文档库 最新最全的文档下载
当前位置:文档库 › 材料科学与工程

材料科学与工程

材料科学与工程
材料科学与工程

材料科学与工程

Materials Science and Engineering

(专业代码:0805)

一、培养目标

本学科培养德、智、体、美、劳全面发展,具有坚实系统的材料科学与工程理论基础,了解材料科学与工程学科国际前沿领域和发展动态,能在科学研究和工程实践中做出创新性成果,并能够适应我国经济、科技、教育发展需要,从事材料科学与工程领域研究和教育的高层次人才。

二、主要研究方向

主要研究方向包括:

1.材料物理与化学:先进功能材料、先进光电功能材料与器件、材料计算与理论设计,高温超导电性、自旋电子学、新型人工晶体材料、太阳能电池,生物材料、材料先进表征、材料的微观结构和缺陷、材料疲劳与断裂机制、磁学与磁性材料、材料力学行为基础、催化材料、相变制冷材料、量子材料。

2.材料学:材料结构与性能关系、材料制备与加工、先进能源材料与应用技术(包括固体氧化物燃料电池材料、太阳能电池材料、锂离子电池材料、透氧透氢陶瓷膜反应器材料)、微电子材料、印刷电子工程材料与器件、无机膜材料、涂层材料、荧光材料、新型碳材料、陶瓷材料、微纳结构与器件、柔性材料与器件、特种用途材料、极端条件下材料制备、纳米材料、钛合金、生物医用材料、镁铝等轻合金材料、环境功能材料、高温合金等。

3.材料加工工程:特种合金及部件制备、材料表面工程及薄膜技术、金属塑性加工技术、焊接与连接技术、钢及合金的制备、加工及计算机模拟、合金凝固过程、钢铁冶金、粉末冶金、金属基复合材料、稀土金属及应用、大尺寸构件均质化制备。

4.腐蚀科学与防护:腐蚀电化学、高温氧化、材料力学与化学的交互作用、材料自然环境腐蚀、材料腐蚀防护技术。

三、课程类型和学分要求

1.硕士培养模式。通过硕士研究生招生统考或免试推荐等形式,取得我校硕士研究生资格者。研究生在申请硕士学位时,取得的总学分不低于35学分。其中公共必修课7学分,硕士学科基础课不少于10学分,硕士学科基础课和硕士专业基础课获得的总学分

不少于16学分。

2.硕博一体化培养模式。本专业和相关专业学生在读硕士研究生完成硕士阶段基本学习任务,通过博士生资格考核,可以取得博士生资格。研究生在申请博士学位时,取得的总学分不低于45学分。其中公共必修课11学分,硕士学科基础课不少于10学分,硕士学科基础课和硕士专业基础课获得的总学分不低于16分,博士专业课(含进展课或累积考核)不少于4学分。

3.普通博士生培养模式。已取得硕士学位,通过我校博士生资格考核者。研究生在申请博士学位时,取得的总学分不低于10学分。其中公共必修课4学分,博士专业课(含进展课或累积考核)不少于4学分(含进展课2学分)。

4.研究生在读期间至少修读一门硬核课程(允许跨专业和跨学科选修),单门成绩75分以上为通过,该类课程列表动态更新。融合学院的普博生可自行决定是否要求。

四、研究生培养过程要求

1.博士资格考试:研究生进入博士阶段之前须通过本学科统一组织的博士资格考试,时间安排在统考生的博士入学考试之后,与统考生复试合并进行,统考生未通过博士资格考试者视同复试未通过,不能录取;硕转博的研究生未通过博士资格考试者可以申请下一年度再次参加博士资格考试,再次不通过者,不能申请转为博士生。

2.开题报告:博士学位论文的开题报告及评审过程是博士研究生培养的必要环节。开题报告的时间由博士生导师根据博士生工作进度情况确定,一般应在博士培养阶段的第三或第四学期内完成;开题报告由博士生所在一级学科组织;博士学位论文开题报告评审小组由本学科及相关学科的专家组成,人数不少于5人(其中具有正高级职称的博士生导师不少于3人);达到或超过三分之二的评审专家同意通过的方可通过;开题报告不通过的博士研究生可以申请在下一学期重新开题。硕士研究生开题报告由学位点自行制定相关政策并严格执行。

3.年度进展、中期检查和预答辩等:博士生在学期间每年须提交研究进展报告,经导师签字同意,学位点组织对研究进展报告进行审查,并提出考核意见。对考核不合格的学生,转为硕士研究生。鼓励学位点组织研究生论文中期检查和预答辩(如组织中期检查可将开题报告时间适当提前),就论文所属领域知识掌握情况和取得的成果进行评定,具体要求由学位点自行制定并执行。

4.毕业答辩:博士学位论文的毕业答辩应在研究生通过开题后至少间隔一年进行;具体要求参见研究生院的相关规定。

5.国际学术交流:博士生在学期间须参加一次国际学术会议,或短期出境访学一次,或修读并通过学校开设的用英语讲授的专业课程。国际学术会议和短期出境访学后,及时向学院教学办公室提交有关证明材料。

6.学术报告:博士生在学期间必须听取不少于15场次的学术报告会,并在报告结束3天内向导师和学院教学办公室提交“化学与材料科学学院研究生参加学术报告总结表”;博士生在学期间必须在研究生论坛、研究生沙龙或国内外的学术报告会议上做学术报告

至少1次,并及时向学院教学办公室提交有关论文报告证明材料。

7.教学实践:博士生在学期间须承担一次学校、学院所设的助教工作,以获得相关教学经验。硕士期间在校内承担的助教工作予以认可。融合学院根据实际情况可自行制定替代方案。

五、选课要求和课程设置列表

1.公共必修课和素质类课程列表由学校统一设置和要求。

2.超出学分要求的基础课,学生可以申请调整为专业选修课。

3.研究生中途由其他专业转入本专业的,应按照本专业课程要求补修课程,已修课程

符合本专业要求的,可以计入学位课程学分。

4.研究生选修本专业培养方案以外的研究生课程,经导师签字同意,可以算作本专业

的专业选修课。

5.研究生补修本科生所获学分不计入学位课程学分。

6.本专业课程设置列表如下:

硕士学科基础课:

MSEN6001P固体物理(4)(硬核课程)MSEN6002P固体材料结构学(3)(硬核课程)

MSEN6003P材料物理(4)MSEN6004P热力学与相平衡(3)

MSEN6015P材料中的速率过程(3)MSEN6005P材料合成化学(3)

金属所开设课程:

MSEN6100P材料科学的物理基础(5)MSEN6101P材料科学的化学基础(5)

MSEN6102P材料中的扩散与相变(2)MSEN6103P合金热力学(2)

MSEN6104P材料科学中的多体量子论基础(3)

MSEN6105P数学物理方程(3)

硕士专业基础课(建议按专业方向选择,经导师同意也可选择不同专业的课程):

材料物理与化学:

MSEN6006P薄膜材料科学与技术(3)MSEN6007P晶体材料制备原理与技术(3)

