文档库 最新最全的文档下载
当前位置:文档库 › 四元数表示转动及转动不可交换性

四元数表示转动及转动不可交换性

四元数表示转动及转动不可交换性

1、四元数表示转动

R qRq =-1

22cos sin (cos cos cos )

q i j k θ

θαβγ=+?+?+? R xi yj zk =++

()

()()()222222222222cos sin (cos cos cos )()sin cos cos cos sin cos sin cos cos sin cos sin cos cos sin cos sin cos cos q R i j k xi yj zk x y z z y x i

x z y j

y x z k θθθ

θ

θθθ

θθθ

θθαβγαβγβγγααβ?=+?+?+??++????=-+++-++-++-+

122cos sin (cos cos cos )

q i j k θ

θαβγ-=-?+?+? ()()()()22222222222sin cos cos cos sin cos sin cos cos cos sin (cos cos cos )sin cos sin cos cos sin cos sin cos cos R qRq x y z z y x i i j k x z y j y x z k θθθθθθθθθθθθαβγβγαβγγααβ'=-++????+-+??=?-?+?+???????+-+????+-+??-1

2、方向余弦法

绕Z 、X 、Y 三轴转动角度分别为cos ,cos ,cos θγθαθβ???,你认为对吗?用方向余弦法写出'R 的表达。改变转动顺序,得到的结果又如何呢?

离子交换树脂原理

离子交换树脂原理 离子交换树脂是一种聚合物,带有相应的功能基团。一般情况下,常规的钠离子交换树脂带有大量的钠离子。当水中的钙镁离子含量高时,离子交换树脂可以释放出钠离子,功能基团与钙镁离子结合,这样水中的钙镁离子含量降低,水的硬度下降。硬水就变为软水,这是软化水设备的工作过程。 当树脂上的大量功能基团与钙镁离子结合后,树脂的软化能力下降,可以用氯化钠溶液流过树脂,此时溶液中的钠离子含量高,功能基团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换能力,这个过程叫作“再生”。 由于实际工作的需要,软化水设备的标准工作流程主要包括:工作(有时叫做产水,下同)、反洗、吸盐(再生)、慢冲洗(置换)、快冲洗五个过程。不同软化水设备的所有工序非常接近,只是由于实际工艺的不同或控制的需要,可能会有一些附加的流程。任何以钠离子交换为基础的软化水设备都是在这五个流程的基础上发展来的(其中,全自动软化水设备会增加盐水重注过程)。 反洗:工作一段时间后的设备,会在树脂上部拦截很多由原水带来的污物,把这些污物除去后,离子交换树脂才能完全曝露出来,再生的效果才能得到保证。反洗过程就是水从树脂的底部洗入,从顶部流出,这样可以把顶部拦截下来的污物冲走。这个过程一般需要5-15分钟左右。 吸盐(再生):即将盐水注入树脂罐体的过程,传统设备是采用盐泵将盐水注入,全自动的设备是采用专用的内置喷射器将盐水吸入(只要进水有一定的压力即可)。在实际工作过程中,盐水以较慢的速度流过树脂的再生效果比单纯用盐水浸泡树脂的效果好,所以软化水设备都是采用盐水慢速流过树脂的方法再生,这个过程一般需要30分钟左右,实际时间受用盐量的影响。 慢冲洗(置换):在用盐水流过树脂以后,用原水以同样的流速慢慢将树脂中的盐全部冲洗干净的过程叫慢冲洗,由于这个冲洗过程中仍有大量的功能基团上的钙镁离子被钠离子交换,根据实际经验,这个过程中是再生的主要过程,所以很多人将这个过程称作置换。这个过程一般与吸盐的时间相同,即30分钟左右。 快冲洗:为了将残留的盐彻底冲洗干净,要采用与实际工作接近的流速,用原水对树脂进行冲洗,这个过程的最后出水应为达标的软水。一般情况下,快冲洗过程为5-15分钟。 应用 1)水处理 水处理领域离子交换树脂的需求量很大,约占离子交换树脂产量的90%,用于水中的各种阴阳离子的去除。目前,离子交换树脂的最大消耗量是用在火力发电厂的纯水处理上,其次是原子能、半导体、电子工业等。 2)食品工业 离子交换树脂可用于制糖、味精、酒的精制、生物制品等工业装置上。例如:高果糖浆的制造是由玉米中萃出淀粉后,再经水解反应,产生葡萄糖与果糖,而后经离子交换处理,可以生成高果糖浆。离子交换树脂在食品工业中的消耗量仅次于水处理。 3)制药行业 制药工业离子交换树脂对发展新一代的抗菌素及对原有抗菌素的质量改良具有重要作用。链霉素的开发成功即是突出的例子。近年还在中药提成等方面有所研究。 4)合成化学和石油化学工业 在有机合成中常用酸和碱作催化剂进行酯化、水解、酯交换、水合等反应。用离子交换树脂代替无机酸、碱,同样可进行上述反应,且优点更多。如树脂可反复使用,产品容易分离,反应器不会被腐蚀,不污染

