文档库 最新最全的文档下载
当前位置:文档库 › 转体称重方案(初稿)

转体称重方案(初稿)

转体称重方案(初稿)
转体称重方案(初稿)

新建铁路沪杭甬客运专线上海至杭州段(88+160+88)m自锚上承式拱桥

转体施工不平衡称重试验方案

北京交通大学土木工程试验中心

中铁十二局集团公司第四工程公司

2010.4

一项目概况

新建铁路沪杭甬客运专线上海至杭州段跨高速公路特大桥在铁路里程DK59+075.555~DK59+413.555设计为88m+160m+88m自锚上承式拱桥,其中主跨跨越沪杭高速公路主线,沪杭高速公路与沪杭客专轴线夹角为57°,沪杭高速公路净高要求5.5m。

拱肋采用抛物线线形,矢跨比为1/6,边、中跨拱肋跨中截面高4.0m,边、中跨拱肋拱脚处截面高6.0m。主拱截面采用单箱单室箱形截面,顶板宽7.5m,顶、底板及腹板厚度均采用60cm,拱脚处局部加厚。

边拱在主拱的端部、拱脚、拱上立柱等处各设相应厚度的横隔板。中拱主拱的拱脚、拱上立柱、中合龙等处各设相应厚度的横隔板。

为减少上部结构施工对行车安全的影响,确定采用平衡转体的施工技术。根据高速公路管理部门的要求,路两侧两个转体结构进行一前一后顺序施工。转体完毕精确就位后立即锁定,然后进行封铰施工,使全桥贯通。每个转体重量约16800吨,球铰半径8米。

转体施工法的关键技术问题是转动设备与转动能力,施工过程中的结构稳定和强度保证,结构的合拢与体系的转换。总的来看,桥梁转体技术的原理相同、转体技术也日渐成熟。然而,对于不同的桥梁,必须根据其结构形式、施工过程和场地及环境条件等特点制定出合理可行的转体方案,以便确保结构的稳定和强度要求,不至于由于转体而影响到结构的正常受力或导致不可控制的局面。

为此,设计要求在试转前,进行不平衡称重试验,测试转体部分的不平衡力矩、偏心矩、摩阻力矩及摩阻系数等参数,实现桥梁转体的配重,达到安全施工、平稳转体的目的。

二试验目的

围绕该桥的结构和施工特点,本项目将在转动体的不平衡力矩、摩阻系数、转体配重、转体偏心控制等方面开展工作,以保证转体阶段的结构安全,为类似转体桥梁的设计和施工积累经验和数据,为桥梁运营期间的技术管理和技术评估提供依据。达到进一步完善桥梁水平转体施工方法、提升企业施工技术能力的目的。

三试验内容

转体竖向不平衡力矩测试、摩阻系数测试、转体姿态分析、转体平衡配重。

四 试验方案

1、试验方法

沿桥梁轴线的竖平面内,由于球铰体系的制作安装误差和拱体质量分布差异以及预应力张拉的程度差异,导致两侧拱段刚度不同,质量分布不同,从而产生不平衡力矩,使得悬臂段下挠程度不同。为了保证转体过程中,体系平稳转动,要求预先调整体系的质量分布,使其质量处于平衡状态。原理如下:

以球铰为矩心,顺、反时针力矩之和为零,使转动体系能平衡转动,当结构本身力矩不能平衡时,需加配重使之平衡。即:

M 左一M 右= M 配

式中:M 左—— 左侧悬臂段的自重对铰心的力矩;

M 右—— 右侧悬臂段的自重对铰心的力矩; M 配—— 配重对铰心的力矩。

根据实测偏心结果,对于纵向偏心,采用在结构顶面的偏心反向位置,距离墩身中心线一定距离的悬臂段,堆码加沙袋作为配载纠偏处理法。

要使球铰克服静摩阻力发生微小转动,需要的转动力矩应大于等于静摩阻力矩。静摩阻力矩可由下式计算:

R N M z ??=098.0μ

式中,N 为转体重量,R 为球铰球面半径,μ0 为静摩擦系数。 2 摩阻系数及偏心距

转动体球铰静摩擦系数的分析计算称重试验时,转动体球铰在沿梁轴线的竖平面内发生逆时针、顺时针方向微小转动,即微小角度的竖转。摩阻力矩为摩擦面每个微面积上的摩擦力对过球铰中心竖转法线的力矩之和(见图1-1)。

由图可以得到:

dF R R dM 22)cos ()cos sin (θθθ+=

z dF PdA μ=

θβθd R d R dA ???=sin

cos P P θ=竖

22sin N

P R πα=

所以:

2cos sin sin z z RN M d μθβθπα

=??

其中,[0,2]βπ∈; 当6

π

α=

时,代入公式进行积分可以得到:

RN RN

M z z

z μα

πμ93328.0732619.0sin 2=?=

此时, 0.9328z

z M RN

μ=

当 5.75

π

α=

时,z

z M RN

μ≈

,此时与平面摩擦的结果基本一致。 所以,当球铰面半径比较大,而矢高比较小时,即α比较小时,可将摩擦面按平面近似计算。

根据研究成果及工程实践,使用四氟乙烯片并填充黄油的球铰静摩阻系数和偏心距可用下列各式为:

图1-1 转动体球铰绕Z 轴转动摩擦系数计算示意图

球铰静摩阻系数: RN

M Z

98.0=μ

转动体偏心距: N

M e G

=

式中,R 为球铰中心转盘球面半径;N 为转体重量。 3、施力设备及测点布置

1)撑脚处施力

N =16800t ,R =8m ,根据经验摩阻系数取μ0 =0.05; 得到设计静摩阻力矩为:0.98×0.05×168000×8=65856kN.m

本试验拟于上盘承台施加顶力。在距转体中心线约5.5m 处设置三台5000kN 的千斤顶,分别对转体梁进行顶放,在每台千斤顶上设置压力传感器,用以测试反力值,同时在上转盘底四周布置4个位移传感器,用以测试球铰的微小转动。

每台千斤顶需要的顶力预计:65856/(3×5.5)=3991kN 测点布置见图1-2~图1-5。 2)梁端处施力

为减小千斤顶出力,可增大力臂即在悬臂端适当位置处(如距悬臂端2米处)放置千斤顶,施加顶力,如图1-6~1-7所示。

每台千斤顶需要的顶力:65856/(2×77)=427kN

可采用QLD-50型手动螺旋式千斤顶。但需要在悬臂端位置处布置施力平台,如图1-8所示。

4、试验步骤

1)转体体系平衡状态判定

逐步解除临时固结措施过程中,在撑脚处布置位移传感器,如图1-2所示。测试步骤:

①两幅转体施工完成后,布置传感器,读取初读数。

②清理撑脚及滑道,逐步解除支座处的临时支撑(砂箱),进行连续测量,并观察撑脚是否随砂箱拆除连续向一侧下沉。判断转体体系的平衡状态。

图1-2

2)称重步骤

①在选定断面处安装位移传感器和千斤顶及压力传感器;

