光电脉搏信号的提取和放大。采用目前效果较好光电池的电流转电压电路实现对脉搏的测量。整个电路的简化能够有效减小器件间匹配和级联引起的干扰,提高脉搏测量精度。在实验测试过程中,采用该光电式脉搏传感器对人体的脉搏进行实时测量,得到比较理想的脉搏波形,为实现脉搏信息的提取和分析提供了参考方案。 一、系统设计 1.系统目标设计及意义 设计制作一个光电脉搏测试仪,通过光电式脉搏传感器对手指末端透光度的监测,间接检测出脉搏信号,并在显示器上显示所测的脉搏跳动波形,要求测量稳定、准确、性能良好。 2.设计思想 (1)传感器:利用指套式光电传感器,指套式光电传感器的换能元件用硅光电池,由于心脏的跳动,引起手指尖的微血管的体积发生相应的变化(当心脏收缩时,微血管容积增大;当心脏舒张时,微血管容积减少),当光通过手指尖射到硅光电池时,产生光电效应,两极之间产生电压由于指尖的微血管内的血液随着心脏的跳动发生相应于脉搏的容积变化,因而使光透过指尖射到硅光电池时也发生相应的强度变化, 而非血液组织(皮肤、肌肉、骨格等)的光吸收量是恒定不变的, 这样就把人体的脉搏(非电学量) 转换为相应于脉博的电信号, 方便检测。(2)按正常人脉搏数为60~80次/min,老人为100~150次/min,在运动后最高跳动次数为240次/ min设计低通放大器。5Hz以上是病人与正常人脉搏波体现差异的地方,应注意保留。 (3)测量中考虑到并要消除的干扰有:环境光对脉搏传感器测量的影响、电磁干扰对脉搏传感器的影响、测量过程中运动的噪声还有50Hz干扰。 (4)由于透过指尖射到硅光电池的光强很小,输出短路电流约为0.1uA~3 uA,所以总共放大106倍以便于观察。传感器得到的脉搏信号极为微弱,很容易淹没在噪声及干扰信号之中,所以对取得的微弱信号先进行放大后再滤波。设计两极放大,因为三级放大个别电路板的零点漂移大得足以达到满幅,测量不准确。每个单级放大器的放大倍数不大于30,以免自激振荡。

信号检测与处理电路

7. 信号检测与处理电路 (文字材料) 本章概要 本章首先介绍了信号检测系统的基本原理及信号检测与处理电路在系统中的作用,然后分别介绍了系统中常用的测量放大器、隔离放大器、RC 有源滤波器和电压比较器的工作原理。 本章内容的组成及结构 信号检测系统的基本组成 测量放大器:三运放测量放大器 隔离放大器:光电耦合隔离放大器、变压器耦合隔离放大器 滤波器的功能 滤波器的一般概念 滤波器的分类 滤波器的主要参数 一阶有源低通滤波器 二阶有源低通滤波器 一阶有源高通滤波器 二阶有源高通滤波器 带通滤波器和带阻滤波器 比较器的功能 比较器的基本概念 比较器的类型 比较器的主要参数 零电平比较器 非零电平比较器 反相输入迟滞比较器 同相输入迟滞比较器 学习目标 (1)熟练掌握测量放大器的电路结构及工作原理; (2)熟练掌握滤波器的基本知识; (3)熟练掌握一阶有源低通及高通滤波器的特性分析; (4)熟练掌握电压比较器的特性和分析方法; (5)理解隔离放大器的结构及基本工作原理; (6)了解信号测量系统的基本组成。 重难点指导 重点: 低通滤波器分析 高通滤波器分 有源滤波器 单门限比较器分析 比较器 信号检测与处理电路 检测系统中的放大电路 迟滞比较器分析