离子交换树脂的原理及应用总结归纳(重点阅读)

精心整理如何筛分混合的阴阳离子交换树脂? 离子交换树脂的工作原理及优缺点分析 将离子性官能基结合在树脂(有机高分子)上的材料,称之为“离子交换树脂”。树脂表面带有磺酸(sulfonic acid) 者,称为阳离子交换树脂,而带有四级氨离子的,则为阴离子交换树脂。由於离子交换树脂可以有效去除水中阴阳离子,所以经常使用於纯水、超纯水的制造程序中。(见下图) 离子交换树脂上的官能基虽可去除原水(Feed water) (Fouling)。方。 原理 软水,这是软化水设备的工作过程。 当树脂上的大量功能基团与钙镁离子结合后,树脂的软化能力下降,可以用氯化钠溶液流过树脂,此时溶液中的钠离子含量高,功能基团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换能力,这个过程叫作“再生”。

由于实际工作的需要,软化水设备的标准工作流程主要包括:工作(有时叫做产水,下同)、反洗、吸盐(再生)、慢冲洗(置换)、快冲洗五个过程。不同软化水设备的所有工序非常接近,只是由于实际工艺的不同或控制的需要,可能会有一些附加的流程。任何以钠离子交换为基础的软化水设备都是在这五个流程的基础上发展来的(其中,全自动软化水设备会增加盐水重注过程)。 反洗:工作一段时间后的设备,会在树脂上部拦截很多由原水带来的污物,把这些污物除去后,离子交换树脂才能完全曝露出来,再生的效果才能得到保证。反洗过程就是水从树脂的底部洗入,从顶部流出,这样可以把顶部拦截下来的污物冲走。这个过程一般 需要5-15分钟左右。 吸盐(再生) (只要进水有一定的压力即可) 慢冲洗(置换) 应用 1)水处理 水处理领域离子交换树脂的需求量很大,约占离子交换树脂产量的90%,用于水中的各种阴阳离子的去除。目前,离子交换树脂的最大消耗量是用在火力发电厂的纯水处理上,其次是原子能、半导体、电子工业等。

离子交换树脂综合知识

离子交换树脂综合知识 【电厂化学】2007-07-31 09:07:41 阅读1184 评论0 字号:大中小订阅 1 树脂的储存和运输 1、离子交换树脂在长期储存中,或需在停用设备内长期存放,强型树脂(强酸性和强碱性树脂)应转为盐型,弱型树脂(弱酸性和弱碱性树脂)可转为相应的氢型或游离胺型,也可转变为盐型,以保持树脂性能的稳定。然后浸泡在洁净的水中。停用设备若须将水排去,则应密封,以防树脂中水份散失。 2、离子交换树脂内含有一定的平衡水份,在储存和运输中应保持湿润,防止脱水。树脂应储存在室内或加遮盖,环境温度以5°C-40°C为宜。袋装树脂应避免直接日晒,远离锅炉、取暖器等加热装置,避免脱水。 若发现树脂已有脱水现象,切勿将树脂直接放于水中,以免干树脂遇水急剧溶胀而破碎。应根据其脱水程度,用10%左右的食盐水慢慢加入到树脂中,浸泡数小时后用洁净水逐步稀释。 3、当环境温度在0°C或以下时,为防止树脂因内部水份结冰而崩裂,应做好保温措施,或根据气温条件,将树脂存于相应浓度的食盐水中,防止冰冻。若发现树脂已被冻,则应让其缓慢自然解冻,切不可用机械力施于树脂。 食盐溶液浓度与冰点的关系如下表: 4、长期停用而放置在交换器内的树脂,为防止微生物(如藻类、细菌等)对树脂的不可逆污染,树脂在停用前须彻底反洗,以除去运行时积聚的悬浮物质,并注意定期冲洗和换水。或彻底反洗后采用以下措施: 阴树脂:用3倍树脂体积的10%NaCl+2%NaOH混合液分两次通过树脂层,每次静止浸泡数小时,然后将其排去。如有必要,在重新启动前用2倍树脂体积的0.2%过氧化氢(H2O2)溶液淋洗树脂层。 阳树脂:在阳离子交换器及管系内可充入0.5%的甲醛溶液,并在停用期间保持此浓度。也可用食盐水浸泡。在设备重新启动前用0.2%过氧化氢或0.5%甲醛溶液淋洗。 2 树脂的预处理 在离子交换树脂的工业产品中,常含有少量的有机低聚物及一些无机杂质。在使用初期会逐渐溶解释放,影响出水水质或产品质量。因此,新树脂在使用前必须进行预处理,具体方法如下: 1、树脂装入交换器后,用洁净水反洗树脂层,展开率为50-70%,直至出水清晰、无气味、无细碎树脂为止。 2、用约2倍树脂体积的4-5%HCl溶液,以2m/h的流速通过树脂层。全部通入后,浸泡4-8小时,

