文档库 最新最全的文档下载
当前位置:文档库 › labview8.2 基本定时函数详解

labview8.2 基本定时函数详解

labview8.2 基本定时函数详解
labview8.2 基本定时函数详解

基本定时函数(Labview 8.2)

Hu Guang

1、获取日期/时间(秒)(get date/time in seconds)

位于:程序框图→编程→定时→获取日期/时间(秒)。

功能:返回系统当前时间的时间标识。

【例一】

(1)程序框图里,编程→定时→获取日期/时间(秒),放置该函数。

(2)鼠标移至该函数的输出端口,当鼠标变成连线工具时,右击→创建→显示控件。

2、转换为时间标识(to time stamp)

位于:程序框图→编程→定时→转换为时间标识。

功能:将一个数字转换为时间标识

注:所返回时间是从通用时间1904年1月1日星期五零点开始计算的相对时间数量,这也是计算机中常用的标准时间起点。

【例一】

【例二】

解析:通过这个例子我们知道,输入常量的数字代表的是‘秒’,之所以前面的小时是8而非0,是因为这里是北京时间,比通用时间晚8小时。

【例三】

输入常量是浮点数。这里表示就是1.23456789秒,因‘时间标识显示控件’的精度是3位,且不进行四舍五入。若想显示更多位,可以在该控件右击属性→格式与精度里修改‘位数’(0 -- 9)

(显示小数点后9位的结果。)

3、秒至日期/时间转换(seconds to date/time)

初看这个函数的名称,什么玩意儿?简直想说句shit!!!完全把初学者的我给搞懵了!!最好的理解方法就是做试验,那样最直观,一下子就可以搞清楚这丫是什么功能。

第一步:搞清它的输入常量形式是什么。

程序框图上放置该函数,然后给输入端口创建输入常量。

这下有印象了吧,输入量跟[获取日期/时间(秒)]输出的格式简直就是

一模一样,一会就将这两个函数连起来试验一下就清楚了。

第二步:看看它的输出显示格式是什么。

在输出端口上右键创建显示控件。

这下就彻底明白了吧:

输入常量没有进行初始化,所以这里就是指(北京)通用时间:08:00:00.000 1904-1-1星期五。

显示控件就是一个时间簇,将输入的时间全部打散,一个一个地显示每部分的意义。

这里想对个别显示部分的取名做个更正:

‘每月天数’——听着真是不懂,改成‘日’更加的含义直观。

‘每周天数’——这里其实是‘今天是该星期的第几天’。

‘每年天数’——就是‘今天是今年的第多少天’。

‘离散正弦变换’——此奥!不懂!!!

【例一】这里就来个多函数的综合例子吧。

4、日期/时间至秒转换(date/time to seconds)

趁热打铁,这个函数正是[秒至日期/时间转换]函数的互逆函数。【例一】

注意这时要手动输入各值。

5、获取日期/时间字符串(get date/time string)

功能:说得简单点,就是将获得的时间标识,分成‘日期’和‘时间’两部分来显示。

时间格式有三种可选:short、long、abbreviated。

需要秒?(F):即时间显示上是否要秒的显示。

【例一】日期为短型、不需要秒显

【例二】日期为长型、不需要秒显

【例三】日期为简短型、显示秒

?:日期为长型和简短型时候日期的显示貌似没什么区别呀?到底这两种类型的区别是什么?!!!

【例】最后来个书上的综合例子吧,没有什么好解释的,直接看图。

孙鑫深入详解MFC学习笔记

Windows编程 一、#define的几个注意点 ①#与##的用法; #xxx将后面的参数xxx字符串化 xxx##yyy,将两个参数连接 ②\的用法 一行结束使用,表示一行未结束。 二、函数调用约定_stdcall _stdcall是Pascal方式清理C方式压栈,通常用于Win32Api中,函数采用从右到左的压栈方式,堆栈由它自己清理。在win32应用程序里,宏APIENTRY,WINAPI,都表示_stdcall,非常常见。 相对应的_cdecl,堆栈由main()函数或者其他函数清理。 C和C++程序的缺省调用方式则为__cdecl,下图为VC++6.0的默认设置,因此在不显式写明调用约定的情况下,一般都是采用__cdecl方式,而在与Windows API打交道的场景下,通常都是显式的写明使用__stdcall,才能与Windows API保持一致。 另外,还要注意的是,如printf此类支持可变参数的函数,由于不知道调用者会传递多少个参数,也不知道会压多少个参数入栈,因此函数本身内部不可能清理堆栈,只能由调用者清理了。 三、防止头文件重复包含----预编译 在写好的类的首位加上预编译代码,例如: #ifndef xxx_h #define xxx_h Class xxx { ... }; #endif 四、HDC、CDC、CClientDC、CWindowDC HDC是平台SDK提供的全局类,与设备上下文相关 CDC则是类似于封装在CWnd中的一个HDC。 CClientDC:继承于CDC,构造函数完成获取DC,析构函数完成释放DC。 CWindowDC:继承于CDC,构造函数完成获取DC,析构函数完成释放DC,在整个窗口上绘图 CMetaFileDC:图元文件设备描述环境类 创建:CMetaFileDC dc; dc.Create(); 接下来用一般dc的绘图操作,绘图的内容均会保存至图元文件中; HMETAFILE m_hMetaFile=dc.Close();//图元文件赋予数据成员显示图元文件:用一般dc的PlayMetaFile(m_hMetaFile)显示图元文件 窗口销毁时删除图元文件 SDK函数::DeleteMetaFile(m_hMetaFile) 五、OnDraw函数、OnCreate函数 OnDraw函数:窗口重绘的时候被框架类FrameWnd调用,响应WM_PAINT消息。 OnCreate函数:窗口建立的时候调用的函数,响应WM_CREATE消息。