(1)三运放测量放大器的电路结构及工作原理; (2)一阶有源低通及高通滤波器的特性分析; (3)电压比较器的组成和特性分析。 难点: (1)运算放大器的非线性分析方法; (2)如何绘制比较器电路的传输特性。 本章导学 1. 信号检测系统 基本组成:传感器(或电极、互感器等)、放大器、滤波器、采用-保持器和A/D转换器等自然界的信号分成两大类:电类和非电类 电类:如心电信号、脑电信号,微弱信号可以通过电极引入测量系统。而电力系统的信号都是大电压和大电流,必须通过互感器(电压互感器或电流互感器)转化为小信号再引入测量电路。 非电类:如压力、速度、温度等,这些信号需要通过传感器将非电信号转化为电信号,引入测量系统。 在信号处理电路中,后续测量系统应根据实际情况合理选择电路组成。 2. 检测系统中的放大电路 1)测量放大器 测量放大器又称仪表放大器,具有高增益、高输入阻抗、高共模抑制比、直接耦合放大电路。电路采用三运放放大电路,用于热电偶、应变电桥、流量计、生物电测量等有交大共模干扰的直流缓变信号的检测。 2)隔离放大器 隔离放大器是一种特殊的测量放大电路,器输入回路和输出回路是电气绝缘的,但信号相通。 隔离的目的:安全性和抗干扰 3. 有源滤波器 1)滤波器的功能:允许一部分频率的信号顺利通过,而对另一部分频率的信号进行抑制。 2)滤波器性能的描述方法:滤波器的性能常用传递函数、幅频特性和一些参数来描述。 3)滤波器的分类 a.按被处理信号是连续的还是离散的,可分为模拟滤波器和数字滤波器。 b.按滤波器中有无使用有源器件,可分为无源滤波器和有源滤波器两种。 无源滤波器:只使用无源元件(R、L、C)组成。它主要利用电感或电容的电抗随信号频率变化而改变来设计。这种滤波器的优点是电路简单、可靠;可以在大电流或高电压下使用;不需要工作电源。缺点是对通带内的信号有损耗;负载对滤波特性影响较大,所以不容易通过级连获得更好的滤波特性;当使用电感组成滤波器时还有体积大、重量重、容易产生电磁干扰等问题。 有源滤波器:由无源的滤波网络(一般是RC网络)和有源器件(如集成运算放大器)组成。这种滤波器的优点是可以对通带内的信号进行放大;负载对滤波特性影响小,容易通过级连获得更好的滤波特性;体积小、重量轻。但这种滤波器需要直流电源供电,可靠性也比无源滤波器低;不适合在大电流、高电压和高频场合下使用。

采用微弱光信号前置放大电路的光电检测系统

采用微弱光信号前置放大电路的光电检测系统 时间:2010-08-01 00:30:47 来源:作者: 光电检测技术从原理上讲可以检测一切能够影响光量和光特性的非电量。它可通过光学系统把待检测的非电量信息变换成为便于接受的光学信息,然后用光电探测器件将光学信息量变换成电量,并进一步经过电路放大、处理,以达到电信号输出的目的。然后采用电子学、信息论、计算机及物理学等方法分析噪声产生的原因和规律,以便于进行相应的电路改进,更好地研究被噪声淹没的微弱有用信号的特点与相关性,从而了解非电量的状态。微弱信号检测的目的是从强噪声中提取有用信号,同时提高检测系统输出信号的信噪比。 1 光电检测电路的基本构成 光电探测器所接收到的信号一般都非常微弱,而且光探测器输出的信号往往被深埋在噪声之中,因此,要对这样的微弱信号进行处理,一般都要先进行预处理,以将大部分噪声滤除掉,并将微弱信号放大到后续处理器所要求的电压幅度。这样,就需要通过前置放大电路、滤波电路和主放大电路来输出幅度合适、并已滤除掉大部分噪声的待检测信号。其光电检测模块的组成框图如图1所示。 2 光电二极管的工作模式与等效模型 2.1 光电二极管的工作模式 光电二极管一般有两种模式工作:零偏置工作和反偏置工作,图2所示是光电二极管的两种模式的偏置电路。图中,在光伏模式时,光电二极管可非常精确的线性工作;而在光导模式时,光电二极管可实现较高的切换速度,但要牺牲一定的线性。事实上,在反偏置条件下,即使无光照,仍有一个很小的电流(叫做暗电流或无照电流1。而在零偏置时则没有暗电流,这时二极管的噪声基本上是分路电阻的热噪声;在反偏置时,由于导电产生的散粒噪声成为附加的噪声源。因此,在设计光电二极管电路的过程中,通常是针对光伏或光导两种模式之一进行最优化设计,而不是对两种模式都进行最优化设计。

相关文档
相关文档 最新文档