②调整千斤顶,使所有顶升千斤处于设定的初始顶压状态,记录此时压力传感器的反力值;

③千斤顶逐级加力,纪录位移传感器的微小位移,直到位移出现突变;

④绘制出P-Δ曲线;

⑤重复以上试验;

⑥对两幅转体共进行4次上述顶升试验;

⑦确定不平衡力矩、摩阻系数、偏心距;

⑧确定配重重量、位置及新偏心距。

⑨出具供铁路有关部门审批用的转体梁称重试验报告。

图1-5 千斤顶布置立面图

说明:图1-3~1-7中, 1- LVDT 位移传感器; 2-500吨压力传感器; 3-千斤顶; 4-梁底垫钢板(150mm ×150mm ×40mm );5-千斤顶底座

图1-6 悬臂端布置千斤顶平面图

图1-7 千斤顶布置立面图

图1-8悬臂端施力平台示意图

5、测试仪器和设备 (1) 传感器

试验中采用的传感器及其主要技术指标如下:

● 应变式位移传感器:用于测试撑脚处和重心位置处的位移。4个

主要技术指标:量程±5 mm ,精度1/1000,线性度大于0.2% 使用条件:受周围环境影响不大。

● BLR-3型压力传感器:用于测试千斤顶处的反力。4个

量程:5000kN 精度:±1% 灵敏系数:2.0

(2)数据采集系统

本项目采用美国生产的IOTECH Wave Book 512数据采集系统。IOTECH Wave Book 512的技术参数如下:满足本次测试的要求。

采样率:100万次/秒;

施力平台

分辨率:12bit

通道: 40个电压通道,16个动态应变通道

(3)数据分析软件系统。

本次试验采用美国DADiSP 数据分析软件包。该软件包可实现本次测试中相关数据的处理及分析,并能做到实时处理,可满足及时提供主要测试结果的要求。

6、进度安排

(1)研究制订试验实施方案:1天

(2)试验材料采购及设备配套:1天

(3)仪器的检测与标定:1天

(4)测点布置及传感器、数据线和相关设备的安装调试;1天

(5)按照进度计划要求完成现场测试:2~3天

(6)转体平衡配重、摩阻系数及配重:不平衡力矩测试后3天内给出。

7、实验配合事项

1)220V电源

2)500吨以上千斤顶三台

3)30~40mm钢板若干。

4)工人若干:移动千斤顶等设备、清理盛脚滑道、电工

8、实验经费

人民币约25万元。

汽车衡智能称重系统方案

汽车衡智能称重系统方案

目录 、/.—亠 一、前言 (3) 二、系统特点 (4) 三、系统组成 (4) 四、系统布局 (5) 五、运煤车出、入场流程 (5) 六、称重布置图 (6) 七、称重流程 (6) 八、系统部件 (6) 九、软件主要功能 (10) 十、防作弊功能 (12) 十一、质量保证体系 (15) 十二.设备包装标识、运输方案 (16) 十三、技术服务 (16) 十四、设备清单 (18)

一、前言 汽车衡是一般中大型厂矿企业的常见的计量设备,其计量过程中的车号、皮重等数据信息通常需要人工抄录并输入计算机,因而存在抄录错误的现象。在称量过程中还会存在作弊现象,造成称量失准,最终影响企业效益。如何解决这些问题,成为企业亟待解决的事情。我公司在积累了大量应用实践经验的基础上,推出的汽车衡无人值守系统,能快速有效地解决这问题。 兴安煤矿汽车衡现状及要求: 1. 现场有梅特勒托利多汽车衡一台,称重仪表一(T8000)块; 2. 要实现汽车衡的控制要求需要增加,计算机、挡车器、LED显示屏(显示车辆空车重、运煤量)、刷卡器、交换机等相关设备; 3. 汽车衡控制流程如下: A:在开票室由开票人员通过刷卡注册软件将当前车辆的相关信息(如:车号、运输单位等)录入系统,然后将注册好的卡发给司机; B:司机拿着卡将车开上汽车衡,磅房操作人员将挡车器落下,司机刷卡,操作人员将核对电脑上的车辆相关信息,并保存数据,室外大屏幕上会显示当前车辆的空车重量,便于司机查看,保存好数据后,挡车器抬起将车辆放行,进入拉煤; C: 出矿时,司机将煤车开上汽车衡,挡车器落下,大屏幕显示当前重量,司机刷卡,系统获取当前车辆信息,操作人员核对数据后,将数据保存并打印磅单,挡车器抬起将车辆放行。 D: 当车辆驶出至发卡处,司机将卡交回,并由发卡人员将该卡注销,以备重复使用。 至此,车辆出入衡一个流程结束。 根据以上兴安矿的要求和现状,我们有针对性的设计了本技术方案。

梅特勒-托利多农牧行业称重解决方案

农牧行业称重专家 贯穿上下游的全产业链解决方案 农牧行业解决方 案

农牧行业解决方 案 从农田到餐桌 为产品质量保驾护航 饲料 我们致力于饲料行业越来越高的产品质量和自动化要求,提供相应的解决方案。360度防作弊汽车衡为您的原料准确性提供保护。 养殖 规模化、精细化养殖是未来的趋势。料、肉数据是行业越来越关注的话题。料塔重量监测系统能有效提供饲料消耗信 息。 2

屠宰 肉类质量安全关系到企业的声誉,影响企业的利润。我们的卫生设计产品能有效满足您的冲洗要求,单轨衡产品能有效 提高您的企业效率。深加工 深加工产品是肉类企业的重要 利润来源。品牌对于肉制品企 业至关重要。良好配料管理能 确保产品的一致性,提升品牌 在消费者心目中的地位。 门店 在零售终端,我们为您提供专 业的收银秤、条码秤、PC一体 秤,覆盖您的专柜、后房,实 现称重、打标、数据上传和门 店管理。 3

农牧行业解决方案从源头控制 提升产品质量和生产效率 饲料工业对于食品质量安全,特别是和肉品安全息息相关。 梅特勒-托利多称重解决方案能有效帮助饲料企业提升生产自动化水 平,并通过我们在关键控制点的称重方案确保产品质量安全。 严格按照配方生产,保证产品 质量 随着最新版的《饲料质量安全管 理规范》的出台,法规对于小料 配料及混料、投料环节的要求更饲料 4

POWERCELL PDX ? 数字式电子汽车衡 卓越防雷,智能诊断,防作弊,维护方便它们精确而可靠的车辆称重,是任何其他称重传感器所不可企及的。能够抵御雷击、洪水和啮齿动物,提供最长的正常运行时间、最小化维护成本和长久的使用寿命。 多样化选择,满足不同的包装市场的变化带来了饲料产品出厂的包装形式更新变化,装秤能有效应对。不同类型的小5