Proe中的常用函数关系

Proe中的部分函数关系 一、函数关系 sin 正弦Cos 余弦tan 正切asin 反正弦acos 反余弦atan 反正切sinh 双曲线余弦cosh 双曲线正弦tanh 双曲线正切spar 平方根exp e的幂方根abs 绝对值log 以10为底的对数ln 自然对数 ceil 不小于其值的最小整数floor 不超过其值的最大整数 二、齿轮公式 alpha=20 m=2 z=30 c=0.25 ha=1 db=m*z*cos(alpha) r=(db/2)/cos(t*50) theta=(180/pi)*tan(t*50)-t*50 z=0 三、蜗杆的公式da=8为蜗杆外径m=0.8 为模数angle=20压力角 L=30长度q直径系数d分度圆直径f齿根圆直径n实数

其中之间的关系 q=da/m-2 d=q*m df=(q-2.4)*m n=ceil(2*l/(pi*m)) 在可变剖面扫描的时候运用公式sd4=trajpar*360*n 在扫描切口的时候绘制此图形,其中红色的高的计算公式是sd5=pi*m/2 五、方向盘的公式sd4=sd6*(1-(sin(trajpar*360*36)+1)/8) 其中sd4是sd6的(3/4或者7/8),sin(trajpar*360*36的意思是转过360度且有36个振幅似的 六、凸轮的公式sd5=evalgraph("cam2",trajpar*360) r=150 theta=t*360 z=9*sin(10*t*360) 在方向按sin(10*t*360)的函数关系,9为高的9倍10为10个振幅似的 七、锥齿轮公式 m=4模数z =50齿轮齿数z-am=40与之啮合的齿轮齿数angle=20压力角b=30齿厚long分度圆锥角 d分度圆直径da齿顶圆直径df齿根圆直径db基圆直径关系:long=atan(z/z-am) d=m*z da=d+2*m*cos(long)

CRichEditCtrl

CRichEditCtrl MFC Library Reference Using CRichEditCtrl(https://www.wendangku.net/doc/1f6001753.html,/tie/7576199.html)rich edit控件是用户能够输入和编辑文本的窗口。文本能被指定字符和段落格式,并且也能包含嵌入式OLE对象。rich edit 控件在MFC中通过CRichEditCtrl类描绘。关于哪些你想知道更多?RichEdit控件概述 如果你在对话框中使用rich edit控件(不管你的程序是SDI,MDI,还是基本对话框),你必须在对话框显示之前调用AfxInitRichEdit一次。调用此函数的典型位置 在你的程序的InitInstance成员函数中。你不必每次显示对话框时调用它,仅仅第一次就可以了。如果你使用CRichEditView你不必调用 AfxInitRichEdit.Rich edit控件(CRichEditCtrl)为格式化文本提供程序接口。然而,一个程序必须实现任一用户接口组件,这个组件对于用户格式化操作可用是必要 的。那就是,Rich edit控件支持选定文本的字符或段落属性的改变。字符属性

的一些例子就是黑粗体,斜体,字体系列,和点大小。段落属性的例子如对齐,页边空白,和移字键 (英文原文:tab stops.表示在rich edit中按下tab键光标会移动一段距离)。然而,这是给你提供的用户接口,不管那是一个工具条按钮,菜单项,或是一个格式化字符对话框。也有函数对目 前选择查询richedit控件。使用这些函数显示当前属性设置,比如,设置一个选定标记在用户接口上,如果当前选择是黑粗体字符格式属性。参见CharacterFomatting和paragraph formatting查看更多字符段落格式化信息。rich edit控件支持几乎所有多行编辑控件( multiline edit controls)的操作和通知消息。因此,使用EDIT控件的应用程序很容易的变换为使用RICH EDIT控件。附加的消息和通知(notifications)能使程序访问richedit的其它特性。参看CEdit查看编辑控件消息。与rich edit控件有关的类 CRichEditView, CRichEditDoc, 和CRichEditCntrItem类提供在MFC的文档/视图结构环境内的RICH EDIT控件的功能。CRichEditView保持着文本和文本的格式化特性。CRichEditDoc保持着视图中OLE客户项的序列。CRichEditCntrItem提供对OLE客户项的container-side

