文档库 最新最全的文档下载
当前位置:文档库 › 浅谈证明不等式的方法--构图法

浅谈证明不等式的方法--构图法

浅谈证明不等式的方法--构图法
浅谈证明不等式的方法--构图法

浅谈证明不等式的方法 构图法

湖南教育出版社一一410007一一钟劲松

1一构图法的历史

构图法,即构造几何图形,利用几何图形的性质

来帮助说明不等式.构图法出现已经有很长的历史,

可以追溯到十二世纪的古代中国,希腊和印度.一些

数学家认为构图法不是一种严格的证明,构图法对

于实际证明毫无价值,证明有且只有一种方式

推理,构图证明是不能够接受的.但还有一部分数学

家认为,数学不仅是逻辑的,还是图形的,作为数学

教育工作者,必须把培养学生的想象能力作为重要

的能力之一.数学教育家波利亚指出画图帮助理解

题意,被认为是经典的教育学建议.爱因斯坦和庞加

莱都认为,我们应该利用好我们的直觉;美国数学家

加德纳指出,许多情形下,一个平淡的证明加上一个

几何类似图形,使得证明更加简单和漂亮,定理的准

确性立见.所有的这些,都说明了构图法对帮助证明

的重要性.

2一几个不等式的构图说明

高中数学选修模块4?5‘不等式选讲“中的不等

式主要有:基本不等式,绝对值不等式,平均值不等

式,柯西不等式,排序不等式,贝努利不等式.中学阶

段很多不等式的证明可以利用构图法来理解,下面

列举几个不等式的构图.

2.1一不等式a+b2?ab(a,b为正数)的构图

不等式表明:两个正数的算术平均数a+b2不小

于它们的几何平均数ab,即a+b

2?ab(a,b为

正数),教材中一般构造如下的几何图形来加强理解.

图1一一一一一一一一一图2

如图1所示,在正方形ABCD中,有S?ABC+S?AFM-S

矩形ABEF?0,即

2+

2?a四b,所以

a+b

2?ab.基本不等式的另一种构图,如图2所示,把半径不等的两圆水平放置,且都与直线AB相切,两圆外切,有OF=

a+b

2,OE=

a-b

2.在直角三角形OEF中,利用勾股定理可知EF=ab,因为OF>EF,所以a+b2?ab.图1 2都说明了不等式a+b

2?ab的几何意义,并且能直观地感知当且仅当 a=b 时 = 成立.

2.2一不等式2aba+b<ab<a+b2<a2+b22的构图

如图3所示,M为圆A外一点,MA与圆A分别相交于P二Q两点,MG,MR分别为圆A的切线和割线,PM=a,QM=b,a>b>0,则有HM<GM<AM<RM,而HM=2aba+b,GM=ab,AM=a+b2,RM=a2+b2

2,所以,

2ab

a+b<ab<

a+b

2<

a2+b2

2.

图3一一一一一一一一一图42.3一不等式xr-1>r(x-1)的构图

当n为正整数,x>-1时,(1+x)n?1

+nx成

立,称为贝努利不等式(Bernoulliinequality),其证

明方法通常有数学归纳法和利用二项式定理进行放

缩.但形如xr-1>r(x-1)的不等式,不能采用类

似于证明贝努利不等式的方法进行证明,可采用构

图法帮助证明.构造如图4所示的图形,在同一坐标62

一ZHONGXUESHUXUEZAZHI一一一一一一一一一一一一一一一中学数学杂志一2015年第1期

系中分别作出函数y=xr-1和y=r(x-1)的图象,函数y=xr-1为经过(1,0)点的凸函数,函数y=r(x-1)的图象是斜率为r,经过点(1,0)的直线,且直线y=r(x-1)与y=xr-1的图象相切,切点为(1,0).因此,当r>1,x>0,x?1时,不等式xr-1>r(x-1)恒成立.2.4一