离子交换树脂的处理

离子交换树脂的处理 前言:001×7阳离了交换树指(以下简称树脂)用于水处理过程中由于受不同因素的影响出现变红、变棕、变褐、粉碎是常见的事情。各种变化对树脂工作交换容量的影响大不相同。有的变化使工作交换容量降低很少,有的变化使工作交换容量降低很多,甚至报废。近十年的锅炉水处理工作实践对数百个新、旧树脂样品的处理和工作交换容量的测定证明了这一点。 1. 正常使用过程中颜色变红、变棕对工作交换容量的影响。 在我所处理、测定过的近百个在使用过程中变红、变褐、粉碎的旧树脂样品中,有95%以上处理后颜色恢复到黄色或浅黄色,工作交换容量比处理前提高1——5%。少数几个样品用酸、碱、酒精处理后仍然呈褐色,处理前后工作交换容量都比较低,基本上没有变化。前者颜色的加深是由于水中微量铁和其它因素(如温度)等影响所致,后者属于原新树脂本身就呈褐色、工作交换容量就低,也可能是严重铁中毒和有机质污染而致。而一般软化罐内壁防腐层破损导致的树脂铁中毒,只是颜色变红、变棕,其工作交换容量变化甚微。这与个别书上所列表表示的树脂铁中毒经盐酸处理后工作交换容量可提高50%以上是有很大差距的。如陶瓷公司卫生瓷厂的旧树脂样品为褐色,粒度为0.6——1.0mm,破粹粒占30%,用酸碱处理前后工作交换容量均为0.86mmol/ml湿态,颜色均为棕色;又如七一八究所的旧树脂样品为红色,处理后为黄色,处理前后的工作交换容量分别为1.02mmol/ml湿态和1.03mmol/ml湿态。所以我认为,在使用井水,自来水为水源时,对树脂变红、变棕,无需用酸碱处理。如果设备周期制水量突然降低或出水水质突然不合格,应该先检查与出软水管路相通的源水阀门是否严密,或者奖树脂进行较好的水冲洗,以除去树脂中的悬浮物和泥沙,这样即可恢复到原周期制水量和出水水质。酸、碱的处理只能除去加深的颜色,工作交换容量增加甚少,但却降低树脂强度,提高破碎率。 2.树脂在使用过程中粒度破碎对其工作交换容量的影响。 树脂粒度破碎对其工作交换容量的影响根据导致破碎的因素不同分两种情况:一是正常使用磨损破碎,一是受冻破碎。磨损破碎不管破碎率多高,对其工作交换容量影响甚小(在操作软化罐误差之内);而受冻破碎对其工作交换容量影响很大,以至报废。

离子交换树脂和设备设计

离子交换树脂及装置设计详解 1、离于交换剂 1.1离子交换剂的种类 离子交换剂是实现交换功能的最基本物质。离子交换剂根据其材料可分为无机离子交换剂和有机离子交换剂,又可分为天然离子交换剂和人工合成离子交换剂等。天然离子剂如粘土、沸石、褐煤等。人工合成离子交换树脂有凝胶树脂、大孔树脂、吸附树脂、氧化还原树脂、螯合树脂等。其交换能力又可分为强碱性、弱碱性、强酸性、弱酸性等多种类型。 1.2离子交换树脂的基本特性罗门哈斯树脂,陶氏树脂 依其功能用途不同、原料性能不同,所制的树脂特性也不相同。常用的凝胶树脂的主要特性简介如下。 1.2.1.树脂的外观与粒度 凝胶型阳树脂为半透明的棕色或淡黄色的小球,阴树脂颜色略深。树脂粒度和均一度影响树脂的性能,粒度越小表面积就越大;但粒度过细不仅增大液体在树脂层内的阻力,而且也会影响树脂的机械程度,降低使用寿命。通常树脂小球直径为0.2-0.8mm。 2.树脂的密度 树脂密度分为干密度和湿密度。干密度是在温度115℃真空干燥后的密度。湿密度又分湿真密度和湿视密度 2.1湿真密度是树脂在水中充分膨胀后的质量与自身所占体积(不含树脂颗粒之的空隙)之比值(g/cm3)。不同类型树脂,湿真密度不同。即使同一类型的阳树脂或阴树脂,由于所含交换离子种类不同,湿真密度大小也不相同。 2.2湿视密度湿视密度又称堆积密度,是指树脂在水中充分溶胀后,单位体积树脂所具有的质量。湿视密度可用来计算离子交换柱内填充树脂的所需量。 3.树脂的交联度 树脂的骨架是靠交联剂连接在一起的。交联度是指交联剂所占有的份数,一般用交联剂占单体质量百分数来表示。例如,聚苯乙烯树脂用二乙烯苯作交联剂,其用量占单体总料量的8%时,则这种树脂的交联度为8%。 交联度直接影响树脂的性能。交联度越高,树脂的机械强度就越大,对离子的选择性越强,但离子的交换速度就越慢。这是因为交联度高,表明树脂的结构紧密,孔隙率低,同时树脂在水中溶胀率也低,因而水中的离子在树脂内扩散速度小,影响了离子间的交换能力。 4、树脂的稳定性