《网络程序设计》复习题

1、什么叫套接字?套接字按通信性质可以分为哪两类? 2、理解线程的创建与使用方法,并能应用到程序设计中。 3、异构环境下的网络程序设计需要考虑哪些问题? 4、为什么在数据结构struct sockaddr_in中,成员变量sin_addr和sin_port需要转换为网络字节顺序,而sin_family不需要呢? 5、从网络编程的角度来简述和比较IP地址和端口的作用。 6、为什么网络编程时需要考虑字节顺序问题? 7、WinSock编程中需要哪些文件? 8、UDP程序的工作模型隐含着通信标识五元组的建立过程。这五元组在UDP的客户与服务端是由哪些函数分别确定的? 9、什么是阻塞与非阻塞通信?请解释两者的区别。 10、简述各种类型数据的发送与接收处理的方法。 11、简述基于UDP的客户机/服务器端socket编程流程。 12、什么是通信三元组和五元组?三元组和五元组每个元素在网络连接中起到什么作用? 13、为什么服务端在TCP通信过程中需要调用bind( )函数而客户端不需要?为什么客户机通常不需要绑定自己的端口号? 14、简述套接字Select模型原理,以及select模型的优势和不足。 15、简述阻塞模式服务器和客户端工作流程,以及阻塞模式套接字的优势和不足。 16、在实际应用中,很多TCP服务器程序在非正常退出时,如果立即重启服务器进程则会发生绑定服务器端口失败的错误,从而无法启动服务器进程,但等待一段时间后就可以了。为什么会发生这种情况呢?如何解决这个问题(或采取什么措施可以立即重启服务器进程)?(要求掌握setsockopt()函数的用法) 17、TCP程序的工作模型隐含着通信标识五元组的建立过程。这五元组在TCP的客户与服务端是由哪些函数分别确定的? 18、accept( )为什么要返回一个套接口?或者说,为什么要为每一个连接创建一个套接口来处理?UDP 服务器端为什么不需要多个套接口? 19、理解生产者-消费者模型,理解线程的同步与互斥方法(event和critical-section),并能应用到程序设计中。 20、采用阻塞式I/O模型时,套接字函数recv()的返回值有哪几种?分别对应什么情况? 21、closesocket()函数和shutdown()函数有何差别? 22、什么是TCP的三次握手机制?为什么要使用TCP的三次握手机制? 23、服务器端并发的两种模型及编程实现。 考试形式:闭卷 考试时间:120分钟 考试题型:选择题(2’×10=20’)、简答题(10’×6=60’)、程序设计题(20’)

4:一个经典的多线程同步问题汇总

一个经典的多线程同步问题 程序描述: 主线程启动10个子线程并将表示子线程序号的变量地址作为参数传递给子线程。子线程接收参数 -> sleep(50) -> 全局变量++ -> sleep(0) -> 输出参数和全局变量。 要求: 1.子线程输出的线程序号不能重复。 2.全局变量的输出必须递增。 下面画了个简单的示意图: 分析下这个问题的考察点,主要考察点有二个: 1.主线程创建子线程并传入一个指向变量地址的指针作参数,由于线程启动须要花费一定的时间,所以在子线程根据这个指针访问并保存数据前,主线程应等待子线程保存完毕后才能改动该参数并启动下一个线程。这涉及到主线程与子线程之间的同步。 2.子线程之间会互斥的改动和输出全局变量。要求全局变量的输出必须递增。这涉及到各子线程间的互斥。 下面列出这个程序的基本框架,可以在此代码基础上进行修改和验证。 //经典线程同步互斥问题 #include #include #include long g_nNum; //全局资源 unsigned int__stdcall Fun(void *pPM); //线程函数 const int THREAD_NUM = 10; //子线程个数 int main() { g_nNum = 0;

HANDLE handle[THREAD_NUM]; int i = 0; while (i < THREAD_NUM) { handle[i] = (HANDLE)_beginthreadex(NULL, 0, Fun, &i, 0, NULL); i++;//等子线程接收到参数时主线程可能改变了这个i的值} //保证子线程已全部运行结束 WaitForMultipleObjects(THREAD_NUM, handle, TRUE, INFINITE); return 0; } unsigned int__stdcall Fun(void *pPM) { //由于创建线程是要一定的开销的,所以新线程并不能第一时间执行到这来int nThreadNum = *(int *)pPM; //子线程获取参数 Sleep(50);//some work should to do g_nNum++; //处理全局资源 Sleep(0);//some work should to do printf("线程编号为%d 全局资源值为%d\n", nThreadNum, g_nNum); return 0; } 运行结果:

高中常用函数性质及图像汇总

高中常用函数性质及图像 一次函数 (一)函数 1、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 (二)一次函数 1、一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。当0b =时,一次函数y kx =,又叫做正比例函数。 ⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数及性质 一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零 当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,?直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y=kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k ) (3) 走向:k>0时,图像经过一、三象限;k<0时,?图像经过二、四象限 (4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴 3、一次函数及性质 一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数. 注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数 一次函数y=kx+b 的图象是经过(0,b )和(- k b ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)