MSEN6008P材料力学与热学性能(3)MSEN6009P计算材料学(2)

CHEM6035P高分子物理化学(4)MSEN6010P高分子表面与界面 (3)

CHEM6036P生物材料(4)

材料学:

MSEN6011P陶瓷科学与工艺学(3)MSEN6012P固体化学(3)

MSEN6013P溶胶凝胶化学与工程引论(2)

MSEN6014P纳米材料学(3)

CHEM5012P电化学研究方法(4)(硬核课程)

CHEM6040P材料与器件的微纳制造(2)

CHEM7007P能源化学前沿(2)

金属所开设课程(含材料加工工程和腐蚀科学与防护):

MSEN6106P数值分析(2)MSEN6107P材料的结构(2)

MSEN6108P材料的力学行为(2)MSEN6109P凝固理论及技术(2)

MSEN6110P腐蚀电化学原理(2)MSEN6111P高温氧化理论(2)

MSEN6112P塑性加工力学(2)MSEN6113P材料的磁性与磁性测量(3)MSEN6114P弹塑性力学(3)MSEN6115P衍射物理(2)

备注:中科大本科生材料类的下述专业基础课被认可可以替代相应的研究生课程:固体材料结构基础(替代固体材料结构学),材料制备与加工(替代材料合成化学)。

硕士专业选修课(博士专业课程、其它学科及院系的研究生课程予以认可):

博士专业课(作为硕士专业选修课予以认可):

MSEN7001P新能源材料与技术(2)MSEN7002P材料科学与工程前沿(2)CHEM7007P(新)能源化学前沿(2)CHEM7008P无机化学进展(3)

CHEM7009P聚合物光子材料(2)CHEM7010P聚合反应原理专论(2)

金属所开设课程:

MSEN7100P高温合金的基础理论与应用(2)

MSEN7101P电化学储能用炭材料(2)(进展课)

MSEN7102P先进陶瓷及研究(2)(进展课)

MSEN7103P生物材料(2)MSEN7104P材料的环境行为(2)MSEN7105P环境敏感断裂(2)

MSEN7106P钛基合金与金属间化合物(2)(进展课)

MSEN7107P塑性加工过程的数值模拟与物理模拟(2)(进展课)

MSEN7108P大型铸锻焊件制造基础(2)MSEN7109P半导体物理学(2)MSEN7110P半导体光催化(2)(进展课)MSEN7111P化工过程强化(2)MSEN7112P凝聚态物理(2)MSEN7113P沉淀析出相变理论(2)MSEN7114P高性能难成形新材料的塑性加工(2)(进展课)

MSEN7115P材料动力学基础(2)

MSEN7116P非平衡金属材料专题(2)(进展课)

MSEN7117P高温合金前沿讲座(2)(进展课)

MSEN7118P金属电化学腐蚀研究实例分析(2)

MSEN7119P材料科学基础(2)(英文授课)MSEN7120P计算材料学(2)

科学岛分院开设

MSEN7121P核材料专题(4)MSEN7122P光电材料专题(4)

MSEN7123P复合材料专题(4)MSEN7124P薄膜材料专题(4)MSEN7125P特种材料专题(4)

材料科学与工程学科的发展历程和趋势

材料科学与工程学科发展历程和趋势 摘要:本文结合国内几所高校材料学科的具体实例,综述了材料科学与工程学科的国内外发展的历史进程,讨论了材料科学与工程学科的发展趋势,同时展望了材料科学与工程学科在未来的发展前景。 关键词:材料科学与工程,发展历程,趋势 Abstract In this paper,on the basis of practice of materials science and engineering discipline in several domestic universities, the development process of materials science and engineering at home and abroad were reviewed, and the development trend of this discipline were discussed. Meanwhile, the prospect of this subject in the future were prospected. Keywords:materials science and engineering,development process,trend 1 引言 上个世纪70年代以来,人们把信息、材料和能源作为社会文明的支柱。80年代又把新材料、信息技术和生物技术并列为新技术革命的重要标志。随着科学技术的高速发展,新技术、新产品及新工艺对新材料的要求越来越强烈,也促进了当代材料科学技术的飞速发展。现在,材料学科及教育的重要性已被人们认识,国内外许多工科院校及综合性大学都相继成立了材料科学与工程学院(系)。 2 材料科学与工程学科发展历程 “材料科学”这个名词在20世纪60年代由美国学者首先提出。1957年,苏联人造地球卫星发射成功之后,美国政府及科技界为之震惊,并认识到先进材料对于高技术发展的重要性,于是一些大学相继成立了十余个材料科学研究中心,从此,“材料科学”这一名词开始被人们广泛使用。 材料学科的发展过程遵循了现代科学发展的普遍规律,也是从细分走向综合。各门材料学科通过相互交叉、渗透、移植,由细分最终走向具有共同理论和技术基础的全材料科学[1]。20世纪40年代以前,基础科学和工程之间的联系并不十分紧密。在20世纪20年代固体物理和材料工程两学科是分离的,到40年代两学科才有交叉。从60年代初开始出现了材料科学,到了70年代,材料科学和材料工程的学科内涵大部分重叠,材料科学兼备自然科学和应用科学的属性,故“材料科学与工程”(MSE)作为一个大学科逐步为科技界和教育界所接受[2]。 2.1 国外材料科学与工程学科发展历程 美国西北大学M.E.Fine教授等人首先于20世纪60年代初提出了材料科学与 工程(MSE)这一概念。在上20世纪60年代以前,国内外高校均没有明确完整的MSE教育。此时,材料科学与技术人才的培养分属冶金、化工或机械等专业。从60年代初起,欧美等国家高校中冶金、机械或化工等与材料有关的系或相关的专业及学科开始改设“材料科学与工程系”、“材料科学系”、“材料工学系”。至80年代中后期,欧美等国大部分高校已完成此项工作。这种教育符合材料科学技术发展趋势。近年来,美国与欧洲在材料教育方面的最显著特点就是把材料科学与工程看作是一门学科。在大学不再需要专门的材料主题。这些材料不再是冶金、陶瓷或电子材料学,而统称为材料,材料教育涉及的范围包括金属、陶瓷、高分子、

材料科学与工程基础300道选择题(答案)