第七章电渗析

一、电渗析的工作原理 电渗析是在直流电场作用下,溶液中的带电离子选择性地通过 离子交换膜的过程。主要用于溶液中电解质的分离。图 7-1是电 渗 析工作原理示意图。 流程说明:在淡化室中通入含盐水,接上电源,溶液中带正电荷的 阳离子,在电场的作用下,向阴极方向移动到阳膜,受到膜上带负 电荷的基团的异性相吸引的作用而穿过膜,进入右侧的浓缩室。带 负电荷的阴离子,向阳极方向移动到阴膜,受到膜上带正电荷的基 团的异性相吸引的作用而穿过膜,进入左侧的浓缩室。淡化室盐水 中的氯化钠被不断除去,得到淡 水,氯化钠在浓缩室中浓集。 再加上膜外溶液浓度过高的影响,在阳膜中也会进入个别阴离子, 阴膜中也会进入个别阳离子,从而发生同名离子迁移。 (2) 电解质的浓差扩散 也称为渗析,指电解质离子透过膜的现象。由于膜两侧溶液浓 度不同,受浓度差的推动作用,电解质由浓水室向淡水室扩散,其 扩散速度随两室浓度差的提高而增加。 ⑶水的渗透 淡水室的水,由于渗透压的作用向浓缩室渗透,渗透量随浓度 差的提咼而增加。 第七章 离子交换膜与电渗析 电渗析的研究始于上世纪初的德国。 1952年美国Ionics 公司制 成了世界上第一台电渗析装置,用于苦咸水淡化。至今苦咸水淡化 仍是电渗析最主要的应用领域。在锅炉进水的制备、电镀工业废水 的处理、乳清脱盐和果汁脱酸等领域,电渗析都达到了工业规模。 另外,在上世纪50年代末,由日本开发的海水浓缩制食盐的应用, 虽仅限于日本和科威特等国,但也是电渗析的一大市场。目前,电 渗析以其能量消耗低,装置设计与系统应用灵活,操作维修方便, 工艺过程洁净、无污染,原水回收率高,装置使用寿命长等明显优 势而被越来越广泛地用于食品、医药、化工、工业及城市废水处理 等领域。我国的电渗析技术的研究始于 1958年。1965年在成昆铁 路上安装了第一台电渗析法苦咸水淡化装置。 1981年我国在西沙永 兴岛建成日产200吨饮用水的电渗析海水淡化装置。几十年来,在 离子交换 膜、隔板、电极等主要部件方面不断创新,电渗析装置不 断向定型化、标准化方向发展。 图7-1电渗析工作原理示意图 第一节、电渗析基本原理 电渗析过程除我们希望的反离子迁移外,还可能发生如图 所示的其它迁移过程: (1) 同名离子迁移 同名离子指与膜的固定活性基所带电荷相同的离子。 (Donnan)平衡理论,离子交换膜的选择透过性不可能达到 7-2 根据唐南 100%,

离子交换树脂

1、离子交换树脂在长期储存中,或需在停用设备内长期存放,强型树脂(强酸性和强碱性树脂)应转为盐型,弱型树脂(弱酸性和弱碱性树脂)可转为相应的氢型或游离胺型,也可转变为盐型,以保持树脂性能的稳定。然后浸泡在洁净的水中。停用设备若须将水排去,则应密封,以防树脂中水份散失。 2、离子交换树脂内含有一定的平衡水份,在储存和运输中应保持湿润,防止脱水。树脂应储存在室内或加遮盖,环境温度以5°C-40°C为宜。袋装树脂应避免直接日晒,远离锅炉、取暖器等加热装置,避免脱水。 若发现树脂已有脱水现象,切勿将树脂直接放于水中,以免干树脂遇水急剧溶胀而破碎。应根据其脱水程度,用10%左右的食盐水慢慢加入到树脂中,浸泡数小时后用洁净水逐步稀释。 3、当环境温度在0°C或以下时,为防止树脂因内部水份结冰而崩裂,应做好保温措施,或根据气温条件,将树脂存于相应浓度的食盐水中,防止冰冻。若发现树脂已被冻,则应让其缓慢自然解冻,切不可用机械力施于树脂。 食盐溶液浓度与冰点的关系如下表: 4、长期停用而放置在交换器内的树脂,为防止微生物(如藻类、细菌等)对树脂的不可逆污染,树脂在停用前须彻底反洗,以除去运行时积聚的悬浮物质,并注意定期冲洗和换水。或彻底反洗后采用以下措施: 阴树脂:用3倍树脂体积的10%NaCl+2%NaOH混合液分两次通过树脂层,每次静止浸泡数小时,然后将其排去。如有必要,在重新启动前用2倍树脂体积的0.2%过氧化氢(H2O2)溶液淋洗树脂层。 阳树脂:在阳离子交换器及管系内可充入0.5%的甲醛溶液,并在停用期间保持此浓度。也可用食盐水浸泡。在设备重新启动前用0.2%过氧化氢或0.5%甲醛溶液淋洗。 2 树脂的预处理 在离子交换树脂的工业产品中,常含有少量的有机低聚物及一些无机杂质。在使用初期会逐渐溶解释放,影响出水水质或产品质量。因此,新树脂在使用前必须进行预处理,具体方法如下: 1、树脂装入交换器后,用洁净水反洗树脂层,展开率为50-70%,直至出水清晰、无气味、无细碎树脂为止。 2、用约2倍树脂体积的4-5%HCl溶液,以2m/h的流速通过树脂层。全部通入后,浸泡4-8小时,排去酸液,用洁净水冲洗至出水呈中性,冲洗流速为10-20m/h。 3、用约2倍树脂体积的2-5%NaOH溶液,按上面进HCl溶液的方法通入和浸泡。排去碱液,用洁净水冲洗至出水呈中性,冲洗流速同上。 酸、碱溶液若能重复进行2-3次,则效果更佳。

