文档库 最新最全的文档下载
当前位置:文档库 › 灰铸铁化学成分范围-NEW

灰铸铁化学成分范围-NEW

灰铸铁化学成分范围-NEW

球墨铸铁化学成分

球墨铸铁化学成分主要包括碳、硅、锰、硫、磷五大常见元素。对于一些对组织及性能有特殊要求的铸件,还包括少量的合金元素。同普通灰铸铁不同的是,为保证石墨球化,球墨铸铁中还须含有微量的残留球化元素。? 1、碳及碳当量的选择原则:? 碳是球墨铸铁的基本元素,碳高有助于石墨化。由于石墨呈球状后石墨对机械性能的影响已减小到最低程度,球墨铸铁的含碳量一般较高,在~%之间,碳当量在~%之间。铸件壁薄、球化元素残留量大或孕育不充分时取上限;反之,取下限。将碳当量选择在共晶点附近不仅可以改善铁液的流动性,对于球墨铸铁而言,碳当量的提高还会由于提高了铸铁凝固时的石墨化膨胀提高铁液的自补缩能力。但是,碳含量过高,会引起石墨漂浮。因此,球墨铸铁中碳当量的上限以不出现石墨漂浮为原则。? 2、硅的选择原则:? 硅是强石墨化元素。在球墨铸铁中,硅不仅可以有效地减小白口倾向,增加铁素体量,而且具有细化共晶团,提高石墨球圆整度的作用。但是,硅提高铸铁的韧脆性转变温度(图1),降低冲击韧性,因此硅含量不宜过高,尤其是当铸铁中锰和磷含量较高时,更需要严格控制硅的含量。球墨铸铁中终硅量一般在—%。选定碳当量后,一般采取高碳低硅强化孕育的原则。硅的下限以不出现自由渗碳体为原则。? 球墨铸铁中碳硅含量确定以后,可用图2进行检验。如果碳硅含量在图中的阴影区,则成分设计基本合适。如果高于最佳区域,则容易出现石墨漂浮现象。如果低于最佳区域,则容易出现缩松缺陷和自由碳化物。 3、锰的选择原则:? 由于球墨铸铁中硫的含量已经很低,不需要过多的锰来中和硫,球墨铸铁中锰的作用就主要表现在增加珠光体的稳定性,促进形成(Fe、Mn)3C。这些碳化物偏析于晶界,对球墨铸铁的韧性影响很大。锰也会提高铁素体球墨铸铁的韧脆性转变温度,锰含量每增加%,脆性转变温度提高10~12℃。因此,球墨铸铁中锰含量一般是愈低愈好,即使珠光体球墨铸铁,锰含量也不宜超过~%。只有以提高耐磨性为目的的中锰球铁和贝氏体球铁例外。? 4、磷的选择原则:? 磷是一种有害元素。它在铸铁中溶解度极低,当其含量小于%时,固溶于基体中,对力学性能几乎没有影响。当含量大于%时,磷极易偏析于共晶团边界,形成二元、三元或复合磷共晶,降低铸铁的韧性。磷提高铸铁的韧脆性转变温度,含磷量每增加%,韧脆性转变温度提高4~℃。因此,球墨铸铁中磷的含量愈低愈好,一般情况下应低于%。对于比较重要的铸件,磷含量应低于%。????球墨铸铁中碳硅含量确定以后,可用图2进行检验。如果碳硅含量在图中的阴影区,则成分设计基本合适。如果高于最佳区域,则容易出现石墨漂浮现象。如果低于最佳区域,则容易出现缩松缺陷和自由碳化物。? ?5、硫的选择原则:? 硫是一种反球化元素,它与镁、稀土等球化元素有很强的亲合力,硫的存在会大量消耗铁液中的球化元素,形成镁和稀土的硫化物,引起夹渣、气孔等铸造缺陷。球墨铸铁中硫的含量一般要求小于%。

灰铸铁的热处理

灰铸铁的热处理 退火 1.去应力退火为了消除铸件的残余应力,稳定其几何尺寸,减少或消除切削加工后产生的畸变,需要对铸件进行去应力退火。 去应力退火温度的确定,必须考虑铸铁的化学成分。普通灰铸铁当温度起过550℃时,即可能发生部分渗碳体的石墨化和粒化,使强度和硬度降低。当含有合金元素时,渗碳体开始分解的温度可提高到650℃左右。 通常,普通灰铸铁去应力退火温度以550℃为宜,低合金灰铸铁为600℃,高合金灰铸铁是可提高到650℃,加热速度一般选用60~120℃/h.保温时间决定于加热温度、铸件的大小和结构复杂程度以及对消除应力程度的要求。铸件去应力退火的冷却速度必须缓慢,以免产生二次残余内应力,冷却速度一般控制在20~40℃/h,冷却到200~150℃以下,可出炉空冷。 一些灰铸铁件的去应力退火规范示于表1. 2.石墨化退火灰铸铁件进行石墨化退火是为了降低硬度,改善加工性能,提高铸铁的塑性和韧性。 若铸件中不存在共晶渗碳体或其数量不多时,可进行低温石墨化退火;当铸件中共晶渗碳体数量较多时,须进行高温石墨化退火。 (1)低温石墨化退火,铸铁低温退火时会出现共析渗碳体石墨化与粒化,从而使铸件硬度降低,塑性增加。 灰铸铁低温石墨化退火工艺是将铸件加热到稍低于Ac1下限温度,保温一段时间使共析渗碳体分解,然后随炉冷却。

(2)高温石墨化退火,高温石墨化退火工艺是将铸件加热至高于Ac1上限以上的温度,使铸铁中的自由渗碳体分解为奥氏体和石墨,保温一段时间后根据所要求的基体组织按不同的方式进行冷却。 正火 灰铸铁正火的目的是提高铸件的强度、硬度和耐磨性,或作为表面淬火的预备热处理,改善基体组织。一般的正火是将铸件加热到Ac上限+30~50℃,使原始组织转变为奥氏体,保温一段时间后出炉空冷。形状复杂的或较重要的铸件正火处理后需再进行消除内应力的退火。如铸铁原始组织中存在过量的自由渗碳体,则必须先加热到Ac1上限+50~100℃的温度,先进行高温石墨化以消除自由渗碳体在正火温度范围内,温度愈高,硬度也愈高。因此,要求正火后的铸铁具有较高硬度和耐磨性时,可选择加热温度的上限。 正火后冷却速度影响铁素体的析出量,从而对硬度产生影响。冷速愈大,析出的铁素体数量愈少,硬度愈高。因此可采用控制冷却速度的方法)(空冷、风冷、雾冷),达到调整铸铁硬度的目的。 淬火与回火 1.淬火铸铁淬火工艺是将铸件加热到Ac1上限+30~50℃的温度,一般取850~900℃,使组织转变成奥氏体,并在此温度下保温,以增加碳在奥氏体中的溶解度,然后进行淬火,通常采用油淬。 对于形状复杂或大型铸件应缓慢加热,必要时可在500~650℃预热,以避免不均匀加热而造成开裂。 随奥氏体化温度升高,淬火后的硬度越高,但过高的奥氏体化温度,不但增加铸铁变形和开裂的危险,并产生较多的残留奥氏体,使硬度下降。 灰铸铁的淬透性与石墨大小、形状、分布、化学成分以及奥氏体晶粒度有关。