第一组 材料的刚性越大,材料就越脆。F 按受力方式,材料的弹性模量分为三种类型,以下哪一种是错误的:D A. 正弹性模量(E) B. 切弹性模量(G) C. 体积弹性模量(G) D. 弯曲弹性模量(W) 滞弹性是无机固体和金属的与时间有关的弹性,它与下列哪个因素无关B A 温度; B 形状和大小; C 载荷频率 高弹性有机聚合物的弹性模量随温度的升高而A A. 上升; B. 降低; C. 不变。 金属材料的弹性模量随温度的升高而B A. 上升; B. 降低; C. 不变。 弹性模量和泊松比之间有一定的换算关系,以下换算关系中正确的是D A. K=E /[3(1+2)]; B. E=2G (1-); C. K=E /[3(1-)]; D. E=3K (1-2); E. E=2G (1-2)。 7.Viscoelasticity”的意义是B A 弹性;B粘弹性; C 粘性 8.均弹性摸量的表达式是A A、E=σ/ε B、G=τ/r C、K=σ。/(△V/V) 9.金属、无机非金属和高分子材料的弹性摸量一般在以下数量级范围内C GPa A.10-102、<10,10-102 B.<10、10-102、10-102 C.10-102、10-102、<10 10.体心立方晶胞的金属材料比面心立方晶胞的同类金属材料具有更高的摸量。T 11.虎克弹性体的力学特点是B A、小形变、不可回复 B、小形变、可回复 C、大形变、不可回复 D、大形变、可回复 13、金属晶体、离子晶体、共价晶体等材料的变形通常表现为,高分子材料则通常表现为和。A A 普弹行、高弹性、粘弹性 B 纯弹行、高弹性、粘弹性 C 普弹行、高弹性、滞弹性 14、泊松比为拉伸应力作用下,材料横向收缩应变与纵向伸长应变的比值υ=ey/ex F 第二组 1.对各向同性材料,以下哪一种应变不属于应变的三种基本类型C A. 简单拉伸; B. 简单剪切; C. 扭转; D. 均匀压缩 2.对各向同性材料,以下哪三种应变属于应变的基本类型ABD A. 简单拉伸; B. 简单剪切; C. 弯曲; D. 均匀压缩 3.“Tension”的意义是A A 拉伸; B 剪切; C 压缩 4.“Compress”的意义是C A 拉伸;B剪切; C 压缩 5.陶瓷、多数玻璃和结晶态聚合物的应力-应变曲线一般表现为纯弹性行为T 6.Stress”and “strain”的意义分别是A A 应力和应变;B应变和应力;C应力和变形

材料科学基础习题与答案

第二章思考题与例题 1. 离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因 2. 从结构、性能等方面描述晶体与非晶体的区别。 3. 何谓理想晶体何谓单晶、多晶、晶粒及亚晶为什么单晶体成各向异性而多晶体一般情况下不显示各向异性何谓空间点阵、晶体结构及晶胞晶胞有哪些重要的特征参数 4. 比较三种典型晶体结构的特征。(Al、α-Fe、Mg三种材料属何种晶体结构描述它们的晶体结构特征并比较它们塑性的好坏并解释。)何谓配位数何谓致密度金属中常见的三种晶体结构从原子排列紧密程度等方面比较有何异同 5. 固溶体和中间相的类型、特点和性能。何谓间隙固溶体它与间隙相、间隙化合物之间有何区别(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么 6. 已知Cu的原子直径为A,求Cu的晶格常数,并计算1mm3Cu的原子数。 7. 已知Al相对原子质量Ar(Al)=,原子半径γ=,求Al晶体的密度。 8 bcc铁的单位晶胞体积,在912℃时是;fcc铁在相同温度时其单位晶胞体积是。当铁由bcc转变为fcc时,其密度改变的百分比为多少 9. 何谓金属化合物常见金属化合物有几类影响它们形成和结构的主要因素是什么其性能如何

10. 在面心立方晶胞中画出[012]和[123]晶向。在面心立方晶胞中画出(012)和(123)晶面。 11. 设晶面(152)和(034)属六方晶系的正交坐标表述,试给出其四轴坐标的表示。反之,求(3121)及(2112)的正交坐标的表示。(练习),上题中均改为相应晶向指数,求相互转换后结果。 12.在一个立方晶胞中确定6个表面面心位置的坐标,6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数,各个棱边和对角线的晶向指数。 13. 写出立方晶系的{110}、{100}、{111}、{112}晶面族包括的等价晶面,请分别画出。 14. 在立方晶系中的一个晶胞内画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 15 在六方晶系晶胞中画出[1120],[1101]晶向和(1012)晶面,并确定(1012)晶面与六方晶胞交线的晶向指数。 16.在立方晶系的一个晶胞内同时画出位于(101),(011)和(112)晶面上的[111]晶向。 17. 在1000℃,有W C为%的碳溶于fcc铁的固溶体,求100个单位晶胞中有多少个碳原子(已知:Ar(Fe)=,Ar(C)=) 18. r-Fe在略高于912℃时点阵常数a=,α-Fe在略低于912℃时a=,求:(1)上述温度时γ-Fe和α-Fe的原子半径R;(2)γ-Fe→α-Fe转变时的体积变化率;(3)设γ-Fe→α-Fe转变时原子半径不发生变化,求此转变时的体积变

四川大学材料科学与工程基础期末考 题库

选择题第一组 1.材料的刚性越大,材料就越脆。()B A. 正确; B. 错误 2.按受力方式,材料的弹性模量分为三种类型,以下哪一种是错误的:()D A. 正弹性模量(E); B. 切弹性模量(G); C. 体积弹性模量(G); D. 弯曲弹性模量(W)。 3.滞弹性是无机固体和金属的与时间有关的弹性,它与下列哪个因素无关() B A 温度; B 形状和大小; C 载荷频率 4.高弹性有机聚合物的弹性模量随温度的升高而()。A A. 上升; B. 降低; C. 不变。 5.金属材料的弹性模量随温度的升高而()。B A. 上升; B. 降低; C. 不变。 6.弹性模量和泊松比ν之间有一定的换算关系,以下换算关系中正确的是() D A. K=E /[3(1+2ν)]; B. E=2G (1-ν); C. K=E /[3(1-ν)]; D. E=3K (1-2ν); E. E=2G (1-2ν)。 7.“Viscoelasticity”的意义是()B

A 弹性; B粘弹性; C 粘性 8、均弹性摸量的表达式是()A A、E=σ/ε B、G=τ/r C、K=σ。/(△V/V) 9、金属、无机非金属和高分子材料的弹性摸量一般在以下数量级范围内(GPa)C A、10-102、<10,10-102 B、<10、10-102、10-102 C、10-102、10-102、<10 10、体心立方晶胞的金属材料比面心立方晶胞的同类金属材料具有更高的摸量。 11、虎克弹性体的力学特点是()B A、小形变、不可回复 B、小形变、可回复 C、大形变、不可回复 D、大形变、可回复 13、金属晶体、离子晶体、共价晶体等材料的变形通常表现为,高分子材料则通常表现为和。A A 普弹行、高弹性、粘弹性 B 纯弹行、高弹性、粘弹性 C 普弹行、高弹性、滞弹性 14、泊松比为拉伸应力作用下,材料横向收缩应变与纵向伸长应变的比值υ=ey/ex ()B A. 正确; B. 错误

《材料科学与工程基础》习题和思考题及答案

《材料科学与工程基础》习题和思考题及答案第二章 2-1.按照能级写出N、O、Si、Fe、Cu、Br原子的电子排布(用方框图表示)。 2-2.的镁原子有13个中子,11.17%的镁原子有14个中子,试计算镁原子的原子量。 2-3.试计算N壳层内的最大电子数。若K、L、M、N壳层中所有能级都被电子填满时,该 原子的原子序数是多少? 2-4.计算O壳层内的最大电子数。并定出K、L、M、N、O壳层中所有能级都被电子填满 时该原子的原子序数。 2-5.将离子键、共价键和金属键按有方向性和无方向性分类,简单说明理由。2-6.按照杂化轨道理论,说明下列的键合形式: (1)CO的分子键合(2)甲烷CH的分子键合 24 (3)乙烯CH的分子键合(4)水HO的分子键合 242 (5)苯环的分子键合(6)羰基中C、O间的原子键合 2-7.影响离子化合物和共价化合物配位数的因素有那些? 2-8.试解释表2-3-1中,原子键型与物性的关系? 332-9.0?时,水和冰的密度分别是1.0005 g/cm和0.95g/cm,如何解释这一现象? +2-10.当CN=6时,K离子的半径为0.133nm(a)当CN=4时,半径是多少?(b)CN=8时,半 径是多少?