Matlab之print,fprint,fscanf,disp函数的用法

print: print函数可以把函数图形保存成图片: minbnd = -4*pi; maxbnd = 4*pi; t = minbnd:0.1*pi:maxbnd; plot(t, sin(t), 'g', 'Linewidth', 2); line([minbnd, maxbnd], [0, 0]); %绘制x轴 axis([-10, 10, -2, 2]) %定义显示的坐标区间:x在(-10,10)之间,y在(-2,2)之间 grid on; title('sin(x)'); xlabel('x'); ylabel('sin(x)'); print('-dpng','sin.png'); %保存为png图片,在Matlab当前的工作目录下 如下: 打开Matlab当前的工作目录下可以看到有sin.png图片了 print('-dpng', 'sin.png')表示保存为png图片,文件名为sin.png,其中第一个参数可以是: -dbmp:保存为bmp格式 -djpeg:保存为jpeg格式 -dpng:保存为png格式 -dpcx:保存为pcx格式 -dpdf:保存为pdf格式 -dtiff:保存为tiff格式

fprintf: fprintf函数可以将数据按指定格式写入到文本文件中: data = [5, 1, 2; 3, 7, 4]; [row, col] = size(data); for i=1:row for j=1:col fprintf('data(%d, %d) = %d\n', i, j, data(i, j)); %直接输出到屏幕;类似于C语言的输出格式end end fprintf(fid, format, data)中的fid表示由fopen函数打开的文件句柄,如果fid 省略,则直接输出在屏幕上,format是字符串形式的输出格式,data是要输出的数据。其中format可以为: %c 单个字符 %d 有符号十进制数(%i也可以) %u 无符号十进制数 %f 浮点数(%8.4f表示对浮点数取8位宽度,同时4位小数) %o 无符号八进制数 %s 字符串 %x 小写a-f的十六进制数 %X 大小a-f的十六进制数 输出到文件: data = [5, 1, 2; 3, 7, 4]; [row, col] = size(data); %求出矩阵data的行数和列数 %加t表示按Windows格式输出换行,即0xOD 0x0A,没有t表示按Linux格式输出换行,即0x0A fid=fopen('test.txt', 'wt'); %打开文件 for i=1:row

CSerialPort类解析

CserialPort类的功能及成员函数介绍 CserialPort类是免费提供的串口类,Codeguru是一个非常不错的源代码网站CserialPort类支持线连接(非MODEM)的串口编程操作。 CserialPort类是基于多线程的,其工作流程如下:首先设置好串口参数,再开启串口检测工作线程,串口检测工作线程检测到串口接收到的数据、流控制事件或其他串口事件后,就以消息方式通知主程序,激发消息处理函数来进行数据处理,这是对接受数据而言的,发送数据可直接向串口发送。 介绍几个经常用到的函数: 1、串口初始化函数InitPort 这个函数是用来初始化串口的,即设置串口的通信参数:需要打开的串口号、波特率、奇偶校验方式、数据位、停止位,这里还可以用来进行事件的设定。如果串口初始化成功,就返回TRUE,若串口被其他设备占用、不存在或存在其他股占,就返回FALSE,编程者可以在这儿提示串口操作是否成功如果在当前主串口调用这个函数,那么pPortOwner可用this指针表示,串口号在函数中做了限制,只能用1,2,3和4四个串口号,而事实上在编程时可能用到更多串口号,可以通过通过注释掉本函数中“assert(portur>0&&portnr<5)”语句取消对串口号的限制。 if (m_ComPort[0].InitPort(this,1,9600,'N',8,1,EV_RXFLAG | EV_RXCHAR,512)) //portnr=1(2),baud=9600,parity='N',databits=8,stopsbits=1,

//dwCommEvents=EV_RXCHAR|EV_RXFLAG,nBufferSize=512 { m_ComPort[0].StartMonitoring(); //启动串口监视线程 SetTimer(1,1000,NULL); //设置定时器,1秒后发送数据} e lse { CString str; str.Format("COM1 没有发现,或被其它设备占用"); AfxMessageBox(str); } 2、启动串口通信监测线程函数StartMonitoring() 串口初始化成功后,就可以调用BOOL StartMonitoring()来启动串口检测线程,线程启动成功,返回TRUE。 BOOL CSerialPort::StartMonitoring() { if (!(m_Thread = AfxBeginThread(CommThread, this))) return FALSE; TRACE("Thread started\n"); return TRUE; } 注意这个函数一旦调用,就会建立一个线程,这个线程一直不会结束,调用StopMonitoring ()只是将这个线程挂起。 3、暂停或停止监测线程函数StopMonitoring() 该函数暂停或停止串口检测,要注意的是,调用该函数后,串口资源仍然被占用 // // Suspend the comm thread // BOOL CSerialPort::StopMonitoring() { TRACE("Thread suspended\n"); m_Thread->SuspendThread(); return TRUE; } 4、关闭串口函数ClosePort() 该函数功能是关闭串口,释放串口资源,调用该函数后,如果要继续使用串口,还需要调用InitPort()函数。 这里有一个问题,在以前的版本中,如果调用了StartMonitoring函数,关闭串口后,再打开就会出现问题,及网上所说的关闭死锁问题。找了大量资料后,