动态称重系统的设计_魏鲁原

确受力,提高系统的称量精度。 ③改进传统的导向柱与衬套刚性配合限位设计,而是依靠新装置(称量箱)的活动承载压柱和缓冲衬套之间的柔性配合限位来精确完成对力的引导,避免秤体由于受承重冲击偏载和侧向力容易产生的卡碰现象,以解决系统称量失准、使用失常等技术难题。 ④秤台采用整体箱式厚板结构,并在一侧设置活动盖板门,密闭性好,可有效抵抗高温辐射和钢水飞溅。秤体设计采用16只M20的高强度螺栓与臂叉大梁连接成一体,所以秤体倾覆的可能性几乎为零,传感器检查或更换只需打开秤体一侧盖板(活动门),维护简单方便,使用安全可靠。 ⑤采用国产高温传感器,节省投资;自行设计研制称量装置,风险系数小,效益好。 4 效益分析 本文介绍的炼钢工艺钢包称量装置的改进与设计,完全可应用在涟钢所有的连铸机钢包旋转台和车载钢包主体设备上。随着管理水平的提高,在完善配备化铁炉、转炉和电炉的投入产出计量手段的同时,为降低消耗,节约成本,近期,涟钢决定在一炼钢和三炼钢1#、2#共4套连铸机钢包放置台上应用国产钢包称量装置,并对原有的精炼炉车载钢包秤进行技术改造,使炼钢生产过程中钢水有了可靠的计量手段,使提高产品质量和节能降耗有一定保障。通过钢水称量显示操作人员可精确控制钢水不剩余,特别是对控制回炉钢水效益最好。根据涟钢炼钢回炉钢水统计分析,一年中由于钢水衔接不好,回炉钢水平均吨钢减少约10kg,按年产连铸方坯150万t计算,仅钢水衔接回炉钢水减少15万t。有了先进的称量装置和计量手段,按节省每吨钢水800元计算,1年就可创经济效益1200万元左右。 收稿日期:2001-07-21。 作者莫良智,男,1953年生,1978年毕业于湖南省国防企业系统锻造职工大学,工程师;主要从事计量检测和过程控制,发表论文14篇。 动态称重系统的设计 The Design of Dynamic W eighing System 魏鲁原 伍 斌 崔 霞 (徐州师范大学工学院,江苏徐州 221011) 摘 要 介绍一种动态称重系统的结构和实现方法,主要功能是动态测量行驶车辆的轮胎受力,并计算相应静态车辆重量,实现全自动、不停车计量。硬件设计中重点介绍数字电路的构成,A/D转换器、信号放大与偏置电路和LCD偏置电路。软件设计中提出了根据实际采样波形而设计的独特数据处理方法。 关键词 称重系统设计 动态称重 静态重量 车辆重量 A bs tract The structure and implementation of a d ynamic weighin g s ystem are presented.The main function is dynamically meas uring the force on tyre of on going vehicle an d calculating related static weight of vehicle to accomplish full y automatic n on-stop meterin g.In hardware design the composition of d igital circuit,A/D con verter,signal am plif ying and bias circuit as well as LCD bias circuit.In software design the unique data processing m ethod d e-sign ed in accord ance with real ti me sam plin g waveform is stated. Key w ords Design of weighing s ystem Dynamic weighing Static weighin g Weight of the vehicle 1 概述 随着我国市场经济的发展,公路交通量迅速增长,各种载货车、大平板车、带挂汽车和集装箱运输车的数量和比重逐年递增,特别是一些运输单位或个人不顾车辆、公路承载能力及行车安全,擅自对车辆进行改装,增加弹簧钢板,更换高强度轮胎,加高、加宽、加长车厢栏板,栏板上再加围篱,围篱上又堆尖等超载现象较为普遍,使公路、桥梁及其附属设施遭受到严重破坏,且由此而引发的交通事故日益增多。因此,为了维护国家财产和人民生命安全,保护公路完好畅通,严格限制超载运输车辆迫在眉睫。动态称重系统是交通执 《自动化仪表》第23卷第8期 2002年8月D OI:10.16086/https://www.wendangku.net/doc/166067166.html, ki.issn1000-0380.2002.08.012

转体称重方案(初稿)

新建铁路沪杭甬客运专线上海至杭州段(88+160+88)m自锚上承式拱桥 转体施工不平衡称重试验方案 北京交通大学土木工程试验中心 中铁十二局集团公司第四工程公司 2010.4

一项目概况 新建铁路沪杭甬客运专线上海至杭州段跨高速公路特大桥在铁路里程DK59+075.555~DK59+413.555设计为88m+160m+88m自锚上承式拱桥,其中主跨跨越沪杭高速公路主线,沪杭高速公路与沪杭客专轴线夹角为57°,沪杭高速公路净高要求5.5m。 拱肋采用抛物线线形,矢跨比为1/6,边、中跨拱肋跨中截面高4.0m,边、中跨拱肋拱脚处截面高6.0m。主拱截面采用单箱单室箱形截面,顶板宽7.5m,顶、底板及腹板厚度均采用60cm,拱脚处局部加厚。 边拱在主拱的端部、拱脚、拱上立柱等处各设相应厚度的横隔板。中拱主拱的拱脚、拱上立柱、中合龙等处各设相应厚度的横隔板。 为减少上部结构施工对行车安全的影响,确定采用平衡转体的施工技术。根据高速公路管理部门的要求,路两侧两个转体结构进行一前一后顺序施工。转体完毕精确就位后立即锁定,然后进行封铰施工,使全桥贯通。每个转体重量约16800吨,球铰半径8米。 转体施工法的关键技术问题是转动设备与转动能力,施工过程中的结构稳定和强度保证,结构的合拢与体系的转换。总的来看,桥梁转体技术的原理相同、转体技术也日渐成熟。然而,对于不同的桥梁,必须根据其结构形式、施工过程和场地及环境条件等特点制定出合理可行的转体方案,以便确保结构的稳定和强度要求,不至于由于转体而影响到结构的正常受力或导致不可控制的局面。 为此,设计要求在试转前,进行不平衡称重试验,测试转体部分的不平衡力矩、偏心矩、摩阻力矩及摩阻系数等参数,实现桥梁转体的配重,达到安全施工、平稳转体的目的。 二试验目的 围绕该桥的结构和施工特点,本项目将在转动体的不平衡力矩、摩阻系数、转体配重、转体偏心控制等方面开展工作,以保证转体阶段的结构安全,为类似转体桥梁的设计和施工积累经验和数据,为桥梁运营期间的技术管理和技术评估提供依据。达到进一步完善桥梁水平转体施工方法、提升企业施工技术能力的目的。 三试验内容