常用金属材料中各种化学成分对性能的影响

常用金属材料中各种化学成分对性能的影响 1.生铁: 生铁中除铁外,还含有碳、硅、锰、磷和硫等元素。这些元素对生铁的性能均有一定的影响。 碳(C):在生铁中以两种形态存在,一种是游离碳(石墨),主要存在于铸造生铁中,另一种是化合碳(碳化铁),主要存在于炼钢生铁中,碳化铁硬而脆,塑性低,含量适当可提高生铁的强度和硬度,含量过多,则使生铁难于削切加工,这就是炼钢生铁切削性能差的原因。石墨很软,强度低,它的存在能增加生铁的铸造性能。 硅(Si):能促使生铁中所含的碳分离为石墨状,能去氧,还能减少铸件的气眼,能提高熔化生铁的流动性,降低铸件的收缩量,但含硅过多,也会使生铁变硬变脆。 锰(Mn):能溶于铁素体和渗碳体。在高炉炼制生铁时,含锰量适当,可提高生铁的铸造性能和削切性能,在高炉里锰还可以和有害杂质硫形成硫化锰,进入炉渣。 磷(P):属于有害元素,但磷可使铁水的流动性增加,这是因为硫减低了生铁熔点,所以在有的制品内往往含磷量较高。然而磷的存在又使铁增加硬脆性,优良的生铁含磷量应少,有时为了要增加流动性,含磷量可达1.2%。 硫(S):在生铁中是有害元素,它促使铁与碳的结合,使铁硬脆,并与铁化合成低熔点的硫化铁,使生铁产生热脆性和减低铁液的流动性,顾含硫高的生铁不适于铸造细件。铸造生铁中硫的含量规定最多不得超过0.06%(车轮生铁除外)。 2.钢: 2.1元素在钢中的作用 2.1.1 常存杂质元素对钢材性能的影响 钢除含碳以外,还含有少量锰(Mn)、硅(Si)、硫(S)、磷(P)、氧(O)、氮(N)和氢(H)等元素。这些元素并非为改善钢材质量有意加入的,而是由矿石及冶炼过程中带入的,故称为杂质元素。这些杂质对钢性能是有一定影响,为了保证钢材的质量,在国家标准中对各类钢的化学成分都作了严格的规定。 1)硫 硫来源于炼钢的矿石与燃料焦炭。它是钢中的一种有害元素。硫以硫化铁(FeS)的形态存在于钢中,FeS和 Fe 形成低熔点(985℃)化合物。而钢材的热加工温度一般在1150~1200℃以上,所以当钢材热加工时,由于 FeS 化合物的过早熔化而导致工件开裂,这种现象称为“热脆”。含硫量愈高,热脆现象愈严重,故必须对钢中含硫量进行控制。高级优质钢:S<0.02%~0.03%;优质钢:S <0.03%~0.045%;普通钢:S<0.055%~0.7%以下。 2)磷 磷是由矿石带入钢中的,一般说磷也是有害元素。磷虽能使钢材的强度、硬度增高,但引起塑性、冲击韧性显著降低。特别是在低温时,它使钢材显著变脆,这种现象称"冷脆"。冷脆使钢材的冷加工及焊接性变坏,含磷愈高,冷脆性愈大,故钢中对含磷量控制较严。高级优质钢: P <0.025%;优质钢: P<0.04%;

钢的化学成分

钢的化学成分 合金钢是在普通碳素钢基础上添加适量的一种或多种合金元素而构成的铁碳合金。 合金钢的主要合金元素有硅、锰、铬、镍、钼、钨、钒、钛、铌、锆、钴、铝、等。其中锰、铬、钨、钼为碳化物形成元素,其中一部分以原子状态进入固溶体中,另一部分形成置换式合金渗碳体;钒、钛、铌、锆等在钢中是强碳化物形成元素,只要有足够的碳,在适当条件下,就能形成各自的碳化物,当缺碳或在高温条件下,则以原子状态进入固溶体中;铝、铜、镍、钴、硅等是不形成碳化物元素,一般以原子状态存在于固溶体中。 钢的性能取决于钢的相组成,相的成分和结构,各种相在钢中所占的体积组分和彼此相对的分布状态。 目前在合金钢中常用的合金元素有:铬(Cr),锰(Mn),镍(Ni),硅(Si),硼(B),钨(W),钼(Mo),钒(V),钛(Ti)和稀土元素(Re)等。 铬是合金结构钢主加元素之一,在化学性能方面它不仅能提高金属耐腐蚀性能,也能提高抗氧化性能。当其含量达到13%时,能使钢的耐腐蚀能力显著提高,并增加钢的热强性。铬能提高钢的淬透性,显著提高钢的强度、硬度和耐磨性,但它使钢的塑性和韧性降低。

锰可提高钢的强度,增加锰含量对提高低温冲击韧性有好处。 镍钢铁性能有良好的作用。它能提高淬透性,使钢具有很高的强度,而又保持良好的塑性和韧性。镍能提高耐腐蚀性和低温冲击韧性。镍基合金具有更高的热强性能。镍被广泛应用于不锈耐酸钢和耐热钢.1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。 2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。 3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善