C多线程编程实例实战

C#多线程编程实例实战 问题的提出 所谓单个写入程序/ 多个阅读程序的线程同步问题,是指任意数量的线程访问共享资源时,写入程序(线程)需要修改共享资源,而阅读程序(线程)需要读取数据。在这个同步问题中,很容易得到下面二个要求: 1 )当一个线程正在写入数据时,其他线程不能写,也不能读。 2 )当一个线程正在读入数据时,其他线程不能写,但能够读。在数据库应 用程序环境中经常遇到这样的问题。比如说,有n 个最终 用户,他们都要同时访问同一个数据库。其中有m个用户要将数据存入数据库,n-m 个用户要读取数据库中的记录。 很显然,在这个环境中,我们不能让两个或两个以上的用户同时更新同一条记录,如果两个或两个以上的用户都试图同时修改同一记录,那么该记录中的信息就会被破坏。 我们也不让一个用户更新数据库记录的同时,让另一用户读取记录的内容。因为读取的记录很有可能同时包含了更新和没有更新的信息,也就是说这条记录是无效的记录。 实现分析 规定任一线程要对资源进行写或读操作前必须申请锁。根据操作的不同,分为阅读锁和写入锁,操作完成之后应释放相应的锁。将单个写入程序/ 多个阅读程序的要求改变一下,可以得到如下的形式: 一个线程申请阅读锁的成功条件是:当前没有活动的写入线程。 一个线程申请写入锁的成功条件是:当前没有任何活动(对锁而言)

的线程 因此,为了标志是否有活动的线程,以及是写入还是阅读线程,引入一个变量m_nActive ,如果m_nActive > 0 ,则表示当前活动阅读线程的数目,如果 m_nActive=0 ,则表示没有任何活动线程,m_nActive <0 ,表示当前有写入线程在活动,注意m_nActive<0 ,时只能取-1 的值,因为只允许有一个写入线程活动。 为了判断当前活动线程拥有的锁的类型,我们采用了线程局部存储技术(请参阅其它参考书籍) ,将线程与特殊标志位关联起来。 申请阅读锁的函数原型为:public void AcquireReaderLock( int millisecondsTimeout ) ,其中的参数为线程等待调度的时间。函数定义如下:public void AcquireReaderLock( int millisecondsTimeout ) { // m_mutext 很快可以得到,以便进入临界区m_mutex.WaitOne( ); // 是否有写入线程存在 bool bExistingWriter = ( m_nActive < 0 ); if( bExistingWriter ) { // 等待阅读线程数目加1, 当有锁释放时,根据此数目来调度线程 m_nWaitingReaders++; } else { // 当前活动线程加1 m_nActive++; } m_mutex.ReleaseMutex();

Excel常用函数详解

计算机二级考试MS_Office应用Excel函数 =公式名称(参数1,参数2,。。。。。) =sum(计算范围) =average(计算范围) =sumifs(求和范围,条件范围1,符合条件1,条件范围2,符合条件2,。。。。。。) =vlookup(翻译对象,到哪里翻译,显示哪一种,精确匹配) =rank(对谁排名,在哪个范围里排名) =max(范围) =min(范围) =index(列范围,数字) =match(查询对象,范围,0) =mid(要截取的对象,从第几个开始,截取几个) =int(数字) =weekda y(日期,2) =if(谁符合什么条件,符合条件显示的内容,不符合条件显示的内容) =if(谁符合什么条件,符合条件显示的内容,if(谁符合什么条件,符合条件显示的内容,不符合条件显示的内容)) SUM函数 简单求和。 函数用法 SUM(number1,[number2],…) =SUM(A1:A5)是将单元格 A1 至 A5 中的所有数值相加; =SUM(A1,A3,A5)是将单元格 A1,A3,A5 中的数字相加。 SUMIFS函数 根据多个指定条件对若干单元格求和。 函数用法 SUMIFS(sum_range, criteria_range1, criteria1, [criteria_range2, criteria2], ...) 1) sum_range 是需要求和的实际单元格。包括数字或包含数字的名称、区域或单元格引用。忽略空白值和文本值。 2) criteria_range1为计算关联条件的第一个区域。 3) criteria1为条件1,条件的形式为数字、表达式、单元格引用或者文本,可用来定义将对criteria_range1参数中的哪些单元格求和。例如,条件可以表示为32、“>32”、B4、"苹果"、或"32"。 4)criteria_range2为用于条件2判断的单元格区域。 5) criteria2为条件2,条件的形式为数字、表达式、单元格引用或者文本,可用来定义将对criteria_range2参数中的哪些单元格求和。 4)和5)最多允许127个区域/条件对,即参数总数不超255个。 VLOOKUP函数 是Excel中的一个纵向查找函数,按列查找,最终返回该列所需查询列序所对应的值。