32-11.(a)利用附录的资料算出一个金原子的质量?(b)每mm 的金有多少个原子?(c)根据金 21的密度,某颗含有10个原子的金粒,体积是多少?(d)假设金原子是球形 (r=0.1441nm),Au21并忽略金原子之间的空隙,则10个原子占多少体积?(e)这些金原子体积占总体积的多 少百分比? 2+2-2-12.一个CaO的立方体晶胞含有4个Ca离子和4个O离子,每边的边长是0.478nm, 则CaO的密度是多少? 2-13.硬球模式广泛的适用于金属原子和离子,但是为何不适用于分子? 2-14.计算(a)面心立方金属的原子致密度;( b)面心立方化合物NaCl的离子致密度(离 子半径r+=0.097,r-=0.181);(C)由计算结果,可以引出什么结论? NaCl 470 2-15.铁的单位晶胞为立方体,晶格常数 a=0.287nm,请由铁的密度算出每个 单位晶胞所含 的原子个数。 2-16.钛的单位晶胞含有两个原子,请问此单位晶胞的体积是多少? 2-17.计算面心立方、体心立方和密排六方晶胞的致密度。 2-18.在体心立方结构晶胞的(100)面上按比例画出该面上的原子以及八面体和四面体间隙。 2-19.键合类型是怎样影响局部原子堆垛的? 2-20.厚度0.08mm、面积670mm2的薄铝片(a)其单位晶胞为立方体, a=0.4049nm,则此薄片

材料科学与工程概述

第1节材料科学与工程概述 1.1.1材料科学的内涵 材料科学就是从事对材料本质的发现、分析认识、设计及控制等方面研究的一门科学。其目的在于揭示材料的行为,给予材料结构的统一描绘或建立模型,以及解释结构与性能之间的内在关系。材料科学的内涵可以认为是由五大要素组成,他们之间的关联可以用一个多面体来描述(图1-1)。其中使用效能是材料性能在工作状态(受力、气氛、温度)下的表现,材料性能可以视为材料的固有性能,而使用效能则随工作环境不同而异,但它与材料的固有性能密切相关。理论及材料与工艺设计位于多面体的中心,它直接和其它5个要素相连,表明它在材料科学中的特殊地位。 材料科学的核心内容是结构与性能。为了深入理解和有效控制性 能和结构,人们常常需要了解各种过程的现象,如屈服过程、断裂 过程、导电过程、磁化过程、相变过程等。材料中各种结构的形成 都涉及能量的变化,因此外界条件的改变也将会引起结构的改变, 从而导致性能的改变。因此可以说,过程是理解性能和结构的重要 环节,结构是深入理解性能的核心,外界条件控制着结构的形成和 过程的进行。 材料的性能是由材料的内部结构决定的,材料的结构反映了材料 的组成基元及其排列和运动的方式。材料的组成基元一般为原子、 离子和分子等,材料的排列方式在很大程度上受组元间结合类型的 影响,如金属键、离子键、共价键、分子键等。组元在结构中不是 静止不动的,是在不断的运动中,如电子的运动、原子的热运动等。 描述材料的结构可以有不同层次,包括原子结构、原子的排列、相 结构、显微结构、结构缺陷等,每个层次的结构特征都以不同的方 式决定着材料的性能。 物质结构是理解和控制性能的中心环节。组成材料的原子结构,电子围绕着原子核的运动情况对材料的物理性能有重要影响,尤其是电子结构会影响原子的键合,使材料表现出金属、无机非金属或高分子的固有属性。金属、无机非金属和某些高分子材料在空间均具有规则的原子排列,或者说具有晶体的格子构造。晶体结构会影响到材料的诸多物理性能,如强度、塑性、韧性等。石墨和金刚石都是由碳原子组成,但二者原子排列方式不同,导致强度、硬度及其它物理性能差别明显。当材料处于非晶态时,与晶体材料相比,性能差别也很大,如玻璃态的聚乙烯是透明的,而晶态的聚乙烯是半透明的。又如某些非晶态金属比晶态金属具有更高的强度和耐蚀性能。此外,在晶体材料中存在的某些排列的不完整性,即存在结构缺陷,也对材料性能产生重要影响。 我们在研究晶体结构与性能的关系时,除考虑其内部原子排列的规则性,还需要考虑其尺寸的效应。从聚集的角度看,三维方向尺寸都很大的材料称为块体材料,在一维、二维或三维方向上尺寸变小的材料叫做低维材料。低维材料可能具有块体材料所不具备的性质,如零维的纳米粒子(尺寸小于100nm)具有很强的表面效应、尺寸效应和量子效应等,使其具有独特的物理、化学性能。纳米金属颗粒是电的绝缘体和吸光的黑体。以纳米微粒组成的陶瓷具有很高的韧性和超塑性。纳米金属铝的硬度为普通铝的8倍。具有高强度特征的一维材料的有机纤维、光导纤维,作为二维材料的金刚石薄膜、超导薄膜等都具有特殊的物理性能。 1.1.2 材料科学的确立与作用 (1)材料科学的提出 “材料科学”的明确提出要追朔到20世纪50年代末。1957年10月4日前苏联发射了第一颗人造卫星,重80千克,11月3日发射了第二颗人造卫星,重500千克。美国于1958年1月31日发射的“探测者1号”人造卫星仅8千克,重量比前苏联的卫星轻得多。对此美国有关部门联合向总统提出报告,认为在科技竞争中美国之所以落后于苏联,关键在先进材料的研究方面。1958年3月18日总统通过科学顾问委员会发布“全国材料规划”,决定12所大学成立材料研究实验室,随后又扩大到17所。从那时起出现了包括多领域的综合性学科--“材料科学与工程学科”。 (2)材料科学的形成 材料科学的形成主要归功于如下五个方面的基础发展: 各类材料大规模的应用发展是材料科学形成的重要基础之一。18世纪蒸汽机的发明和19世纪电动机的发明,使材料在新品种开发和规模生产等方面发生了飞跃,如1856年和1864年先后发明了转炉和平炉炼钢,大大促进了机械制造、铁路交通的发展。随之不同类型的特殊钢种也相继出现,如1887年高锰钢、1903年硅钢及1910年镍铬不锈钢等,与此同时,铜、铅、锌也得到大量应用,随后铝、镁、钛和稀有金属相继问世。20世纪初,人工合成高分子材料问世,如1909年的酚醛树脂(胶木),1925年的聚苯乙烯,1931年的聚氯乙烯以及1941年的尼龙等,发展十分迅速,如今世界年产量在1亿吨以上,论体积产量已超过了钢。无机非金属材料门类较多,一直占有特殊的地位,其中一些传统材料资源丰富,性能价格比在所有材料中最有竞争能力。20世纪中后期,通过合成原料和特殊制备方法,制造出一系列具有不可替代作用的功能材料和先进结构材料。如电子陶瓷、铁氧体、光学玻璃、透明陶瓷、敏感及光电功能薄膜材料等。先进结构