铸铁材料的分类

铸铁材料的分类、石墨的结构和特点二 第二节灰铸铁 一、灰铸铁的成分、组织与性能特点 1.灰铸铁的化学成分 铸铁中碳、硅、锰是调节组织的元素,磷是控制使用的元素,硫是应限制的元素目前生产中,灰铸铁的化学成分范围一般为:wC=2.7%~3.6%,wSi=1.0%~2.5%,wMn=0.5%~1.3%,wP≤0.3%,wS≤0.15% 2.灰铸铁的组织 灰铸铁是第一阶段和第二阶段石墨化过程都能充分进行时形成的铸铁 它的显微组织特征是片状石墨分布在各种基体组织上 由于第三阶段石墨化程度的不同,可以获得三种不同基体组织的灰铸铁 a)铁索体灰铸铁b)珠光体灰铸铁 c)铁索体珠光体灰铸铁 图7.4 灰铸铁的显微组织 3.灰铸铁的性能特点 (1)力学性能:灰铸铁的抗拉强度、塑性、韧性和弹性模量远比相应基体的钢低石墨片的数量愈多,尺寸愈粗大 分布愈不均匀,对基体的割裂作用和应力集中现象愈严重,则铸铁的强度、塑性与韧性就愈低 由于灰铸铁的抗压强度σbc、硬度与耐磨性主要取决于基体,石墨的存在对其影响不大,故灰铸铁的抗压强度一般是其抗拉强度的3~4倍同时,珠光体基体比其它两种基体的灰铸铁具有较高的强度、硬度与耐磨性 (2)其它性能石墨虽然会降低铸铁的抗拉强度、塑性和韧性,但也正是由于石墨的存在,使铸铁具有一系列其它优良性能 ①铸造性能良好由于灰铸铁的碳当量接近共晶成分,故与钢相比,不仅熔点低,流动性好,而且铸铁在凝固过程中要析出比容较大的石墨,部分地补偿了基体的收缩,从而减小了灰铸铁的收缩率,所以灰铸铁能浇铸形状复杂与壁薄的铸件 ②减摩性好减摩性是指减少对偶件被磨损的性能灰铸铁中石墨本身具有润滑作用,而且当它从铸铁表面掉落后,所遗留下的孔隙具有吸附和储存润滑油的能力,使摩擦面上的油膜易于保持而具有良好的减摩性所以承受摩擦的机床导轨、汽缸体等零件可用灰铸铁制造 ③减振性强铸铁在受震动时 石墨能阻止震动的传播 起缓冲作用,并把震动能量转变为热能,灰铸铁减振能力约比钢大10倍,故常用作承受压力和震动的机床底座、机架、机床床身和箱体等零件, ④切削加工性良好由于石墨割裂了基体的连续性 使铸铁切削时容易断屑和排屑 且石墨对刀具具有一定润滑作用,故可使刀具磨损减少 ⑤缺口敏感性小钢常因表面有缺口(如油孔、键槽、刀痕等)造成应力集中,使力学性能显著降低,故钢的缺口敏感性大灰铸铁中石墨本身已使金属基体形成了大量缺口,致使外加缺口的作用相对减弱,所以灰铸铁具有小的缺口敏感性 由于灰铸铁具有以上一系列的优良性能,而且价廉 易于获得,故在目前工业生产中,它仍然是应用最广泛的金属材料之一 二、灰铸铁的孕育处理 灰铸铁组织中石墨片比较粗大,因而它的力学性能较低为了提高灰铸铁的力学性能

球墨铸铁化学成分完整版

球墨铸铁化学成分集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

球墨铸铁化学成分主要包括碳、硅、锰、硫、磷五大常见元素。对于一些对组织及性能有特殊要求的铸件,还包括少量的合金元素。同普通灰铸铁不同的是,为保证石墨球化,球墨铸铁中还须含有微量的残留球化元素。 1、碳及碳当量的选择原则: 碳是球墨铸铁的基本元素,碳高有助于石墨化。由于石墨呈球状后石墨对机械性能的影响已减小到最低程度,球墨铸铁的含碳量一般较高,在3.5~3.9%之间,碳当量在4.1~4.7%之间。铸件壁薄、球化元素残留量大或孕育不充分时取上限;反之,取下限。将碳当量选择在共晶点附近不仅可以改善铁液的流动性,对于球墨铸铁而言,碳当量的提高还会由于提高了铸铁凝固时的石墨化膨胀提高铁液的自补缩能力。但是,碳含量过高,会引起石墨漂浮。因此,球墨铸铁中碳当量的上限以不出现石墨漂浮为原则。 2、硅的选择原则: 硅是强石墨化元素。在球墨铸铁中,硅不仅可以有效地减小白口倾向,增加铁素体量,而且具有细化共晶团,提高石墨球圆整度的作用。但是,硅提高铸铁的韧脆性转变温度(图1),降低冲击韧性,因此硅含量不宜过高,尤其是当铸铁中锰和磷含量较高时,更需要严格控制硅的含量。球墨铸铁中终硅量一般在1.4—3.0%。选定碳当量后,一般采取高碳低硅强化孕育的原则。硅的下限以不出现自由渗碳体为原则。 球墨铸铁中碳硅含量确定以后,可用图2进行检验。如果碳硅含量在图中的阴影区,则成分设计基本合适。如果高于最佳区域,则容易出现石墨漂浮现象。如果低于最佳区域,则容易出现缩松缺陷和自由碳化物。 3、锰的选择原则: 由于球墨铸铁中硫的含量已经很低,不需要过多的锰来中和硫,球墨铸铁中锰的作用就主要表现在增加珠光体的稳定性,促进形成(Fe、Mn)3C。这些碳化物偏析于晶界,对球墨铸铁的韧性影响很大。锰也会提高铁素体球墨铸铁的韧脆性转变温度,锰含量每增加0.1%,脆性转变温度提高10~12℃。因此,球墨铸铁中锰含量一般是愈低愈好,即使珠光体球墨铸铁,锰含量也不宜超过0.4~0.6%。只有以提高耐磨性为目的的中锰球铁和贝氏体球铁例外。 4、磷的选择原则: 磷是一种有害元素。它在铸铁中溶解度极低,当其含量小于0.05%时,固溶于基体中,对力学性能几乎没有影响。当含量大于0.05%时,磷极易偏析于共晶团边界,形成二元、三元或复合磷共晶,降低铸铁的韧性。磷提高铸铁的韧脆性转变温度,含磷量每增加0.01%,韧脆性转变温度提高4~4.5℃。因此,球墨铸铁中磷的含量愈低愈好,一般情况下应低于0.08%。对于比较重要的铸件,磷含量应低于0.05%。球墨铸铁中碳硅含量确定以后,可用图2进行检验。如果碳硅含量在图中的阴影区,则成分设计基本合适。如果高于最佳区域,则容易出现石墨漂浮现象。如果低于最佳区域,则容易出现缩松缺陷和自由碳化物。 5、硫的选择原则: 硫是一种反球化元素,它与镁、稀土等球化元素有很强的亲合力,硫的存在会大量消耗铁液中的球化元素,形成镁和稀土的硫化物,引起夹渣、气孔等铸造缺陷。球墨铸铁中硫的含量一般要求小于0.06%。