不等式

ab<a+cb+d<cd

(糖水不等式)的构图如图5所示,分别以O(0,0),B(b,a),A(d,c)为三角形的三个顶点,则线段AB的中点M的坐标为b+d2,a+c2?è???÷,直线y=m1x,y=m2x,y=m3x的斜率m1=ab,m2=a+cb+d,m3=cd,由图可知m1<m2<

m3,即ab<a+cb+d<cd,所以,当a,b,c,d>0时,若

ab<cd,则不等式ab<a+cb+d<cd

恒成立

.图5一一一一一一一一一

图6

糖水不等式的另一种构造方法,如图6所示.因为

tan?BOA=ab,tan?DOC=a+cb+d,tan?DBE=c

?BOA<?DOC<?DBE,所以ab<a+cb+d<c

2.5一柯西不等式(a1b1+a2b2)2?(a21+a22)(b2

1+b22)的构图

柯西不等式(Cauchyinequality)的证明方法通

常有三种.方法一是通过构造两平面向量α=(a1,a2),β=(b1,b2),其中a1,a2,b1,b2为非零实数,α,β的夹角θ满足cosθ=

α四β

|α||β|

,即cosθ=

a1b1+a2b2

a21

+a22

四b21

+b

22

,由cos2

θ?1可证柯西不等式;

方法二是构造二次函数f(x)=(a21+a22)x2

+2(a1b1+a2b2)x+(b21+b22),利用f(x)=(a21x2

+2a1b1x+b21

)+(a22x2

+2a2b2x+b22)=(a1x+b1)2+(a2x+b2)2

?0知判别式Δ=[2(a1b1+a2b2)]2

-4(a21

+a22

)(b21

+b22

)?0得证,该方法可以将柯西不等式推

广到n维空间的一般的情形;方法三是利用分析法.

构图如图7,8所示,将同一长方形进行不同的分割,S图7阴影=|a1||a2|+|b1||b2|,S图8阴影=12

|a1||a2|+

12|b1||b2|+12|b1||b2|+1

|a1||a2|=|a1||a2|+|b1||b2|.

图7与图8非阴影部分面积相等,即|a1||b1|+|a2||b2|=

|a1|2+|a2|2四

|b1|2+|b2|2四sinθ,

于是|a1b1+a2b2|?|a1||b1|+|a2||b2|?|a1|2+|a2|2四|b1|2+|b2|2,

即(a1b1+a2b2)2?(a21+a22)(b2

1+b22).

图7一一一一一一一一一图8

柯西不等式的另一种构图方法,如图9,10所

示,很明显有S图9?S图10,即(|a1|+|b2|)(|a2|+

|b1|)?

212|a1||a2|+12|b1||b2|?è???

÷+|a1|2+|a2|2四|b1|2+|b2|2,展开得|a1||

b1

|+|

a2

||

b2

|?

|a1|2+|a2|2

|b1|2+|b2|2,所以|a1b1+a2b2|?|a1||b1

|+|a2||b2|?

a21+a22四b2

1+b22.

图9一一一一一一一一一

图10

3一

结语

构图来帮助证明分布在数学中的各个方面,如代数,几何,三角,微积分和动态几何,不等式,数列,

排列二组合等等.数学上许多的定理和概念,都可以用优美二简洁的图形来表示.老师们应该在平时教学中多注意总结,设计更多的图来帮助学生直观地理解数学知识,学好数学,让数学变得更为直观.

2中学数学杂志一2015年第1期一一一一一一一一一一一一一一一ZHONGXUESHUXUEZAZHI一

高中数学不等式的几种常见证明方法(县二等奖)

高中数学不等式的几种常见证明方法 摘 要:不等式是中学数学的重要知识,考察学生对不等式理论熟练掌握的程度也是衡量学生数学水平的重要方面,同时,不等式也是高中数学的基础,因此,在每年的数学高考题中,有关不等式的相关题目都有所出现,本文介绍了几种不等式的证明方法,并举例进一步加强对各种不等式的理解. 关键字:不等式;数学归纳法;均值;柯西不等式 一、比较法 所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法. 例 1 设,x y R ∈,求证:224224x y x y ++≥+. 证明: 224224x y x y ++-- =2221441x x y y -++-+ =22(1)(21)x y -+- 因为 2(1)0x -≥, 2(21)0y -≥ ∴ 22(1)(21)0x y -+-≥ ∴2242240x y x y ++--≥ ∴224224x y x y ++≥+ 例 2 已知:a >b >c >0, 求证:222a b c a b c ??>b c a c b c a b c +++??. 证明:222a b c b c a c b c a b c a b c +++????=222a b c b a c c b c a b c ------?? >222a b c b a c c b c c c c ------??