高级语言C++程序设计高级编程-期末考试 - 答案

高级语言C++程序设计-高级编程-考试试卷—答案 姓名: ________________ 成绩__________________ 第一题选择( 1. 设x和y均为bool量,则x&&y为真的条件是( A ) A)它们均为真B)其中一个为真C)它们均为假D)其中一个为假 2. 假定a为一个整型数组名,则元素a[4]的字节地址为( C ) A)a+4 B)a+8 C)a+16 D)a+32 3. 下面的哪个保留字不能作为函数的返回类型( C ) A)void B)int C)new D)long 4. 在编译指令中,宏定义使用哪个指令( B ) A)#include B)#define C)#if D)#else 5. 设存在函数int max(int,int)返回两参数中较大值,若求22,59,70三者中最大值,下列表达式不正确的是:(C ) A)int m = max(22,max(59,70));B)int m = max(max(22,59),70); C)int m = max(22,59,70);D)int m = max(59,max(22,70)); 6. 对于int *pa[5];的描述中,正确的是:( D ) A)pa是一个指向数组的指针,所指向的数组是5个int型元素 B)pa是一个指向某数组中第5个元素的指针,该元素是int型变量 C)pa[5]表示数组的第5个元素的值,是int型的值 D)pa是一个具有5个元素的指针数组,每个元素是一个int型指针 7. 对C++语言和C语言的兼容性,描述正确的是:( A ) A)C++兼容C B)C++部分兼容C C)C++不兼容C D)C兼容C++ 8. 下列的各类函数中,不是类的成员函数。( C ) A)构造函数B)析构函数C)友元函数D)拷贝初始化构造函数 9. 在类定义的外部,可以被访问的成员有( C ) A)public和protected类成员B)private的类成员 C) 仅public的类成员D)public和private的类成员 10. 关于类和对象不正确的说法是:( C ) A)类是一种类型,它封装了数据和操作B)对象是类的实例 C)一个类的对象只有一个D)一个对象必属于某个类 11. 在C++中用( D )能够实现将参数值带回。 A)数组和指针B)指针和引用C)仅指针D)数组, 指针和引用 12. 在公有继承的情况下,基类的成员(私有的除外)在派生类中的访问权限( B ) A)受限制B)保持不变C)受保护D)不受保护 13. 关于构造函数的说法,不正确的是:( A ) A)没有定义构造函数时,系统将不会调用它B)其名与类名完全相同 C)它在对象被创建时由系统自动调用D)没有返回值 14. 系统在调用重载函数时,不能作为确定哪个重载函数被调用的依据是:( D )

Creo常用函数

Creo(PROE)中关系式的理解 一)关系式中可以用下列数学函数式表达: 1)、正弦 sin( ) 2)、余弦 cos( ) 3)、正切 tan( ) 4)、反正弦 asin( ) 5)、反余弦 acos( ) 6)、反正切 atan( ) 7)、双曲线正弦 sinh( ) 8)、双曲线余弦 cosh( ) 9)、双曲线正切 tanh( ) 以上九种三角函数式所使用的单位均为“度”。 10)、平方根 sqrt( ) 11)、以10为底的对数 log( ) 12)、自然对数 ln( ) 13)、e的幂 exp( ) 14)、绝对值 abs( ) 15)、不小于其值的最小整数(上限值) ceil( ) 16)、不超过其值的最大整数(下限值) floor( ) 可以给函数ceil和floor加一个可选的自变量,用它指定要圆整的小数位数。 带有圆整参数的这些函数的语法是: ceil(parameter_name或number, number_of_dec_places) floor (parameter_name 或 number, number_of_dec_places) 其中的parameter_name或number意为参数名称或者一个带小数位的精确数值 后面跟随着的number_of_dec_places意为十进位的小数位数,是可选值: A)可以被表示为一个数或一个使用者自定义参数。如果该参数值是一个实数,则被截尾成为一个整数。 B)它的最大值是8。如果超过8,则不会舍入要舍入的数(第一个自变量),并使用其初值。C)如果不指定它,则功能同前期版本一样。 使用不指定小数部分位数的ceil和floor函数,其举例如下: ceil (10.2) 值为11 floor (10.2) 值为 10

Nt内核函数大全

Nt内核函数大全 NtLoadDriver 服务控制管理器加载设备驱动 NtUnloadDriver 服务控制管理器支持卸载指定的驱动程序NtRegisterNewDevice 加载新驱动文件 NtQueryIntervalProfile 返回数据 NtSetIntervalProfile 指定采样间隔 NtStartProfile 开始取样 NtStopProfile 停止采样 NtSystemDebugControl 实施了一系列的调试器支持的命令NtRegisterThreadTerminatePort 一个调试登记通知线程终止NtCreateDebugObject 创建一个调试对象 NtDebugActiveProcess 使调试器附加到一个积极的过程和调试它NtDebugContinue 允许一个进程,以线程产生了调试事件NtQueryDebugFilterState 查询调试过滤国家一级的具体组成部分NtRemoveProcessDebug 停止调试指定的进程 NtSetDebugFilterState 设置调试输出滤波器一级指定的组成部分NtSetInformationDebugObject 设置属性的调试对象NtWaitForDebugEvent 等待调试事件的进程正在调试NtFlushInstructionCache 清空指定进程的指令缓冲区NtInitiatePowerAction 启动电源事件 NtPowerInformation 获得该系统的电源状态NtSetThreadExecutionState 设置一个线程的系统电源状态的要求NtRequestWakeupLatency 设置一个进程唤醒延迟 NtClose 关闭处理任何对象类型 NtDuplicateObject 复制句柄的对象 NtCreateDirectoryObject 创建一个目录中的对象管理器命名空间NtCreateSymbolicLinkObject 创建一个符号链接的对象管理器命名空间NtOpenDirectoryObject 打开对象管理器名字空间目录NtQueryDirectoryObject 用列举的对象位于一个目录对象NtOpenSymbolicLinkObject 打开一个符号链接对象NtQuerySymbolicLinkObject 归来的名称,对象,符号链接点 NtQueryObject 查询对象的属性,如它的名字 NtSetInformationObject 树立了一个对象的属性 NtTranslateFilePath 转换的文件路径的格式 NtCreateKey 创建或打开一个注册表项 NtOpenKey 打开一个现有的注册表项 NtDeleteKey 删除注册表项 NtDeleteValueKey 删除价值 NtEnumerateKey 枚举子项中的一个关键 NtEnumerateValueKey 列举了价值的一个关键 NtFlushKey 刷新变化回到注册表在磁盘上 NtInitializeRegistry 获取注册滚动.单参数对这一规定是否安装启动或正常开机NtNotifyChangeKey 允许一个程序的通知改变某一关键或其子项NtQueryKey 查询信息的一个关键