离子交换树脂地再生

离子交换树脂的再生 一、常规的再生处理 离子交换树脂使用一段时间后,吸附的杂质接近饱和状态,就要进行再生处理,用药剂将树脂所吸附的离子和其他杂质洗脱除去,使之恢复原来的组成和性能。在实际运用中,为降低再生费用,要适当控制再生剂用量,使树脂的性能恢复到最经济合理的再生水平,通常控制性能恢复程度为70~80% 。如果要达到更高的再生水平,则再生剂量要大量增加,再生剂的利用率则下降。 树脂的再生应当根据树脂的种类、特性,以及运行的经济性,选择适当的再生药剂和工作条件。 树脂的再生特性与它的类型和结构有密切关系。强酸性和强碱性树脂的再生比较困难,需用再生剂量比理论值高相当多;而弱酸性或弱碱性树脂则较易再生,所用再生剂量只需稍多于理论值。此外,大孔型和交联度低的树脂较易再生,而凝胶型和交联度高的树脂则要较长的再生反应时间。 再生剂的种类应根据树脂的离子类型来选用,并适当地选择价格较低的酸、碱或盐。例如:钠型强酸性阳树脂可用10%NaCl 溶液再生,用药量为其交换容量的2 倍(用NaCl 量为117g/ l 树脂);氢型强酸性树脂用强酸再生,用硫酸时要防止被树脂吸附的钙与硫酸反应生成硫酸钙沉淀物。为此,宜先通入1~2% 的稀硫酸再生。 氯型强碱性树脂,主要以NaCl 溶液来再生,但加入少量碱有助于将树脂吸附的色素和有机物溶解洗出,故通常使用含10%NaCl + 0.2%NaOH 的碱盐液再生,常规用量为每升树脂用150~200g NaCl ,及3~4g NaOH。OH 型强碱阴树脂则用4%NaOH 溶液再生。 树脂再生时的化学反应是树脂原先的交换吸附的逆反应。按化学反应平衡原理,提高化学反应某一方物质的浓度,可促进反应向另一方进行,故提高再生液浓度可加速再生反应,并达到较高的再生水平。 为加速再生化学反应,通常先将再生液加热至70~80℃。它通过树脂的流速一般为1~ 2 BV/h 。也可采用先快后慢的方法,以充分发挥再生剂的效能。再生时间约为一小时。随后用软水顺流冲洗树脂约一小时( 水量约4BV) ,待洗水排清之后,再用水反洗,至洗出液无色、无混浊为止。