《汽车衡全自动智能称重系统》设计方案

《汽车衡全自动智能称重系统》 设 计 方 案

一、综述: 一直以来,电子衡器称重管理工作,都是煤炭、水泥、石化、粮食、饲料、冶金、化工等工业以及所有需要电子磅计量行业中的难题。往往磅房远离管理部门,司磅人员的工作得不到有效监控,而且每天大量的手工填单和计算工作极易发生错误,这些问题的存在,久而久之,日积月累下来都将给企业带来巨大的经济损失。随着新技术的发展,对称重管理要求的提高,如何有效地管理称重数据,提高工作效率,提高企业信息化管理水平,是各企业的管理人员所想的,也是我们所开发的称重管理系统所必须做的。 我公司根据热电企业、垃圾焚烧行业、大型煤电企业的实际情况,引进国内外先进的技术经验成功开发了一套汽车衡智能称重管理系统。已广泛应用在国内多家垃圾处理场、发电厂以及化工、造纸企业,受到广大用户的肯定! 汽车衡全自动称重系统是集远距离车号自动识别系统、自动语音指挥系统、称重图像即时抓拍系、红绿灯控制系统、红外防作弊系统、道闸控制系统、远程监管系统于一身的智能称重系统。在称重的整个过程里做到计量数据自动可靠采集、自动判别、自动指挥、自动处理、自动控制,最大限度的降低人工操作所带来的弊端和工作强度,提高了系统的信息化、自动化程度。对于管理部门,可以通过系统中的汇总报表了解当前的生产及物流状况;对于财务结算部门,则可以拿到清晰又准确的结算报表;仓管部门则可以了解到自己的收、发货物的情况等。这些报表数据是随时可以查阅的,因此它也加强了管理上的一致性,缩短了决策者对生产的响应时间,提高了管理效率,降低了运行成本,促进了企业信息化管理。

二、系统设计原则 1 可靠 本系统是一个长期运行的系统,保证系统稳定可靠的运行是首先要考虑的。设计时充分考虑了系统在部分出现故障时仍然能够提供对用户的服务,并且能够很快的排除故障恢复正常运行。 2 可扩展 企业的发展是有一个过程的,相应的需求也是一个由小到大的过程,在系统方案中按照系统分析、统筹规划的观点将系统规划成一个扩展性很强且在扩容升级时浪费最少的系统。中心系统采用叠加式模块升级方式,逐步实现平滑扩容;降低系统维护升级的复杂程度,提高系统更新、维护和升级的效率;软件系统使用先进的网络开发平台,以客户机/服务器体系结构为框架,结合模块化和结构化的设计思想,既考虑到当前使用的易用性,更具有适当的超前性。同时系统具有与其他信息系统进行数据交换和数据共享的能力;计算机网络系统适应将来的广域扩展。 3 标准化和优势确立 系统实现时尽量采用符合工业标准的技术,保证技术实现的质量,便于日常维护和系统的扩展。 系统采用成熟的高新科技,以目前较为先进的方法实现需要的功能,既反应当今科技的先进水平,又具有发展潜力,保证系统在相当长的时间内不被淘汰。 4 开放 系统设计遵循开放性原则,整个系统的操作以方便、简捷、高效为目标,多操作平台整体设计统一操作,既充分体现快速反应的特点又能便于工作人员进行业务处理和综合管理,便于领导层、管理层及时了解各项统计信息和决策信息。

公路车载动态称重系统设计方案与开发

公路车载动态称重系统的设计与开发 摘要 公路车载动态称重系统的设计对于保护公路的正常使用有着重要的经济意义和社 会价值。随着公路运输工业生产和商业贸易的不断发展,产生了对公路车辆进行动态称 重越来越严格的要求,动态称重是路政部门加强正常运输、强制超载超限、提高管理工 作效率,实现路政系统管理现代化、科学化的一项关键技术。 就公路车载动态称重系统而言,称重的精度是最重要的性能指标,它标志着公路车 载动态称重系统的技术水平的高低。目前公路车载动态称重系统由于对采集的信号只能 简单的处理,加上建立的数学模型不适合非线性对象的特殊性,同时缺乏对干扰因素以 及各种干扰因素之间的关系做深层次的研究和处理,所以系统的精度难以得到很大的提高。 鉴于影响动态称重的干扰因素很多,而且这些因素之间不存在确切的函数关系,用 传统的数学模型方法很难分析清楚这些干扰因素之间的关系,所以本文从理论基础方面 入手,从提高称重精度的思想出发,介绍了应用于车载动态称重系统的各种智能算法模型,比较分析发现对于非线性对象没有解决误差精度问题,最终提出善于非线性建模的BP 神经网络技术,包括网络的基本思想、计算过程、执行步骤、存在的问题,以及针 对动态称重对象的非线性特征以及称重过程中存在的精度不准确问题采取了 BP 算法 的改进方法,进一步满足了现场环境的称重要求。 通过分析公路车载动态称重对象,建立了 BP 神经网络动态称重系统模型,根据现 场采集的动态称重数据进行了网络模型的分析与数据训练,训练结果表明精度完全符合 现场要求和国家标准。对于系统硬件方面,系统采用单片机进行数据采集与传送,对单 片机的选择进行了介绍;用于数据处理的动态称重软件系统除了实现重量数据的处理、 显示和查询等基本功能以外,它还实现了将采集的数据保存于数据库中并能以报表的形 式打印出来的功能,以便于统计和查阅。本文中主要用到的单片机开发工具是 C 语言, 工控机里的数据处理系统软件采用 Visual C++ 6.0 编程语言,主要利用 RS-232 串行接口 来提供串口通信,使用 BP 神经网络对称重采集的数据建模仿真的环境是 MA TLAB R2007。 关键词:动态称重系统,单片机,数学模型,BP 神经网络 DESIGNATION AND EMPOLDER OF HIGHW AY CAR-LOADING WEIGH-IN-MOTION SYSTEM ABSTRACT The Highway Car-loading Weigh-in-Motion system(WIMS)has undoubtedly played an antive electronic role and social value in the protection of highway trancport. Along with the development of the Highway Transportation,Industrial production and Business Trade, it is required that the Highway WIMS needs to saticfy more qualification of modernization and scientization for the rapid automatically and the enforcement of the overloading rule. As to the Highway Car-loading WIMS, the weighing precision of the vehicle moving is the most important standard specification. It indicates the technical level of the Highway Car-loading WIMS. While the weighing signal processing of the actual Weigh-in-Motion is simple digital filter and the model is not fit well with non-leneared object. Even further signal processing technique of kinds of disturbing factors. So the WIM system’s precision is hardly improved. Because there are so many factors affect the WIMS’ accuracy, and there are not exact function relations among these factors, this paper introduces some new arithmetic models to