《材料科学与工程基础》习题和思考题及答案

《材料科学与工程基础》习题和思考题及答案 第二章 2-1.按照能级写出N、O、Si、Fe、Cu、Br原子的电子排布(用方框图表示)。 2-2.的镁原子有13个中子,11.17%的镁原子有14个中子,试计算镁原子的原子量。 2-3.试计算N壳层内的最大电子数。若K、L、M、N壳层中所有能级都被电子填满时,该原子的原子序数是多少? 2-4.计算O壳层内的最大电子数。并定出K、L、M、N、O壳层中所有能级都被电子填满时该原子的原子序数。 2-5.将离子键、共价键和金属键按有方向性和无方向性分类,简单说明理由。 2-6.按照杂化轨道理论,说明下列的键合形式: (1)CO2的分子键合(2)甲烷CH4的分子键合 (3)乙烯C2H4的分子键合(4)水H2O的分子键合 (5)苯环的分子键合(6)羰基中C、O间的原子键合 2-7.影响离子化合物和共价化合物配位数的因素有那些? 2-8.试解释表2-3-1中,原子键型与物性的关系? 2-9.0℃时,水和冰的密度分别是1.0005 g/cm3和0.95g/cm3,如何解释这一现象? 2-10.当CN=6时,K+离子的半径为0.133nm(a)当CN=4时,半径是多少?(b)CN=8时,半径是多少? 2-11.(a)利用附录的资料算出一个金原子的质量?(b)每mm3的金有多少个原子?(c)根据金的密度,某颗含有1021个原子的金粒,体积是多少?(d)假设金原子是球形(r Au=0.1441nm),并忽略金原子之间的空隙,则1021个原子占多少体积?(e)这些金原子体积占总体积的多少百分比? 2-12.一个CaO的立方体晶胞含有4个Ca2+离子和4个O2-离子,每边的边长是0.478nm,则CaO的密度是多少? 2-13.硬球模式广泛的适用于金属原子和离子,但是为何不适用于分子? 2-14.计算(a)面心立方金属的原子致密度;(b)面心立方化合物NaCl的离子致密度(离子半径r Na+=0.097,r Cl-=0.181);(C)由计算结果,可以引出什么结论?

材料科学基础第一章全部作业

(一) 1 谈谈你对材料学科及材料四要素之间的关系的认识 2 金属键与其它结合键有何不同,如何解释金属的某些特性? 3 说明空间点阵、晶体结构、晶胞三者之间的关系。 4 晶向指数和晶面指数的标定有何不同?其中有何须注意的问题? 5 画出三种典型晶胞结构示意图,其表示符号、原子数、配位数、致密度各是什么? 6 画出立方晶系中(011),(312),[211],[211],[101],(101) 7, 画出六方晶系中(1120),(0110),(1012),(110),(1012) 8. 原子间的结合键共有几种?各自特点如何? 9.在立方系中绘出{110}、{111}晶面族所包括的晶面,及(112)和(120)晶面。标出具有下列密勒指数的晶面和晶向: a)立方晶系(421),() 123,(130),[211],[311];

10.在立方系中绘出{110}、{111}晶面族所包括的晶面,及(112)和(120)晶面。 11.计算面心立方结构(111)、(110)与(100)面的面密度和面间距。 12. 标出具有下列密勒指数的晶面和晶向: a)立方晶系(421),()123,(130),[211],[311]; b)六方晶系()2111, ()1101,()3212,[2111],1213????。 13 在体心立方晶系中画出{111}晶面族的所有晶面。 14 画出<110>晶向族所有晶向

15.写出密排六方晶格中的[0001],(0001),()1120,()1100,()1210 16. 在一个简单立方晶胞内画出一个(110)晶面和一个[112]晶向。 17. 标出具有下列密勒指数的晶面和晶向: 立方晶系(421),()123,(130),[211],[311]; 18.计算晶格常数为a 的体心立方结构晶体中八面体间隙的大小。 19.画出面心立方晶体中(111)面上的[112]晶向。 20.已知某一面心立方晶体的晶格常数为a ,请画出其晶胞模型并分别计算该晶体 的致密度、{111}晶面的面密度以及{110}晶面的面间距。 21.表示立方晶体的(123),[211],()012 22. 写出密排六方晶格中()1120,()1100,()1210[2111],1213???? 23. 画出密排六方晶格中的[0001], ,()0110,()1010,[2110],[1120] 24 在面心立方晶胞中的(1 1 1)晶面上画出[110]晶向 25 指出在一个面心立方晶胞中的八面体间隙的数目,并写出其中一个八 面体间隙的中心位置坐标。假设原子半径为r ,计算八面体间隙的半径。 26.画出密排六方晶格中的(0001),()1120,()1100,()1210 27.立方晶系中画出(010),(011),(111),(231),[231],[321] 29.计算晶格常数为a 的面心立方结构晶体中四面体间隙和八面体间隙的大小。(4分) 30.写出立方晶系{}110、{}123晶面族的所有等价面 31.立方晶胞中画出以下晶面和晶向:()102,(112),(213) ,[110], 32.六方晶系中画出以下晶面和晶向:(2110),(1012),1210????,0111???? 33.写出立方晶系{}100、{}234晶面族的所有等价面 34.画出立方晶胞内(111),[112], 35.画出六方晶胞内(1011),[1123]