离子交换树脂的再生

一、常规的再生处理 离子交换树脂使用一段时间后,吸附的杂质接近饱和状态,就要进行再生处理,用化学药剂将树脂所吸附的离子和其他杂质洗脱除去,使之恢复原来的组成和性能。在实际运用中,为降低再生费用,要适当控制再生剂用量,使树脂的性能恢复到最经济合理的再生水平,通常控制性能恢复程度为70~80%。如果要达到更高的再生水平,则再生剂量要大量增加,再生剂的利用率则下降。 树脂的再生应当根据树脂的种类、特性,以及运行的经济性,选择适当的再生药剂和工作条件。 树脂的再生特性与它的类型和结构有密切关系。强酸性和强碱性树脂的再生比较困难,需用再生剂量比理论值高相当多;而弱酸性或弱碱性树脂则较易再生,所用再生剂量只需稍多于理论值。此外,大孔型和交联度低的树脂较易再生,而凝胶型和交联度高的树脂则要较长的再生反应时间。 再生剂的种类应根据树脂的离子类型来选用,并适当地选择价格较低的酸、碱或盐。例如:钠型强酸性阳树脂可用10%NaCl溶液再生,用药量为其交换容量的2倍(用NaCl量为117g/l树脂);氢型强酸性树脂用强酸再生,用硫酸时要防止被树脂吸附的钙与硫酸反应生成硫酸钙沉淀物。为此,宜先通入1~2%的稀硫酸再生。 氯型强碱性树脂,主要以NaCl溶液来再生,但加入少量碱有助于将树脂吸附的色素和有机物溶解洗出,故通常使用含10%NaCl+0.2%NaOH的碱盐液再生,常规用量为每升树脂用150~200gNaCl,及3~4gNaOH。OH型强碱阴树脂则用4%NaOH溶液再生。 树脂再生时的化学反应是树脂原先的交换吸附的逆反应。按化学反应平衡原理,提高化学反应某一方物质的浓度,可促进反应向另一方进行,故提高再生液浓度可加速再生反应,并达到较高的再生水平。 为加速再生化学反应,通常先将再生液加热至70~80℃。它通过树脂的流速一般为1~2BV/h。也可采用先快后慢的方法,以充分发挥再生剂的效能。再生时间约为一小时。随后用软水顺流冲洗树脂约一小时(水量约4BV),待洗水排清之后,再用水反洗,至洗出液无色、无混浊为止。 一些树脂在再生和反洗之后,要调校pH值。因为再生液常含有碱,树脂再生后即使经水洗,也常带碱性。而一些脱色树脂(特别是弱碱性树脂)宜在微酸性下工作。此时可通入稀盐酸,使树脂pH值下降至6左右,再用水正洗,反洗各一次。 树脂在使用较长时间后,由于它所吸附的一部分杂质(特别是大分子有机胶体物质)不易被常规的再生处理所洗脱,逐渐积累而将树脂污染,使树脂效能降低。此时要用特殊的方法处理。例如:阳离子树脂受含氮的两性化合物污染,可用4%NaOH溶液处理,将它溶解而排掉;阴离子树脂受有机物污染,可提高碱盐溶液中的NaOH浓度至0.5~1.0%,以溶解有机物。

离子交换膜与电渗析

第七章离子交换膜与电渗析 电渗析的研究始于上世纪初的德国。1952年美国Ionics公司制成了世界上第一台电渗析装置,用于苦咸水淡化。至今苦咸水淡化仍是电渗析最主要的应用领域。在锅炉进水的制备、电镀工业废水的处理、乳清脱盐和果汁脱酸等领域,电渗析都达到了工业规模。另外,在上世纪50年代末,由日本开发的海水浓缩制食盐的应用,虽仅限于日本和科威特等国,但也是电渗析的一大市场。目前,电渗析以其能量消耗低,装置设计与系统应用灵活,操作维修方便,工艺过程洁净、无污染,原水回收率高,装置使用寿命长等明显优势而被越来越广泛地用于食品、医药、化工、工业及城市废水处理等领域。我国的电渗析技术的研究始于1958年。1965年在成昆铁 路上安装了第一台电渗析法苦咸水淡化装置。1981年我国在西沙永兴岛建成日产200吨饮用水的电渗析海水淡化装置。几十年来,在离子交换膜、隔板、电极等主要部件方面不断创新,电渗析装置不断向定型化、标准化方向发展。 第一节、电渗析基本原理 一、电渗析的工作原理 电渗析是在直流电场作用下,溶液中的带电离子选择性地通过离子交换膜的过程。主要用于溶液中电解质的分离。图7-1是电渗析工作原理示意图。 流程说明:在淡化室中通入含盐水,接上电源,溶液中带正电荷的阳离子,在电场的作用下,向阴极方向移动到阳膜,受到膜上带负电荷的基团的异性相吸引的作用而穿过膜,进入右侧的浓缩室。带负电荷的阴离子,向阳极方向移动到阴膜,受到膜上带正电荷的基团的异性相吸引的作用而穿过膜,进入左侧的浓缩室。淡化室盐水中的氯化钠被不断除去,得到淡水,氯化钠在浓缩室中浓集。 图7-1 电渗析工作原理示意图 电渗析过程除我们希望的反离子迁移外,还可能发生如图7-2所示的其它迁移过程: (1) 同名离子迁移 同名离子指与膜的固定活性基所带电荷相同的离子。根据唐南(Donnan)平衡理论,离子交换膜的选择透过性不可能达到100%,再加上膜外溶液浓度过高的影响,在阳膜中也会进入个别阴离子,阴膜中也会进入个别阳离子,从而发生同名离子迁移。 (2) 电解质的浓差扩散 也称为渗析,指电解质离子透过膜的现象。由于膜两侧溶液浓度不同,受浓度差的推动作用,电解质由浓水室向淡水室扩散,其扩散速度随两室浓度差的提高而增加。 (3) 水的渗透 淡水室的水,由于渗透压的作用向浓缩室渗透,渗透量随浓度差的提高而增加。 1

第七章功能高分子材料

第七章功能高分子材料 7.1 概述 7.1.1 功能高分子材料的分类 高分子学科的发展: 通用高分子材料大型工业化、发展高性能工程塑料与复合材料、开发特种高分子材料。 功能树脂是指具有特殊功能的新型高分子材料。这类材料在高分子主链和侧链上带有反应性功能基团,并具有可逆的或不可逆的物理功能或化学特性。 功能树脂按其应用范围分为以下几类: 化学功能树脂:离子交换与吸附树脂、离子交换膜、渗透膜 机械功能树脂:耐磨损材料、超高强度纤维 光学功能树脂:感光性树脂、太阳能电池、光导纤维和棱镜材料 电磁功能树脂:有机半导体、电绝缘材料、超导电材料 热功能树脂:耐高温材料、耐低温材料、绝热材料和发热材料