HT250灰铸铁

灰铸铁性能分析 材料名称:灰铸铁 牌号:HT250 标准:GB 9439-88 ●特性及适用范围: 为珠光体类型的灰铸铁。其强度、耐磨性、耐热性均较好,减振性良好,铸造性能较优,需进行人工时效处理。可用于要求高强度和一定耐蚀能力的泵壳、容器、塔器、法兰、填料箱本体及压盖、碳化塔、硝化塔等;还可制作机床床身、立柱、气缸、齿轮以及需经表面淬火的零件 ●化学成份: 碳 C :~ 硅 Si:~ 锰 Mn:~ 硫 S :~ 磷 P :~ ●力学性能: 抗拉强度σb (MPa):250 硬度:(RH=1时)209HB 试样尺寸:试棒直径:30mm ●热处理规范及金相组织: 热处理规范:(由供方定,以下为某试样的热处理规范,供参考)铸态 金相组织:片状石墨+珠光体 生产HT200 HT250 灰铸铁,灰铸铁性能用途及。铸铁可分为 ①灰口铸铁。含碳量较高(%~%),碳主要以片状石墨形态存在,断口呈灰色,简称灰铁。熔点低(1145~1250℃),凝固时收缩量小,抗压强度和硬度接近碳素钢,减震性好。用 于制造机床床身、汽缸、箱体等结构件。 ②白口铸铁。碳、硅含量较低,碳主要以渗碳体形态存在,断口呈银白色。凝固时收缩大,易产生缩孔、裂纹。硬度高,脆性大,不能承受冲击载荷。多用作可锻铸铁的坯件和制作耐 磨损的零部件。 ③可锻铸铁。由白口铸铁退火处理后获得,石墨呈团絮状分布,简称韧铁。其组织性能均匀, 耐磨损,有良好的塑性和韧性。用于制造形状复杂、能承受强动载荷的零件。 ④球墨铸铁。将灰口铸铁铁水经球化处理后获得,析出的石墨呈球状,简称球铁。比普通灰 口铸铁有较高强度、较好韧性和塑性。用于制造内燃机、汽车零部件及农机具等。 ⑤蠕墨铸铁。将灰口铸铁铁水经蠕化处理后获得,析出的石墨呈蠕虫状。力学性能与球墨铸 铁相近,铸造性能介于灰口铸铁与球墨铸铁之间。用于制造汽车的零部件。 ⑥合金铸铁。普通铸铁加入适量合金元素(如硅、锰、磷、镍、铬、钼、铜、铝、硼、钒、锡等)获得。合金元素使铸铁的基体组织发生变化,从而具有相应的耐热、耐磨、耐蚀、耐低温或无磁等特性。用于制造矿山、化工机械和仪器、仪表等的零部件。 铸铁的分类 分类方法分类名称说明

金属工艺学-各种钢的总结

结构钢 结构钢按用途可分为工程用钢和机器用钢两大类。工程用钢主要是用于各种工程结构,包括碳素结构钢和低合金高强度结构钢,这类钢冶炼简便、成本低、用量大,一般不进行热处理,而机器用钢大多采用优质碳素结构钢和合金结构钢,它们一般都经过热处理后使用。 ()碳素结构钢 .牌号 碳素结构钢含碳量低(),硫、磷含量较高。这类钢通常在热轧空冷状态下使用,其塑性高,可焊性好,使用状态下的组织为铁素体加珠光体。 .使用状态和热处理 一般不经热处理,而在钢厂供应状态(轧制状态)下直接使用 .用途 钢结构件、焊接和扳金机械结构件。 ()优质碳素结构钢 .牌号

()低合金高强度结构钢 低合金高强度结构钢是在碳素结构钢的基础上,加入少量的合金元素发展起来的,原称为普通低合金钢。 .牌号 .性能特点强度高于碳素结构钢,可降低结构自重、节约钢材; 具有足够的塑性、韧性及良好的焊接性能; 具有良好的耐蚀性和低的冷脆转变温度。 .成份特点 低碳:含碳量≤

低和金:主加元素为锰 .热处理特点 在热轧状态下使用,组织为铁素体加珠光体。 .典型钢种及用途 是应用最广、用量最大的低合金高强度结构钢,广泛用于石油化工设备、船舶、桥梁、车辆等大型钢结构中。 ()渗碳钢 .成分:含碳量%的合金钢,主要加入能提高淬透性的、、等元素; .性能特点:经热处理后表硬里韧、耐磨性及抗疲劳性好; .渗碳件一般的工艺路线: .用途 应用很广,主要用于制造渗碳零件,如变速齿轮、内燃机凸轮轴等各种表面耐磨件。 .常用的渗碳钢 低淬透性渗碳钢:、等,心部强度低,尺寸和载荷小的齿轮和滑块; 中淬透性渗碳钢:、等,心部强度较高,用于制造中等强度的耐磨零件,如汽车、拖拉机的变速齿轮、齿轮轴等; 高淬透性渗碳钢:、等,淬透性很高。用来制造承受重载荷和强烈磨损的重要零件,如飞机、坦克中的曲轴及重要齿轮等。 以渗碳钢制造汽车变速齿轮为例: 下料毛坯锻造正火加工齿形局部镀铜渗碳(℃)预冷淬火(℃)低温回火(℃)喷丸磨齿 ()调质钢 在调质处理后使用的钢种,主要用于制造受力复杂的汽车、拖拉机、机床及其他各种重要