材料科学的发展史

材料是人类生活和生产的物质基础,是人类认识自然和改造自然的工具。可以这样说,自从人类一出现就开始了使用材料。材料的历史与人类史一样久远。从考古学的角度,人类文明曾被划分为旧石器时代、新石器时代、青铜器时代、铁器时代等,由此可见材料的发展对人类社会的影响。材料也是人类进化的标志之一,任何工程技术都离不开材料的设计和制造工艺,一种新材料的出现,必将支持和促进当时文明的发展和技术的进步。从人类的出现到20世纪的今天,人类的文明程度不断提高,材料及材料科学也在不断发展。在人类文明的进程中,材料大致经历了以下五个发展阶段。 1.使用纯天然材料的初级阶段 在原古时代,人类只能使用天然材料(如兽皮、甲骨、羽毛、树木、草叶、石块、泥土等),相当于人们通常所说的旧石器时代。这一阶段,人类所能利用的材料都是纯天然的,在这一阶段的后期,虽然人类文明的程度有了很大进步,在制造器物方面有了种种技巧,但是都只是纯天然材料的简单加工。 2.人类单纯利用火制造材料的阶段 这一阶段横跨人们通常所说的新石器时代、铜器时代和铁器时代,也就是距今约10000年前到20世纪初的一个漫长的时期,并且延续至今,它们分别以人类的三大人造材料为象征,即陶、铜和铁。这一阶段主要是人类利用火来对天然材料进行煅烧、冶炼和加工的时代。例如人类用天然的矿土烧制陶器、砖瓦和陶瓷,以后又制出玻璃、水泥,以及从各种天然矿石中提炼铜、铁等金属材料,等等。 3.利用物理与化学原理合成材料的阶段 20世纪初,随着物理学和化学等科学的发展以及各种检测技术的出现,人类一方面从化学角度出发,开始研究材料的化学组成、化学键、结构及合成方法,另一方面从物理学角度出发开始研究材料的物性,就是以凝聚态物理、晶体物理和固体物理等作为基础来说明材料组成、结构及性能间的关系,并研究材料制备和使用材料的有关工艺性问题。由于物理和化学等科学理论在材料技术中的应用,从而出现了材料科学。在此基础上,人类开始了人工合成材料的新阶段。这一阶段以合成高分子材料的出现为开端,一直延续到现在,而且仍将继续下去。人工合成塑料、合成纤维及合成橡胶等合成高分子材料的出现,加上已有的金属材料和陶瓷材料(无机非金属材料)构成了现代材料的三大支柱。除合成高分子材料以外,人类也合成了一系列的合金材料和无机非金属材料。超导材料、半导体材料、光纤等材料都是这一阶段的杰出代表。 从这一阶段开始,人们不再是单纯地采用天然矿石和原料,经过简单的煅烧或冶炼来制造材料,而且能利用一系列物理与化学原理及现象来创造新的材料。并且根据需要,人们可以在对以往材料组成、结构及性能间关系的研究基础上,进行材料设计。使用的原料本身有可能是天然原料,也有可能是合成原料。而材料合成及制造方法更是多种多样。 4.材料的复合化阶段 20世纪50年代金属陶瓷的出现标志着复合材料时代的到来。随后又出现了玻璃钢、铝塑薄膜、梯度功能材料以及最近出现的抗菌材料的热潮,都是复合材料的典型实例。它们都是为了适应高新技术的发展以及人类文明程度的提高而产生的。到这时,人类已经可以利用新的物理、化学方法,根据实际需要设计独特性能的材料。 现代复合材料最根本的思想不只是要使两种材料的性能变成3加3等于6,而是要想办法使他们变成3乘以3等于9,乃至更大。 严格来说,复合材料并不只限于两类材料的复合。只要是由两种不同的相组成的材料都可以称为复合材料。 5.材料的智能化阶段 自然界中的材料都具有自适应、自诊断合资修复的功能。如所有的动物或植物都能在没

材料科学与工程发展的展望-推荐下载

材料科学与工程发展的展望 作者:宋家树张兴钤张万箱 1 90年代新材料、材料科学与工程的重要地位当前世界正面临新的科学、技 术革命,科学、技术的作用被空前地开发出来。在这一基础上,以电子信息技术 为先导的新的产业革命行将到来。对于新产业革命的具体内容虽有不同的预测, 但共同的一点是:材料与制造技术仍是新时代企业的物质基础。90年代各种高 、新技术(如电子信息、能源、制造业以及航空、航天、海洋、军事技术等)将 都对材料及工艺提出更新更高的要求。美国1991年发表的“国家关键技术报告 ”认为:材料领域的进展几乎可以显著改进国民经济所有部门的产品性能,提高 它们的竞争能力;因此把材料列为六大关键技术的首位。这是由于先进材料与制 造技术是未来国民经济与国防力量发展的基础,是各种高、新技术成果转化为实 用产品与商品的关键。当前各种新材料市场规模超过1000亿美元,预计到2000 年将达4 000亿美元。由新材料带动而产生的新产品新技术则是一个更大的市场。例如美国在电子工业投入1美元的半导体材料可以产出10美元的电子设备 系统,而对交通工业如能延长材料使用寿命百分之一则可节约300亿美元。国防 科技及武器装备的发展在很大程度上也要依赖新材料和先进制造工艺。美国国 防部“关键技术计划”把21项关键技术放在五个技术群中,其中之一就是“材 料与制造”,他们认为这一技术群与70%的新技术都有密切关系。因为一方面许 多新材料技术本身就是新技术突破的主要内容。另一方面是它已成为大多数先 进国防技术转化为有效的武器装备的关键支撑条件。例如先进武器技术对微电 子电路要求的核心是提高信号处理速度(提高到GHz以上),这就要求高级半导体 材料,及亚微米(<0.25μm)制造工艺。传感器技术发展可以创造出新型武器(如 反辐射导弹的导引头可以瞄定敌方雷达),而传感技术本身依赖于高质量碲镉汞 、硅化铂、光纤、超导等材料及其加工技术。高能量密度材料决定了所有武器 的杀伤与推进能力。例如新合成的CL-20可使炸药能量增加20%,“同质异能核 ”如证实其存在则它所含能量比常规炸药高出100倍。高性能材料(特别是复合 材料)的应用将使燃气涡轮推动系统的能力提高一倍。由于武器技术的进步,以 及更多的采用新技术,使得现代化武器研制、生产周期加长、单价不断上涨。其 后果是使先进技术成果应用于作战武器系统上十分困难,而如不能进入应用则研 究的成果就被浪费了。解决这一难题的关键仍是革新制造工艺技术,例如先进的 柔性设计与生产技术。在 未来的世纪我们会面临更大的挑战,当然也有机遇。当前我国经济正在高速发展,但工业产品与先进国家相比还有很大的差距,特别是产品质量与生产的效率较低, 而消耗很高。国防科技及武器装备的质量也急待提高。为使我们的工业在未来 具有竞争力,现在应抓住机遇,重视材 料科学与工程这一新兴学科,狠抓材料与制造工艺这两项关键基础技术,使之接近、赶上现代国际水平。为此我们需要认真考查现代材料科学技术的特点与将 来的发展趋势。科研中国https://www.wendangku.net/doc/1517599681.html,. 2 90年代材料科学及工程发展的趋势材料科学技术是近年来发展最快的科技 领域之一,它不仅创造了大量高性能新材料和前所未有的加工方法,同时也使传 统材料的生产发生了巨大的变化。现代化的钢铁工业生产率的大幅度增长即是