=0c =1 222a b c b c a c b c a b c a b c +++??∴??>1 ∴222a b c a b c ??>b c a c b c a b c +++?? 二、分析法 分析法:从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立. 例 3 求证3< 证明: 960+>> 5456<成立运用分析法时,需积累一些解题经验,总结一些常规思路,这样可以克服无目的的乱写,从而加强针对性,较快地探明解题的途径. 三、综合法 从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式,这种证明方法叫做综合法. 例 4 已知,a b R +∈,1a b +=,求证:221125()()2 a b a b +++≥ 证明:∵ 1a b += ∴ 1=22222()22()a b a b ab a b +=++≤+ ∴ 221 2 a b +≥

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

浅谈中学几种常用证明不等式的方法

成绩: 江西科技师范大学 毕业论文 题目:浅谈中学几种常用证明不等式的方法 (外文):On the method commonly used in Middle School to prove inequality 院(系):数学与计算机科学学院 专业:数学与应用数学 学生姓名:吴丹 学号:20091741 指导教师:樊陈 2013年3月20日

目录 1引言 (1) 2放缩法证明不等式 (1) 2.1放缩法 (1) 2.2(改变分子分母)放缩法 (1) 2.3拆补放缩法 (2) 2.4编组放缩法 (3) 2.5寻找“中介量”放缩法 (4) 3反正法证明不等式 (4) 3.1反证法定义 (4) 3.2反证法步骤 (5) 4.换元法证明不等式 (6) 4.1利用对称性换元,化繁为简 (6) 4.2三角换元法 (7) 4.3和差换元法 (8) 4.4分式换元法 (8) 5.综合法证明不等式 (9) 5.1综合法证明不等式的依据 (9) 5.2用综合法证明不等式的应用 (9) 5.3综合法与比较法的内在联系 (10) 6.分析法 (11) 6.1分析法的定义 (11) 6.2分析法证明不等式的方法与步骤 (11) 6.3分析法证明不等式的应用 (11) 7.构造法证明不等式 (13) 7.1构造函数模型 (13) 7.2构造数列模型 (14) 8.数学归纳法证明不等式 (15) 8.1分析综合法 (16) 8.2放缩法 (16) 8.3递推法 (17) 9.判别式法证明不等式 (17) 10.导数法证明不等式 (18) 10.1利用函数的单调性证明不等式 (18) 9.2利用极值(或最值) (20) 11比较法证明不等式 (20) 11.1差值比较法 (20) 11.2商值比较法 (21) 11.3比较法的应用范围 (22) 12结束语: (22) 参考文献 (22)

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

高等数学中不等式的证明方法

高等数学中不等式的证明方法 摘要:各种不等式就是各种形式的数量和变量之间的相互比较关系或制约关系,因此, 不等式很自然地成为分析数学与离散数学诸分支学科中极为重要的工具,而且早已成为 专门的研究对象。高等数学中存在大量的不等式证明,本文主要介绍不等式证明的几种 方法,运用四种通法,利用导数研究函数的单调性,极值或最值以及积分中值定理来解 决不等式证明的问题。我们可以通过这些方法解决有关的问题,培养我们的创新精神, 创新思维,使一些较难的题目简单化、方便化。 关键词:高等数学;不等式;极值;单调性;积分中值定理 Abstract: A variety of inequality is the various forms of high-volume and variable comparison between the relationship or constraints. Therefore, Inequality is natural to be a very important tool in Analysis of discrete mathematics and various bran(https://www.wendangku.net/doc/1510363888.html, 毕业论文参考网原创论文)ches of mathematics .It has been a special study.Today there are a large number of inequalities in higher mathematics .This paper introduces the following methods about Proof of Inequality ,such as the using of several general methods, researching monotone function by derivative, using extreme or the most value and Integral Mean Value Theorem . We can resolve the problems identified through these methods. It can bring up our innovative spirit and thinking and some difficult topics may be more easy and Convenient , Keyword: Higher Mathematics; Inequality; Extreme value Monotonicity; Integral Mean Value Theorem 文章来自:全刊杂志赏析网(https://www.wendangku.net/doc/1510363888.html,) 原文地址: https://www.wendangku.net/doc/1510363888.html,/article/16be7113-df3a-4524-a9c3-4ba707524e72.htm 【摘要】不等式证明是高等数学学习中的一个重要内容,通过解答考研数学中出现的 不等式试题,对一些常用的不等式证明方法进行总结。 【关键词】不等式;中值定理;泰勒公式;辅助函数;柯西 施瓦茨;凹凸性 在高等数学的学习过程当中,一个重点和难点就是不等式的证明,大多数学生在遇到不 等式证明问题不知到如何下手,实际上在许多不等式问题都存在一题多解,针对不等式的证 明,以考研试题为例,总结了几种证明不等式的方法,即中值定理法、辅助函数法、泰勒公