灰铸铁中各元素作用

灰铸铁中各元素作用 1、碳、硅 碳、硅都是强烈地促进石墨化的元素,可用碳当量来说明他们对灰铸铁金相组织和力学性能的影响。提高碳当量促使石墨片变粗、数量增加,强度硬度下降。相反降低碳当量可减少石墨数量、细化石墨、增加初析奥氏体枝晶数量,从而提高灰铸铁的力学性能。 但是降低碳当量会导致铸造性能下降。 2、锰:锰本身是稳定碳化物、阻碍石墨化的元素,在灰铸铁中具有 稳定和细化珠光体作用,在 Mn=0.5%~1%范围内,增加锰量,有利于强度、硬度的提高。 3、磷:铸铁中含磷量超过0.02%,就有可能出现晶间磷共晶。磷在奥 氏体中的溶解度很小,铸铁凝固时,磷基本上都留在液体中。共晶凝固接近完成时,共晶团之间剩余的液相成分接近三元共晶成(Fe-2%、C-7%、P)。此液相约在955℃凝固。 铸铁凝固时,钼、铬、钨和钒都偏析于富磷的液相中,使磷共晶的量增多。铸铁中含磷量高时,除磷共晶本身的有害作用外,还会使金属基体中所含的合金元素减少,从而减弱合金元素的作用。 磷共晶液体在凝固长大的共晶团周围呈糊状,凝固收缩很难得到补给,铸件出现缩松的倾向较大。 4、硫:降低铁液流动性,增加铸件热裂倾向,是铸件中的有害元素。 很多人认为硫含量越低越好,实则不然,当硫含量≤0.05%时,此种铸铁对我们使用的普通孕育剂来说不起作用,原因是孕育衰

退的很快,常常在铸件中产生白口。 5、铜:铜是生产灰铸铁最常加入的合金元素,主要原因是由于铜熔 点低(1083℃),易熔解,合金化效果好,铜的石墨化能力约为硅的1/5,因此能降低铸铁的白口倾向,同时铜也能降低奥氏体转变的临界温度,因此铜能促进珠光体的形成,增加珠光体的含量,同时能细化珠光体和强化珠光体及其中的铁素体,因而增加铸铁的硬度及强度。但是并非铜量越高越好,铜的适宜加入量为0.2%~0.4%当大量地加铜时,同时又加入锡和铬的做法对切削性能是有害的,它会促使基体组织中产生大量的索氏体组织。 6、铬:铬的合金化效果是非常强烈的,主要是因为加铬使铁水白口 倾向增大,铸件易收缩,产生废品。所以,应对铬量加以控制。 一方面希望铁水中含有一定量的铬,以提高铸件的强度和硬度; 另一方面又将铬严格控制在下限,以防止铸件收缩而造成废品率增加。传统的经验认为,原铁水铬量超过0.35%时,将对铸件产生致命的影响。 7、钼:钼是典型的化合物形成元素,是很强的珠光体稳定元素,它 能细化石墨,在ωMo<0.8%时,钼能细化珠光体,同时能强化珠光体中的铁素体,从而能有效地提高铸铁的强度和硬度。

化学成分对钢材性能的影响

列表整理化学成分对钢材性能的影响 钢是以铁和碳为主要成分的合金,虽然碳和其他元素所占比例甚少,但却左右着钢材的性能。 1、碳 碳时各种钢中的重要元素之一,在碳素结构钢中则是铁以外的最主要元素。碳是形成钢材强度的主要成分,随着含碳量的提高,钢的强度逐渐增高,而塑性和韧性下降,冷弯性能、焊接性能和抗锈性能等也变劣。碳素钢按碳含量区分,小于0.25%的为低碳钢,介于0.25%和0.6%之间的为中碳钢,大于0.6%的为高碳钢。含碳量超过0.3%时,钢材的抗拉强度很高,但却没有明显的屈服点,且塑性很小,含碳量超过0.2%时,钢材的焊接性能开始恶化。因此,规范推荐的钢材,含碳量均不超过0.22%,对于焊接结构则严格控制在0.2%以内。 2、硫 硫是有害元素,常以硫化铁形式夹杂于钢中。当温度达800~1000℃时,硫化铁会熔化使钢材变脆,因而在进行焊接或热加工时,有可能引发热裂纹,称为热脆。此外,硫还会降低钢材的冲击韧性、疲劳强度、抗锈蚀性能和焊接性能等。非金属硫化物夹杂经热轧加工后还会在厚钢板中形成局部分层现象,在采用焊接连接的节点中,沿板厚方向承受拉力时,会发生层状撕裂破坏。因而应严格限制钢

材中的含硫量,随着钢材牌号和质量等级的提高,含硫量的限制值由0.05%依次降至0.025%,厚度方向性能钢板(抗层状撕裂钢板)的含硫量更限制在0.01以下。 3、磷 磷可提高钢的强度和抗锈蚀能力,但却严重地降低钢的塑性、韧性、冷弯性能和焊接性能,特别是在温度较低时促使钢材变脆,称为冷脆。因此,磷的含量也要严格控制,随着钢材牌号和质量等级的提高,含磷量的限值由0.045%依次降至0.025%。但是当采用特殊的冶炼工艺时,磷可作为一种合金元素来制造含磷的低合金钢,此时其含量可达0.12%~0.13%。 4、锰 锰是有益元素,在普通碳素钢中,它是一种弱脱氧剂,可提高钢材强度,消除硫对钢的热脆影响,改善钢的冷脆倾向,同时不显著降低塑性和韧性。锰还是我国低合金钢的主要合金元素,其含量为0.8%~1.8%。但锰对焊接性能不利,因此含量也不宜过多。 5、硅 硅是有益元素,在普通碳素钢中,它是一种强脱氧剂,常与锰共同除氧,生产镇静钢。适量的硅,可以细化晶粒,提高钢的强度,而对塑性、韧性、冷弯性能和焊接性能无显著不良影响。硅的含量在一般镇静钢中为0.12%~0.3%,

灰铸铁的化学成分与抗拉强度的关系

灰铸铁的化学成分与抗拉强度的关系 灰铸铁抡学成分与抗拉强度存在着一定的关系,大致满足如下公式: (1000806)b G C R S σ=- (1) /(4.230.3120.275)C S C Si P =-- (2) 式中G R ——相对强度,是衡量灰铸铁质量的指标,与铸铁的化学成分、浇铸工艺和浇铸环境等因素有关,正常的生产条件下,一个时期内这些因素大致是不变的。 C S ——共晶度,表示灰铸铁的化学成分接近共晶点的程度,C S 越高,石墨化 程度就越强。 具体应用如下: (1) 求出一个时期的共晶度和相对强度的平均值C S 和G R 值。 G R 值计算公式由(1)导出 /(1000806)G C b R S σ=-实测 (3) 1 1i n C ci i S S n ===∑ (4) 1 1i n G G i R R n ===∑ (5) 时期的长短可视具体情况而定,根据铸件生产的稳定情况而定。求平均值时应剔除最大值和最小值,因为最大值和最小值往往包含有偶然因素造成的异常点。应使求得的平均值接近真实情况。 (2) 根据每天铸件的化学成分,用公式(1)、(2)、(3)求得当日铸件的C S 值、 G R 值和b σ值,如果b σ值不符合要求,说明该化学成分不合格,应予以及时调整。 表:铸件化学成分、性能、C S 值及G R 值关系表