关系中常用函数详解

在ProE中,我们的关系可以直接很多系统已经预定义好的函数,通过这些函数我们可以来进行一些特定的运算得到所期望的值,下面我们就对一些常用函数进行一个概括和总结,方便大家在使用的时候查阅。 1.数学函数 在proe中,我们可以使用丰富的数学函数,常用的函数列表如下: sin()、cos()、tan()函数 这三个都是数学上的三角函数,分别使用角度的度数值来求得角度对应的正弦、余弦和正切值,比如: A=sin(30) A=0.5? B=0.866?B=cos(30) ?C=tan(30) C=0.577 asin()、acos()、atan()函数 这三个是上面三个三角函数的反函数,通过给定的实数值求得对应的角度值,如:A=asin(0.5) A=30? B=60?B=acos(0.5) C=26.6?C=atan(0.5)

sinh()、cosh()、tanh()函数 在数学中,双曲函数类似于常见的(也叫圆函数的)三角函数。基本双曲函数是双曲正弦“sinh”,双曲余弦“cosh”,从它们导出双曲正切“tanh”等。 sinh / 双曲正弦:sinh(x) = [e^x - e^(-x)] / 2 cosh / 双曲余弦:cosh(x) = [e^x + e^(-x)] / 2 tanh / 双曲正切:tanh(x) = sinh(x) / cosh(x)=[e^x - e^(-x)] / [e^x + e^(-x)] 函数使用实数作为输入值 log()函数 求得10为底的对数值,如: A=log(1) A=0;? A=1;?A=log(10) ?A=log(5) A=0.6989...; ln()函数 求得以自然数e为底的对数值,e是自然数,值是2.718...;如: A=ln(1) A=0;? ?A=ln(5) A=1.609...;

多线程编程中应该注意的问题

多线程编程中应该注意的问题 1. 线程的优先级 多线程编程中要注意协调好各个线程的优先级。一般来说,控制线程的优先级要高于Worker 线程。这样做,可以保证Client (最终用户或者其他模块)尽快得到响应。当控制线程是与最终用户交互的界面线程时更应如此,如果界面线程优先级较低,界面可能较长时间没有反应,用户很可能会怀疑命令是不是还没有开始执行。下面两张图给出了控制线程优先级不同对Client 造成不同响应时间的对比。 控制线程低优先级,Worker 线程高优先级 Fig 1.1 控制线程优先级低,对用户响应时间较长 控制线程高优先级,Worker 线程低优先级 Fig 1.2 控制线程优先级高,对用户响应时间较短

2.防止栈溢出 这个问题不只存在在多线程编程中。防止栈溢出可以参考下面几条建议: 1)不在函数体内定义特别大的栈变量,必须要定义的时候,可以使用new在堆上分配。 2)传递参数时,大的参数(如结构体,类)使用按指针传递,小的参数(如基本数据 类型)使用按值传递。 堆栈 Fig 2.1 大对象作为参数时,按值传递的过程 堆栈 Fig 2.2 大对象作为参数时,按指针传递的过程。 由Fig 2.1和Fig 2.2可以看出,对于较大的对象,按指针的传递的资源消耗较小, 空间上,仅需把一个指针压栈;时间上,省去了拷贝构造函数的调用。所以在传递 大的对象时,应该使用按指针传递。

堆栈 Fig 2.3 参数为基本类型时,按值传递的过程 1.取地址 堆栈 3.将创建的拷贝压入堆栈。 2.创建指针的一个拷贝 Fig 2.4 参数为基本类型时,按指针传递的过程。 对比Fig 2.3和Fig 2.4可以看出,对于基本数据类型,按指针传递的方法反而会消耗较多的时间,而且当参数所占的字节数小于一个指针所占的字节数(4个字节)时,按指针传递也会消耗较多的空间。所以当参数为基本数据类型时,应该使用按值传递。