经典不等式证明的基本方法

不等式和绝对值不等式 一、不等式 1、不等式的基本性质: ①、对称性: 传递性:_________ ②、 ,a+c >b+c ③、a >b , , 那么ac >bc ; a >b , ,那么ac <bc ④、a >b >0, 那么,ac >bd ⑤、a>b>0,那么a n >b n .(条件 ) ⑥、 a >b >0 那么 (条件 ) 2、基本不等式 定理1 如果a, b ∈R, 那么 a 2+b 2≥2ab. 当且仅当a=b 时等号成立。 定理2(基本不等式) 如果a ,b>0,那么 当且仅当a=b 时,等号成立。即两个正数的算术平均不小于它们的几何平均。 结论:已知x, y 都是正数。(1)如果积xy 是定值p ,那么当x=y 时,和x+y 有最小值 ; (2)如果和x+y 是定值s ,那么当x=y 时,积xy 有最大值 小结:理解并熟练掌握基本不等式及其应用,特别要注意利用基本不等式求最值时, 一 定要满足“一正二定三相等”的条件。 3、三个正数的算术-几何平均不等式 二、绝对值不等式 1、绝对值三角不等式 实数a 的绝对值|a|的几何意义是表示数轴上坐标为a 的点A 到原点的距离: a b b a c a c b b a >?>>,R c b a ∈>,0>c 0> d c 2,≥∈n N n 2,≥∈n N n 2 a b +≥2 1 4 s 3 ,,3a b c a b c R a b c +++∈≥==定理如果,那么当且仅当时,等号成立。 即:三个正数的算术平均不小于它们的几何平均。2122,,,,n n n a a a a a n a a ++≥=== 11把基本不等式推广到一般情形:对于n 个正数a 它们的算术平均不小于它们的几何平均,即: 当且仅当a 时,等号成立。

浅谈不等式的证明

浅谈不等式的证明 不等式问题是高中数学的重要内容之一,考察学生对不等式理论熟练掌握的程度也是衡量学生数学水平的重要方面,同时,不等式也是高中数学的基础,因此,在每年的数学高考题中,有关不等式的相关题目占有一定的比例,命题主要涉及解不等式、不等式的证明、不等式的应用这三方面,现将不等式的证明进行研究。 证明不等式有利于提高学生的分析与综合能力,证明不等式没有固定的程序,一个不等式的证法往往不止一种,证明过程往往是几种方法的综合运用,但无论是哪种方法,都离不开不等式的基本性质,另外在教材中提到了平均值不等式、排序不等式、三角不等式,如果能熟记并能运用的话,在证明不等式的过程中会有很大的帮助。下面将详细列举证明不等式的方法。 一、比较法 比较法是证明不等式的一种最基本也是最重要的方法,主要有作差比较和作商比较两种形式。 (1)作差比较法的步骤一般为:①作差式②差式变形③判断差式的正负④下结论;在这些步骤中,最难的就是差式变形,常用到的有配方法、通分法、因式分解法等等。 (2)作商比较法的步骤为:①作商式②商式变形③判断商式的值是大于1、小于1还是等于1④下结论。 (3)当不等式两边为多项式、分式或对数形式时,往往选择作差法;当不等式两边为指数时,常采用作商法。下面将列举例子进行

分析,以进一步加深对比较法的认识。 例1 若40πβα< <<,则ββααcos sin cos sin +<+ 证明 β βααβαβαβαβαβαβαπβαβαππβαβαβαβαβαβαβαβαβαβαβ βααcos sin cos sin 02 sin 2cos 2sin 22 sin 222cos ,02sin 420,02840)2 sin 2(cos 2sin 22 cos 2sin 22sin 2cos 2) cos (cos )sin (sin cos sin cos sin +<+<+-+-+>>+<-<+<<-<-<<<+-+-=-+--+=-+-=+-+即)(所以得于是有,所以因为 二、放缩法 放缩法是证明不等式所特有的方法,把要证的不等式中的一部分量进行放大或缩小,形成新的不等式,而这个新的不等式必须是比原不等式更容易证明的,同时,由新的不等式成立可以推出原不等式成立。另外,放缩目标必须明确,从实际出发,从原不等式过渡到新的不等式是证明的关键。下面就实际例子进行分析。 例2 若,求证:且3,0,,≥++>zx yz xy z y x