(3) 共晶度C S 值和相对强度G R 值控制: 目前国家对灰铸铁的化学成分无统一标准,各工厂大都根据经验确定。一般共晶度C S 以值0.8~1.0,相对强度G R 取值1.0~1.3。共晶成分的灰铸铁具有良好的流动性,具有较强的石墨化能力,这对铸件的质量是有益的。如果共晶度C S >1时,铸件结晶时由于产生了初晶的C 型块状石墨而导致铸件强度下降,使相对强度值也下降。 当相对强度值G R <1时,说明铸铁的孕育不够完善。国外一些工厂认为, G R 1.15~1.20时,铸铁的性能最理想。 由 4.230.3120.275C C S Si P = -- (假设P=0.07%) C S 在所不惜0.8~1.0之间 则有3.3686-0.2496Si <C <4.21075-0.312Si C S 在0.92~0.97之间 则有3.87389-0.28704Si <C <4.0844275-0.3026Si 共晶度 4.260.3() C C S Si P = -+ 相对强度1020825b TS C R S σ= - 相对硬度538355HB C HB R S = - 质量比(正常度)TS Q HB R R R = 由公式(2)P 平均含量约0.06%得出以下两式: 由C S =C/(4.2135-0.312Si ) 取C S =0.93 得Si=13.505-C/0.29016 由HB=538-355 C S 取C S =0.93 得HB=208

球墨铸铁中所含的化学成分及其含量对性能的影响

球墨铸铁中所含的化学成分及其含量对性能的影响

————————————————————————————————作者:————————————————————————————————日期:

球墨铸铁简介: 球墨铸铁是通过球化和孕育处理得到球状石墨,有效地提高了铸铁的机械性能,特别是提高了塑性和韧性,从而得到比碳钢还高的强度。球墨铸铁是20世纪五十年代发展起来的一种高强度铸铁材料,其综合性能接近于钢,正是基于其优异的性能,已成功地用于铸造一些受力复杂,强度、韧性、耐磨性要求较高的零件。球墨铸铁已迅速发展为仅次于灰铸铁的、应用十分广泛的铸铁材料。所谓“以铁代钢”,主要指球墨铸铁。 析出的石墨呈球形的铸铁。球状石墨对金属基体的割裂作用比片状石墨小,使铸铁的强度达到基体组织强度的70~90%,抗拉强度可达120kgf/mm2,并且具有良好的韧性。球墨铸铁除铁外的化学成分通常为:含碳量 3.6~3.8%,含硅量2.0~3.0%,含锰、磷、硫总量不超过1.5%和适量的稀土、镁等球化剂。 制造步骤: (一)严格要求化学成分,对原铁液要求的碳硅含量比灰铸铁高,降低球墨铸铁中锰,磷,硫的含量 (二)铁液出炉温度比灰铸铁更高,以补偿球化,孕育处理时铁液温度的损失(三)进行球化处理,即往铁液中添加球化剂 (四)加入孕育剂进行孕育处理 (五)球墨铸铁流动性较差,收缩较大,因此需要较高的浇注温度及较大的浇注系统尺寸,合理应用冒口,冷铁,采用顺序凝固原则 (六)进行热处理 ?球墨铸铁中所含的化学成分及其含量对性能的影响

球墨铸铁化学成分主要包括碳、硅、锰、硫、磷五种元素。对于一些对组织及性能有特殊要求的铸件,还包括少量的合金元素。为保证石墨球化,球墨铸铁中还须含有微量的残留球化元素。以下就球墨铸铁中所含的化学成分及其含量对性能的影响做详细的阐述: 1、碳的作用和影响: 碳是球墨铸铁的基本元素,碳高有助于石墨化。由于石墨呈球状后石墨对机械性能的影响已减小到最低程度,球墨铸铁的含碳量一般较高,在3.5~3.9%之间,碳当量在4.1~4.7%之间。铸件壁薄、球化元素残留量大或孕育不充分时取上限;反之,取下限。将碳当量选择在共晶点附近不仅可以改善铁液的流动性,对于球墨铸铁而言,碳当量的提高还会由于提高了铸铁凝固时的石墨化膨胀提高铁液的自补缩能力。但是,碳含量过高,会引起石墨漂浮。 2、硅的作用和影响 在球墨铸铁中,硅是第二个有重要影响的元素,它不仅可以有效地减小白口倾向,增加铁素体量,而且具有细化共晶团,提高石墨球圆整度的作用。但是,硅提高铸铁的韧脆性转变温度,降低冲击韧性,因此硅含量不宜过高,尤其是当铸铁中锰和磷含量较高时,更需要严格控制硅的含量。 3、硫的作用和影响 硫是一种反球化元素,它与镁、稀土等球化元素有很强的亲合力,硫的存在会大量消耗铁液中的球化元素,形成镁和稀土的硫化物,引起夹渣、气孔等铸造缺陷。球墨铸铁中硫的含量一般要求小于0.06%。 4、磷的作用和影响 磷是一种有害元素。它在铸铁中溶解度极低,当其含量小于0.05%时,固溶于基体中,对力学性能几乎没有影响。当含量大于0.05%时,磷极易偏析于共晶团

灰铸铁缺陷产生的原因分析及预防措施

灰铸铁缺陷产生的原因分析及预防措施

灰铸铁缺陷产生的原因分析及预防措施 一、影响灰铸铁力学性能的主要因素: 化学成分(C、Si、Mn、P、S合金元素)灰铸铁的力学性能金相组织 石墨的形状、大小、分布工艺因素和冶金因素 和数量以及基体组织 工艺、冶金因素:主要有冷却速度,铁液的过热处理、孕育处理、炉料特性等(1)关于冷却速度的影响铸铁是一种对冷却速度敏感性很大的材料,同一铸件的厚壁和薄壁部分,内部和外表都可能获得相差悬殊的组织,俗称为组织的不均匀性。因为石墨化过程在很大程度上取决于冷却速度。影响铸件冷却速度的因素较多:铸件壁厚和重量、铸型材料的种类、浇冒口和重量等等。由于铸件的壁厚、重量和结构取决于工作条件,不能随意改变,故在选择化学成分时应考虑到它们对组织的影响。 (2)关于铁液孕育处理的影响孕育处理就是在铁液进入铸件型腔前,把孕育剂附加到铁液中以改变铁液的冶金状态,从而可改善铸铁的显微组织和性能。 对灰铸铁而言,进行孕育处理是为了获得A型石墨、珠光体基体、细小共晶团的组织,以及减少铸件薄壁或边角处的白口倾向和对铸件壁厚的敏感性;对可锻铸铁而言,是为了缩短短退火周期,增大铸件的允许壁厚和改善组织的结构;对球墨铸铁而言,是为了减少铸件白口倾向,提高球化率和改善石墨的圆整性。 (3)关于铁液过热处理的影响。提高铁液过热温度可以:①增加化合碳含量和相应减少石墨碳含量,②细化石墨,并使枝晶石墨的形成,③消除铸铁的“遗传性”,④提高铸件断面上组织的均匀性,⑤有利于铸件的补缩。同样,铁液保温也有铁液过热的类似作用。