材料发展的回顾与展望未来

材料发展的回顾与展望未来 摘要:回顾过去,人类的生活、生产和发展离不开材料。从人类早期发展到现在,材料的发展在人类发展史上占着不可或缺的地位。直到现代,人类的材料生产与制备技术已经相当成熟,各种新材料如雨后春笋般不断涌现。展望未来,材料依然将在人类社会的各个方面扮演重要角色。主要向半导体材料、结构材料、有机高分子材料等方向发展。 关键词:材料,发展 一、回顾材料发展历程 材料是人类生活和生产的物质基础,是人类认识自然和改造自然的工具。人类文明曾被划分为旧石器时代、新石器时代、青铜器时代、铁器时代等,由此可见材料的发展对人类社会的影响——没有材料就是没有发展。 人类诞生以前其实就有了材料,材料的历史与人类史一样久远,可能还要比之久远呢! 在人类文明的进程中,材料大致经历了以下五个发展阶段,他们是 1.使用纯天然材料的初级阶段:旧石器时代,人类只能使用天然材料(如兽皮、甲骨、羽毛、树木、草叶、石块、泥土等),之后也都只是纯天然材料的简单加工而已。 2.人类单纯利用火制造材料的阶段:新石器时代、铜器时代和铁器时代,是人类利用火来对天然材料进行煅烧、冶炼和加工的时代,主要材料有:陶、铜和铁。 3.利用物理与化学原理合成材料的阶段:20世纪初,由于物理和化学等科学理论在材料技术中的应用,从而出现了材料科学。在此基础上,人类开始了人工合成材料的新阶段,主要材料:人工合成塑料、合成纤维及合成橡胶等合成高分子材料的出现,加上已有的金属材料和陶瓷材料(无机非金属材料)构成了现代材料(除合成高分子材料以外,人类也合成了一系列的合金材料和无机非金属材料。超导材料、半导体材料、光纤等材料都是这一阶段的杰出代表)。 4.材料的复合化阶段:20世纪50年代金属陶瓷的出现标志着复合材料时代的到来。人类已经可以利用新的物理、化学方法,根据实际需要设计独特性能的复合材料(只要是由两种不同的相组成的材料都可以称为复合材料)。 5.材料的智能化阶段:如形状记忆合金、光致变色玻璃等等都是近年研发的智能材料(自然界中的材料都具有自适应、自诊断合资修复的功能,而目前研制成功的智能材料还只是一种智能结构)。 20 世纪以来,物理、化学、力学、生物学等学科的研究和发展推动了对于物质结构、材料的物理化学和力学性能的深入认识和了解。同时,金属学、冶金学、工程陶瓷技术、高分子科学、半导体科学、复合材料科学以及纳米技术等学科的发展促进了各种新型材料的产生,并推进了对于材料的制备、生产工艺、结构、性能及其相互之间关系的研究,为材料的设计、制造、工艺优化和材料功能和性能的合理使用,提供了充分的科学依据。现代材料科学更注重于研究新型复合材料和纳米材料的制备和创新,对于设计具有不同性能要求的材料复合工艺和纳米态材料的凝聚过程,以及各类材料之间的相互渗透和交叉的性能以及综合性能的研究给予了更多的重视。现代材料科学的发展不仅与揭露材料本质及其演化

材料科学与工程就业趋势及前景

材料科学与工程就业趋势及前景 材料科学与工程。在国务院学位委员会学科评议组制定和颁布的《授予博士、硕士学位和培养研究生的学科、专业目录》中,材料科学与工程属于工学学科门类之中的其中一个一级学科,下设3个二级学科,分别是:材料物理与化学、材料学、材料加工工程。材料科学与工程专业是研究材料成分、结构、加工工艺与其性能和应用的学科。在现代科学技术中,材料科学是国民经济发展的三大支柱之一。主要专业方向有金属材料、无机非金属材料、高分子材料、耐磨材料、表面强化、材料加工工程等等。 上个世纪70年代以来,人们把信息、材料和能源作为社会文明的支柱。80年代又把新材料、信息技术和生物技术并列为新技术革命的重要标志。进入21世纪,以纳米材料、超导材料、光电子材料、生物医用材料及新能源材料等为代表的新材料技术创新显得更为异常活跃,新材料诸多领域正面临着一系列新的技术突破和重大的产业发展机遇。相应的,材料科学与工程专业也蓬勃发展起来。大多数工科和综合院校均开设了材料科学与工程专业。 材料科学与工程专业是研究材料成分、结构、加工工艺与其性能和应用的学科。在现代科学技术中,材料科学是国民经济发展的三大支柱之一。 材料科学与工程一般分为材料学、材料加工、材料物理

与化学、无机非金属这几个专业。本人觉得,材料科学这个行业,只会越来越热门。往大的方向说,本人们国家要想成为工业强国,不再是世界工厂,让中国制造不再是廉价的代名词,材料科学应该会承担极为重要的部分。记得神七飞天之前,还在老师曾骄傲的对本人们说:“材料这一块本人们已经准备好了。”再举个近的例子,瓦良格很快就要试航了,可近爆出上面所用的特殊钢,国内根本造不出来。往小的说,本人身边的研究生毕业的同学已经不再局限在某某钢企这些特殊领域了。本人觉得这也是材料科学形势良好的表现。进研究院、汽车厂、各种材料研发销售私企,大家的路越走越宽。只不过,材料科学行业不像金融等行业那么艰辛。也不是什么高薪行业。就像一位学校招生科长说的那样:"发不了大财,但能吃饱饭。 1、材料科学与工程专业工资待遇: 截止到 XX年12月24日,324007位材料科学与工程专业毕业生的平均薪资为4994元,其中应届毕业生工资3568元,0-2年工资4243元,10年以上工资1000元,3-5年工资5331元,6-7年工资6818元,8-10年工资7685元。 2、材料科学与工程专业就业方向: 材料科学与工程专业学生毕业后可在各种材料的制备、加工成型、材料结构与性能等领域从事科学研究与教学、技术开发、工艺和设备设计、技术改造及经营管理等方面工作。

“材料科学与工程基础”习题答案题目整合版

“材料科学与工程基础”第二章习题 1. 铁的单位晶胞为立方体,晶格常数a=0.287nm ,请由铁的密度算出每个单位晶胞所含的原子数。 ρ铁=7.8g/cm31mol 铁=6.022×1023个=55.85g 所以,7.8g/1(cm)3=(55.85/6.022×1023)X/(0.287×10-7)3cm3 X =1.99≈2(个) 2.在立方晶系单胞中,请画出: (a )[100]方向和[211]方向,并求出他们的交角; (b )(011)晶面和(111)晶面,并求出他们得夹角。 (c )一平面与晶体两轴的截距a=0.5,b=0.75,并且与z 轴平行,求此晶面的密勒指数。 (a )[211]和[100]之夹角θ=arctg 2=35.26。 或 cos θ==35.26θ=o (b ) cos θ==35.26θ=o (c )a=0.5b=0.75z=∞ 倒数24/30取互质整数(320) 3、请算出能进入fcc 银的填隙位置而不拥挤的最大原子半径。 室温下的原子半径R =1.444A 。(见教材177页) 点阵常数a=4.086A 最大间隙半径R’=(a-2R )/2=0.598A 4、碳在r-Fe (fcc )中的最大固溶度为2.11﹪(重量百分数),已知碳占据r-Fe 中的八面体间隙,试计算出八面体间隙被C 原子占据的百分数。 在fcc 晶格的铁中,铁原子和八面体间隙比为1:1,铁的原子量为55.85,碳的原子量为12.01 所以(2.11×12.01)/(97.89×55.85)=0.1002 即碳占据八面体的10%。