浅谈中学数学不等式的证明方法

本科生毕业论文 学院数学与计算机科学学院 专业数学与应用数学 届别 2015 届 题目浅谈中学数学不等式的证明方法 学生姓名徐亚娟 学号 201111401138 指导教师吴万勤 教务处制

云南民族大学毕业论文(设计)原创性声明 本人郑重声明:所呈交的毕业论文(设计),是本人在指导教师的指导下进行研究工作所取得的成果。除论文中已经注明引用的内容外,本论文没有抄袭、剽窃他人已经发表的研究成果。本声明的法律结果由本人承担。 毕业论文(设计)作者签名: 日期:年月日 …………………………………………………………………………… 关于毕业论文(设计)使用授权的说明 本人完全了解云南民族大学有关保留、使用毕业论文(设计)的规定,即:学校有权保留、送交论文的复印件,允许论文被查阅,学校可以公布论文(设计)的全部或部分内容,可以采用影印或其他复制手段保存论文(设计)。 (保密论文在解密后应遵守) 指导教师签名:论文(设计)作者签名: 日期:年月日

目录

摘要 (4) 引言 (6) 1、预备知识 (6) 1.1不等式的概念 (6) 1.2不等式的性质 (6) 1.3基本不等式 (7) 1.4几个重要不等式 (7) 1.4.1柯西不等式 (7) 1.4.2伯努利不等式 (7) 2、证明不等式的常用方法 (7) 2.1比较法 (8) 2.1.1求差法 (8) 2.1.2求商法 (8) 2.1.3过度比较法 (8) 2.2分析法 (9) 2.3综合法 (9) 2.4缩放法 (10) 2.4.1放缩法的常见技巧 (10) 2.5反推法 (10) 2.6数学归纳法 (11) 2.7反证法 (11) 2.7.1反证法的基本思路 (11) 2.7.2反证法的步骤 (11) 2.8判别式法 (12) 2.9等式法 (12) 2.10中值定理法 (12) 2.11排序法 (12) 2.12分解法 (13) 2.13函数极值法 (13) 3 .利用构造法证明不等式 (13) 3.1构造函数模型 (13) 3.1.1构造一次函数模型 (14) 3.1.2构造二次函数模型 (14) 3.1.3构造单调函数证明不等式 (14) 3.2构造复数模型 (14) 3.3构造方程法 (15) 4.换元法证明不等式 (15) 4.1.三角换元法 (15) 4.2均值换元 (16)

证明不等式的基本方法(20200920095256)

12. 4 证明不等式的基本方法 T 懈不评式证明的基車方诜:比较法,综合建、井析媒 ttMK MMM ■■座用它们证明一些简 厲的不等式. Kiff <年斋号悄况来看.本讲尼岛号血埶的一个热点一 fO 灿讪卜将芸号僧::1;与躺碓不零式结, 证 期不等式:2>M 破立,探索性问題结合,ttaAMML 厲中档題團L E 基础知识过关 [知识梳理] 1. 证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法. 2. 三个正数的算术-几何平均不等式 (1) 定理:如果a , b , c € R +那么a + ?+1需辰,当且仅当a = b = c 时,等号 a + b + c Q 成立.即三个正数的算术平均 3 不小于它们的几何平均Vabc. (2) 基本不等式的推广 对于n 个正数a i , a 2, , , a ,它们的算术平均数不小于它们的几何平均数, 即a 〔 + 汁‘ + 》^a 1a 2,—,当且仅当 a 1 = a 2 =, = a n 时,等号成立. n 3. 柯西不等式 (1)设 a , b , c , d 均为实数,则(a 2 + b 2)(c 2 + d 2)>(ac + bd)2,当且仅当 ad = bc 时等号成立. f n 「n J 「n ' ⑵若a i, b(i € N *)为实数,贝则 18 15 A l^a b i 2,当且仅当 I "八=1丿 T =1丿 (当a i = 0时,约定b i = 0, i = 1,2, , , n)时等号成立. (3) 柯西不等式的向量形式:设 a B 为平面上的两个向量,则|如3》|a ? (3当 且仅当a, 3共线时等号成立. 善纲解谨 君向预测 b^_ b2_ a 1 a 2 b n =a ;