7.1.2 功能树脂的合成方法 功能树脂的合成是利用高分子本身结构或聚集态结构的特点,引入功能性基团,形成具有特殊功能的新型高分子材料。主要有以下三种合成方法。 1.功能单体聚合或缩聚反应 将含有功能基的单体通过聚合或缩聚制备具有某种功能基的聚合物。 对单体的要求:必须引入可聚合或缩聚的反应性基团(一般为双键);功能基的引入也不能妨碍聚合或缩聚反应的进行。 方法特点:困难而复杂,但功能基在高分子链上的分布是均匀的,功能基的含量可达到理论计算值。 2.高分子的功能化反应 通过化学反应将功能性基团引入到现有的天然或合成高分子链上。 所用高分子原料母体链节上都有可进行反应的基团。高分子骨架利用的最多的是聚苯乙烯。 方法特点:方便而廉价,可供选用的高分子原料较多,天然和合成,可制备具有多功能的树脂

3.与功能材料复合 通过在高分子加工过程中引入一些小分子化合物或其它添加剂而使高分子具有某些特殊功能性质。 方法特点:机械混合,易于实施,可制备多种类型功能高分子材料。如磁性材料,导电材料。 7.2 离子交换树脂 离子交换树脂是一类带有三维网状结构的、以高分子为基体、不溶于水和有机溶剂,具有可进行离子交换的官能团的物质。 离子交换树脂由三部分组成:不溶性的三维空间物质骨架、连接在骨架上的功能基团、功能基团所带的相反电荷的可交换离子。 7.2.1 离子交换树脂的种类 一、以功能基特征进行分类

离子交换树脂

离子交换树脂 一、离子交换树脂基础介绍 二、离子交换树脂的基本类型 三、离子交换树脂基体的组成 四、离子交换树脂的物理结构 五、离子交换树脂的离子交换容量 六、离子交换树脂的吸附选择性 七、离子交换树脂的物理性质 八、离子交换树脂的应用领域 一、离子交换树脂基础介绍 离子交换树脂的全名称由分类名称、骨架(或基因)名称、基本名称组成。孔隙结构分凝胶型和大孔型两种,凡具有物理孔结构的称大孔型树脂,在全名称前加“大孔”。分类属酸性的应在名称前加“阳”,分类属碱性的,在名称前加“阴”。如:大孔强酸性苯乙烯系阳离子交换树脂。 离子交换树脂还可以根据其基体的种类分为苯乙烯系树脂和丙烯酸系树脂。树脂中化学活性基团的种类决定了树脂的主要性质和类别。首先区分为阳离子树脂和阴离子树脂两大类,它们可分别与溶液中的阳离子和阴离子进行离子交换。阳离子树脂又分为强酸性和弱酸性两类,阴离子树脂又分为强碱性和弱碱性两类(或再分出中强酸和中强碱性类)。 离子交换树脂的命名方式: 离子交换产品的型号以三位阿拉伯数字组成,第一位数字代表产品的分类,第二位数字代表骨架的差异,第三位数字为顺序号用以区别基因、交联剂等的差异。第一、第二位数字的意义,见表8-1。 表8-1 树脂型号中的一、二位数字的意义 代号0 1 2 3 4 5 6 分类名称强酸性弱酸性强碱性弱碱性螫合性两性氧化还原性 骨架名称苯乙烯系丙烯酸系醋酸系环氧系乙烯吡啶系脲醛系氯乙烯系大孔树脂在型号前加“D”,凝胶型树脂的交联度值可在型号后用“×”号连接阿拉伯数字表示。如D011×7,表示大孔强酸性苯乙烯系阳离子交换树脂,其交联度为7。 离子交换树脂在国内外都有很多制造厂家和很多品种。国内制造厂有数十家,主要的有上海树脂有限公司、南开化工厂、浙江争光实业股份有限公司、晨光化工研究

第七章答案

武 汉 大 学 第七章 新型分离技术 7.1 膜分离技术 7.1.1 一、膜分离过程概述 膜分离(Membrane Separation )是以选择性透过膜为分离介质, 在膜两侧一定推动力的作用下,使原料中的某组分选择性地透过膜, 从而使混合物得以分离,以达到提纯、浓缩等目的的分离过程。 膜分离所用的膜可以是固相、液相,也可以是气相,而大规模工业应用中多数为固体膜。 物质选择透过膜的能力可分为两类: 借助外界能量,物质发生由低位到高位的流动; 借助本身的化学位差,物质发生由高位到低位的流动。 操作的推动力可以是膜两侧的压力差、浓度差、电位差、温度差 等。依据推动力不同,膜分离又分为多种过程,表1列出了几种主要膜分离过程的基本特性,图1给出了各种膜过程的分离范围。 反渗透、纳滤、超滤、微滤均为压力推动的膜过程,即在压力的 作用下,溶剂及小分子通过膜,而盐、大分子、微粒等被截留,其截留程度取决于膜结构。 反渗透膜几乎无孔,可以截留大多数溶质(包括离子)而使 溶剂通过,操作压力较高,一般为2~10MPa ; 纳滤膜孔径为2~5nm ,能截留部分离子及有机物,操作压 力为0.7~3 MPa ;