悬臂箱梁水平转体施工中称重配重实验方法的研究和对比

悬臂箱梁水平转体施工中称重配重实验方 法的研究和对比 摘要:在转体施工中,转体结构的自平衡或配重平衡对施工过程的安全性和转体顺利实施起着至关重要的作用,为确保转体的顺利实施,对其结构进行称重,测试转动体部分的不平衡力矩、偏心距、摩阻力矩及摩擦系数,完成配重显得尤为重要。本文综合介绍了两种具有实用代表性的测试方法,并结合施工实例给出这两种方法的对比,为以后工程施工提供了重要依据。 关键词:水平转体自平衡不平衡力矩称重配重 1工程概况 凌源至绥中高速公路建昌至兴城支线丁家沟公铁分离式立交桥2×80m预应力混凝土T型刚构桥采用平转法转体施工,转体段梁长138m;转体角度为69.4°;转体重量8729.6t (含防撞墙),其中球铰球径8m,球缺弧角28.2°,平面半径1.95m,下球铰凹面镶嵌四氟乙烯片,上下球铰间填充黄油四氟粉。 对于转体施工,转动体系需要易于转动和转动平稳两个基本条件。转体结构的整个重量是由转动球铰来支撑,因此球铰的转动面摩擦系数就直接影响转动牵引力;另外,球

铰转动面为上下球缺凸凹面对接形成,那么下球缺(凹面)对上球缺的支撑力所提供的自平衡对整个转体过程中的安全平稳起着至关重要作用。实际施工中,由于结构不对称、混凝土超方量、施工临时荷载、风荷载、环境温度的不确定性及安装误差等,转动时达不到理想状态,球铰受力会产生一定的偏心;转动面涂抹黄油四氟粉由于其蠕动性影响,摩擦系数在不同重量下不同。那么转体前,通过称重试验和理论计算,来量化该部分(摩擦系数与偏心等)参数,为转体过程中设备的选择、技术处理措施和安全性能评估提供依据就尤为重要。 2称重配重目的 对于转体施工,因在施工支架完全拆除后以及在转体过程中,转动体的自平衡或配重平衡对施工过程的安全性和转体顺利实施起着至关重要的作用,为确保转体的顺利实施,对其结构进行称重,测试转动体部分的不平衡力矩、偏心距、摩阻力矩及摩擦系数,并完成配重。 3 称重实验原理 3.1球铰转动法 采用球铰转动测试不平衡力矩,这种方法采用测试刚体位移突变的方法进行测试,受力明确,而且只考虑刚体作用,而不涉及挠度等影响因素较多的参数,结果比较准确。 当脱架完成后,整个梁体的平衡表现为两种形式之

智能称重系统方案

RFID技术在车辆智能称重中的应用 挑战和需求 在国内一些大型公共企事业单位比如发电厂、煤场、垃圾场等每天都会有大量的物资运输车辆进出,在业务处理过程中需要进行停车、登记、称重等程序。目前这些单位主要依靠操作人员将数据以手工方式录入计算机,人工操作方式不仅耗时,而且误差率较大,此外薄弱的控制环境还容易滋生人为舞弊行为,给企事业单位造成大量经济损失。随着国家经济和社会建设的迅速推进,这种依靠人工操作的工作方式逐渐不能满足日益增长的业务处理要求。 AWS(Auto Weighing System)即车辆智能称重系统,是将称重系统、门禁系统以及停车场自动控制技术与远距离RFID射频识别技术相结合的智能化综合管理系统。该系统运用电子汽车衡、远距离RFID射频设备、自动道闸、信号灯等集成为智能化系统,可以自动记录进出车辆的ID号码、重量、时间、单位等信息,并直接写入主机数据库。主机可以实时传输数据到监控计算机,监控计算机也可以随时调用主机数据库中的数据。AWS系统对提升货物运输、处理的效率,使得业务管理模式走向条理化、规范化和科学化,从而提高管理水平、降低成本有着巨大的推进作用。作为AWS系统的车辆信息(前端)采集工具,远距离RFID技术可以显著提高过车速度,并通过车号自动识别和防拆卸措施,有效防止人为舞弊给企事业单位带来经济损失。此外,基于RFID技术的智能称重系统还可大大降低工作人员的劳动强度和人工称重的失误率,提高车辆运输管理流程的透明度。 目前国内已经投入运行的AWS系统主要采用被动式(无源)RFID技术。这个主要与无源车辆标签的成本较低有关系,但是无源技术的识别距离近、读写不稳定以及无源标签卡可使用内存空间小等弱点一直严重制约着系统的使用效率,而且无源标签大多不能忍受严酷的工作环境,遇到雨雪天气或者粉尘充斥时射频信号就极不稳定,而AWS系统的典型应用环境却恰恰是诸如煤场、垃圾场等恶劣工作环境。已有的几个分布在内蒙、河北和山西等地的基于无源技术的项目案例都相继出现了上述的一个甚至几个问题,因此行业内逐步转向有源RFID供应商寻求技术与产品的解决方案。

地磅无人值守自动称重系统介绍

地磅无人值守系统主要针企业在原材料采购、产品销售及厂内物资调拨过程进行的计量称重,可配合RFID(无接触射频设备)刷卡系统,视频监控系统、红外监控系统,语言指挥系统、信号控制系统实现无人值守系统过磅管理系统。 本系统可以自动采集毛重、皮重信息、车辆称重图片、可自动统计净重、自动进行打印、可以通过局域网、因特网连接实现数据和图片的实时监控,磅单的查询可以关联图像信息。公司领导可以在任何一台机器查询到称重数据,加强公司企业内部管理水平。 硬件设备安装示意图 水泥企业应用地磅无人值守系统后可加强磅房管理,细化管理过程,强化现场控制,严格控制地磅发货流程,详细记录发货过程中的业务数据(如历史皮重、历史毛重等)、附加数据(如视频录像、照片等),用信息化手段进一步提高管理水平,加强控制力度,杜绝营私舞弊。 地磅无人值守系统功能特点 磅房管理实现的基础功能之一,实现联机取数能够彻底避免人工读数登记的误差和一些其他的人为错误,是磅房管理的基础。

主要特点表现: 支持各种流行的地磅;LED或其他显示屏向车主展示读数;系统能够自动读取车辆毛重、皮重数据,自动计算出净重并打印出磅码单。系统不允许司磅员随意修改计量数据,如果磅单错误必须要修改时,可以修改客户资料、物料等信息,但不允许修改毛重、皮重等关键数值,同时标记单据为已修改,并记录修改时间、修改人,以备查询。 磅码单只准打印一次,特殊情况下需要多次打印的,系统会自动记录打印时间、打印人及总共打印的次数,以备查询。通过管理设置,系统必要时允许手工录入数据进行制单,但标记数据来源为手工录入,以备查询。 系统能够自动生成各种明细报表、汇总报表、任意统计报表、多种任意制定的分析图形,如能够生成本日或历史日入场明细表、出场明细表、发货日报表、发货台帐、发货统计表等。 散装水泥车辆无人值守过磅称重 视频监控系统 磅房管理中除了需要提高计量的准确性外,防止营私舞弊是个重点问题。磅