证明不等式的基本方法-比较法

第二讲证明不等式的基本方法 课题:第01课时不等式的证明方法之一:比较法 一.教学目标 (一)知识目标 (1)了解不等式的证明方法——比较法的基本思想; (2)会用比较法证明不等式,熟练并灵活地选择作差或作商法来证明不等式;(3)明确用比较法证明不等式的依据,以及“转化”的数学思想。 (二)能力目标 (1)培养学生将实际问题转化为数学问题的能力; (2)培养学生观察、比较、抽象、概括的能力; (3)训练学生思维的灵活性。 (三)德育目标 (1)激发学习的内在动机; (2)养成良好的学习习惯。 二.教学的重难点及教学设计 (一)教学重点 不等式证明比较法的基本思想,用作差、作商达到比较大小的目的 (二)教学难点 借助与0或1比较大小转化的数学思想,证明不等式的依据和用途 (三)教学设计要点 1.情境设计 用糖水加糖更甜,实际是糖的质量分数增大这个生活常识设置问题情境,激发学生学习动机,通过将实际问题转化为不等式大小的比较,引入新课。 2.教学内容的处理 (1)补充一系列不同种类的用作差、作商等比较法证明不等式的例题。 (2)补充一组证明不等式的变式练习。 (3)在作业中补充何时该用作差法,何时用作商法的习题,帮助同学们更好地理解比较法。 3.教学方法 独立探究,合作交流与教师引导相结合。 三.教具准备 水杯、水、白糖、调羹、粉笔等 四.教学过程 (一)、新课学习: 1.作差比较法的依据: a b a >b ? > - a a =b b - ? = a a

浅谈高中数学不等式的证明方法

浅谈高中数学不等式的证明方法 姜堰市罗塘高级中学 李鑫 摘要:不等式是中学数学的重要知识,本文介绍了几种不等式的证明方法,并举例进一步加强对各种不等式的理解。 关键字:比较法,分析法,综合法,反证法,放缩法,数学归纳法,换元法,均值不等式,柯西不等式,导数法 不等式在中学数学中占有重要地位,因此在历年高考中颇为重视。由于不等式的形式各异, 所以证明没有固定的程序可循,技巧多样,方法灵活,因此有关不等式的证明是中学数学的难点之一。本文从不等式的各个方面进行讲解和研究。 一.比较法 所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法。 例1 已知:0>a ,0>b ,求证:ab b a ≥+2. 分析:两个多项式的大小比较可用作差法 证明 02 )(2222 ≥-=-+=-+b a ab b a ab b a , 故得 ab b a ≥+2 . 例2 设0>>b a ,求证:a b b a b a b a >. 分析:对于含有幂指数类的用作商法 证明 因为 0>>b a , 所以 1>b a ,0>- b a . 而 1>??? ??=-b a a b b a b a b a b a , 故 a b b a b a b a > 二.分析法 从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立,这种方法叫做分析法。

不等式的证明方法习题精选精讲

不等式性质的应用 不等式的性质是解不等式、证明不等式的基础和依据。教材中列举了不等式的性质,由这些性质是可以继续推导出其它有关性质。教材中所列举的性质是最基本、最重要的,对此,不仅要掌握性质的内容,还要掌握性质的证明方法,理解掌握性质成立的条件,把握性质之间的关联。只有理解好,才能牢固记忆及正确运用。 1.不等式性质成立的条件 运用不等式的基本性质解答不等式问题,要注意不等式成立的条件,否则将会出现一些错误。对表达不等式性质的各不等式,要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性。 例1:若0< B .a b a 11>- C .||||b a > D .22b a > 解:∵0<->-b a 。 由b a -< -11,b a 11>,∴(A )成立。 由0<< b a ,||||b a >,∴(C )成立。 由0>->-b a ,2 2 )()(b a ->-,2 2b a >,∴(D )成立。 ∵0<->-a b a , )(11b a a --<-,b a a ->11,∴(B )不成立。 故应选B 。 例2:判断下列命题是否正确,并说明理由。 (1)若0<c ,在2 2c b c a >两边同乘以2 c ,不等式方向不变。∴b a >。 (3)错误。b a b a 1 1,成立条件是0>ab 。 (4)错误。b a >,bd ac d c >?>,当a ,b ,c ,d 均为正数时成立。 2.不等式性质在不等式等价问题中的应用 例3:下列不等式中不等价的是( ) (1)2232 >-+x x 与0432 >-+x x (2)13 8112++ >++ x x x 与82>x (3)35 7354-+>-+x x x 与74>x (4) 023 >-+x x 与0)2)(3(>-+x x A .(2) B .(3) C .(4) D .(2)(3) 解:(1)0432232 2 >-+?>-+x x x x 。 (2)482>?>x x ,44,11 3 8112>?>-≠?++>++ x x x x x x 。