武 汉 大 学 超滤膜孔径为2~20nm ,能截留小胶体粒子、大分子物质,操作压力为0.1~1 MPa ; 微滤膜孔径为0.05~10μm ,能截留胶体颗粒、微生物及悬浮粒子,操作压力为0.05~0.5 MPa 。 电渗析采用带电的离子交换膜,在电场作用下膜能允许阴、阳离 子通过,可用于溶液去除离子。气体分离是依据混合气体中各组分在 膜中渗透性的差异而实现的膜分离过程。渗透汽化是在膜两侧浓度差的作用下,原料液中的易渗透组分通过膜并汽化,从而使原液体混合物得以分离的膜过程。 传统的分离单元操作如蒸馏、萃取、吸收等,也可以通过膜来实现,即为膜蒸馏、膜萃取、膜吸收与气提等,实现这些膜过程的设备统称为膜接触器,包括液-液接触器、液-气接触器等。 二、膜分离特点 与传统的分离操作相比,膜分离具有以下特点: (1)膜分离是一个高效分离过程,可以实现高纯度的分离; (2)大多数膜分离过程不发生相变化,因此能耗较低; (3)膜分离通常在常温下进行,特别适合处理热敏性物料; (4)膜分离设备本身没有运动的部件,可靠性高,操作、维护 都十分方便。

离子交换装置简介

离子交换装置简介 字体大小:大| 中| 小2006-10-21 17:08 - 阅读:1427 - 评论:0 离子交换是水处理技术中最常用的一种,离子交换器是利用阴阳离子交换树脂的选择性及平衡反应原理除去水中的电 解质离子的一种水处理设备,在水处理的应用方面最为广泛,特别是高纯水制取的必备设备。 离子交换是通过离子交换树脂在电解质溶液中进行的,可去除水中的各种阴、阳离子,是目前制备高纯水工艺流程中 不可替代的手段。 离子交换器分为阳离子交换器、阴离子交换器等。 当原水通过离子交换柱时,水中的阳离子和水中的阴离子(HCO-等离子)与交换柱中的阳树脂的H+离子和阴树脂的OH- 离子进行交换,从而达到脱盐的目的。阳、阴混柱的不同组合可使水质达到更高的要求。 离子交换机规格表(单位:mm) 型号(直径X高度)材质出水量(m3/h) ¢50XX1000 有机玻璃0.2 ¢200X1500 有机玻璃0.3 ¢200X2000 有机玻璃0.5 ¢250X2000 有机玻璃0.7 ¢300X2000 有机玻璃 1.0 ¢400X2000 有机玻璃 2.0 ¢500X2000 有机玻璃 3.0 ¢600X2000 不锈钢衬胶 4.0 ¢700X2000 不锈钢衬胶 5.0 ¢400X3000 钢衬胶 3.0 ¢500X3500 钢衬胶 4.0 ¢600X3580 钢衬胶 5.0 ¢800X3760 钢衬胶8.0 ¢1000X3970 钢衬胶12.0 ?1600X4960 钢衬胶30.0 可根据用户的需求,进行设计生产。 二.工作原理

(1)阳离子交换器 当原水进入装有H型的阳离子交换树脂的阳离子交换器,使水中含有的各种阳离子和离子交换树脂上的H+发生如下反应: Fe3+3HR-→FeR+3H+ Ca2++2HR-→CaR+2H+ Mg2++2HR-→MgR+2H+ Na++HR-→Na+H+ 上述反应的结果是水中的各种阳离子(Fe3、Ca2+、Mg2+、Na+)被吸附在离子交换树脂上,而离子交换树脂上的H+,它和水中各种阴离子发生作用 生成各种酸类。 如:H2SO4 H2CO3 HCI H2SiO3等 (2)阴离子交换器 阳离子交换后带有酸性的水进入装有OH型阴离子交换树脂的阴离子交换器,发生如下反应: H2SO4+2ROH-→R2SO4+2H2O H2CO3+2ROH-→R2CO3+2H2O HCI+ROH-→RCI+H2O H2SiO3+ROH-→RHSiO3+H2O 由此可见,经阳-阴离子交换处理后,水中的各种离子几乎除去,一般可除去水中含盐量99%以上。 三.结构简述 (1)进水装置 在交换器上部设有进水装置使水能均匀分布。 (2)中排装置 中排装置设置在阳(阴)树脂和压脂层的分界面上,用于排泄再生时酸(碱)废液和进小反洗水,型式为DN500~600型中排为双母管式:DN800~

相关文档