动态称重系统

一、动态称重系统适应范围 动态称重系统按照设备适应的速度范围,又可以分为高速动态称重系统和动态自动衡器 两种。高速动态称重系统一般可以对5km/h-120km/h (国内高速公路最高限速为 120km/h, 因此更高的速度没有实际意义)时速通过的车辆进行自动称重,在满足一定置信度范围内可 以达到5%以上的准确度。目前该产品尚没有国家或者行业标准。动态自动衡器需要限定车辆的通过速度,一般在 5km/h 一下时速匀速通过时,可以达到较高的准确度。目前在国内多数用于公路计重收费系统和公路超限超载检测站的低速复核称重,该产品现已有国家标准。 二、动态称重系统定义 动态称重是指通过测量和分析轮胎动态力测算一辆运动中的车辆的总重和部分重量的过程。 动态称重系统是一组安装的传感器和含有软件的电子仪器,用以测量动态轮胎力和车辆 通过时间并提供计算轮重、轴重、总重(如车速、轴距等)的数据。 三、动态称重系统特点 由于动态称重系统是具有测量行驶车辆重量的特点,决定了它在交通轴载调查、治理超 限超载运输和计重收费系统中不可替代的作用,也正是因为这一特点,它必须测量运动中轮 胎的动态力而不是静态荷载,在性能和使用上都与传统的静态汽车衡有着显著区别,因而静态汽车衡的相关标准交不适用于动态称重系统。首先,动态称重系统是一种技术含量很高的 复杂设备,动态称重与传统的静态称重有很大的区别。其次,由于车辆行驶产生的各种复杂 因素和动态称重技术的复杂性,动态称重结果具有一定的不确定性,因此,精度检验需要按 照适当的方法进行,对于称重误差采用概率术语表述更为合理。最后,应特别注意各种标准 规范对于使用条件的规定与现场使用条件的吻合程度,选择适用的标准与设备对应。 四、静态车辆称重系统与动态车辆称重系统的具体区别? 静态称重:汽车在秤台上稳定之后,才显示读数。这种称重方式比较准确。但是速度较慢。 动态称重:汽车开过秤台,显示读数。这种方式一般精度不高,但是速度快,例如:轴重秤。公路车辆一般使用动态称重。通俗的说,静态车辆称重系统:就是指把车辆开到秤上面,停下来,然后称重,人工确定重量。(按道理不能算系统)动态车辆称重系统:指车辆 自动开过秤,系统自动计算出车辆的重量。所以说高速公路收费站上的那种称重系统就是属 于动态称重,也称为公路动态车辆称重系统 五、路动态称重与静态称重的利与弊 1动态称重存在问题及解决对策 动态称重在实际应用中暴露了一些问题,以称重误差较大的问题尤为突出,而且极易引起征缴矛盾,进一步加大收费站拥堵的严重程度,引发社会的质疑和不满,大大降低了高速公路的服务水平。主要表现在以下几个方面。 1. 1存在问题,主要表现在以下几个方面。 (1)设备按照对已建成的收费广场开挖面积大,施工难度大,设备安装周期长,维护复杂。 ⑵设备稳定性影响费额。系统检测到数据与实际车型相比主要表现为:一是多轮胎或 者少轮胎,如双胎判单胎。二是多轴或少轴。直接影响费额的增加或减少,司机误以为人为 操作,极易引发费员与司机矛盾。 (3) 存在称重差异。称重系统的准确性使得计重收费严肃性受到质疑,车辆的称重数据往往在不同的收费站存在差异,对费额影响较大,容易引发矛盾。

跨津山铁路主桥转体称重方案北方交大

天津集疏港公路一期工程跨津山铁路主桥工程转体施工及试验方案 北京交通大学 中铁六局集团公司 2008.1.26

一项目概况 天津集疏港公路一期工程跨津山铁路主桥是一座65m+65m预应力混凝土连续刚构桥,全桥宽56m。上部结构采用左、右两幅反对称布置的单箱三室斜腹板箱梁。单幅箱梁顶板宽27m,底板宽14.1—17.1m。两幅之间的净距2m。中支点梁高5.5m ,端部梁高2.5m,端部等高段长8.9m。下部结构中墩采用墩梁固结、单箱双室截面。转盘结构采用环道与中心支承相结合的球铰转动体系。 为减少上部结构施工对铁路行车安全的影响,确定采用平衡转体的施工技术。即先在铁路两侧浇筑梁体,然后通过转体使主梁就位、调整梁体线形、封固球铰转动体系的上、下盘,最后浇筑合拢段,使全桥贯通。转体段梁长61m+61m,现浇合拢段长4m。转体角度75o,转体重量达13300t。 转体施工法的关键技术问题是转动设备与转动能力,施工过程中的结构稳定和强度保证,结构的合拢与体系的转换。总的来看,桥梁转体技术的原理相同、转体技术也日渐成熟。然而,对于不同的桥梁,必须根据其结构形式、施工过程和场地及环境条件等特点制定出合理可行的转体方案,以便确保结构的稳定和强度要求,不至于由于转体而影响到结构的正常受力或导致不可控制的局面。 天津集疏港公路一期工程跨津山铁路主桥转体施工的特点主要体现在如下方面:1、左、右两幅梁同步水平转体。 左右两幅梁转体到位后的表面间距为2m,如此巨大的两个转动物体,特别是在转体到位的瞬间,若两幅梁的转体角度偏差超过 1.878o时,就会导致两幅梁在梁端发生碰撞。此外,转体过程中有可能出现的非匀速转动或急起、急停所产生的惯性力也会导致梁体变形、甚至产生裂缝。因此,保持左、右两幅梁的同步、缓慢匀速转动是该桥转体施工的关键环节。 2、转体梁悬臂长度达到61m。 如此长的悬臂长度意味着,在竖平面内由于不平衡力矩使球铰转动体系产生0.01o的微小转动时,在转体悬臂段的端部就会产生大约11mm的竖向位移(此时,在撑脚处产生大约0.6mm的竖向位移)。因此,无论在转体过程中,还是在梁体线形的调整中,精确控制悬臂段的标高和转体体系的质量平衡,提高体系的抗倾覆稳定能力,就成为保证施工质量、顺利完成边跨合拢段施工的重要环节。