不等式的常见证明方法

不等式常见的三种证明方法 渠县中学 刘业毅 一用基本不等式证明 设c b a ,,都是正数。求证:.c b a c ab b ac a bc ++≥++ 证明:.22c b ac a bc b ac a bc =?≥+ .22b c ab a bc c ab a bc =?≥+ .22a c ab b ac c ab b ac =?≥+ ).(2)(2c b a c ab b ac a bc ++≥++ .c b a c ab b ac a bc ++≥++ 点评:可用综合法分析乘积形式运用不等式可以转化为所求。 思维训练:设c b a ,,都是正数。求证: .222c b a c b a a c b ++≥++ 二 放缩法证明不等式 已知,对于任意的n 为正整数,求证: 1+221+321+K +n 21<4 7 分析:通过变形将数列{n 21 }放缩为可求数列。 解:Θ n 21=n n ?1<)1(1-n n =11-n —n 1(n ≥2) ∴1+221+321+K +n 21<1+2 21+231?+341?+K +)1(1-n n =1+ 41+(21—31+31—41+K +11-n —n 1) =45+21—n 1 =47—n 1 点评:放缩为可求和数列或公式是高考重要思想方法。 思维训练:设c b a ,,都是正数,a+b>c,求证:a a +1+b b +1>c c +1

三 构造函数法证明 证明不等式3ln 3121112ln <+++++0有不等式x x 11ln - ≥,如果令x=k k 1+,则有111ln +>+k k k ,如果令x=1+k k ,则k k k ->+11ln ,即k k k k 1ln )1ln(11<-+<+,然后叠加不等式即可。 解:设函数x x x x f ln 1)(+-=,则易证0)(≥x f ,即不等式x x 11ln -≥对于x>0恒成立, 令x=k k 1+,则有111ln +>+k k k ,令x=1+k k ,则k k k ->+11ln ,即k k k 11ln <+成立。从而有k k k k 1ln )1ln(11<-+<+。 在不等式k k k 11ln <+中,分别令,3,,2,1n n n k K ++=得到一系列不等式相加为 )13ln()2ln()2ln()1ln(312111++++-+++->+++++n n n n n n n K K 即n n n 312111+++++K >113ln ++n n 2ln 1 22ln =++≥n n 在不等式1 11ln +>+k k k 中,分别令k=n,n+1,K 3n-1,并把所得的不等式相加,得 n n n 312111+++++K <3ln 3ln 3ln )1ln()1ln(ln ==++-++-n n n n n n K 即不等式3ln 3121112ln <+++++

不等式的证明方法论文

不等式的证明方法 摘要 不等式的形式与结构多种多样,其证明方法繁多,技巧性强,也没有通法,所以研究范围极广,难度极大.目前国内外研究者已给出很多不等式的证明方法,已有文献分别就不等式的性质、各种证明方法及应用作了论述.论文以现有研究成果为基础,整理和归纳了常用的不等式证明方法,包括构造几何图形、构造复数、构造定比分点、构造主元、构造概率模型、构造方差模型、构造数列、构造向量、构造函数、代数换元、三角换元、放缩法、数学归纳法,让每一种方法兼具理论与实践性.旨在使学生对不等式证明问题有一个较为深入的了解,进而在解决相关不等式证明问题时能融会贯通、举一反三,达到事半功倍的效果,同时为从事教育的工作者提供参考. 关键词:不等式;证明;方法