5、由纤维和树脂组成的纤维增强复合材料,设纤维直径的尺寸是相同的。请由计算最密堆棒的堆垛因子来确定能放入复合材料的纤维的最大体积分数。 见下图,纤维的最密堆积的圆棒,取一最小的单元,得,单元内包含一个圆(纤维)的面积。 2 0.9064==。 即纤维的最大体积分数为90.64%。 6、假设你发现一种材料,它们密排面以ABAC 重复堆垛。这种发现有意义吗?你能否计算这种新材料的原子堆垛因子? fcc 和hcp 密排面的堆积顺序分别是ABCABC……和ABAB…,如果发现存在ABACABAC……堆积的晶体,那应该是一种新的结构,而堆积因子和fcc 和hcp 一样,为0.74。 7.在FCC 、HCP 和BCC 中最高密度面是哪些面?在这些面上哪些方向是最高密度方向? 密排面密排方向 FCC{111)}<110> HCP(0001)(1120) BCC{110)}<111> 8.在铁中加入碳形成钢。BCC 结构的铁称铁素体,在912℃以下是稳定的,在这温度以上变成FCC 结构,称之为奥氏体。你预期哪一种结构能溶解更多碳?对你的答案作出解释。 奥氏体比铁素体的溶碳量更大,原因是1、奥氏体为FCC 结构,碳处于八面体间隙中,间隙尺寸大(0.414R )。而铁素体为BCC 结构,间隙尺寸小,四面体间隙0.291R ,八面体间隙0.225R ;2、FCC 的间隙是对称的,BCC 的间隙是非对称的,非对称的2

材料科学与工程基础实验讲义

材料科学与工程基础实验讲义

华南农业大学材料与能源学院 现代材料科学与工程基础实验讲义 供材料科学专业本科生使用 胡航 2016-02-30

实验一 金属纳米颗粒的化学法制备 一、实验内容与目的 1. 了解并掌握金属纳米颗粒的化学法制备过程并制备Au 或Ag 纳米颗粒。 2. 了解金属纳米颗粒的光学特征。 二、实验原理概述 化学制备法是制备金属纳米微粒的一种重要方法,在基础研究和实际应用中被广泛采用。贵金属纳米颗粒的化学法制备主要有溶胶凝胶法、电镀法、氧化还原法等。其中氧化还原法又包括热分解和辐照分解等。贵金属纳米颗粒具有广泛的应用,如生物医学领域的杀菌,物理化学领域的催化等。本实验以金胶为例介绍交替法制备贵金属纳米颗粒,并以硝酸银在烷基胺中的热分解为例介绍表面活性剂中氧化还原法制备贵金属纳米颗粒。 1. 胶体金属(Au 、Ag )的成核与生长 总的来说,化学法制备金属纳米粒子都是让还原剂提供电子给溶液中带正电荷的金属离子形成金属原子。如,对于制备胶体金,如果采用柠檬酸三钠作为还原剂,其反应过程如下: 2H O -42223222222Δ HAuCl + HOC(CH )(CO )Au +Cl +CO +HCO H+CO(CH )(CO )+......??→粒子 2. 硝酸银热分解法制备银纳米粒子 热分解法制备金属纳米颗粒原理简单,实验过程易操作。对制备数纳米到数十纳米尺寸范围的纳米颗粒有较大优势。硝酸银在烷基胺中加热搅拌可形成澄清透明溶液。温度上升到150~200 °C 时,溶液颜色由浅色到深色快速变化,生成的银纳米颗粒被烷基胺包裹,稳定在溶液中。通过对样品洗涤、离心沉淀,可获得烷基胺包裹的银纳米粒子。 三、实验方法与步骤 (一)实验仪器与材料 硝酸银,柠檬酸三钠,油胺或十八胺,十八烯(ODE ),无水乙醇,配有温度调控和磁力搅拌的油浴加热器,三颈瓶,抽气头,滤膜,温度计套管,10 mL 量筒,分析天平,玻璃滴管,离心管,离心机,电热干燥箱 (二)实验方法与操作步骤

材料科学与工程专业介绍

材料科学与工程专业介绍 篇一:材料科学与工程专业介绍 材料科学与工程专业 材料科学与工程即材料科学与工程专业。 材料科学与工程(英文名:Materials Science and Engineering,缩写MSE)。在国务院学位委员会学科评议组制定和颁布的《授予博士、硕士学位和培养研究生的学科、专业目录》中,材料科学与工程属于工学学科门类之中的其中一个一级学科,下设3个二级学科,分别是:材料物理与化学、材料学、材料加工工程。材料科学与工程专业是研究材料成分、结构、加工工艺与其性能和应用的学科。在现代科学技术中,材料科学是国民经济发展的三大支柱之一。主要专业方向有金属材料、无机非金属材料、耐磨材料、表面强化、材料加工等。 1专业特色 材料科学与工程专业以材料学、化学、物理学为基础,系统学习材料科学与工程专业的基础理论和实验技能,并将其应用于材料的合成、制备、结构、性能、应用等方面研究的学科。 2培养目标 材料科学与工程专业培养具备包括金属材料、无机非金属材料、高分子材料等材料领域的科学与工程方面较宽的基础知识,能在各种材料的制备、加工成型、材料结构与性能等领域从事科学研究与教学、技术开发、工艺和设备设计、技术改造及经营管理等方面工作,适应社会主义市场经济发展的高层次、 材料科学研究者 高素质全面发展的科学研究与工程技术人才。培养要求 材料科学与工程专业学生主要学习材料科学与工程的基础理论,学习与掌握材料的制备、组成、组织结构与性能之间关系的基本规律。受到金属材料、无机非金属材料、高分子材料、复合材料以及各种先进材料的制备、性能分析与检测技能的基本训练。掌握材料设计和制备工艺设计、提高材料的性能和产品的质量、开发分析与检测技能的基本训练。掌握材料设计和制备工艺设计、提高材料的性能和产品的质量、开发研究新材料和新工艺方面的基本能力。[2] 3知识领域 1.掌握金属材料、无机非金属材料、高分子材料、防腐专业以及其它高新技术材料科学的基础理论和材料合成与制备、材料复合、材料设计等专业基础知识; 2.掌握材料性能检测和产品质量控制的基本知识,具有研究和开发新材料、新工艺的初步能力; 3.掌握材料加工的基本知识,具有正确选择设备进行材料研究、材料设计、材料研制的初步能力; 4.具有本专业必需的机械设计、电工与电子技术、计算机应用的基本知识和技能; 5.熟悉技术经济管理知识; 6.掌握文献检索、资料查询的基本方法,具有初步的科学研究和实际工作能力。 7.熟练掌握材料测试的仪器使用。

相关文档
相关文档 最新文档