智能称重系统方案20131031

《汽车衡IC卡智能称重系统》 设 计 方 案

一、综述: 一直以来,电子衡器称重管理工作,都是煤炭、水泥、石化、粮食、饲料、冶金、化工等工业以及所有需要电子磅计量行业中的难题。往往磅房远离管理部门,司磅人员的工作得不到有效监控,而且每天大量的手工填单和计算工作极易发生错误,这些问题的存在,久而久之,日积月累下来都将给企业带来巨大的经济损失。随着新技术的发展,对称重管理要求的提高,如何有效地管理称重数据,提高工作效率,提高企业信息化管理水平,是各企业的管理人员所想的,也是我们所开发的称重管理系统所必须做的。 我公司根据热电企业、垃圾焚烧行业、大型煤电企业的实际情况,引进国内外先进的技术经验成功开发了一套汽车衡智能称重管理系统。已广泛应用在国内多家垃圾处理场、发电厂以及化工、造纸企业,受到广大用户的肯定! 汽车衡全自动称重系统是集IC车号自动识别系统、门卫收发卡系统、自动语音指挥系统、称重图像即时抓拍系、红绿灯控制系统、红外防作弊系统、手持机确认系统于一身的智能称重系统。在称重的整个过程里做到计量数据自动可靠采集、自动判别、自动指挥、自动处理、自动控制,最大限度的降低人工操作所带来的弊端和工作强度,提高了系统的信息化、自动化程度。对于管理部门,可以通过系统中的汇总报表了解当前的生产及物流状况;对于财务结算部门,则可以拿到清晰又准确的结算报表;仓管部门则可以了解到自己的收、发货物的情况等。这些报表数据是随时可以查阅的,因此它也加强了管理上的一致性,缩短了决策者对生产的响应时间,提高了管理效率,降低了运行成本,促进了企业信息化管理。

二、系统设计原则 1 可靠 本系统是一个长期运行的系统,保证系统稳定可靠的运行是首先要考虑的。设计时充分考虑了系统在部分出现故障时仍然能够提供对用户的服务,并且能够很快的排除故障恢复正常运行。 2 可扩展 企业的发展是有一个过程的,相应的需求也是一个由小到大的过程,在系统方案中按照系统分析、统筹规划的观点将系统规划成一个扩展性很强且在扩容升级时浪费最少的系统。中心系统采用叠加式模块升级方式,逐步实现平滑扩容;降低系统维护升级的复杂程度,提高系统更新、维护和升级的效率;软件系统使用先进的网络开发平台,以客户机/服务器体系结构为框架,结合模块化和结构化的设计思想,既考虑到当前使用的易用性,更具有适当的超前性。 同时系统具有与其他信息系统进行数据交换和数据共享的能力;计算机网络系统适应将来的广域扩展。 3 标准化和优势确立 系统实现时尽量采用符合工业标准的技术,保证技术实现的质量,便于日常维护和系统的扩展。 系统采用成熟的高新科技,以目前较为先进的方法实现需要的功能,既反应当今科技的先进水平,又具有发展潜力,保证系统在相当长的时间内不被淘汰。 4 开放 系统设计遵循开放性原则,整个系统的操作以方便、简捷、高效为目标,多操作平台整体设计统一操作,既充分体现快速反应的特点又能便于工作人员进行业务处理和综合管理,便于领导层、管理层及时了解各项统计信息和决策信息。 系统对外传输采用标准的TCP/IP协议,其他的系统也采用相应的工业标准,具有与其他信息系统进行数据交换和数据共享的能力,充分保证了系统的开放性。 5 安全 数据的安全性在任何系统予以高度重视,网络系统采取防范措施防止黑客的入侵。对于内部的员工以及司磅员等也安排足够的权限控制,避免用户能够操作到不属于自己的数据。提供系统总体闭环检测及网管方案,实现对整个网络的自检、实时监控和自动故障报警检测以及一定程度的自恢复。

制药行业配料称重系统方案

制药行业配料称重系统方案 ——智能制造/营销部 海得控制可以为客户提供制药工艺各个工序的配料称重解决方案,包括:配料、配液、物料管理、物料分装,成品检重等环节。构建高安全、质量和生产效率的制药行业解决方案。 一、配料系统介绍 原辅料配料系统 根据制药生产工艺规程,将原辅料按一定比例混合在一起;是针对一种或者多种物料按预先设定好的值和误差进行加料和放料的过程。 配料工艺要求无粉尘,可复核可追溯,并最大限度地降低粉体物料转运过程中污染、交叉污染以及混淆、差错等风险。 1、配料工艺路径: 2、配料称重系统:

3、自动配料称重系统 1)按制药生产配方自动进行配料 2)全过程密闭执行 3)电子记录配料过程数据 4)自动生成配料报告,实现物料正反向追踪 4、手动配料称重系统 1)称重及配料程序按照GMP要求进行 2)条码标签扫描防止用错材料 3)生成符合要求的称重报告 二、系统结构与信息流程 1、制药称重自动化系统

海得e-Control PLC控制器通过串口总线协议与电子称重仪器、条码扫描仪、变频器等设备连接,PLC出厂预设程序或netSCADA组态软件自带的电子秤驱动包括: 1)Mettler SICS(梅特勒);Mettler Toledo(梅特勒托利多) Terminals ID1,ID2, ID3, ID5, ID7, GD12 using the MMR protocol; 2)Sartorius (赛多利斯)XBPI and MP8 using the xBPI protocol。 2、举例:中药称重系统电子记录 当配料通过条形码识别器被添加进去时,中药称重系统会自动查找产品资源和可用原材料之间的关系。它也会为每一个批处理过程产生唯一的识别数量,并投放相应数量的带条形码的配料。当配料添加进来时,它们会被通过条形码扫描器扫描和确认。中药称重系统采用电子记录的最大优点就是它不允许无序操作,减少了人为错误发生的机率。

无人值守过磅管理系统(2016)解决方案

众成软件-无人值守过磅管理系统 众成软件科技有限公司 2016年6月

第一章:系统应用目标 过磅无人化:大量的货物运输车辆进出,需要进行停车、登记、称重等程序,通过无人值守过磅管理系统、彻底的解放人工,规范操作流程、提高工作效率,有效杜绝人为误差,防止作弊等情况的发生。 产销一体化:实现以销定产、以产定销等经营模式,根据定单、产能和销售预测来选择生产路线;安排生产计划、优化库存结构;提供准确的生产进度、完工情况信息,提供人员、关键设备、部门等资源信息,提供准确的库存管理记录,为提高交货准确率和保持最低的库存水平提供技术支持手段;达成快速响应定单的能力。 成本精细化:成本的动态化管理、精细化管理;强调与业务管理的集成,强调成本信息与物流信息的同步和实时性;加强成本计划,强调成本监控,支持分析优化;以全面预算为主要手段、以班组和天核算为基础,要求财务系统能同步地从公司和生产系统获得资金使用信息,随时控制和指导经营生产活动;快速准确地计算出每种产品的生产成本,为生产控制和管理决策提供依据。 流程一体化:固化企业的基本流程,因为业务流程长,审批单据量大,需要业务流实现与工作流、审批流完全贯通;生产车间与管理相衔接,使烧结、冶炼等生产一线的实时数据及历史数据无缝集成到上层信息化系统中,使非生产一线管理人员也可通过图表、报警等机制实时了解到生产一线状况。 资料协同化:关注供应资源的协同管理:原辅材料供应管理、备品备件供应管理;需要对企业的有限资源进行合理配置;业务计划、中长期以及短期计