Methods for Proving Inequality Abstract:The form of structure of inequality is diversity, and the proving methods of it are various which requires lots of skills, and there is no common way, so it is a extremely difficult study. Researchers have been given a lot of inequality proof methods at home and abroad, the existing literature, respectively, the nature of inequality, certificate of various methods and application are discussed. The paper on the basis of existing research results and summarizes the commonly used methods of inequality proof, including structural geometry, structure complex, the score point, tectonic principal component, structure, tectonic sequence probability model, structure of variance model, vector construction, constructor, algebra in yuan, triangle in yuan, zoom method, mathematical induction, making every kind of method with both theory and practice. The aim is to make the student have a more thorough understanding on the inequality problems , and in solving the problem of relative inequality proof can digest the lines, to achieve twice the result with half the effort, at the same time provide a reference for engaged in education workers. Key words: inequality; proof; method

均值不等式的证明方法

柯西证明均值不等式的方法 by zhangyuong (数学之家) 本文主要介绍柯西对证明均值不等式的一种方法,这种方法极其重要。 一般的均值不等式我们通常考虑的是n n G A ≥: 一些大家都知道的条件我就不写了 n n n x x x n x x x ......2121≥ +++ 我曾经在《几个重要不等式的证明》中介绍过柯西的这个方法,现在再次提出: 8444844)()(: 4422)()(abcdefgh efgh abcd h g f e d c b a abcd abcd cd ab d c b a d c b a ≥+≥+++++++=≥+≥+++=+++八维时二维已证,四维时: 这样的步骤重复n 次之后将会得到 n n n x x x x x x n 2 221221 (2) ...≥ +++ 令A n x x x x x x x x x x n n n n n n =+++= =====++......;,...,2122111 由这个不等式有 n n n n n n n n n n A x x x A x x x A n nA A 2 121 212 221)..(..2 )2(- -=≥ -+= 即得到 n n n x x x n x x x ......2121≥ +++ 这个归纳法的证明是柯西首次使用的,而且极其重要,下面给出几个竞赛题的例子: 例1: 1 1 12101(1,2,...,)11(...)n i i i n n n a i n a a a a =<<=≥ --∑ 若证明 例2:

1 1 1211(1,2,...,)1 1(...)n i i i n n n r i n r r r r =≥=≥ ++∑ 若证明 这2个例子是在量在不同范围时候得到的结果,方法正是运用柯西的归纳法: 给出例1的证明: 12121 2 212 2 123 4 211(1)2(1)(1) 11,(1)(2)2(1) 22(1)2(1)2211111111n a a a a a a p a q a q p p q p q pq q p q q q p q a a a a =+ ≥ ?- --≥----=+= ?--≥-+?-+≥?+≥+?≥+ + + ≥+ ----≥ 当时设,而这是元均值不等式因此此过程进行下去 因2 1 1 2 1221 1212221 12 2 1 1 2 11(...)...(...)112 2 (2) 1111() 111n n n n n n n n i i n n n n n n n n n i i n n i i a a a a a a a a a a G n a G G G G n a G =++-==≥ --=====+-≥ = ----≥ --∑ ∑ ∑ 此令有即 例3: 1 115,,,,1(1),,111,,11( )( ) 1 1 n n i i i i i i i i i n n n i i i i i i n n i i i i i i i i i i i n r s t u v i n R r S s n n T t U u V v n n n r s t u v R ST U V r s t u v R ST U V =>≤≤== = = = ++≥--∑∑∑∑∑∏ 已知个实数都记,求证下述不等式成立: 要证明这题,其实看样子很像上面柯西的归纳使用的形式

不等式证明的基本方法

不等式证明的基本方法 LELE was finally revised on the morning of December 16, 2020

绝对值的三角不等式;不等式证明的基本方法 一、教学目的 1、掌握绝对值的三角不等式; 2、掌握不等式证明的基本方法 二、知识分析 定理1 若a,b为实数,则,当且仅当ab≥0时,等号成立。 几何说明:(1)当ab>0时,它们落在原点的同一边,此时a与-b的距离等于它们到原点距离之和。 (2)如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和(下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释)。 |a-b|表示a-b与原点的距离,也表示a到b之间的距离。 定理2 设a,b,c为实数,则,等号成立 ,即b落在a,c之间。 推论1 推论2 [不等式证明的基本方法]

1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的。 比较法有差值、比值两种形式,但比值法必须考虑正负。 比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。 如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证。 2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用。 所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述。 综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用。 3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 4、放缩法:欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量, 使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法。 【典型例题】 例1、已知函数,设a、b∈R,且a≠b,求证: 思路:本题证法较多,下面用分析法和放缩法给出两个证明: 证明: 证法一:

相关文档 最新文档