(4)关于炉料特性的影响实际生产中往往发现改变金属炉料(例如采用不同产地的生铁或改变炉料的配比等)而化学成分似乎无变化的情况下铸铁具有不同的组织和性能,这说明原材料的性质直接影响着用它熔炼出来的铸铁的性质,称为铸铁的:“遗传性”为此,采用提高铁液温度和使用多种铁料配料可消除这种“遗传性”,并改善铸铁的组织和性能。 综上所述,铸铁的工艺因素和冶金因素对铸铁的力学性能有着很大的影响,因此,不应忽视对这些影响因素的控制。 二、灰铸铁不可用热处理的方法来达到牌号要求 一般说来,热处理能在很大程度上改善铸造合金的组织和性能,但在灰铸铁条件下,热处理所能发挥的作用相对较小。在灰铸铁中,石墨对铸铁性能的影响很大,而任何的热处理方法都不能改变石墨的形态和分布,故不可通过热处理来有效地提高灰铸铁的性能使之达到牌号要求。 但是,提高灰铸铁力学性能的方法很多,如合理选配化学成分、改变炉料组成、过热处理铁液、孕育处理、微量或低合金化等,都可取得很好效果。 三、生产高牌号灰铸铁(孕育铸铁)的注意事项 生产产高牌号灰铸铁(一般指HT200以上)时,为了获得高的力学性能,必须尽可能地减少石墨的数量、减小石墨的长度。传统的方法就是降低铁液的碳、硅含量、提高铁液的冷凝速度,但幅度稍大时就会出现D型过冷石墨及白口,反而降低灰铸铁的力学性能。 在炉前或在浇注前往铁液中添加适量的、以硅铁为主的铁合金碎粒被称作孕育处理。孕育处理在铁液中提供大量的、石墨借以生核的生核质点。有效的

常用金属材料中各种化学成分的作用及影响

常用金属材料中各种化学成分的作用及影响 1.生铁: 生铁中除铁外,还含有碳、硅、锰、磷和硫等元素。这些元素对生铁的性能均有一定的影响。 碳(C):在生铁中以两种形态存在,一种是游离碳(石墨),主要存在于铸造生铁中,另一种是化合碳(碳化铁),主要存在于炼钢生铁中,碳化铁硬而脆,塑性低,含量适当可提高生铁的强度和硬度,含量过多,则使生铁难于削切加工,这就是炼钢生铁切削性能差的原因。石墨很软,强度低,它的存在能增加生铁的铸造性能。 硅(Si):能促使生铁中所含的碳分离为石墨状,能去氧,还能减少铸件的气眼,能提高熔化生铁的流动性,降低铸件的收缩量,但含硅过多,也会使生铁变硬变脆。 锰(Mn):能溶于铁素体和渗碳体。在高炉炼制生铁时,含锰量适当,可提高生铁的铸造性能和削切性能,在高炉里锰还可以和有害杂质硫形成硫化锰,进入炉渣。 磷(P):属于有害元素,但磷可使铁水的流动性增加,这是因为硫减低了生铁熔点,所以在有的制品内往往含磷量较高。然而磷的存在又使铁增加硬脆性,优良的生铁含磷量应少,有时为了要增加流动性,含磷量可达 1.2%。 硫(S):在生铁中是有害元素,它促使铁与碳的结合,使铁硬脆,并与铁化合成低熔点的硫化铁,使生铁产生热脆性.减低铁液的流动性,顾含硫高的生铁不适于铸造细件。铸造生铁中硫的含量规定最多不得超过0.06% (车轮生铁除外)。 o.p3x o jg 2 .钢: 元素在钢中的作用 常存杂质元素对钢材性能的影响

钢除含碳以外,还含有少量锰(M n)、硅(Si)、硫(S)、磷(P)、氧(0)、氮(N)和氢(H)等元素。这些元素并非为改善钢材质量有意加入的,而是由矿石及冶 炼过程中带入的,故称为杂质元素。这些杂质对钢性能是有一定影响,为了保证钢材的质量,在国家标准中对各类钢的化学成分都作了严格的规定。 1 )硫 硫来源于炼钢的矿石与燃料焦炭。它是钢中的一种有害元素。硫以硫化铁(FeS)的形态存在于钢中,FeS和Fe形成低熔点(985 C )化合物。而钢材的热加工温度一般在1150?1200 C以上,所以当钢材热加工时,由于FeS化合物的过早熔化而导致工件开裂,这种现象称为热脆”含硫量愈高,热脆现象愈严重,故必须对钢中含硫量进行控制。高级优质钢:S V 0.02%?0.03% ;优质钢:S V 0.03%?0.045% ;普通钢:S V 0.055% ?0.7% 以下。 2 )磷 磷是由矿石带入钢中的,一般说磷也是有害元素。磷虽能使钢材的强度、硬度增高,但引起塑性、冲击韧性显著降低。特别是在低温时,它使钢材显著变脆,这种现象称"冷脆"。冷脆使钢材的冷加工及焊接性变坏,含磷愈高,冷脆性愈大,故钢中对含磷量控制较严。高级优质钢:P V 0.025% ;优质钢:P V 0.04% ; 普通钢:P V 0.085%。 3 )锰 锰是炼钢时作为脱氧剂加入钢中的。由于锰可以与硫形成高熔点(1600 C ) 的MnS , —定程度上消除了硫的有害作用。锰具有很好的脱氧能力,能够与钢中的FeO成为MnO进入炉渣,从而改善钢的品质,特别是降低钢的脆性,提高钢的强度和硬度。因此,锰在钢中是一种有益元素。一般认为,钢中含锰量在0.5%?0.8%以下时,把锰看成是常存杂质。技术条件中规定,优质碳素结构钢中,正常含锰量是0.5%? 0.8% ;而较高含锰量的结构钢中,其量可达0.7%?1.2%。 4 )硅 硅也是炼钢时作为脱氧剂而加入钢中的元素。硅与钢水中的FeO能结成密度较 小的硅酸盐炉渣而被除去,因此硅是一种有益的元素。硅在钢中溶于铁素体内使钢的强