划的集成与协同管理;提高设备利用率和劳动生产率,对变化的市场能够及时反应,满足客户多样化的需求;供应商管理和客户管理电子商务和供应链上的协调可以节约大量的经营成本。 财务集中化:快捷顺畅的结算管理、集中的会计核算、严格的资金管理。一方面要求资金必须统一管理、集中调度;另一方面还要明确各单位的责、权、利,化小核算单位 管控一体化:以数据、文字、画面、语音、通讯等手段的整合,实现管理信息化与生产自动化控制、过程监视和基础自动化控制相结合,实现管理与控制一体化联动。 第二章:管理难点与解决方案 2.1 计量管理 难点: 1、司机作弊,司磅员不易发现,例如车辆前/后轮不完全上磅、上磅后压边、车辆互换车牌号等这些情况下都直接给企业造成损失。 2、司磅员与司机联合作弊,在过磅过程中少记录、漏记录、甚至不记录、私放车辆等。司磅员手工开单,无法保证书写的准确性。 上述作弊手段目前极为普遍,给企业造成了极大损失。 假设磅房一天销售出库车辆为50车,每吨煤价格=300元;如果作弊车辆占全部车辆的5%,每车偷逃3吨煤,则年销售收入损失=1磅房×50车×5%×3吨

动态称重系统设计方案

动态称重系统设计方案

目录 第一章公司简介 (6) 第二章称重变送器 (8) 一、概述 (8) 二、用途 (8) 三、特点 (9) 第二章称重传感器 (10) 一、称重传感器简介 (10) 二、称重传感器分类 (12) 1、光电式传感器 (12) 2、液压式传感器 (13) 3、电磁力式传感器 (13) 4、电容式传感器 (13) 5、磁极变形式传感器 (14) 6、振动式传感器 (14) 7、陀螺仪式传感器 (15) 8、电阻应变式传感器 (15) (1)、电阻应变式称重传感器原理 (16) 三、称重传感器的选择: (19) 1、KITOZER系列 (19) 2、TC系列 (20) 3、TU系列 (21) 四、称重传感器的仪表应用 (22) 五、传感器市场前景预测 (24) 六、称重系统中称重传感器的选择 (25) (1)、传感器的数量和量程 (26) (2)、传感器的准确度等级选择 (27) (3)、各种类型传感器的使用范围 (27) (4)、使用环境 (27) 第四章称重传感器的基本原理 (29) 一、电阻应变式称重传感器原理 (29) 二、如何选用称重传感器 (30) 三、称重传感器的分类 (31) 四、称重传感器的基本应用 (33) 五、称重传感器原理 (33)

六、电阻应变式称重传感器原理 (35) 七、称重传感器工作原理 (39) 第五章数字称重信号变送器 (42) 一、主要特点: (42) 二、型号定义 (43) 1、数字称重变送模块 (43) 2、模拟输出类型 (43) 3、通讯报警输出 (44) 三、技术规格 (44) 四、接线与操作说明 (45) 第六章静态称重变送器 (46) 一、KITOZER700功能特点: (46) 二、KITOZER700技术参数: (47) 第七章称重传感器的专业术语 (48) 一、称量系统,称重系统 (48) 二、全(纯)电子衡器 (48) 三、电子部件 (48) 四、基准砝码 (49) 五、电阻应变计(片) (49) 六、重量指示装置 (49) 七、自动零点跟踪 (50) 八、最小载荷 (50) 九、灵敏度要求(SR) (51) 十、鉴别力阀 (51) 十一、国家检定规程 (52) 十二、非强制性检定 (52) 十三、检定周期 (52) 第八章称重传感器基础知识 (54) 第九章称重传感器-电子称和健康秤有什么区别 (60) 一、电子称和健康秤有什么区别 (60) 二、电子秤 (61) 三、健康秤 (61) 第十二章数字称重传感器 (66) 一、组成 (66) 二、特点 (66) 三、应用 (67) 四、维护方便 (69) 第十三章轮辐式称重传感器 (70) 一、概述: (70) 二、主要技术指标 (70) 三、选型表 (71) 四、主要特点 (71) 五、称重传感器的分类方式与主要类别 (71) 六、国称重传感器: (72)

转体称重方案(初稿)讲解

精品文档 新建铁路沪杭甬客运专线上海至杭州段(88+160+88)m自锚上承式拱桥 转体施工不平衡称重试验方案 北京交通大学土木工程试验中心 中铁十二局集团公司第四工程公司

精品文档2010.4

精品文档 一项目概况 新建铁路沪杭甬客运专线上海至杭州段跨高速公路特大桥在铁路里程DK59+075.555~DK59+413.555设计为88m+160m+88m自锚上承式拱桥,其中主跨跨越沪杭高速公路主线,沪杭高速公路与沪杭客专轴线夹角为57°,沪杭高速公路净高要求5.5m。 拱肋采用抛物线线形,矢跨比为1/6,边、中跨拱肋跨中截面高4.0m,边、中跨拱肋拱脚处截面高6.0m。主拱截面采用单箱单室箱形截面,顶板宽7.5m,顶、底板及腹板厚度均采用60cm,拱脚处局部加厚。 边拱在主拱的端部、拱脚、拱上立柱等处各设相应厚度的横隔板。中拱主拱的拱脚、拱上立柱、中合龙等处各设相应厚度的横隔板。 为减少上部结构施工对行车安全的影响,确定采用平衡转体的施工技术。根据高速公路管理部门的要求,路两侧两个转体结构进行一前一后顺序施工。转体完毕精确就位后立即锁定,然后进行封铰施工,使全桥贯通。每个转体重量约16800吨,球铰半径8米。 转体施工法的关键技术问题是转动设备与转动能力,施工过程中的结构稳定和强度保证,结构的合拢与体系的转换。总的来看,桥梁转体技术的原理相同、转体技术也日渐成熟。然而,对于不同的桥梁,必须根据其结构形式、施工过程和场地及环境条件等特点制定出合理可行的转体方案,以便确保结构的稳定和强度要求,不至于由于转体而影响到结构的正常受力或导致不可控制的局面。 为此,设计要求在试转前,进行不平衡称重试验,测试转体部分的不平衡力矩、偏心矩、摩阻力矩及摩阻系数等参数,实现桥梁转体的配重,达到安全施工、平稳转体的目的。 二试验目的 围绕该桥的结构和施工特点,本项目将在转动体的不平衡力矩、摩阻系数、转体配重、转体偏心控制等方面开展工作,以保证转体阶段的结构安全,为类似转体桥梁的设计和施工积累经验和数据,为桥梁运营期间的技术管理和技术评估提供依据。达到进一步完善桥梁水平转体施工方法、提升企业施工技术能力的目的。 三试验内容

相关文档