你可能不知道的陷阱:C#委托和事件的困惑

你可能不知道的陷阱:C#委托和事件的困惑 . 问题引入 通常,一个C 语言学习者登堂入室的标志就是学会使用了指针,而成为高手的标志又是“玩转指针”。指针是如此奇妙,通过一个地址,可以指向一个数,结构体,对象,甚至函数。最后的一种函数,我们称之为“函数指针”(和“指针函数”可不一样!)就像如下的代码: 1 2 3 int func(int x); /* 声明一个函数 */ int (*f) (int x); /* 声明一个函数指针 */ f=func; /* 将func 函数的首地址赋给指针f */ C 语言因为函数指针获得了极强的动态性,因为你可以通过给函数指针赋值并动态改变其行为,我曾在单片机上写的一个小系统中,任务调度机制玩的就是函数指针。 在.NET 时代,函数指针有了更安全更优雅的包装,就是委托。而事件,则是为了限制委托灵活性引入的新“委托”(之所以为什么限制,后面会谈到)。同样,熟练掌握委托和事件,也是C#登堂入室的标志。有了事件,大大简化了编程,类库变得前所未有的开放,消息传递变得更加简单,任何熟悉事件的人一定都深有体会。 但你也知道,指针强大,高性能,带来的就是危险,你不知道这个指针是否安全,出了问题,非常难于调试。事件和委托这么好,可是当你写了很多代码,完成大型系统时,心里是不是总觉得怪怪的?有当年使用指针时类似的感觉? 如果是的话,请看如下的问题: 1. 若多次添加同一个事件处理函数时,触发时处理函数是否也会多次触发? 2. 若添加了一个事件处理函数,却执行了两次或多次”取消事件“,是否会报错? 3. 如何认定两个事件处理函数是一样的? 如果是匿名函数呢? 4. 如果不手动删除事件函数,系统会帮我们回收吗? 5. 在多线程环境下,挂接事件时和对象创建所在的线程不同,那事件处理函数中的代码将在哪个线程中执行? 6. 当代码的层次复杂时,开放委托和事件是不是会带来更大的麻烦? 列下这些问题,下面就让我们讨论这些”尖酸刻薄“的问题。 二. 事件订阅和取消问题 我们考虑一个典型的例子:加热器,加热器内部加热,在达到温度后通知外界”加热已经完成“。 尝试写下如下测试类:

初中常用函数及其性质

一.正比例函数的性质 1.定义域:R(实数集) 2.值域:R(实数集) 3.奇偶性:奇函数 4.单调性:当k>0时,图像位于第一、三象限,y随x的增大而增大(单调递增);当k<0时,图像位于第二、四象限,y随x的增大而减小(单调递减) 5.周期性:不是周期函数。 6.对称轴:直线,无对称轴。、 二.一次函数图像和性质 一般地,形如y=kx+b(k、b是常数,且k≠0?)的函数,?叫做一次函数(?linear function).一次函数的定义域是一切实数. 当b=0时,y=kx+b即y=kx(k是常数,且k≠0?).所以说正比例函数是一种特殊的一次函数. 当k=0时,y等于一个常数,这个常数用c来表示,一般地,我们把函数y=c(c是常数)叫做常值函数(constant function)它的定义域由所讨论的问题确定. 一般来说, 一次函数y=kx+b(其中k、b是常数,且k≠0)的图像是一条直线. 一次函数y=kx+b的图像也称为直线y=kx+b. 一次函数解析式y=kx+b称为直线的表达式. 一条直线与y轴的交点的纵坐标叫做这条直线在y轴上的截距,简称直线的截距. 一般地,直线y=kx+b(k0)与y轴的交点坐标是(0,b).直线y=kx+b(k0)的截距是b. 一次函数的图像: k>0 b>0 函数经过一、三、二象限 k>0 b<0 函数经过一、二、三象限 k<0 b>0 函数经过一、二、四象限

k<0 b<0 函数经过二 、三、四象限 上面性质反之也成立 1.b 的作用 在坐标平面上画直线y=kx+b (k≠0),截距b 相同的直线经过同一点(0,b). 2.k 的作用 k 值不同,则直线相对于x 轴正方向的倾斜程度不同. (1)k>0时,K 值越大,倾斜角越大 (2)k<0时,K 值越大,倾斜角越大 说明 (1) 倾斜角是指直线与x 轴正方向的夹角; (2)常数k 称为直线的斜率.关于斜率的确切定义和几何意义,将在高中数学中讨论. 3.直线平移 一般地,一次函数y=kx+b(b0)的图像可由正比例函数y=kx 的图像平移得到.当b>0时,向上平移b 个单位;当b<0时,向下平移|b|个单位. 4.直线平行 如果k1=k2 ,b1b2,那么直线y=k1x+b1与直线y=k2x+b2平行. 如果直线y=k1x+b1与直线y=k2x+b2平行,那么k1=k2 ,b1b2 . 1.一次函数与一元一次方程的关系 一次函数 y=kx+b 的图像与x 轴交点的横坐标就是一元一次方程kx+b=0的解;反之,一元一次方程kx+b=0的解就是一次函数 y=kx+b 的图像与x 轴交点的横坐标.两者有着密切联系,体现数形结合的数学思想. 2.一次函数与一元一次不等式的关系 由一次函数 y=kx+b 的函数值y 大于0(或小于0),就得到关于x 的一元一次不等式kx+b>0(或kx+b<0).在一次函数 y=kx+b 的图像上且位于x 轴上方(或下方)的所有点,它们的横坐标的取值范围就是不等式kx+b>0(或kx+b<0)的解. 三.二次函数图像及其性质 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的一元二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2ax y =)(0≠a 的顶点是原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系: ①当0>a 时?抛物线开口向上?顶点为其最低点;②当0

相关文档
相关文档 最新文档