钢材化学成分有哪些

钢材化学成分有哪些 时间:2013-06-08来源:百度百科 摘要:钢材化学成分有哪些?钢材中除主要化学成分Fe铁以外,还含有少量的碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)、氧(0)、氮(N)、钛(TO、钒(V)等元素,这些元素虽含量很少,但对钢材性能的影响很大。碳是决定钢材性能的最重要元素,它影响到钢材的强度、塑性、韧性等机械力学性能。一起来了解一下钢材化学成分。 钢材化学成分有哪些?钢材中除主要化学成分Fe铁以外,还含有少量的碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)、氧(0)、氮(N)、钛(TO、钒(V)等元素,这些元素虽含量很少,但对钢材性能的影响很大。碳是决定钢材性能的最重要元素,它影响到钢材的强度、塑性、韧性等机械力学性能。一起来了解一下钢材化学成分。 当钢中含碳量在0.8%以下时,随着含碳量的增加,钢的强度和硬度提高,塑性和韧性下降;但当含碳量大于1.0%时,随含碳量增加,钢的强度反而下降。一般工程用碳素钢均为低碳钢,即含碳小于0.25%,工程用低合金钢含碳小于0.52%。 钢中有益元素有锰、硅、钒、钛等,控制掺入量可冶炼成低合金钢。钢中主要的有害元素有硫、磷及氧,要特别注意控制其含量。 磷是钢中很有害的元素之一,主要溶于铁素体起强化作用。磷含量增加,钢材的强度、硬度提高,塑性和韧性显著下降。特别是温度愈低,对塑性和韧性的影响愈大,从而显著加大钢材的冷脆性。磷也使钢材可焊性显著降低,但磷可提高钢的耐磨性和耐蚀性。 硫也是很有害的元素,呈非金属硫化物夹杂物存在于钢中,降低钢材的各种机械性能。 由于硫化物熔点低,使钢材在热加工过程中造成晶粒的分离,引起钢材断裂,形成热脆

优质碳素结构钢的牌号和化学成分

优质碳素结构钢的牌号和化学成分

注:1.表中所列牌号为优质钢。如果是高级优质钢,在牌号后面加“A”(统一数字代号最后一位数字改为“3”);如果是特级优质钢,在牌号后面加“E’’(统一数字代号最后一-位数字改为“6”);对于沸腾钢,牌号后面为“F”(统一数字代号最后一位数字为“0”);对于半镇静钢,牌号后面为“b”(统一数字代号最后一位数字为“1”)。 2.使用废钢冶炼的钢允许含铜量不大于0.30%。 3.热压力加工用钢的铜含量应不大于0.20%。 4.铅浴淬火(派登脱)钢丝用的35.85钢的锰含量为0.30%~0.60%;铬含量不大于0.10%,镍含量不大于O.15%,铜含量不大于0.20%;硫、磷含量应符合钢丝标准要求。 5.08钢用铝脱氧冶炼镇静钢,锰含量下限为0.25%,硅含量不大于0.03%,铝含量为0.02%一0.07%。此时钢的牌号为08A1。 6.冷冲压用沸腾钢含硅量不大于0.03%。 7.氧气转炉冶炼的钢其含氮量应不大于0.008%。供方能保证合格时,可不做分析。 8.经供需双方协议,08~25钢可供应硅含量不大于0.17%的半镇静钢,其牌号为08b~25b。 9.上述各成分含量皆指质量分数。 表2 优质碳素结构钢的硫、磷含量(质量分数)

表3 优质碳素结构钢的力学性能

注:1.对于直径或厚度小于25mm的钢材,热处理是在与成品截面尺寸相同的试样毛坯上进行。 2.表中所列正火推荐保温时间不少于30min,空冷;淬火推荐保温时间不少于30min,70、80和85钢油冷,其余钢水冷;回火推荐保温时间不少于1h。 表4 优质碳素结构钢的特性和应用

第2章灰铸铁

第二章普通灰铸铁 第一节铁-碳双重相图 合金相图是分析合金金相组织的有用工具。铸铁是以铁元素为基的含有碳、硅、锰、磷、硫等元素的多元铁合金,但其中对铸铁的金相组织起决定作用的主要是铁、碳和硅,所以,除根据铁-碳相图来分析铸铁的金相组织外,还必须研究铁-碳-硅三元合金的相图。 一、铁-碳相图的二重性 从热力学的观点看,在一定的条件下,高温时的渗碳体能自动分解成为奥氏体和石墨,这表明渗碳体的自由能较高,亦即在这个条件下一定成分的铸铁以奥氏体和石墨的状态存在时具有较低的能量,是处于稳定平衡的状态,说明了奥氏体加渗碳体的组织,虽然亦是在某种条件下形成,在转变过程中也是平衡的,但不是最稳定的。 从结晶动力学(晶核的形成与长大过程)的观点来看,以含C % 的共晶成分液体在低于共晶温度的凝固为例:在液体中形成含C % 的渗碳体晶核要比形成含C 100% 的石墨核容易,而且渗碳体是间隙型的金属间化合物,并不要求铁原子从晶核中扩散出去。因此,在某些条件下,奥氏体加石墨的共晶转变的进行还不如莱氏体共晶转变那样顺利。 至于共析转变,也可以从热力学、动力学两方面去分析而得到和上面相似的结论。 C相图只是介稳定的,Fe-C(石墨)由此可见,从热力学观点上看,Fe-Fe 3 C相图转变也是相图才是稳定的。从动力学观点看,在一定条件下,按Fe-Fe 3 可能的,因此就出现了二重性。 二、铁-碳双重相图及其分析 对铸铁合金长期使用与研究的结果,人们得到了如图2﹣1所示的铁碳合金 C介稳定系相图与Fe-C(石墨)稳定系相图,分别以实双重相图,即Fe-Fe 3 线和虚线表示。表2﹣1为图中各临界点的温度及含碳量。

相关文档